基因的本质知识点总结

合集下载

河南省高中生物必修二第三章基因的本质知识点梳理

河南省高中生物必修二第三章基因的本质知识点梳理

河南省高中生物必修二第三章基因的本质知识点梳理单选题1、DNA分子贮存的遗传信息多种多样的主要原因是()A.DNA分子的碱基对排列顺序千变万化B.DNA分子的碱基数量比较多C.DNA分子的碱基种类多种多样D.DNA分子的碱基空间结构变化多端答案:A分析:1 .DNA分子的多样性:构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性2 .DNA分子的特异性:每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。

A、遗传信息就蕴藏在DNA分子的碱基对(脱氧核苷酸)的排列顺序中,故DNA分子贮存的遗传信息多种多样的主要原因是DNA分子的碱基对排列顺序千变万化,A正确;B、DNA分子的碱基数量比较多不是其有多样性的原因,B错误;C、DNA分子的碱基种类只有4种,C错误;D、DNA分子的碱基空间结构为双螺旋结构,D错误。

故选A。

2、下列各种生物中关于含氮碱基、核苷酸、五碳糖种类的描述,正确的是()A.AB.BC.CD.D答案:D分析:1 .核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA),它们的组成单位依次是四种脱氧核苷酸(脱氧核苷酸由一分子磷酸、一分子脱氧核糖和一分子含氮碱基组成)和四种核糖核苷酸(核糖核苷酸由一分子磷酸、一分子核糖和一分子含氮碱基组成);2 .细胞类生物(原核生物和真核生物)的细胞都同时含有DNA和RNA两种核酸,而病毒只含有一种核酸,即DNA或RNA。

A、酵母菌是真核生物,含有2种核酸(DNA和RNA),含有5种碱基,2种五碳糖,8种核苷酸,A错误;B、蓝细菌是原核生物,含有2种核酸(DNA和RNA),含有5种碱基,2种五碳糖,8种核苷酸,B错误;C、新型冠状病毒是一种RNA病毒,含有1种核酸(RNA),含有4种碱基,1种五碳糖,4种核苷酸,C错误;D、小麦的叶肉细胞是真核细胞,含有2种核酸(DNA和RNA),含有5种碱基,2种五碳糖,8种核苷酸,D正确。

必修二 第3章 基因的本质知识点总结

必修二  第3章  基因的本质知识点总结

遗传与进化第三章基因的本质第一节 DNA是主要的遗传物质两种肺炎双球菌格里菲思的小鼠转化实验S型细菌加热后,蛋白质部分变性失活,而DNA的性质未改变,对于S型细菌自身来说,蛋白质失活即死亡。

当加热失活的S型细菌与R型细菌混合时,S型细菌的DNA进入R型细菌体内,利用R型细菌内的化学成分合成S型细菌的DNA和蛋白质,转化成了具有毒性的S型细菌。

【实验结论】格里菲思的推论:在第四组实验中,已经被加热杀死的S型细菌中必然含有某中促成这一转化的活性物质——“转化因子”,这种转化因子将无毒性的R型活细菌转化为有毒性的S型活细菌。

艾弗里的实验①S型细菌的DNA使RNA型细菌发生转化②S型细菌的其他物质不能使R型细菌发生转化【实验结论】DNA才是使R型细菌产生稳定遗传变化的物质,即DNA是遗传物质,而蛋白质等其他物质不是遗传物质。

T2噬菌体的特点(1)结构:外壳由蛋白质构成,头部含有DNA。

(2)生活方式:必须寄生于大肠杆菌体内,不能独立代谢。

(3)增殖特点:在噬菌体自身的遗传物质的作用下,利用大肠杆菌体内的物质合成自身成分,进行增殖。

当噬菌体增殖到一定数量后大肠杆菌裂解,释放出大量的噬菌体。

(4)噬菌体侵染细菌的过程:吸附→注入→复制合成→组装→释放。

在合成子代噬菌体的DNA 和蛋白质过程中,除模板DNA的两条脱氧核苷酸长链是由亲代噬菌体提供的以外,原料、能量、酶、场所等都是由细菌提供的。

噬菌体侵染大肠杆菌的实验因噬菌体蛋白质含有DNA没有的特殊元素S,所以用35S标记蛋白质;DNA中含有蛋白质没有的特殊元素P,所以用32P标记DNA;因DNA和蛋白质都含有C、H、O、N,所以此实验不能标记C、H、O、N。

【实验过程】(2)离心的目的:让上清液中析出重量较轻的T2噬菌体颗粒,而离心管的沉淀物中留下被感染的大肠杆菌。

【实验结果】(1)用35S标记的一组感染实验,上清液(T2噬菌体)的放射性很高,沉淀物的放射性很低,在新形成的噬菌体中没有检测到35S。

2023年基因的本质(二轮复习)备战高考生物必备知识大串讲(含答案)

2023年基因的本质(二轮复习)备战高考生物必备知识大串讲(含答案)

专题09 基因的本质(考点梳理.逐个击破)1. DNA 是遗传物质的实验证据1——肺炎双球菌的转化实验类型 菌体菌落 毒性 S 型细菌 有多糖类的荚膜 外表光滑 有 肺炎双球菌 类型及特点 R 型细菌 没有多糖类的荚膜外表粗糙 无 〔1〕格里菲思体内转化实验结论:加热杀死的S 型细菌中含有某种“ 转化因子 〞,能将R 型活细菌转化为S 型活细菌。

〔2〕艾弗里体外体内转化实验实验方法: 将S 型细菌中的物质别离出来,分别与R 型细菌混合培养,独立地观察各自的作用 。

实验结论: DNA 才是使R 型细菌产生稳定遗传变化的物质,即 DNA 是遗传物质。

也证明了 蛋白质 、 多糖 、 DNA 水解产物 不是遗传物质。

例1:格里菲思用肺炎链球菌感染小鼠进行了著名的转化实验,关于实验的结论错误的选项是( )。

A.说明了肺炎链球菌的遗传物质是DNAB.说明了R 型活细菌在肯定条件下能够转化为S 型活细菌C.说明了R 型活细菌不具有致病性,S 型活细菌具有致病性D.说明了加热致死的S 型细菌不具有致病性(解析)格里菲思的肺炎链球菌转化实验能够证明加热致死的S 型细菌体内存在促进R 型活细菌转化为S 型活细菌的转化因子,但没有证明DNA 是遗传物质,A 错误,B 正确;将R 型活细菌单独注射到小鼠体内,小鼠存活,证明其没有致病性,将S 型活细菌单独注射到小鼠体内,小鼠死亡,说明S 型活细菌有致病性,C 正确;将加热致死的S 型细菌注射到小鼠体内,小鼠能够存活,证明加热致死的S 型细菌不具有致病性,D 正确。

应选A2. DNA 是遗传物质的实验证据2——噬菌体侵染细菌的实验〔1〕实验人: 赫尔希 和 蔡斯 。

〔2〕实验方法: 同位素标记 法,用35S 和 32P 分别标记噬菌体的蛋白质外壳和DNA 分子。

〔3〕实验结果:细菌裂解释放出的子噬菌体中, 能 检测到32P 标记的DNA , 不能 检测到35S 标记的蛋白质。

专题2 基因的本质和表达-高考生物必修知识点归纳(背记版)

专题2 基因的本质和表达-高考生物必修知识点归纳(背记版)

第一单元基因的本质一、DNA是主要的遗传物质1、肺炎双球菌的体内转化实验(1)1928年由英国科学家格里菲斯等人进行。

(2)实验过程(3)结论:在S型细菌中存在某种转化因子可以使R型细菌转化为S型细菌。

2、肺炎双球菌的体外转化实验:(1)1944年由美国科学家艾弗里等人进行。

(2)实验过程(3)实验结果:只有加入S型细菌DNA 的一组才可以将R型细菌转化为S型细菌。

(4)结论:DNA才是使R型细菌产生稳定遗传变化的物质,即DNA是遗传物质3、噬菌体侵染细菌的实验(1)、实验过程(2)结论:只有噬菌体的DNA 才可以进入细菌且传递给子代噬菌体,由此进一步确立DNA 是遗传物质4、烟草花叶病毒感染烟草实验:(1)、实验过程(2)实验结果分析与结论:烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质。

5、生物的遗传物质非细胞结构的生物(病毒)遗传物质:DNA或RNA生物原核生物遗传物质:DNA有细胞结构的生物真核生物遗传物质:DNA结论:由于绝大多数生物(有细胞的生物和DNA病毒)的遗传物质是DNA ,所以说DNA是主要的遗传物质。

二、DNA分子的结构1、DNA的空间结构:①由两条反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:脱氧核糖和磷酸交替连接构成基本基本骨架。

内侧:由通过氢键相连的碱基对组成。

③碱基配对有一定规律: A与 T 配对; C与G 配对,因此:在DNA分子中有此数量关系:A=T C=G A+G / T+C = 12、DNA分子特点:稳定性、多样性、特异性三、DNA的复制1、时间:细胞分裂间期。

(即有丝分裂的间期和减数第一次分裂的间期)2、基本条件:①模板:解旋的DNA分子的两条母链(即亲代DNA的两条链);②原料:游离的4种脱氧核苷酸;③能量:由ATP提供;④酶: DNA解旋酶 DNA 聚合酶3、特点:① 边解旋边复制;② 多起点双向复制4、配对方式: A-T T-A C-G G-C5、与DNA复制有关的碱基计算(1)一个DNA连续复制n次后,DNA分子总数为:2n个(2)复制n代后的DNA分子中,含原DNA母链的有 2 个,占1/(2n-1)四、.基因的本质1、与DNA的关系①基因是有遗传效应的DNA片段。

版高中生物必修二基因的本质易混淆知识点

版高中生物必修二基因的本质易混淆知识点

版高中生物必修二基因的本质易混淆知识点1.基因与DNA基因是DNA分子的一部分。

DNA是一个巨大的分子,由许多基因组成。

基因是携带遗传信息的DNA序列,它们决定了生物的性状和特征。

2.基因与染色体基因位于染色体上。

染色体是一种结构,它们由DNA和蛋白质组成,并且包含许多基因。

染色体存在于细胞核中,它们通过染色体的数量和结构来决定生物的染色体组型。

3.基因型与表型基因型是指个体的基因组成,而表型是指个体的可观察到的性状。

基因型决定了表型,但有时候基因型并不完全决定表型,因为基因的表达受到环境因素的影响。

4.突变与变异突变是指DNA序列的改变,它可以是单个碱基的改变,也可以是较大范围的基因重排。

变异是指个体或种群中基因频率的改变。

突变是变异的一种机制,变异是种群水平上基因发生的改变。

5.遗传与表观遗传遗传是指基因在后代中传递的过程。

它是通过DNA的复制和亲代到子代的遗传物质的传递实现的。

表观遗传是指个体表型的可逆性可遗传性改变,在基因序列没有改变的情况下,环境因素或其他因素可以引起表观遗传变化。

6.有丝分裂与减数分裂有丝分裂是体细胞分裂的过程,其结果是形成两个完全相同的细胞。

在有丝分裂中,细胞的染色体复制一次,然后按照一定的程序进行分离。

减数分裂是生殖细胞的分裂过程,其结果是形成四个有不同基因组成的细胞。

7.隐性与显性基因隐性基因是在表型上不被表现出来的基因,只有当两个隐性基因同时存在时,才能在表型上表现出来。

显性基因是在表型上直接呈现的基因,即使只有一个显性基因存在,也能在表型上表现出来。

以上是一些容易混淆的基因相关知识点和详细解释,希望能够帮助你更好地理解基因的本质以及相关概念。

如果还有其他问题,欢迎继续提问。

《基因的本质》生物知识点归纳总结

《基因的本质》生物知识点归纳总结

《基因的本质》生物知识点归纳总结《基因的本质》生物知识点归纳总结生物是指具有动能的生命体,也是一个物体的集合。

而个体生物指的是生物体,与非生物相对。

以下是店铺收集整理的《基因的本质》生物知识点归纳总结,欢迎大家借鉴与参考,希望对大家有所帮助。

《基因的本质》生物知识点归纳总结1第一节DNA是主要的遗传物质一、DNA是主要的遗传物质1.DNA是遗传物质的证据2.DNA是主要的遗传物质(1)某些病毒的遗传物质是RNA(2)绝大多数生物的遗传物质是DNA第二节DNA分子的结构★1.DNA分子结构的主要特点:①DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。

②DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧③两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A=T/UG=C★2.特点①稳定性:DNA分子中脱氧核糖与磷酸交替排列的顺序稳定不变②多样性:DNA分子中碱基对的排列顺序多种多样(主要的)、碱基的数目和碱基的比例不同③特异性:DNA分子中每个DNA都有自己特定的碱基对排列顺序AG★3.计算1.在两条互补链中TC的比例互为倒数关系。

2.在整个DNA分子中,嘌呤碱基之和=嘧啶碱基之和。

AT3.整个DNA分子中,GC与分子内每一条链上的该比例相同。

★第三节DNA的复制1.场所:细胞核;时间:细胞分裂间期。

(即有丝分裂的间期和减数第一次分裂的间期)2.DNA分子复制过程:边解旋边复制3.特点:半保留复制4.基本条件:①模板:开始解旋的DNA分子的两条单链;②原料:是游离在细胞中的4种脱氧核苷酸;③能量:由ATP提供;④酶:酶是指一个酶系统,不仅仅是指一种解旋酶。

5.意义:将遗传信息从亲代传给子代,从而保持遗传信息的连续性第四节基因是有遗传效应的DN段1、基因的定义:基因是有遗传效应的DN段2、DNA是遗传物质的条件:a、能自我复制b、结构相对稳定c、储存遗传信息d、能够控制性状。

郑州市高中生物必修二第三章基因的本质知识点归纳总结(精华版)

郑州市高中生物必修二第三章基因的本质知识点归纳总结(精华版)

郑州市高中生物必修二第三章基因的本质知识点归纳总结(精华版)单选题1、BrdU能代替胸腺嘧啶脱氧核苷掺入到新合成的DNA链中。

将植物的根尖分生组织放在含有BrdU的培养液中进行培养,培养过程中取出部分根尖组织用姬姆萨染料染色,结果被染色的染色体出现色差如图所示。

下列叙述错误的是()A.第一次分裂中期,每条染色体的染色单体均不含BrdUB.第二次分裂中期,每条染色体的染色单体均含有BrdUC.第二次分裂后期,一半染色体着色浅D.色差染色体的出现能证明DNA的半保留复制答案:A分析:题意分析:根据DNA具有半保留复制的特点,题意显示BrdU能代替胸腺嘧啶脱氧核苷掺入到新合成的DNA链中,即每个染色单体所含的双链DNA分子中,都有一条链中含有BrdU,因此第一次分裂中期,每条染色体的每一条染色单体均含BrdU;到第二次分裂中期,因为经过了DNA复制,此时每条染色体中含有2个DNA,含4条链,其中有3条链是含有BrdU。

A、DNA具有半保留复制的特点,根据题意,BrdU能代替胸腺嘧啶脱氧核苷掺入到新合成的DNA链中,故新合成的DNA分子中都有一条链含有BrdU,因此第一次分裂中期,每条染色体的每一条染色单体均含BrdU, A 错误;B、结合分析可知,在第二次分裂中期,每条染色体含有2条染色单体,其中一条染色单体所含的DNA分子中有有一条链掺有BrdU(着色深),另一条染色单体所含的DNA分子中两条链都掺有BrdU,B正确;C、结合C选项,由于着丝点分裂,第二次分裂后期,一半染色体着色浅,一半着色深,C正确;D、上述结论的得出均是以半保留复制为前提推测的,故利用该实验结合染色分析可用于验证DNA的复制方式为半保留复制,D正确。

故选A。

2、新冠病毒是一种含有单链RNA的病毒,其棘突蛋白(S蛋白)是膜蛋白中的主要抗原,是决定病毒毒性的关键因素,因棘突蛋白在电子显微镜下呈现的王冠状结构而得冠状病毒之名。

下列相关叙述正确的是()A.新冠病毒是一种生物,属于生命系统的一个结构层次B.新冠病毒仅含核糖体一种细胞器C.新冠病毒比噬菌体更容易变异,与遗传物质的结构特点有关D.新冠病毒繁殖过程所需能量由自身无氧呼吸提供答案:C分析:病毒是一类没有细胞结构的特殊生物,只有蛋白质外壳和内部的遗传物质构成,不能独立的生活和繁殖,只有寄生在其他生物的活细胞内才能生活和繁殖,一旦离开了活细胞,病毒就无法进行生命活动。

第三章 基因的本质 知识总结

第三章  基因的本质 知识总结

第三章基因的本质第一节:DNA是主要的遗传物质一遗传物质具备的特点:1分子结构具有相对的稳定性2能够产生可遗传的变异3能够指导蛋白质合成,从而控制生物代谢和性状4能够自我复制,使前后代保持一定连续性二RNA与DNA区别和相同点DNA RNA链数2条链单链名称脱氧核糖核酸核糖核酸基本组成单位脱氧核苷酸(4种) 核糖核苷酸(4种)五碳糖脱氧核糖核糖碱基种类 A T C G A U C G主要存在细胞质存在部位主要存在细胞核少量存在线粒体和叶绿体染色剂甲基绿染成绿色吡罗红染成红色组成元素 C H O N P C H O N P三证明“DNA是遗传物质”的实验(1 肺炎双球菌的转化实验2噬菌体侵染细菌实验)☆注意点:(1)首位对“蛋白质是遗传物质的观点“提出挑战的科学家是艾弗里。

(1)肺炎双球菌的转化实验(格里菲思)(参照书本43页)通过书本第四组实验格里菲思推断:死亡的S型细菌一定含有“转化因子“可以使R型活细菌转化成有毒性的S型活细菌。

☆注意:格里菲斯并没有找出“转化因子”具体是什么物质。

艾弗里从S型细菌中提取DNA,蛋白质,多糖等物质与R型细菌混合,实验发现只有DNA和R型细菌混合后,R型细菌可以转化为有毒性的S型细菌。

艾弗里的结论:DNA是“转化因子”,是使R型细菌产生稳定遗传变化的物质☆注意:并不是所有的R型细菌和S型细菌的DNA混合后都转化为S型细菌,只有一少部分R型细菌接受了S型细菌的DNA转化成了S型细菌。

大多数R型细菌没有发生转化。

(2)噬菌体侵染细菌的实验(赫尔希和蔡斯)实验材料:T2噬菌体(细菌病毒)和大肠杆菌方法:同位素标记的方法噬菌体组成结构:蛋白质(组成元素 C H O N S)S是蛋白质特有元素DNA (组成元素 C H O N P) P是DNA特有元素噬菌体的繁殖过程:吸附注入合成组装释放具体繁殖过程:1 吸附:噬菌体借尾丝吸附在细菌表面2注入:把DNA注入到细菌细胞3合成:利用细菌的化学成分和酶系统合成出噬菌体的DNA、蛋白质4组装:将新合成的噬菌体DNA和噬菌体的蛋白质组装成子代噬菌体5释放:细菌解体,释放出噬菌体☆注意:1病毒只能寄生在活细胞中才能生存2 合成子代噬菌体的组成成分的原料几乎全部都是由细菌提供。

生物必修一第四章知识点总结

生物必修一第四章知识点总结

生物必修一第四章知识点总结
第四章主要内容基因与生物工程
1. 基因的本质:
- 基因是构成生物遗传信息的单位,由DNA分子组成。

- 基因携带着生物体的遗传信息,控制着生物体的生长、发育和功能。

2. 基因的发现与探究:
- 核酸的发现:费尔明首先发现核酸是生物体内重要的化学物质。

- DNA是遗传物质:克里克和沃森提出了DNA双螺旋模型,确认了DNA是遗传物质。

- DNA的复制:孟德尔首先提出了基因的遗传规律,梅塞尔森和斯塔尔戈尔德证实了DNA的复制是半保留的。

3. 基因的结构与功能:
- 基因组:染色体上的所有基因的集合,携带着生物体的所有遗传信息。

- 基因的结构:由启动子、编码区和终止子组成。

- 基因的功能:编码蛋白质,控制生物体的遗传特征。

4. 基因工程的基本原理与方法:
- 基因工程:通过改变生物体内的基因组,使其产生特定的改变。

- 基因工程的基本方法:包括基因克隆、转化、表达和检测等。

5. 基因工程在生物技术领域的应用:
- 重组蛋白质的合成:通过基因工程技术制备大量的重组蛋白质。

- 转基因技术:将外源基因导入到目标生物体中,实现特定基因的表达。

- 基因治疗:利用基因工程技术修复或替代异常基因,治疗遗传性疾病。

6. 基因工程技术的伦理问题:
- 伦理问题:基因工程技术涉及的伦理问题主要包括对生物多样性的影响、人类幸福和尊严的尊重等。

- 遗传权利:对基因信息的保护和隐私权的尊重是基因工程技术伦理问题的重要方面。

以上是生物必修一第四章的主要知识点总结。

高中生物必修二考点总结之基因的本质

高中生物必修二考点总结之基因的本质

高中生物必修二考点总结之基因的本质基因的本质知识点1:DNA是主要的遗传物质①生物的遗传物质:在整个生物界中绝大多数生物是以DNA作为遗传物质的.有DNA的生物(细胞结构的生物和DNA病毒),DNA就是遗传物质;只有少数病毒(如艾滋病毒、SARS病毒、禽流感病毒等)没有DNA,只有RNA,RNA才是遗传物质.②证明DNA是遗传物质的实验设计思想:设法把DNA和蛋白质分开,单独地、直接地去观察DNA的作用.基因的本质知识点2:DNA分子的结构和复制①DNA分子的结构a.基本组成单位:脱氧核苷酸(由磷酸、脱氧核糖和碱基组成).b.脱氧核苷酸长链:由脱氧核苷酸按一定的顺序聚合而成c.平面结构:d.空间结构:规则的双螺旋结构.e.结构特点:多样性、特异性和稳定性.②DNA的复制a.时间:有丝分裂间期或减数第一次分裂间期b .特点:边解旋边复制;半保留复制.c.条件:模板(DNA分子的两条链)、原料(四种游离的脱氧核苷酸)、酶(解旋酶,DNA聚合酶,DNA连接酶等),能量(ATP)d.结果:通过复制产生了与模板DNA一样的DNA分子.e.意义:通过复制将遗传信息传递给后代,保持了遗传信息的连续性.基因的本质知识点3:基因的结构及表达①基因的概念:基因是具有遗传效应的DNA分子片段,基因在染色体上呈线性排列.②基因控制蛋白质合成的过程:转录:以DNA的一条链为模板通过碱基互补配对原则形成信使RNA的过程.翻译:在核糖体中以信使RNA为模板,以转运RNA为运载工具合成具有一定氨基酸排列顺序的蛋白质分子基因的本质记忆点1.DNA是使R型细菌产生稳定的遗传变化的物质,而噬菌体的各种性状也是通过DNA传递给后代的,这两个实验证明了DNA 是遗传物质.2.一切生物的遗传物质都是核酸.细胞内既含DNA又含RNA和只含DNA的生物遗传物质是DNA,少数病毒的遗传物质是RNA.由于绝大多数的生物的遗传物质是DNA,所以DNA是主要的遗传物质.3.碱基对排列顺序的千变万化,构成了DNA分子的多样性,而碱基对的特定的排列顺序,又构成了每一个DNA分子的特异性.这从分子水平说明了生物体具有多样性和特异性的原因.4.遗传信息的传递是通过DNA分子的复制来完成的.基因的表达是通过DNA 控制蛋白质的合成来实现的.5.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行.在两条互补链中的比例互为倒数关系.在整个DNA 分子中,嘌呤碱基之和=嘧啶碱基之和.整个DNA分子中, 与分子内每一条链上的该比例相同.6.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故.7.基因是有遗传效应的DNA片段,基因在染色体上呈直线排列,染色体是基因的载体.8.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息.(即:基因的脱氧核苷酸的排列顺序就代表遗传信息).9.DNA分子的脱氧核苷酸的排列顺序决定了信使RNA中核糖核苷酸的排列顺序,信使RNA中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质的结构和功能的特异性,从而使生物体表现出各种遗传特性.基因控制蛋白质的合成时:基因的碱基数:mRNA上的碱基数:氨基酸数=6:3:1.氨基酸的密码子是信使RNA上三个相邻的碱基,不是转运RNA上的碱基.转录和翻译过程中严格遵循碱基互补配对原则.注意:配对时,在RNA上A对应的是U.10.生物的一切遗传性状都是受基因控制的.一些基因是通过控制酶的合成来控制代谢过程;基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状.“高中生物必修二考点总结之基因的本质”。

高二生物基因的本质知识点

高二生物基因的本质知识点

高二生物基因的本质知识点基因是生物体内对遗传信息进行储存、传递和表达的基本单位。

它是决定生物体性状的物质基础,是构成生命的关键要素。

深入理解基因的本质对于我们探索生物世界、解读生命奥秘具有重要意义。

本文将从DNA的结构、基因的定义、基因在生物体内的作用以及基因突变等方面,全面介绍高二生物中基因的本质知识点。

一、DNA的结构DNA(脱氧核糖核酸)是构成基因的主要化学物质,具有双螺旋结构。

DNA由碱基对、磷酸基团和脱氧核糖组成。

碱基对由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)组成,通过氢键相互连接。

这种双螺旋结构使得DNA具有稳定性和高度的复制准确性。

二、基因的定义基因是指生物体内能表现出一种或多种遗传特征的DNA片段,它们在染色体上定位并编码着特定的蛋白质。

基因在整个生物界中具有普遍性和重要性,并通过蛋白质合成的过程实现了基因信息的表达。

基因决定了生物的性状和特征,如眼睛颜色、身高等遗传特征。

三、基因在生物体内的作用基因在生物体内起着至关重要的作用。

首先,基因通过指导蛋白质的合成来调控生物体的结构和功能。

蛋白质是构成生物体细胞的基本组成部分,承担着许多重要的生化反应和功能。

其次,基因参与了生物体的遗传过程。

通过基因的遗传,个体可以将遗传信息传递给后代,使得物种具有遗传的连续性。

此外,基因也在调节生物体的发育、生长和适应环境等方面发挥作用。

四、基因突变基因突变指的是基因序列发生变异或改变,导致了基因功能的改变。

基因突变可以分为点突变、插入突变和缺失突变等不同类型。

点突变是指基因中单个碱基的突变,可能导致蛋白质的结构和功能发生变化。

插入突变是指在基因中插入多余的碱基,改变了基因的序列。

缺失突变则是指基因中丢失了一个或多个碱基,导致基因缺少某些编码信息。

基因突变是基因多样性的重要来源,也是物种进化的基础。

突变可以使物种对环境的适应性发生变化,同时也可能引发一些疾病的发生。

总结起来,高二生物中基因的本质知识点主要包括DNA的结构、基因的定义、基因在生物体内的作用以及基因突变等方面。

高一生物基因的本质知识点

高一生物基因的本质知识点

高一生物基因的本质知识点基因是生物体内一段能够传递遗传信息的DNA序列,是生物遗传与进化的基础,也是生物多样性的来源之一。

通过深入了解基因的本质,我们可以更好地理解生物的遗传与进化机制。

本文将从DNA的结构、基因的表达和突变、遗传定律等方面探讨基因的本质知识点。

一、DNA的结构DNA(脱氧核糖核酸)是生物体内最重要的遗传物质,由核苷酸单元组成。

每个核苷酸包括一个磷酸、一个五碳糖(脱氧核糖)和一个氮碱基。

DNA的两条链由碱基配对而形成螺旋状的双螺旋结构,其中腺嘌呤(A)与鸟嘌呤(G)间以三个氢键结合,胸腺嘧啶(T)与胞嘧啶(C)间以两个氢键结合。

这种碱基的配对方式保证了DNA的复制过程中信息的准确传递。

二、基因的表达和突变基因的表达是指基因内的遗传信息转化为特定蛋白质的过程。

基因通过转录和翻译两个过程转化为蛋白质,先是被转录成RNA分子,再由RNA分子模板作用下翻译成具有功能的蛋白质。

这个过程中,RNA聚合酶起到了关键的作用。

基因突变是指DNA序列发生改变,导致遗传信息的改变。

突变可以分为基因突变和染色体突变两类。

基因突变包括点突变和插入/缺失突变,点突变是指单个碱基的改变,插入/缺失突变是指在DNA序列中插入或丢失了一段碱基序列。

染色体突变则是指染色体上大片的DNA序列发生改变。

三、遗传定律遗传定律是遗传学的基本原理,主要由孟德尔提出。

孟德尔的实验揭示了基因在遗传中的传递规律,包括了等位基因、显性与隐性等遗传学术语。

等位基因是指同一位点上的两个或多个形式不同的基因,即变异形式。

显性与隐性是指基因表现出不同的表型,显性基因表现为可观察到的性状,而隐性基因则需要两个复制进行表现。

孟德尔还通过杂交实验提出了显性基因与隐性基因之间的分离再组合规律。

这一定律为后来的连锁遗传学提供了基础,进一步推动了遗传学的发展。

总结:基因是生物遗传与进化的基础,通过对基因的本质知识点的深入了解,我们能更好地理解生物的遗传机制。

基因的本质归纳总结

基因的本质归纳总结

基因的本质归纳总结基因是生物进化和遗传的核心要素,它承载着生物体遗传信息的基本单位。

通过遗传物质的传递,基因决定了个体的生长、发育和功能特征。

本文将对基因的本质进行归纳总结,探讨基因的结构、功能和遗传机制等方面的内容。

一、基因的结构基因是由DNA(脱氧核糖核酸)序列编码而成的,DNA是构成基因的分子基础。

DNA分子是由四类碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、酪胺酸)所组成的长链状结构,通过碱基之间的氢键连接形成了螺旋结构。

这个螺旋结构使得DNA能够通过复制和转录的方式,保持和传递遗传信息。

二、基因的功能基因的主要功能是编码蛋白质。

蛋白质是构成细胞和生物体的基本组成部分,它们在维持生物体正常运作和发挥其功能方面起着关键作用。

基因通过DNA序列的编码,指导细胞合成蛋白质的过程,从而实现基因信息的表达。

除了编码蛋白质外,基因还具有调控功能。

基因通过调控转录过程中的起始、终止和速率,控制细胞内蛋白质的合成。

这种调控机制使得基因能够响应环境变化,调整细胞内代谢的平衡,从而适应不同的生长和发育需求。

另外,基因还具有突变和遗传性的特点。

基因突变是指DNA序列发生改变,可能导致蛋白质结构和功能的变化。

这些突变有时会增加生物个体的适应性,并在进化过程中发挥重要作用。

基因的遗传性使得后代能够继承父母的遗传特征,遵循孟德尔的遗传规律。

三、基因的遗传机制基因的遗传机制主要包括基因突变、基因重组和基因表达等过程。

基因突变是指基因的DNA序列发生改变,包括点突变(单个碱基的改变)、插入突变(插入额外的DNA片段)和缺失突变(丢失部分DNA序列)等形式。

这些突变可以通过杂交、突变诱发剂等手段进行人工诱导。

基因重组是指在有性生殖过程中,亲本个体的基因进行交换和组合,从而形成新的基因组合。

这种基因重组是基因多样性和进化的重要驱动力之一。

在有性生殖中,基因重组通过染色体的互换和配对,使得不同基因组合的个体出现,从而增加了后代的遗传多样性。

(完整版)高中生物人教版必修二第三章知识点总结

(完整版)高中生物人教版必修二第三章知识点总结

必修二知识点归纳班级:姓名:第三章基因的本质第1节 DNA是主要的遗传物质1、DNA是遗传物质的探索过程S型细菌有毒,会使小鼠死亡;R型细菌无毒,不会使小鼠死亡。

(1)肺炎双球菌的体内转化实验:格里菲思①实验结论:已加热杀死的S型细菌中含有转化因子,促使R型无毒细菌转化为S型有毒细菌。

②此实验只说明有转化因子,并未证明转化因子是什么。

(2)肺炎双球菌的体外转化实验:艾弗里①设计思路:设法将S型细菌的DNA、蛋白质、多糖等分开,分别单独、直接地研究它们的作用。

②S型细菌中只有DNA才是转化因子,即DNA是遗传物质。

(此实验证明了转化因子是DNA)★(3)噬菌体侵染细菌:放射性同位素标记法(赫尔希和蔡斯)①用32P标记一组噬菌体的DNA,用35S标记另一组噬菌体的蛋白质。

②实验过程:a.标记大肠杆菌:用分别含32P和35S的培养基培养大肠杆菌;b.标记T2噬菌体:分别用上述大肠杆菌培养噬菌体,得到被标记为32P和35S的T2噬菌体;c.用标记的噬菌体侵染未被标记的大肠杆菌:保温、搅拌、离心(目的);1)搅拌:使吸附在细菌上的噬菌体与细菌分离;2)离心:让上清液中析出重量较轻的T2噬菌体颗粒,而沉淀物中留下被感染的大肠杆菌。

d.检测放射性。

③实验结果:用35S标记的一组实验,放射性同位素主要分布在上清液中;用32P标记的一组实验,放射性同位素主要分布在沉淀物中。

表明:噬菌体侵染细菌时,DNA进入细菌细胞中,而蛋白质留在外面。

④实验结论:DNA是遗传物质。

2、T2噬菌体侵染大肠杆菌实验的过程:吸附、注入、合成、组装、释放。

3、绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。

(某些病毒的遗传物质是RNA)第2节 DNA分子的结构1、DNA的相关知识回顾:(1)DNA的组成元素:C、H、O、N、P 结构:一般为双链(2)DNA的基本单位:脱氧核糖核苷酸(4种)1分子脱氧核苷酸=1分子磷酸+ 1分子脱氧核糖+ 1分子含氮碱基(A、T、G、C)(3)脱氧核苷酸不同的原因:含氮碱基不同★2、DNA的结构特点:①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

高考生物基因的本质梳理汇总(新教材答案版)

高考生物基因的本质梳理汇总(新教材答案版)

第3章基因的本质第1节DNA是主要的遗传物质1.P42问题探讨20世纪中叶,科学家发现染色依主要是由蛋白质和DNA组成的。

在这两种物质中,完竞哪一种是遗传物质呢?这个问题曾引起生畅学界激烈的争论。

讨论:(1)你认为遗传物质可能具有什么特点?提示:遗传物质应能够储存大量的遗传信息,可以准确地复制,并传递给下一代,结构比较稳定,等等。

(2)你认为证明某一种物质是遗传物质的可行方法有哪些?提示; 这是一道开放性问题,答案并不唯一,只要提出正确的思路即可。

例如,将特定的遗传物质转移给其他生物,观察后代的性状表现,等等。

2.P46思考.讨论:证明DNA是遗传遗传物质的实验(1)艾弗里与赫尔希等人选用细菌或病毒作为实验材料,以细菌或病每作为实验材科具有哪些优点?提示:细菌和病毒作为实验材料,具有以下优点: (1) 个体很小,结构简单,细菌是单细胞生物,病毒无细胞结构,只有核酸和蛋白质外壳。

易于观察因遗传物质改变导致的结构和功能的变化。

(2) 繁殖快,细菌20~ 30 min就可繁殖-一代,病毒短时间内可大量繁殖。

(2)从控制自变量的角度,艾弗里实验的基本思路是什么?在实际操作过程中最大的困难是什么?提示:从控制自变量的角度,艾弗里在每个实验组中特异性地去除了一种物质,然后观察在没有这种物质的情况下,实验结果会有什么变化。

最大的困难是,如何彻底去除细胞中含有的某种物质(如糖类、脂质、蛋白质等)。

(3)艾弗里和赫尔希等人都分别采用了哪些技术手段来实现他们的实验设计?这对于你认识科学与技术之间的相互关系有什么启示?提示:艾弗里采用的主要技术手段有细菌的培养技术、物质的提纯和鉴定技术等。

赫尔希采用的主要技术手段有噬菌体的培养技术、同位素标记技术,以及物质的提取和分离技术等(学生可能回答出其他技术,但只要回答出上述主要技术即可)。

科学成果的取得必须有技术手段作保证,技术的发展需要以科学原理为基础,因此,科学与技术是相互支持、相互促进的。

生物第三章基因的本质知识点

生物第三章基因的本质知识点

生物第三章基因的本质知识点
生物第三章基因的本质主要包括以下知识点:
1. 基因的定义:基因是遗传信息的基本单位,是控制生物体形态、结构和功能的DNA 序列。

2. 基因的结构和组成:基因由DNA分子组成,包括编码区和非编码区。

编码区包含编码基因的信息,非编码区包含调控基因表达的元素。

3. 基因的功能:基因通过编码蛋白质来执行特定的功能,如调节细胞生长、发育和代
谢等。

4. DNA的复制:DNA分子在细胞分裂时通过复制过程来传递基因信息,确保每个新生细胞都有完整的基因组。

5. 基因的表达:基因表达是指基因转录为mRNA分子,并经过翻译过程产生蛋白质。

6. DNA的转录:DNA转录为mRNA过程包括启动子、RNA聚合酶、转录因子等多个
环节的参与。

7. 基因的翻译:mRNA通过核糖体和tRNA的参与,翻译成氨基酸序列,形成蛋白质。

8. 基因突变:基因突变指基因序列发生变化,包括点突变、插入突变、缺失突变等,
可能导致基因功能的改变。

9. 基因的遗传:基因通过遗传方式传递给下一代,确定了后代的表型和遗传特征。

10. 基因的调控:基因的表达可以受到内、外界环境的调控,通过启动子、转录因子等参与的调控元素来实现。

以上是关于生物第三章基因的本质的主要知识点,可以帮助我们理解基因的结构、功能和遗传规律。

生物第三章基因的本质知识点

生物第三章基因的本质知识点

生物第三章基因的本质知识点生物第三章基因的本质知识点基因是指构成遗传信息的分子,在生物体内起着重要的作用。

随着现代生物学的发展,对基因的研究愈加深入,人们对于基因的本质也有了更深的认识。

本篇文档将从基因的本质、基因的表达和遗传变异等几个方面,详细介绍基因的相关知识点。

一、基因的本质基因是DNA分子的一段特定序列,是能够控制某种特定功能表达的遗传信息。

基因的本质是在遗传过程中发挥控制作用的分子,是遗传信息的媒介和载体。

基因分为两种类型:编码基因和非编码基因。

编码基因是指编码蛋白质的基因,是遗传信息的主要来源,占据基因总数的大部分。

非编码基因是指不编码蛋白质的基因,主要编码RNA分子,如rRNA、tRNA和miRNA等,也对细胞生理发挥着重要作用。

基因本身是由一系列DNA分子组成的,DNA分子的核心结构是由磷酸基团和核苷酸组成。

核苷酸是由含氮碱基、磷酸基团和脱氧核糖组成的分子。

DNA分子的氢键结构决定了AT 基对和GC基对的配对关系,AT基对有两个氢键,GC基对有三个氢键,这种配对方式保证了基因的正确复制和传递。

二、基因的表达基因的表达是指基因通过转录和翻译等过程将基因信息转化为蛋白质的过程。

在这个过程中,基因的信息被转录成mRNA,mRNA再被翻译成蛋白质。

基因的表达是受到许多因素的调控的,包括转录因子、启动子、增强子、表观修饰等。

转录因子是指能够结合DNA的蛋白质,它们能够把RNA聚合酶招募到特定基因的启动子和增强子上,并沿着基因的DNA链模板进行转录。

启动子是指存在于RNA聚合酶转录起始位点上游的DNA序列,能够被转录因子或其他转录辅因子结合,以启动转录过程。

增强子是指存在于某些转录因子下游的DNA序列,能够与转录因子相互作用,以增加基因表达的效率和持续时间。

在基因表达的过程中,出现错误或变异将会影响蛋白质的正常表达,可能导致细胞功能的丧失和严重疾病的发生。

三、遗传变异遗传变异是指在基因复制、重组或基因突变等遗传过程中导致基因序列发生变化的现象。

生物必修二基因的本质知识点总结

生物必修二基因的本质知识点总结

生物必修二基因的本质知识点总结基因的本质是指生物遗传特征的载体,即DNA(脱氧核糖核酸),是由核苷酸序列构成的基因组中的一个单位。

基因在遗传信息的传递中起着重要的作用,它决定了一个个体的生理性状、形态和行为等特征。

下面来具体了解一下基因的本质。

1. 基因是DNA的一部分DNA是一种双螺旋结构的分子,由四种不同的核苷酸(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳥嘧啶)按照特定的顺序组成。

基因是由这些核苷酸按照特定的顺序排列而成的。

每个基因可以编码一种特定的蛋白质。

2. 基因决定了生物的遗传特征基因是生物遗传特征的载体。

它决定了生物的生理性状、形态、行为等特征。

例如,人眼的颜色、血型、指纹、身高等都是由基因决定的。

3. 基因在遗传信息的传递中起着重要作用基因在生物体内遗传信息的传递中起着重要的作用。

在有性生殖中,一个生物的基因组由其父母的基因共同组成。

每个基因有两个不同的等位基因,一个来自父亲,一个来自母亲。

在每个有性生殖的后代中,这两个等位基因可以随机组合,形成一个新的基因组合。

4. 基因表达与蛋白质合成密切相关基因的表达是指基因转录成mRNA,然后再翻译成蛋白质的过程。

这一过程包括三个步骤:转录、剪接和翻译。

在剪接过程中,mRNA中的内含子会被切除,而外显子则会被保留。

在翻译过程中,mRNA序列中的信息被转化成特定的氨基酸序列,从而形成一种特定的蛋白质。

5. 基因突变可能导致功能异常基因突变可能会导致基因的功能异常,进而影响生物的生理和生化特征。

一些基因突变会导致疾病的发生,例如血友病、克隆氏症等。

此外,一些基因突变也可能与生物进化相关,这些突变可能是随机发生的,并在自然选择中得以保留下来。

综上所述,基因作为生物遗传特征的载体,在生物的生理、形态和行为等方面起着至关重要的作用。

通过我们对基因的学习,我们可以更深入地了解生物的遗传机制,并为生物医学研究和生物工程技术创新提供基础。

河南省高中生物必修二第三章基因的本质知识点总结归纳完整版

河南省高中生物必修二第三章基因的本质知识点总结归纳完整版

河南省高中生物必修二第三章基因的本质知识点总结归纳完整版单选题1、将TMV型病毒的蛋白质与HRV型病毒的RNA结合在一起,组成一个组合型病毒,用这个病毒去感染烟草,则在烟草体内分离出来的子代病毒为()A.TMV型蛋白质和HRV型RNAB.HRV型蛋白质和TMV型RNAC.TMV型蛋白质和TMV型RNAD.HRV型蛋白质和HRV型RNA答案:D分析:RNA病毒中的遗传物质是RNA,由题意知,重组病毒的蛋白质来自TMV病毒,RNA来自HRV型病毒,因此重组病毒产生的后代应该与HRV型病毒相同。

将TMV型病毒的蛋白质与HRV型病毒的RNA结合在一起,组成一个组合型病毒,用这个病毒去感染烟草,由于提供遗传物质的是HRV型病毒,因此在烟草体内分离出来的病毒HRV,即HRV型蛋白质外壳和HRV型的RNA。

故选D。

2、下图表示艾弗里通过肺炎链球菌转化实验探究转化因子的实验过程。

下列相关叙述错误的是()A.甲组培养基上出现两种菌落,主要是S型细菌形成的菌落B.乙组培养基上的菌落和甲组的相同,说明蛋白质不是转化因子C.丙组培养基上只有R型细菌,说明脱氧核苷酸不具有转化功能D.实验利用减法原理,逐一去掉不同成分以确定细胞提取物的转化活性答案:A分析:分析题图:甲组说明加热杀死的S型细菌中存在某种转化因子,可将R型细菌转化为S型细菌;乙组实验中蛋白酶可将提取物中的蛋白质水解;丙组实验中的DNA酶可将DNA水解。

A、甲组培养皿中只有少部分R型细菌转化为S型细菌,因此甲组培养基上主要是R型细菌形成的菌落,A错误;B、蛋白酶可将蛋白质水解,若乙组培养皿中和甲组情况相同有光滑和粗糙两种菌落,说明其中转化因子仍然存在,由此可推测蛋白质不是转化因子,B正确;C、由于DNA酶可将DNA水解为其小分子脱氧核苷酸,丙组未发生转化只有R型细菌,说明脱氧核苷酸不具有转化功能,C正确;D、本实验通过加蛋白酶和DNA酶解去相应的物质,将DNA、蛋白质分开,用单一成分进行研究,利用了“减法原理”以确定细胞提取物的转化活性,D正确;故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章基因的本质
第1节DNA是主要的遗传物质
一、对遗传物质的早期推测
20世纪20年代,大多数科学家认为蛋白质是生物体的遗传物质。

20世纪30年代,人们认识到组成DNA分子的脱氧核苷酸有4种,每一种有一个特定的碱基。

这一认识本可以使人们意识到DNA的重要性,但是认为蛋白质是遗传物质的观点仍占主导地位。

二、DNA是遗传物质的实验证据(肺炎链球菌的转化实验)
1、肺炎双球菌的体内转化实验
(1)格里菲思的实验
原理:S型细菌可使小鼠患败血症死亡。

实验过程及现象P43图3-2
结论:加热杀死的S型细菌,含有某种促使R型活细菌转化为S型活细菌的活性物质——转化因子。

文字表述如下:
(2)艾弗里实验(体外转化实验)P44图3-3
实验过程及结果
结论:DNA才是使R型细菌产生稳定遗传变化的物质。

实验方法:减法原理:在对照实验中,与常态比较,人为去除某种影响因素的称为“减法原理”。

例如,在艾弗里的肺炎链球菌转化实验中,每个实验组特异性地去除了一种物质,从而鉴定出DNA是遗传物质。

旧教材实验过程如下:
结论:只有加入DNA,R型细菌才能转化为S型细菌,即DNA是使R型细菌产生稳定遗传变化的物质。

2、噬菌体侵染细菌的实验
实验材料:T2噬菌体
实验者:美国遗传学家赫尔希和蔡斯
实验方法:放射性同位素标记法。

实验过程及结果
(1)标记噬菌体:(先标记大肠杆菌):在分别含有35S和32P的培养基中培养大肠杆菌,获得分别含35S 和32P的大肠杆菌。

(再标记T2噬菌体):用分别含32P和35S的大肠杆菌培养T2噬菌体,得到DNA含有32P标记或蛋白质含有35S标记的噬菌体。

(2)噬菌体侵染大肠杆菌
(1)T2噬菌体侵染细菌时,DNA进入到细菌的细胞中,而蛋白质外壳留在外面。

(2)子代T2噬菌体的各种性状是通过亲代的DNA来遗传的。

实验结论: DNA才是真正的遗传物质。

注意:1、搅拌的目的是使吸附在细菌上的噬菌体与细菌分离
2、离心的目的是让上清液中析出质量较轻的T2噬菌体颗粒,而离心管的沉淀物中留下被侵染的大肠杆菌
3、不能用14C和18O标记噬菌体,因为DNA和蛋白质都含C和O;不能用32P和35S同时标记噬菌体,因为若用32P和35S同时标记噬菌体,则上清液和沉淀物中均会具有放射性,无法判断遗传物质的成分。

4.用35S标记的噬菌体侵染大肠杆菌时,发现沉淀物中放射性也较高,可能是搅拌不充分,有少量含35S的噬菌体蛋白质外壳吸附在细菌表面,随细菌离心到沉淀物中。

5.用32P标记的噬菌体侵染大肠杆菌时,发现上清液中放射性也较高,可能是
(1)保温时间过短,部分噬菌体没有侵染到大肠杆菌细胞内,经离心后分布于上清液中。

(2)保温时间过长,噬菌体在大肠杆菌内增殖后释放出子代,经离心后分布于上清液中。

三、RNA是遗传物质的实验证据
1.烟草花叶病毒
2.侵染过程
3.结论
烟草花叶病毒的RNA控制其性状,即RNA是遗传物质。

四、DNA是主要的遗传物质
第二节 DNA分子的结构
一、DNA双螺旋结构模型的构建
1.构建者:美国生物学家沃森和英国物理学家克里克。

2.过程
二、DNA分子的结构
(1)组成元素:C、H、O、N、P五种元素。

(2)结构(如图)
强调几点:
平面结构:
①一条脱氧核苷酸链:由一分子脱氧核苷酸中脱氧核糖上的3′号碳原子与另一分子脱氧核苷酸中的磷酸通过形成化学键(3′,5′­磷酸二酯键)相连接。

如图所示
②两链之间的碱基对:A一定与T配对,两碱基之间形成两个氢键;G一定与C配对,两碱基之间形成三个氢键。

如图所示:
立体结构:
(1)DNA有两条链组成,两条链反向平行方式盘旋成规则的双螺旋结构。

(2)脱氧核糖与磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。

(3)两条链上的碱基通过氢键连接成碱基对,且遵循碱基互补配对原则。

(A=T,C=G)
(3)DNA的特点
①稳定性
原因:a.DNA分子由两条脱氧核苷酸长链盘旋成规则双螺旋结构。

b.DNA分子中脱氧核糖和磷酸交替连接排列在外侧,构成基本骨架。

c.DNA分子双螺旋结构的中间为碱基对,碱基之间形成氢键,从而维持双螺旋结构的稳定。

②多样性
原因:DNA分子中碱基对的排列顺序多种多样。

③特异性
原因:每种生物的DNA分子都有特定的碱基排列顺序。

关于DNA结构的相关计算
举例略
第3节DNA的复制
一、对DNA分子复制的推测
1.假说提出者克里克和沃森。

2.假说半保留复制方式
(2)假说
①解旋:DNA复制时,DNA双螺旋解开,互补的碱基之间的氢键断裂。

②复制:解开的两条单链作为复制的模板,游离的脱氧核苷酸依据碱基互补配对原则,通过形成氢键,结合到作为模板的单链上。

(3)特点:新合成的每个DNA分子中,都保留了原来DNA分子中的一条链,这种复制方式被称作半保留复制。

二、对DNA分子半保留复制的实验证据
关于DNA复制方式的研究,充分体现了假说—演绎法,即在克里克假说的基础上,通过演绎推理,最终通过实验得以验证。

背景知识:14N和15N是N元素的两种稳定同位素,其相对原子质量不同,含15N的DNA比14N的DNA密
⎩⎪⎨⎪⎧
立即取出提取DNA →离心→全部重带
15N/15N
繁殖一代后取出提取DNA →离心→全部杂交带14N/15N
繁殖两代后取出提取DNA →离心→1/2轻带、1/2中带
三、DNA 分子的复制
四、DNA复制相关计算
第4节基因通常是有遗传效应的DNA片段一、说明基因与DNA关系的实例
二、DNA片段中的遗传信息
1、遗传信息
遗传信息是指基因中的脱氧核苷酸的排列顺序。

不同基因的脱氧核苷酸的排列顺序不同,含有的遗传信息不同。

2.DNA分子的多样性和特异性
(1)多样性:DNA分子中共有4种类型的碱基,但是碱基对的数目却可以成千上万,形成的碱基对的排列顺序也可以千变万化,若某个DNA分子具有n个碱基对,则DNA分子可有4n种组合方式,从而构成了DNA 分子的多样性。

(2)特异性:每个特定的DNA分子都有特定的碱基排列顺序,即DNA分子的特异性。

3.生物体多样性和特异性与DNA的关系
DNA的多样性和特异性是生物体多样性和特异性的物质基础。

小结:染色体、DNA、基因、脱氧核苷酸的关系图解
注:有些病毒的遗传物质是RNA,对这类病毒而言,基因就是有遗传效应的RNA片段。

故基因通常是有遗传效应的DNA片段。

相关文档
最新文档