高层建筑结构方案设计荷载估算
高层建筑结构计算的基本假定和荷载效应组合设计要求

3
内力与位移计算的一般原则
在自身平面内的刚度很大
平面外刚度很小, 可以忽略
平面外的刚度 很小,可忽略,
4
2020/3/3
可以抵抗在本身平面 内的侧向力
1、平面抗侧力结构假定
一片框架或简力墙在自身平面内刚度很大, 可以抵抗在本身平面内的侧向力; 而在平面外的刚度很小,可忽略, 即垂直该平面的方向不能抵抗侧向力 ——整个结构可分不同方向的平面抗侧力结
按刚度和变形分配
(2)计算每片平面抗侧力结构分到的水平作用下 的内力和位移
7
4.2 荷载效应组合
荷载效应
指结构或构件在某种荷载作用下的结构的内力和 位移。
荷载效应组合
指在所有可能同时出现的诸荷载组合下,确定结 构或构件内产生的效应。其中最不利组合是指所 有可能产生的荷载组合中,对结构构件产生总效 应为最不利的一组
(b)7~9度设防、高度较大且沿高度的刚度和质量分 布很不均匀的高层建筑
(c)特别重要的建筑(甲类建筑)
(2)薄弱层的位置
(a)楼层屈服强度系数沿高度分布均匀的结构,可取 底层
(b)楼层屈服强度系数沿高度分布不均匀的结构,可 取屈服系数最小的楼层及相对较小的楼层,一般不超 过2~3处
16
2020/3/3
➢ 不考虑地震作用组合:
0S R
➢ 考虑地震作用组合:
SE RE / RE
0 结构重要性系数,分别取1.1、1.0、0.9
RE 承载力抗震调整系数
14
2020/3/3
结构设计要求
2) 侧向(水平)位移限制和舒适度要求
➢ 弹性方法计算:
高层建筑结构设计要求及荷载效应组合

结构的继续使用需要修复。
从抗震角度来看,出现超过设防烈度的地震是不可避 免的,结构应该具备足够的塑性变形能力。
但是结构过早地出现塑性变形也是十分不利的。结构 在小震、甚至风荷载作用下就出现塑性变形,必然导致裂 缝和变形过大,将影响到建筑物的正常使用。
② 短暂设计状况:适用于结构出现的临时情况,包括 结构施工和维修时的情况等;
③ 偶然设计状况:适用于结构出现的异常情况,包括结 构遭受火灾、爆炸、撞击时的情况等;
④ 地震设计状况:适用于结构遭受地震时的情况,在抗 震设防地区必须考虑地震设计状况。
1.1、持久设计状况和短暂设计状况下(无地震作用组合) 当荷载与荷载效应按线性关系考虑时,按下式:
结构顶点最大加速度
使用功能 住宅、公寓 办公、旅馆
alim (m / s盖竖向振动加速度限值
《高层规程》中规定楼盖结构的竖向振动频率不宜小于3Hz, 竖向振动加速度不应超过下表的限值。
2.4、稳定性与抗倾覆
结构整体稳定性是高层建筑设计的基本要求。研究表 明,高层建筑混凝土结构仅在竖向重力荷载作用下产生整 体丧失稳定的可能性很小。稳定性设计主要是控制在风荷 载或水平地震力作用下,重力荷载产生的二阶效应(P-Δ) 不致过大,以免引起结构的失稳、倒塌。
n—结构总层数。
2、高层建筑结构的稳定应符合下列规定
1)剪力墙、框架—剪力墙结构、筒体结构
n
EJd 1.4H 2 Gi i 1
2)框架结构:
n
Di 10 G j / hi j i
(i=1,2,…,n)
3、抗倾覆控制: ⑴、控制高宽比H/B; ⑵、控制基底零应力区面积,<15%总面积。
《高层结构设计》 02高层建筑结构的荷载计算

高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。
本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。
第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。
风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。
垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。
1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。
荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。
2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。
在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。
表1列出了各种情况下的风压高度变化系数。
多、高层房屋结构的分析和设计计算

对质量及刚度沿高度分布比较均匀的结构,基本 自振周期可用下列公式近似计算:
Un——结构顶层假想侧移(m)。
多、高层房屋结构的分析和设计计 算
初步计算时,结构的基本自振周期按经验公式估算: n—建筑物层数(不包括地下部分及屋顶小塔楼) 。
Tg=0.4s (Ⅱ类场地,第二组)
T=1.5s(Tg∽5Tg)地震影响系数
T=4s(5Tg∽6s)地震影响系数 T=0~0.1s 地震影响系数 0.45 max∼2 max T=0.1s~Tg地震影响系数2 max
0.015 0.012
0.023∼0.05 0.05
0.027 0.021
0.036∼0.09 0.09
多、高层房屋结构的分析和设计计 算
(2)振型分解反应谱法
对不计扭转影响的结构,振型分解反应谱法可仅考虑 平移作用下的地震效应组合,并应符合下列规定: (a) j振型i层质点的水平地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 水平地震作用效应(弯矩、剪力、轴向力和变形) :
突出屋面的小塔楼,应按每层一个质点进行地震作用计 算和振型效应组合。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
顶部突出物:底部剪力法计算顶部突出物的地震作用, 可按所在的高度作为一个质点,按其实际定量计算所得水平 地震作用放大3倍后,设计该突出部分的结构。
增大影响宜向下考虑1~2层,但不再往下传递。
多、高层房屋结构的分析和设计计 算
基本自振周期 T1:
(3)竖向地震作用
高层建筑结构设计 第三讲 高层建筑结构荷载

回顾-地震作用的知识点
地震效应: 地面运动产生的结构反应,包括加速度、速度、位移 反应。 地面运动特性的特征量(三要素):强度、频谱和持续时间。
建筑物本身的动力特性对建筑破坏程度有很大的影响,建筑物的 动力特性:主要指建筑物的自振周期、振型和阻尼。 抗震设防是对建筑物进行抗震设计并采取一定的抗震措施,以达 到结构抗震的效果和目的。 抗震设防的目标:(三水准)
高层建筑结构设计
第三讲 高层建筑结构荷载
高层建筑主要承受竖向荷载、风荷载和地震作用。本章的主要 任务是介绍上述荷载的汇集方法。
3.1 竖向荷载
永久荷载(恒荷载):结构及装饰材料自重、固定 设备自重。 竖向荷载分为 可变荷载(活荷载):楼面均布活荷载、雪荷载、 积灰荷载及施工检修荷载。 恒荷载标准值可由《建筑结构荷载规范》GB50009提供的各种材 料自重标准值及构件和装饰物等截面尺寸进行计算,固定设备自重 由有关专业人员提供。 活荷载标准值应按《建筑结构荷载规范》GB50009的有关规定 采用。
“小震不坏,中震可修,大震不倒”
通过二阶段设计法来实现上述“三水准”抗震设计目标。
15
3.3 地震作用
一、地震作用的有关规定 1.建筑物重要性分类 甲类——指重大建筑工程和地震作用时可能发生严重次生灾 害的建筑。 乙类——指地震时使用功能不能中断或需尽快恢复的建筑。 丙类——指一般高层民用建筑。
(1)甲类建筑:应按高于本地区设防烈度计算; (2)乙、丙建筑,应按本地区设防烈度计算。 抗震措施不同,具体抗震措施要求看《规范》。
在计算高层建筑楼面活荷载引起的内力时,一般可不考虑楼 面活荷载不利布置,因为高层建筑楼面活荷载标准值一般为 2kN/m2 ,而高层建筑全部竖向荷载标准值一般为12~16kN/m2, 楼面活荷载最不利布置对内力影响较小,为简化计算,可不考虑 楼面活荷载不利布置,按活荷载满布进行计算,然后对梁跨中弯 矩乘以1.1~1.3的放大系数。 当楼面活荷载大于4kN/m2时,应考虑活荷不利布置。
高层建筑风荷载计算与结构设计

高层建筑风荷载计算与结构设计随着城市化进程的加快和城市人口的增长,高层建筑在现代城市中扮演着越来越重要的角色。
而高层建筑在设计与施工过程中,风荷载的计算和结构设计是至关重要的环节。
本文将探讨高层建筑风荷载计算与结构设计的相关内容。
一、风荷载计算1. 风荷载的定义和分类风荷载是指风对建筑物表面的静压力和动压力所产生的作用力。
根据风的性质和特点,风荷载可分为静风荷载、动风荷载和波浪风荷载等多种类型。
2. 风荷载计算方法风荷载计算是高层建筑结构设计的重要内容之一。
常用的计算方法包括静态风荷载计算方法、动态风荷载计算方法和实验风洞模拟等。
3. 风荷载标准为了保证高层建筑的结构安全性,各国都颁布了相应的风荷载标准,如中国《建筑抗震设计规范》、美国《ASCE7-10》等。
二、结构设计1. 结构材料选择高层建筑的结构设计应选择适宜的结构材料,如混凝土、钢结构、钢混凝土结构等,以满足建筑的承载能力要求。
2. 结构形式设计高层建筑的结构形式设计应考虑建筑本身的使用功能和外部环境,合理选择适应的结构形式,如框架结构、剪力墙结构、框筒结构等。
3. 结构稳定性设计高层建筑结构的稳定性设计是保证建筑整体稳定性和安全性的关键,需要考虑风荷载、地震作用等外部因素对结构的影响。
结语高层建筑风荷载计算与结构设计是高层建筑设计中的重要内容,直接影响到建筑物的安全性和稳定性。
设计者在进行设计时应充分考虑风荷载的计算方法和结构设计原则,确保建筑物能够承受外部环境的作用力,达到设计要求。
通过本文的介绍,希望读者对高层建筑风荷载计算与结构设计有了进一步的了解,为高层建筑的设计与建设提供一定的参考和指导。
高层建筑结构设计中的风荷载计算方法

高层建筑结构设计中的风荷载计算方法随着城市化进程的不断推进,高层建筑在城市中越来越普遍地出现。
高层建筑的设计不仅需要考虑力学性能,在面对自然灾害如风灾时,也需要具备足够的安全性。
因此,高层建筑结构设计中的风荷载计算方法成为了一项非常重要的研究领域。
高层建筑一般拥有较大的高度和较小的底面积,这使得它们对风荷载特别敏感。
风荷载是由气流对建筑物表面施加的力量,其大小与风速、气体密度、建筑物形状和风向等因素有关。
因此,为了准确计算风荷载,设计者需要考虑多个因素,并使用相应的计算方法。
首先,设计者需要考虑建筑物的几何形状。
建筑物的形状对于风荷载的分布有着重要的影响。
例如,圆柱形建筑物在风的作用下会受到较小的风力,而锥形建筑物则更容易受到风力的影响。
因此,在设计中需要根据建筑物的形状选择适当的风荷载计算方法。
其次,设计者还需要考虑风速和高度的影响。
风速是计算风荷载时的关键参数,而高度则会影响风速的大小。
一般而言,建筑物越高,风速越大。
因此,在风荷载计算中,设计者需要通过风洞试验或计算模拟等方法获取风速数据,并结合建筑物的高度进行计算。
同时,风向和风的变化也需要被考虑在内。
风荷载是根据设计者假设的基本风向来计算的,而现实中风的方向并不是始终不变的。
因此,在计算中,设计者需要考虑到风向的变化,并结合实际情况,合理地选择基本风向和风荷载计算方法。
此外,还有其他一些影响风荷载计算的因素,如地表粗糙度、周围建筑物和植被的遮挡效应等。
这些因素会对风的传输和分布产生影响,因此需要在计算中予以考虑。
综上所述,高层建筑结构设计中的风荷载计算涉及多个因素和多种方法。
设计者需要根据建筑物的形状、风速、高度、风向等信息,选择合适的计算方法,并结合实际情况进行计算。
通过科学准确地计算风荷载,可以确保高层建筑的结构安全,为城市的可持续发展提供有力支撑。
高层建筑风荷载计算方法

高层建筑风荷载计算方法
在设计和建造高层建筑时,考虑到安全性和结构稳定性,风荷载计
算是一个非常关键的环节。
本文将介绍常用的高层建筑风荷载计算方法,以保障这些建筑的风险预防和结构安全。
1. 引言
高层建筑由于其高度和形状的特殊性,常受到强风的影响。
风荷载
计算旨在确定建筑物所承受的风载荷,以保证结构的安全性和稳定性。
本文将介绍三种常用的风荷载计算方法。
2. 动态风压法
动态风压法是一种常用的风荷载计算方法,其基本原理是通过测量
和分析实际风速和压力数据,计算建筑物所受的风荷载。
该方法考虑
了建筑物与周围气流的相互作用,可以更准确地计算风荷载。
3. 静态风压法
静态风压法是另一种常用的风荷载计算方法,其基本原理是基于空
气动力学原理和建筑物形状的简化模型,通过计算建筑物上的静态风
压分布,进而确定风荷载。
这种方法适用于简单形状的建筑物,计算
相对简单,但精度较低。
4. 和风-抗风系数法
和风-抗风系数法结合了动态风压法和静态风压法的优点。
通过考虑建筑物形状、高度、周围环境等因素,确定抗风系数,并结合区域和
设计风速数据,计算得到风荷载。
这种方法在复杂的建筑形状和高度
变化比较大的场所适用。
5. 总结
风荷载计算是高层建筑设计中的重要环节,必须准确可靠。
本文介
绍了动态风压法、静态风压法和和风-抗风系数法三种常用的计算方法。
设计师根据建筑物的形状、高度和周围环境的不同选择适合的计算方法,并结合实际情况进行风荷载计算,以确保高层建筑的结构安全和
稳定。
高层建筑结构设计中的风荷载

式中 、 ”、 分 别 为脉 动 增 大 系数 、 脉 动 影 响系 数和 振 型 系 数 ,三者 可 以 查规 范 的表 格 得 到 。z m 为风 压 高度 变 化 系数 。
高层建筑风振控 制
高层建筑 的风振控制有多种方法, 包括调频质量阻尼器 ( T u n — z_ Z— Zd’ e d Ma s s Da m p e r ,简称 T MD) 、调频液柱阻尼器 ( T u n e d L i q u i d 其中z — — 离地 高 度 ( m) : D a mp e r ,简称 T L C D) 、调频液体阻尼器 ( T u n e d L i q u i d D mp a e r , z 厂一 零 平均 位 移 ( m o 简称 T L D) 、挡风板 ( Ae r o d y n a mi c A p p e n d a y s ) 控制、锚索控 制、 风压是建筑结构设计中的基本设计依据之一,其取值 的大小 粘弹性阻尼器一类的耗 能构件控制等 , 其 中, 调频质量阻尼器 、 挡 对高层 ( 高耸)和 大跨度结构的安全性、适用性、耐久性及是否经 风板控制和锚索控制等又分主动控制和被动控制 ,本文只对调频 济有密切 的关系. 基本风压 系以当地 比较空旷平坦地面上离地比较 质量阻尼器和调频业主阻尼器和粘弹性阻尼器等 比较 常见的被动 离地 1 0 m高统计所得的 5 0 年一遇 1 0 ai r n 平均最大风速、 按 = 1 P 2 风振 控 制 方 法进 行 介绍 。 调频 质 量 阻 尼器 ( T MD ) 确定的风压。基本风压值不得小于 0 . 3 k N/ m 。我国不 同城市和地 调频质量阻尼器在实际高层中已得到应用 , 例如 1 9 7 7年在美 区的基本风压直接查用 《 建筑结构荷载规范 》 的全国基本风压 分布 J o h n Ha n c o c k T o we r , B o s t o n) 和 1 9 7 8 图。当城市或建设地点的基本风压不能查收时 , 基本风压值可根据 国波 士顿约翰汉考克大厦 ( 年在纽约西蒂柯布中心 ( C i t i c o r p C e n t e r ,Ne wY o r k) 分别安装 了 当地年最大风速资料 ,按基本风压定义 ,通过统计分析确定。 调频质量阻尼器 ,西蒂柯布中心安装的调频质量阻尼器系统 。 调 频 液柱 阻尼 器 ( T L C D o调 频 液柱 阻 尼 器是 一 种 u 型 的管 风荷载的计算 风力的计算。风荷载是结构设计 的重要荷 载,在工程计算中, 状水箱 ,并在水平管得 中不设置格兰,为的是增加阻尼。u 型的 管状水箱安装固定在建筑物 的项部。当建筑物在风荷载作 用下运 常采用集中风荷载 动时 ,水箱将一 同运动一同运动 ,致使水箱中的水晃动 ,水晃动 P ) = ) + ( z ) 性力对水箱壁的作用就形成 了对建筑物的减振力。 式中 ,P ( z ) 为顺风 向 z高度处总静力风荷载 : ( z ) 为顺风向 z 产生的, 粘弹性阻尼器。正如减速器能使门的关 闭速度减缓那样 ,在 高度处静力风荷载 ; ( z ) 为顺风 向 Z高度 处风振动 力风荷 载。 高层建筑 物内部安装粘 弹性阻尼器 ,同样能达 到减小结构物摆动 ) = 皑 式中, Az为垂直于建筑物表面上平均风荷载受风面积 ( m ) ; 的 目的。粘弹性 阻尼器 已成功地应 用于 美国纽约世界 贸易中心 ( 1 1 0层 ) 和西雅图哥伦 比亚中心 ( 7 7层 )等大楼中。 为风荷载体型系数 : 在高层建筑和大跨度建筑结构设计 中,风振 Ⅱ 向 应和风振系数 为风压 高度变化系数 ; 是计算的重点和难点之一。我国的规范提供 高层高耸结构在顺向 为基 本 风压 。 风效应的风振 系数的计算 方法 ,这一方法不太适用于复杂高层建 筑和 大跨度建筑。因此 , 在复杂的高层建筑和大跨度建筑设计 时, ( 作者单位 :华侨大学土木工程学 院 ) 风荷载 的确定 需要采用其 它更精确 的方法来确定。
高层建筑设计中的风荷载分析与控制

高层建筑设计中的风荷载分析与控制随着现代城市化进程的加快,高层建筑的建设成为城市发展的重要组成部分。
然而,高楼大厦容易受到风力的影响,风荷载是高层建筑设计中的一个重要问题。
本文将探讨高层建筑设计中的风荷载分析与控制的方法和技术。
一、风荷载分析风荷载分析是建筑设计的重要环节。
在高层建筑的设计过程中,需要对建筑物在风力作用下的应力和变形进行计算和分析。
风荷载分析需要考虑多个因素,如建筑物的高度和形状、风速和风向、地理位置等。
在进行风荷载分析时,一种常用的方法是使用风洞实验。
风洞实验可模拟实际风力对建筑物的作用,通过测量建筑物的振动和应力变化,评估其抗风能力。
这样的实验不仅可以得到建筑物的风荷载数据,还可以为设计工程师提供重要的参考信息。
另一种常用的分析方法是数值模拟。
利用计算流体力学(CFD)模型和计算机软件,可以对建筑物在不同风速和方向下的风荷载进行模拟和分析。
这种方法可以更加精确地预测建筑物的风荷载,帮助设计师合理设计建筑结构。
二、风荷载控制在高层建筑设计中,风荷载控制是确保建筑物安全的关键。
风荷载对建筑物的影响主要体现在结构稳定性和振动控制方面。
为了确保建筑物的稳定性,设计师通常会采用一些措施来增强建筑物的抗风能力。
例如,在设计过程中使用适当的结构形式和横截面形状,增加建筑物的承载能力;使用合适的材料,提高建筑物的抗风性能;在建筑物的顶部设置风阻板或加固设备等。
此外,要控制建筑物的振动,防止共振现象的发生。
振动对建筑物的结构和功能产生不利影响,可能导致结构破坏甚至倒塌。
因此,设计师需要在设计过程中考虑振动控制的问题。
一种常用的方法是在建筑物的结构中设置阻尼器或减振器,通过吸收和消散振动能量来降低结构的振动水平。
此外,还可以通过合理设计建筑物的空气动力特性来控制风荷载。
例如,在建筑物的外墙上设置适当的外立面,可以起到减小风压和风荷载的作用。
三、案例分析为了更好地理解高层建筑设计中的风荷载分析与控制,以下是一些实际案例的分析。
高层建筑结构设计中的风荷载分析

高层建筑结构设计中的风荷载分析在当今城市的天际线中,高层建筑如雨后春笋般拔地而起。
这些高耸入云的建筑不仅是城市现代化的象征,更是建筑工程领域的巨大挑战。
在高层建筑结构设计中,风荷载是一个至关重要的因素,它对建筑的安全性、稳定性和舒适性都有着深远的影响。
风荷载,简单来说,就是风作用在建筑物表面上产生的压力和吸力。
然而,其实际的作用机制和影响却远非如此简单。
当风遇到高层建筑时,会产生绕流、分离和漩涡等复杂的流动现象,从而在建筑物的表面形成不均匀的压力分布。
这种不均匀的压力分布会对建筑结构产生水平力和扭矩,可能导致结构的变形、振动甚至破坏。
风荷载的大小主要取决于风速、风向、建筑物的形状、高度、表面粗糙度以及周围环境等因素。
风速是风荷载的最直接影响因素,风速越大,风荷载也就越大。
风向则决定了风对建筑物的作用方向,不同的风向会导致不同的压力分布。
建筑物的形状对风荷载的影响也十分显著。
例如,方形或矩形的建筑平面在风的作用下,其角落处容易产生较大的负压,而圆形或椭圆形的建筑则相对较为均匀地承受风荷载。
建筑物的高度也是一个关键因素,随着高度的增加,风速通常会增大,同时风的紊流特性也会更加明显,这使得风荷载的计算和分析变得更加复杂。
表面粗糙度则反映了建筑物外表面的凹凸不平程度。
粗糙的表面会增加风的阻力,从而影响风荷载的大小。
周围环境,如附近的建筑物、地形地貌等,也会对风的流动产生干扰,进而改变作用在目标建筑上的风荷载。
在进行高层建筑结构设计时,准确地评估风荷载是至关重要的。
目前,常用的风荷载计算方法主要包括规范法和数值模拟法。
规范法是基于大量的风洞试验和实际观测数据,通过统计分析得出的经验公式和系数。
各国的建筑规范中都对风荷载的计算方法和取值进行了规定。
这种方法简单易用,但对于一些特殊形状或复杂环境下的建筑,可能会存在一定的局限性。
数值模拟法则是利用计算机软件对风场和建筑物的相互作用进行模拟。
通过建立数学模型,求解流体力学方程,可以得到建筑物表面详细的风压力分布。
荷载与设计要求,建筑结构设计计算的一般规定

确定楼面梁、墙、柱及基础的荷载标准值时,应 将楼面活荷载标准值乘以规定的折减系数。 1)设计楼面梁时,上表中的折减系数为: ①第1项当楼面梁从属面积超过25m2时,取0.9; ②第2~8项当楼面梁从属面积超过50m2时,取0.9; ③第9项对单向板楼盖的次梁和槽形板的纵肋应取 0.8;
1、 单位面积上的风荷载标准值 我国《建筑结构荷载规范》规定垂直作用于 建筑物表面单位面积上的风荷载标准值 wk(KN/m2)按下式计算:
2)上人的屋面,当兼作其他用途 时,应按相应楼面活荷载采用。
3)对于因屋面排水不畅、堵塞等引 起的积水荷载,应采取构造措施加以防 止;必要时,应按积水的可能深度确定 屋面活荷载。
4)屋顶花园活荷载不包括花圃土石 等材料自重。
屋面均布活载不应与雪荷载同时组 合,雪荷载的取用见《荷载规范》。
活荷载按楼层的折减系数
确定高层建筑风荷载的方法有两种,大多 数建筑(高度300m以下)按照《荷载规范》规 定的方法计算风荷载值,少数建筑(高度大、 对风荷载敏感或有特殊情况者)还要通过风洞 试验确定风荷载,以补充规范的不足。
一般情况下,在风力不很大的地震区建 筑物仅考虑地震作用而不考虑风荷载;而在 风力较大的地震区建筑物,则需同时考虑风 荷载和地震作用;在没有抗震设防要求的地 区,风荷载起主要的控制作用。
0.7 0.7
0.7 0.7
0.7 0.7 0.7
0.7
0.5 0.7
0.4 0.5
0.4 0.5 0.3
0.5
注:1)本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情 况特殊时,应按实际情况采用;
《高层建筑结构》课程设计任务书(2015)

《高层建筑结构》课程设计任务书一、设计题目:高层框架结构设计某高层办公建筑,采用全现浇框架结构,结构平面布置如图所示,质量、刚度均匀,地上12层,各层层高、跨度及竖向荷载如图所示,设计使用年限为50年。
取③轴一榀典型横向框架进行结构设计。
二、设计资料⑴基本风压:0.45kN/m2,地面粗糙度类别为B类。
⑵基本雪压:0.45 kN/m2。
⑶设防烈度:7度;设计分组:第一组;抗震设防类别:丙类。
⑷场地类别:Ⅱ类。
⑸楼面做法:楼板厚120mm,各板顶做20mm厚水泥砂浆找平,地面装修重(标准值)按0.6 kN/m2考虑,各板底粉15mm厚石灰砂浆。
⑹屋顶:不上人屋面,做法同楼面,但加做二毡三油防水层,再做40mm厚细石混凝土面层(内布细丝网)。
⑺混凝土强度等级:梁C25、柱C30。
⑻梁、柱纵向受力钢筋采用HRB400级钢筋⑼梁、柱截面尺寸如下:柱:1~4层ZA:500mm*500mm ZB:600mm*600mm ZC:600mm*600mm ZD:500mm*500mm 5~12层ZA:400mm*400mm ZB:500mm*500mm ZC:500mm*500mm ZD:400mm*400mm 梁:LAB:250mm*700mm LBC:250mm*500mm LCD:250mm*600mm三、计算内容取③轴横向框架进行设计:计算书一份,要求手写,内容包括以下几项:⑴、计算简图(相对线刚度)⑵、荷载计算(竖向荷载、风荷载)⑶、结构水平位移验算⑷、内力计算4.1在竖向荷载作用下框架各杆件的内力(M、N、V)4.2在风荷载作用下的框架各杆件的内力(M、N、V)⑸、内力组合⑹、截面设计(梁、柱配筋)四、结构施工图框架梁、柱配筋图一张,要求手工绘图,2号图纸。
高层建筑结构上的荷载与作用 (2)

2017/8/5
17
风荷载计算
定义:空气流动形成的风遇到建筑物时,在建筑物表面 产生的压力或吸力即建筑物的风荷载。 计算公式:
k z s z0
k 为风荷载标准值; z 为 z 高度处的风振系数; 式中: s 为风荷载体型系数; z 为风压高度变化系数; 0 为基本风压。
2017/8/5
3
荷载和设计要求 步骤七:内力组合、确定最不利内力
梁柱轴线端内力调整至构件边缘端 竖向荷载梁端出现塑铰产生的塑性内力重分布
步骤八:截面尺寸验算 步骤九:延性设计调整 步骤十:构件截面设计 (抗弯、剪、扭、压等承载力计算) 步骤十一:构造要求 步骤十二:施工图绘制
2017/8/5 4
Gi H i
G H
j 1 j
n
( FEK Fn )
j
2017/8/5
45
地震作用计算
Fi
Gi H i
G H
j 1 j
n
( FEK Fn )
j
四、自振周期的修正: 计算中未考虑砌体填充墙的刚度影响,计算周期 较实际周期 长,地震作用偏于不安全,故应乘以周期折减系 数ΨT 框架结构:ΨT=0.6~0.7 框架-剪力墙:ΨT=0.7~0.8 剪力墙结构:ΨT=0.9~1.0
高层建筑结构设计确定风荷载

高层建筑结构设计确定风荷载高层结构设计要确保结构在风荷载作用下具备足够的抵抗变形能力和承载能力,保证结构在风荷载作用下的安全性。
同时,高层建筑物在风荷载作用下将产生振动,过大的振动加速度将使在高楼内居住的人们感觉不舒适,因此高层建筑结构应具备良好的使用条件,满足舒适度的要求。
1.1等效静态风荷载一般作用在建筑物上的风包括平均风和脉动风。
其中平均风是风荷载的长周期部分作用在建筑物上,其周期常在10min以上,可认为是作用在建筑物上的静荷载,因为其周期与建筑物的自振周期相差较远;脉动风则是短周期部分作用在建筑物上,其脉动的周期很短,一般只有几秒,其作用可以被认为是作用在建筑物上随机的动荷载,因为其周期与建筑物的自振周期比较接近。
作用在建筑结构上的风荷载除了平均风和脉动风产生的平均风力和脉动风力,还有风振产生的惯性力。
平均风力、脉动风力和惯性力组合得到最终的等效静态风荷载。
(1)惯性力依据高频动态天平试验结果,可以求出高层建筑底部的平均风力(包含力矩和剪力)和脉动风力,在给出高层建筑结构参数的情况下,可以计算出位移和加速度响应,由共振加速度可以进一步求出惯性力。
惯性力是由振动产生的,由加速度和质量决定,沿高度分布惯性力均方根σaf(z)表达式为:上式中m(z)为沿高度的质量,为沿高度的加速度。
(2)平均风力和脉动风力空气来流沿高层建筑高度分布的风力可通过下式表达:其中:ρ为空气密度;是z处单位高度上的力系数,一般通过风压测量试验确定;是来流风速。
风速是平均风速与脉动风速的合成,即:一般来说,脉动风速相对于平均风速是小量,忽略二阶小量,即可得到沿高度分布的平均风力和脉动风力分别如下:脉动力均方根为:其中,为沿高度的来流湍流度。
(3)等效静态风荷载沿高度分布的等效静态风荷载由下式给出:式中g为峰值因子,可取3.5。
1.2结构体型系数对于普通的高层结构,结构体型系数一般按《建筑结构荷载规范》(GB52022-0512)表8.3.1和《高层建筑混凝土结构技术规程》(JGJ3-2010)第4.2.3条取包络值。
高层建筑风荷载计算

高层建筑风荷载计算在现代城市的天际线中,高层建筑如林立的巨人般矗立。
然而,这些高耸的建筑在面对大自然的力量——风时,需要经过精心的设计和计算,以确保其结构的安全性和稳定性。
风荷载,作为作用在高层建筑上的重要外力之一,其准确计算对于建筑的设计和建造至关重要。
风荷载是什么呢?简单来说,风荷载就是风对建筑物产生的压力或吸力。
当风吹过建筑物时,由于建筑物的阻挡,风的流动会发生改变,从而在建筑物表面产生不同的压力分布。
这种压力分布会对建筑物的结构产生作用,可能导致建筑物的变形、振动甚至破坏。
那么,如何计算高层建筑的风荷载呢?这可不是一个简单的问题,需要考虑多个因素。
首先,风速是一个关键因素。
风速通常是根据当地的气象资料来确定的。
气象站会记录不同高度的风速数据,但这些数据一般是在标准高度(通常为 10 米)测量得到的。
而对于高层建筑,我们需要将这些风速转换到建筑物所在的高度。
这就需要用到风速的垂直分布规律,一般可以采用指数律或对数律来进行转换。
其次,建筑物的形状和尺寸也对风荷载有很大影响。
比如,建筑物的平面形状是圆形、方形还是其他不规则形状,都会导致风在其表面的流动情况不同。
建筑物的高度、宽度、长度以及立面的变化等都会改变风荷载的大小和分布。
另外,建筑物所在的地形和周边环境也不能忽视。
如果建筑物位于山区、峡谷或者靠近其他建筑物,风的流动会受到地形和周边建筑物的干扰,从而改变风荷载的特性。
在计算风荷载时,还需要考虑风的脉动效应。
风不是稳定不变的,而是具有随机性和脉动性。
这种脉动风会引起建筑物的振动,甚至可能产生共振现象。
为了考虑风的脉动效应,通常会采用风洞试验或者数值模拟的方法来获取更准确的风荷载数据。
风洞试验是一种在实验室中模拟风对建筑物作用的方法。
通过在风洞中放置按比例缩小的建筑物模型,然后测量模型表面的风压,再经过一定的换算和分析,就可以得到实际建筑物的风荷载。
风洞试验的优点是能够较为真实地模拟风的作用,但成本较高,而且试验结果可能会受到模型制作精度和试验条件的影响。
高层建筑风荷载计算

高层建筑风荷载计算在现代城市的天际线中,高层建筑如雨后春笋般拔地而起。
这些高耸入云的建筑不仅是城市的地标,也是工程技术的杰作。
然而,在设计和建造这些高层建筑时,风荷载是一个至关重要的考虑因素。
风荷载的准确计算对于确保建筑的结构安全、稳定性以及居住者的舒适度都具有不可忽视的意义。
风荷载,简单来说,就是风对建筑物表面产生的压力或吸力。
由于高层建筑的高度较大,其暴露在风中的面积也相应增加,风的作用效果更加显著。
如果风荷载计算不准确,可能会导致建筑物在强风天气中出现结构破坏、摇晃甚至倒塌等严重后果。
那么,如何进行高层建筑风荷载的计算呢?这可不是一个简单的问题,需要综合考虑多个因素。
首先,风速是计算风荷载的关键因素之一。
风速通常是通过气象观测数据获得的,但这些数据往往是在地面附近测量得到的。
随着高度的增加,风速会逐渐增大,这种现象被称为风速的梯度变化。
为了准确计算高层建筑顶部的风速,需要使用特定的风速剖面公式,例如幂律公式或对数公式。
其次,建筑的外形和几何特征对风荷载的大小和分布有着重要影响。
不同的建筑形状,如方形、圆形、三角形等,以及建筑表面的凹凸变化、开口和阳台等,都会改变风的流动模式,从而影响风荷载的作用。
例如,流线型的建筑外形通常能够减少风的阻力,从而降低风荷载;而带有突出部分或复杂几何形状的建筑则可能会产生较大的风荷载。
另外,风向也是一个重要的考虑因素。
风可以从不同的方向吹来,对于高层建筑,不同方向的风荷载可能会有很大的差异。
因此,在计算风荷载时,需要考虑多个风向的情况,并选取最不利的风向组合进行设计。
在实际计算中,通常会使用两种主要的方法:规范计算方法和数值模拟方法。
规范计算方法是基于大量的实验研究和理论分析得出的一系列计算公式和系数。
例如,我国的建筑结构荷载规范就提供了详细的风荷载计算方法和参数。
这种方法相对简单、实用,但可能会存在一定的保守性,对于一些特殊形状或复杂环境下的高层建筑,计算结果可能不够准确。
高层建筑结构方案设计荷载估算

高层建筑结构方案设计荷载估算(2010-04-27 01:53:45)转载▼分类:PART10设计心得标签:建筑荷载折减系数轴力布活载教育1.2 高层建筑结构作用效应的特点1.2.1 高层建筑结构的受力特点建筑结构所受的外力(作用)主要来自垂直方向和水平方向。
在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。
也就是说,竖向荷载往往是结构设计的主要控制因素。
建筑结构的这种受力特点随着高度的增大而逐渐发生变化。
在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为:边柱 N=wlH/2h中柱 N=wlH/h即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。
就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。
其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为:水平均布荷载 Mmax=qH2/2倒三角形水平荷载 Mmax= Qh3/3即结构底部产生的倾复弯矩与楼层总高度的平方成正比。
就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。
1.2.2 高层建筑结构的变形特点在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。
由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。
在钢筋混凝土结构中,由于在施工过程中的找平,同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。
在水平荷载作用下,高层建筑结构最大的顶点位移为:水平均布荷载△max=qH4/8EI倒三角形水平荷载△max= 11qH4/120EI式中EI为结构的从以上可看出,结构顶点位移与其总高度的四次方成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑结构方案设计荷载估算1.2 高层建筑结构作用效应的特点1.2.1 高层建筑结构的受力特点建筑结构所受的外力(作用)主要来自垂直方向和水平方向。
在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。
也就是说,竖向荷载往往是结构设计的主要控制因素。
建筑结构的这种受力特点随着高度的增大而逐渐发生变化。
在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为:边柱 N=wlH/2h中柱 N=wlH/h即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。
就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。
其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为:水平均布荷载 Mmax=qH2/2倒三角形水平荷载 Mmax= Qh3/3即结构底部产生的倾复弯矩与楼层总高度的平方成正比。
就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。
1.2.2 高层建筑结构的变形特点在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。
由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。
在钢筋混凝土结构中,由于在施工过程中的找平,同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。
在水平荷载作用下,高层建筑结构最大的顶点位移为:水平均布荷载△max=qH4/8EI倒三角形水平荷载△max= 11qH4/120EI式中EI为结构的从以上可看出,结构顶点位移与其总高度的四次方成正比。
则又比水平荷载作用下的内力累积效应增加更快,这就说明,高层建筑结构对结构的水平侧移是相当敏感的。
水平荷载作用下所引起的结构内力及侧移是高层建筑结构设计的主要控制因素。
结构应具备较大的抗侧刚度,而不仅仅满足强度、刚度和稳定要求。
在地震区,还要求建筑物能抗震。
由于地震是一种瞬时作用,但作用所产生的效应非常强烈,故结构的过大变形是不可避免的(这种变形在不发生地震时是不允许的),这就要求结构有较好的延性,能在强烈地震作用下结构虽产生较大变形而不破坏。
2.3 我国现行规范中规定的主要限定标准1.风荷载作用下房屋顶点质心位置的侧移应H/500(总高),各层质心层间位移H/400(总高)且结构平面端部构件的最大侧移值不得超过质点侧移值的1.2倍。
2.地震作用下,第一阶段抗震设防时在多遇地震作用下结构层间位移应≤h/250,且结构平面端部构件最大侧移值不得超过质心位置侧移的1.3倍。
对于框架—支撑(剪力板)体系中总框架所承担的地震剪力不得小于结构底部总剪力的25%,当对结构平面的两个主轴方向分别计算水平地震效应时,要求角柱和两个方向的支撑(或剪力墙板)所共有的柱构件应在这地震剪力的基础上再将杆件内力提高30%进行设计。
3.在第二阶段抗震设计时结构层间位移应≤h/70,层间侧移延性比(指结构层间最大侧移与其弹性侧移之比)不得超过下表中限值:结构种类结构体系层间侧移延性比全钢结构框架体系 3.5框架偏心支撑 3.0框架中心支撑 2.5钢骨结构型钢—混凝土框架 2.5钢—混凝土混合 2.04.风荷载作用下顺风和横风向顶点最大加速度应满足以下要求:对公共建筑 aw(或atr)≤0.20m/s2对公寓建筑 aw(或atr)≤0.28m/s25.园筒形平面的高层建筑容易因横向风引起的涡流共振,为防止横风向引起共振,因此JGJ99-98中采用房屋顶部风速来限制要求:顶部风速Vn < Ucr 临界风速Vcr = 5D/T1(T1为直径D的结构基本自振周期)当满足不了Vn < Ucr时应增大结构刚度或进行横风向涡流脱落试验。
6.为了较合理选择适宜的结构方案规范对不同的结构种类提出了结构高宽比限值。
1.3 高层建筑的作用1.3.1 高层建筑的静荷载1.3.2 高层建筑的活荷载1.3.2.1楼面和屋面活荷载第3.1.1条民用建筑楼面均布活载的标准值及其组合值,频遇值和准永久值系数,应按《建筑结构荷载规范》GBJ50009-××××(以下简称《荷载规范》)的第4.1.1条的规定采用,该条无规定者,可按本规定表3.1.1采用。
民用建筑楼面均布活载表3.1.1项次类别标准值(kN/m2)组合值系数φc 频遇值系数φf 准永久值系数φg一酒吧间、展销间 3.0-4.0 0.7 0.6 0.5二体操房、娱乐室 3.5-5.0 0.7 0.6 0.5三宾馆、饭店建筑1 宴会厅 3.0-4.0 0.7 0.5 0.52 厨房:中小型 4.0-5.0 0.7 0.6 0.5大型 6.0-8.0 0.7 0.6 0.53 洗衣房 4.0-5.0 0.7 0.6 0.54 贮藏室 5.0-8.0 0.7 0.6 0.8四电子计算机房1 一般微机 3.0 0.7 0.6 0.52 网络中心 4.5 0.7 0.6 0.5五电梯间机房 6.0 0.7 0.6 0.6六图书馆档案的书库和档案1 一般排列时 5.0-7.0 0.7 0.6 0.82 密集排列时 ≥10.0 0.7 0.6 0.8七电话交换机房 6.0 0.7 0.6 0.6八多层停车库的车道 5.5 0.7 0.6 0.6九医院建筑注(1)本表所列各项活载适用于一般的使用条件,当使用荷载较大时,应按实际情况采用。
(2)第五项活载应按电梯产品规格规定采用。
(3)第八项活载只适用于停放轿车的车库。
(4)医疗建筑的活载按实际情况采用。
(5)本表各项活载未包括隔墙自重。
第3.1.2条设计楼面梁、墙、柱及基础时,民用建筑楼面均匀活载标准值的折减系数应按《荷载规范》第4.1.2条规定。
表3.1.1中的楼面活载标准值按下列规定乘以相应的折减系数。
一、设计楼面梁时的折减系数1.第一~七项和第九项,当楼面梁的从属面积超过50m2时取0.9。
2.第八项取0.8。
二、设计墙、柱及基础时的折减系数采用与其楼面梁相同的折减系数。
第3.1.3条工业建筑楼面活荷载的标准值及其系数,应按《荷载规范》第4.2.1~第4.2.3条及附录C采用。
当设计楼面梁、墙、柱及基础时,其楼面活载标准值的折减系数,按表3.1.3的规定采用。
工业楼面活荷载标准值折减系数表3.1.3类别折减系数备注生产车间>10kN/m2 0.6~0.8≤10kN/m2 0.7~0.8 折减后不少于4kN/m2仓库按实际情况定第3.1.4条楼面的附加悬挂管道荷载标准值,应按实际情况确定,当缺乏资料时,对一般管道采用0.5~1.0kN/m2,其组合值系数Фc=0.7,频遇值系数Фf=0.6;准永久值系数Фg=0.6。
第3.1.5条作用在多层工业建筑的板面和次梁(肋)上的非承重隔墙荷载,可按等效均布荷载的确定方法,求得构件上的隔墙荷载增值标准值,为了简便计算,可根据隔墙重量和楼面活载标准值,按表3.1.5确定隔墙荷载增值标准值,并应注意下列条件要求:一、任何情况下,布置在板面和次梁(肋)上的隔墙宜采用轻质隔墙;应尽量不采用重隔墙。
二、适用于现浇板或具有良好整体作用的装配整体式楼板。
三、双向板及无梁楼板等上的隔墙荷载增值标准值,应按等效原则另行计算。
四、隔墙尽量布置在次梁(肋)上,或布置在距次梁(肋)中线左右1/5板跨范围内(即避免在板跨中3/5的范围内布置)作用在板面和次梁(肋)上的隔墙荷载增值表3.1.5隔墙荷载增值(kN/m2) 隔墙重 kN/m 备注3.04.05.06.07.08.09.0 10.0 11.0楼面活荷载(kN/m2) 3.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.04.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.55.0 0.5 1.0 2.0 2.5 3.0 3.5 4.06.0 0.5 1.0 2.0 2.5 3.0 3.57.0 0.5 1.0 2.0 2.5 3.08.0 0.5 1.0 2.0 2.09.0 0.5 1.0 1.010.0 0.5第3.1.6条作用在多层工业建筑的主梁或框架梁上的非承重隔墙荷载可根据隔墙重量和作用位置,按等效原则计算确定其隔墙荷载增值标准值。
对直接设置在主梁或框架梁上的隔墙荷载,可不考虑楼板的整体作用,全部由主梁或框架梁承受。
第3.1.7条用等效均布荷载进行计算时,仍可采用实际连续结构的计算简图。
对于仓库及活荷载的分布可能出现较大变化的楼层结构,应考虑荷载的不利布置影响,可以采用简单方法,如对框架梁可将按满载计算的跨中弯矩乘以考虑活载不利布置影响的内力增大系数1.1~1.2。
第3.1.8条高层建筑结构的活荷载在计算内力时,可不作最不利布置,按满载计算。
第3.1.9条居住建筑的非人防地下室顶板,若考虑作为地震时疏散用,其顶板活荷载应按倒塌荷载30kN/m2计算。
第3.1.10条采用钢筋混凝土自防水平屋面,宜考虑有增设防水措施的可能,一般可按0.3kN/m2采用。
第3.1.11条平屋面兼作公共活动场所用途时,其屋面均布活荷载应根据使用性质类别,按相应的楼面均布活载采用,但不应小于2.5 kN/m2,组合值系数0.7,频遇值系数0.6,准永久值系数按相应的楼面均布活荷载采用。
第3.1.12条作屋顶花园使用的平屋面有草皮部份:其屋面均布活载应按其实际复盖的草皮构造类别,厚度等而定。
除考虑屋面承重构件,建筑防水构造等材料自重外,一般考虑100mm厚卵石滤水层,300~500mm厚浸水饱和土层(或其它轻质培养粉)等材料重。
若无具体资料可按12.0kN/m2采用,其组合值系数0.7,频遇值系数0.6,准永久值系数0.6。
无草皮部份:屋面均布活荷载可按不小于4.0kN/m2,其组合值系数0.7,频遇值系数0.6,准永久值系数0.6。
第3.1.13条当高层建筑的平屋面作为直升机停机坪时,其直升机平台的活荷载应采用下列两款中能使平屋面产生最大内力的荷载。
一、直升机总重量引起的局部荷载,按实际最大起飞重量决定的局部荷载标准值乘以动力系数1.4确定;当没有机型技术资料时,局部荷载标准值及其作用面积可根据直升机类型按表3.1.13采用。
局部荷载标准值及其作用面积表3.1.13直升机类型局部荷载标准值(kN)作用面积(m2)轻型 20.0 0.20×0.20中型 40.0 0.25×0.25重型 60.0 0.30×0.30二、等效均布活载5kN/m2第3.1.14条平屋面,雨蓬,屋顶游泳池等应考虑泄水孔有堵塞可能产生的积水重量,积水深。