第二章 基本抽样方法
随机抽样(必修3)(三种抽样方法)
(3)在第1段用简单随机抽样确定第一个个体编 号m(m≤k)
(4)按照一定的规则抽取样本。通常是将m加上 间隔k得到第二个个体编号(m+k),再加k得 到第3个个体编号,依次进行下去,直到获得整 个样本。
思考:
当N/n不是整数时,如何进行 系统抽样?
当N/n不是整数时,令k=[N/n],那先从总 体中用简单随机抽样的方法剔除N-nk个个体, 再将其余的进行编号并均分成n段(可知每段 间隔数为K)。
1分层抽样
(1)定义一:一般地,在抽样时,将总体分成互不交叉 的层,然后按照一定的比例,从各层独立地抽取一定 数量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。
系统抽样(等距抽样)的概念 将总体分成均衡的几部分,然后按照预先定出的
规则,从每一个部分抽取一个个体,得到所需样本的 抽样方法叫做系统抽样。
系统抽样的特点
(1)适用于总体容量较大的情况;
(2)剔除多余个体及第一段抽样都用简单随机抽样, 因而与简单随机抽样有密切联系;
(3)是等可能抽样,每个个体被抽到的可能性都 是n/N;
(4)是不放回的抽样。
合理选择抽样方法
系统抽样 简单 抽签法 随机 抽样 随机数
表法
总体容量
很大
较小
样本容量 较大
较小
较大
较大
下页
练习:要从1002个学生中选 取一个容量为20的样本,试 用系统抽样的方法给出抽样 过程。
2.1.3分层抽样
情景设置
问题1 :要抽样了解某年参加高考学生的语文成绩,我 们可以有以下两种抽样的方式; (1)从所有考生中用简单随机抽样的方法抽取1000份试 卷做调查; (2) 分文科,理科,艺术,体育等科目类的学生适当比例 抽取样本容量为1000的的样本,再做调查.
抽样调查方法
抽样调查方法抽样调查是社会科学研究中常用的一种数据收集方法,通过对样本进行调查和研究,来推断总体的特征和规律。
在实际调查中,选择合适的抽样方法对于研究结果的准确性和可靠性至关重要。
本文将介绍几种常见的抽样调查方法,并对它们的特点和适用范围进行简要分析。
一、简单随机抽样。
简单随机抽样是最基本的抽样方法之一,其特点是每个样本被选中的概率是相等的,且相互独立。
这种方法适用于总体中各个个体的特征分布均匀的情况,操作简单,且具有较好的代表性。
但是在总体分布不均匀或者样本容量较大时,可能会导致抽样误差较大,需要较大的样本容量来保证结果的可靠性。
二、分层抽样。
分层抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样,最后将各层的样本组合在一起,形成最终的样本。
这种抽样方法可以有效控制样本的代表性,保证各个层次的特征都能得到充分的反映。
但是在实际操作中,需要提前了解总体的分层情况,并对各层样本的比例进行合理的确定,操作相对复杂一些。
三、整群抽样。
整群抽样是将总体分成若干个群体,然后随机抽取其中的若干个群体作为样本。
这种方法在总体分布不均匀,且群体内部差异较大的情况下比较适用,可以减小抽样误差,提高调查效率。
但是需要注意的是,群体内部的差异也可能会影响样本的代表性,需要根据实际情况进行合理的选择。
四、系统抽样。
系统抽样是按照一定的规则从总体中选择样本,例如每隔若干个个体进行抽样。
这种方法操作简单,适用于总体有序排列的情况,且样本容量较大的情况下比较有效。
但是需要注意的是,如果总体的周期性规律与抽样规则相吻合,可能会导致样本的偏倚,需要进行合理的调整。
综上所述,不同的抽样调查方法各有特点,适用于不同的调查对象和研究目的。
在实际应用中,需要根据具体情况选择合适的抽样方法,并结合其他调查技术和分析方法,以确保研究结果的准确性和可靠性。
同时,对于抽样调查过程中可能出现的偏倚和误差,也需要进行合理的控制和修正,以提高研究的科学性和实用性。
必修3第二章2.1 抽样方法
必修3第二章2.1 抽样方法一、选择题(本大题共11小题,共55.0分)1.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A. 简单的随机抽样B. 按性别分层抽样C. 按学段分层抽样D. 系统抽样2.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状3203.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A. 93B. 123C. 137D. 1674.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A. 抽签法B. 系统抽样法C. 分层抽样法D. 随机数法5.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A. 100B. 150C. 200D. 2506.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A. 9B. 10C. 12D. 137.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A. 11B. 12C. 13D. 148.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A. 抽签法B. 随机数法C. 系统抽样法D. 分层抽样法9.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A. 50B. 40C. 25D. 2010.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A. P1=P2<P3B. P2=P3<P1C. P1=P3<P2D. P1=P2=P311.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()二、填空题(本大题共5小题,共25.0分)12.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为______.13.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为______件.14.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取______名学生.15.某校高一、高二、高三分别有学生1600名,1200名,800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共需抽取的学生数为______ .16.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出______人.答案和解析1.【答案】C【解析】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.本小题考查抽样方法,主要考查抽样方法,属基本题.2.【答案】C【解析】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.本题考查分层抽样,考查学生的计算能力,比较基础.3.【答案】C【解析】解:初中部女教师的人数为110×70%=77;高中部女教师的人数为150×40%=60,∴该校女教师的人数为77+60=137,故选:C.利用百分比,可得该校女教师的人数.本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.4.【答案】C【解析】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.本小题考查抽样方法,主要考查抽样方法,属基本题.5.【答案】A【解析】解:分层抽样的抽取比例总体个数为3500+1500=5000,∴样本容量n=5000×.故选:A.计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.6.【答案】D【解析】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产因为样本中丙车间生产产品有3件,占总产所以样本容量n=3÷.故选:D.甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,求出丙车间生产产品所占的比例,从而求出n的值.本题主要考查了分层抽样方法,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.7.【答案】B【解析】解:使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.所以从481~720共240人.故选:B.根据系统抽样方法,从840人中抽取42人,那么从20人抽取1人.从而得出从编号481~720共240人中抽取的人数即可.本题主要考查系统抽样的定义和方法,属于基础题.8.【答案】D【解析】解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选:D.若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.本小题主要考查抽样方法,属基本题.9.【答案】C【解析】【分析】本题主要考查系统抽样的定义和应用,属于基础题.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据分段的间隔为1000÷40=25.故选C.10.【答案】D【解析】解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,即P1=P2=P3.故选:D.根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论.本题主要考查简单随机抽样、系统抽样和分层抽样的性质,比较基础.11.【答案】D【解析】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01.故选:D.从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论.本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.12.【答案】25【解析】解:根据题意得,用分层抽样在各层中的抽样比则应抽取的男生人数是500×人,故答案为:25.根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出应抽取的男生人数.本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.13.【答案】1800【解析】【分析】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是解题的关键.根据样本容量为80,可得抽取的比例,再求得样本中由乙设备生产的产品数,乙设备生产的产品总数【解答】解:∵样本容量为80,∴抽取的比例又样本中有50件产品由甲设备生产,∴样本中30件产品由乙设备生产,∴乙设备生产的产品总数为30×60=1800.故答案为:1800.14.【答案】60【解析】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例故应从一年级本科生中抽取名学生数为300×,故答案为:60.先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.15.【答案】70【解析】【分析】本题主要考查分层抽样的应用,比较基础.根据分层抽样的定义,建立比例关系,即可得到结论.【解答】解:∵高一、高二、高三分别有学生1600名,1200名,800名,∴若高三抽取20名学生,设共需抽取的学生数为x,x=90,则高一、高二共需抽取的学生数为90-20=70,故答案为70.16.【答案】25【解析】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应故答案为:25直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.本题主要考查直方图和分层抽样,难度不大.。
第二章抽样方法-PPT文档资料
上面的例子中有三个层次的抽样单位:学校、班 级、学生,则对应的抽样框也应有三个:全部学校的 名单、抽取的学校样本中的全部班级的名单、抽取班 级中的所有学生的名单。
4、参数值与统计值: 参数值也称总体值,它是关于总体中某一变量的 综合描述,或者说是总体中所有个体的某种特征的 综合数量表现。 在统计中最常见的总体值是某一变量的平均值 例如:平均年龄、平均收入等。 总体值只有通过对总体中的每一个个体都进行调 查或测量才能得到。
5、抽样误差: 总体的异质性和样本与总体范围的差异性,在用 样本的统计值去推算总体的参数值时总会有偏差, 这种偏差就是抽样误差。它是样本代表性大小的一 个标准。
当总体相当大时,可能被抽取的样本非常多,不 可能列出所有的实际抽样误差,而用平均抽样误差来 表征各样本实际抽样误差的平均水平。
抽样误差是指样本指标值与被推断的总体指标值 之差。主要包括:样本平均数与总体平均数之差;样 本成数与总体成数之差。
2、可测性原则。
可测性原则指的是抽样设计能够从样本自身计算 出有效的估计或者抽样变动的近似值。在研究中通常 用标准误来表示。通常,只有概率样本在客观上才是 可测的,即概率样本可以计算出有效的估计值或抽样 变动的近似值。但是,概率抽样也并不自动保证可测 性。比如,从一个具有周期性变化的总体中选出一个 系统样本,就不能保证这种可测性。
一、抽样的基本术语
抽样:是通过抽取总体中的部分单元,收集这些 单元的信息,运用数理统计的原理和方法,对总体进 行推断的一种手段。
总体
抽取样本 推断总体
样本
1、总体与样本。总体是指研究对象的全体,它 是由研究对象中的单元组成的。总体中单元的数目 称作总体容量。
2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.1简单随机抽样
2.1 随机抽样2.1.1 简洁随机抽样1.问题导航(1)什么叫简洁随机抽样?(2)最常用的简洁随机抽样方法有哪两种? (3)抽签法是如何操作的? (4)随机数表法是如何操作的? 2.例题导读通过教材中的“思考”,我们了解抽签法的优、缺点及适用条件.1.简洁随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样.2.简洁随机抽样的分类简洁随机抽样⎩⎪⎨⎪⎧抽签法(抓阄法)随机数法3.随机数法的类型随机数法⎩⎪⎨⎪⎧随机数表法随机数骰子法计算机产生的随机数法1.推断下列各题.(对的打“√”,错的打“×”)(1)在简洁随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小;( ) (2)有同学说:“随机数表只有一张,并且读数时只能依据从左向右的挨次读取,否则产生的随机样本就不同了,对总体的估量就不精确 了”.( )解析:(1)在简洁随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的挨次也是随机的,不同的样本对总体的估量相差并不大. 答案:(1)× (2)×2.某校期末考试后,为了分析该校高一班级 1 000名同学的学习成果,从中随机抽取了100名同学的成果单,就这个问题来说,下面说法中正确的是( )A .1 000名同学是总体B .每名同学是个体C .每名同学的成果是所抽取的一个样本D .样本的容量是100解析:选D.该问题中,1 000名同学的成果是总体,每个同学的成果是个体,抽取的100名同学的成果是样本,样本的容量是100.3.抽签法的优点、缺点各是什么?解:优点:简洁易行,当总体个数不多的时候搅拌均匀很简洁,每个个体有均等的机会被抽中,从而保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.1.简洁随机抽样是一种最简洁、最基本的抽样方法,简洁随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简洁随机抽样方法有抽签法和随机数法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍旧不是很便利,但是比抽签法公正,因此这两种方法只适合总体容量较少的抽样类型.3.简洁随机抽样中每个个体入样的可能性都相等,均为n/N ,但是这里肯定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种状况区分开来,避开在解题中消灭错误.简洁随机抽样的概念下面的抽样方法是简洁随机抽样吗?为什么?(1)从很多个个体中抽取20个个体作为样本;(2)从50台冰箱中一次性抽取5台冰箱进行质量检查;(3)一彩民选号,从装有36个大小、外形都相同的号签的盒子中无放回地抽取6个号签.[解](1)不是简洁随机抽样.由于总体的个数是无限的,而不是有限的.(2)不是简洁随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简洁随机抽样的定义要求的是“逐个不放回地抽取”.(3)是简洁随机抽样.由于总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.方法归纳推断一个抽样是否为简洁随机抽样的依据是其四个特征1.下列抽样方式是否是简洁随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参与学校组织的篮球赛.解:由简洁随机抽样的特点可知,(1)(2)均不是简洁随机抽样.抽签法的应用2021年,某师范高校为了支援西部训练事业,现从报名的18名免费师范毕业生中选取6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.[解]抽样步骤是:第一步,将18名志愿者编号,号码是1,2, (18)其次步,将号码分别写在同样大小的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透亮的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.方法归纳(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否便利;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应留意以下几点:①编号时,假如已有编号可不必重新编号;②号签要求大小、外形完全相同;③号签要均匀搅拌;④要逐一不放回地抽样.2.某校高一(1)班有同学48人,为了调查某种状况,打算抽取一个样本容量为10的样本,问若接受抽签法抽样将如何进行?解:首先把该校同学都编上号,号码是1,2,3,4,…,48.并制成48个外形、大小相同的号签,然后将这些号签放在一个不透亮的容器内,搅拌均匀后,逐个无放回地抽取10个号签,这样就可以得到一个容量为10的样本.随机数表法的应用(2021·衡阳模拟)已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字,则选出来的第4个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481 A.08 B.07C.02 D.01[解析]从随机数表第1行的第5列和第6列的数字开头由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,…,其中08,02,14,07,…符合条件,故选B.[答案] B[互动探究]如将本例中的“从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字”改为“从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字”,其他条件不变,则选出来的第4个个体的编号为多少?解:从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字,依次为91,08,27,99,63,42,07,04,13,…,其中08,07,04,13,…符合条件,故选出来的第4个个体的编号为13.方法归纳利用随机数表法抽样时应留意的问题:(1)编号要求位数相同,若不相同,需先调整到全都后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开头编号,那么全部个体的号码都用两位数字表示即可,从00~99号.假如选择从1开头编号,那么全部个体的号码都必需用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开头读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.3.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程(随机数表见教材P103附表).解:第一步,将原来的编号调整为001,002, (112)其次步,在随机数表中任选一数作为开头,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开头向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为074,100,094,052,080,003,105,107,083,092的机器便是要抽取的对象.易错警示因基本概念不明致误为了了解参与第27届世界高校生冬运会的2 015名运动员的身高状况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的是()①2 015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参与冬运会的2 015名运动员的身高状况,故总体应当是2 015名运动员的身高,而不是这2 015名运动员,同理,个体应当是每个运动员的身高,样本应当是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[错因与防范](1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,依据有关的概念可得总体、个体与样本的考察对象是相同的.4.(2022·高考四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.1.一个总体共有15个个体,用简洁随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.13B.15C.110D.115解析:选A.简洁随机抽样具有等可能性,每个个体被抽到的可能性是515=13.2.下面的抽样方法是简洁随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .从20个零件中一次性抽出3个进行质量检查C .某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验解析:选D.依据简洁随机抽样的定义及特点可推断D 为简洁随机抽样.3.在某年的高考中,A 省有20万名考生,为了估量他们的数学平均成果,从中逐个抽取2 015名同学的数学成果作为样本进行统计分析,请回答以下问题:本题中,总体、个体、样本、样本容量各指什么?解:总体是指在该年的高考中,A 省20万名考生的数学成果;个体是指在该年的高考中,A 省20万名考生中每一名考生的数学成果;样本是指被抽取的2 015人的数学成果;样本容量是2 015.[A.基础达标]1.用随机数表法从100名同学(男生25人)中抽选20人进行评教,某男同学被抽到的机率是( ) A.1100 B.125 C.15D.14解析:选C.简洁随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2021·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②猎取样本号码;③选定开头的数字;④选定读数的方向. 这些步骤的先后挨次应为( ) A .①②③④ B .①③④② C .③②①④ D .④③①② 解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A 、D 中个体总数较大,不适合用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品接受随机数表法抽取10件检查,对100件产品接受下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( ) A .①② B .①③ C .②③ D .③解析:选C.依据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.5.(2021·青岛检测)对于简洁随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公正性.A .①②③B .①②④C .①③④D .①②③④解析:选D.这四点全是简洁随机抽样的特点. 6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查同学在其中一个班级旁画“√”,以了解最受欢迎的老师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任状况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名同学进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一班级有400人,高二班级有320人,高三班级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.解析:∵n400+320+280=0.2,∴n =200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最终5行)第11~12列的18开头,依次向下,到最终一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何接受简洁随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、外形相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开头(见教材P103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3, (30)②将1~30这30个编号写到大小、外形都相同的号签上;③将写好的号签放入一个不透亮的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.力量提升]1.接受简洁随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是()A.12 B.13C.16 D.15解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是12,这与第几次抽取无关.2.为了了解全校240名高一同学的体重状况,从中抽取40名同学进行测量.下列说法正确的是() A.总体是240B.个体是每一名同学C.样本是40名同学D.样本容量是40解析:选D.本题中的争辩对象是同学的体重,而不是同学自身.总体是240名同学的体重,个体是每一名同学的体重,样本是抽取的40名同学的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规章确定中奖状况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜接受抽签法.由于它简便易行,可用不同的方式制签,抽签也便利.答案:抽签法4.2022年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002, (850)行编号,假如从随机数表第3行第6列的数开头向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P103附表)解析:从随机数表第3行第6列的数2开头向右读第一个小于850的数字是227,其次个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台进行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选择10人,从18名香港艺人中随机选择6人,从10名台湾艺人中随机选择4人.试用抽签法确定选中的艺人,并确定他们的表演挨次.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透亮小筒中摇匀,从中抽出10个号签,则相应编号的艺人参与演出;(2)运用相同的方法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.其次步:确定演出挨次:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的挨次,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出挨次,再汇总即可.6.(选做题)(2021·洛阳高一检测)现在有一种够级玩耍,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开头时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,依据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简洁随机抽样?解:简洁随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简洁随机抽样.。
高中数学第2章统计2.1抽样方法2.1.2系统抽样教案苏教版必修3
2.1.2 系统抽样整体设计教材分析当总体中个体比拟多,抽签法与随机数表法用于选取样本就比拟烦琐,而且也不能保证样本代表性,所以本节课将要学习又一种新抽样方法——系统抽样.在教学时教师不仅要让学生了解系统抽样概念,而且还要让学生掌握如何进展系统抽样,以及在进展系统抽样时所要注意一些事项,如怎样进展分段,应该分成多少段,分段时如总体个数不能被样本容量整除怎么办等等.在教学中要教会学生会比拟各种方法适用范围与各自优缺点,并会根据实际情况选择恰当抽样方法,且在讲解系统抽样时必须紧扣“每个个体被抽取概率是相等〞理论依据.黑格尔说:“教师是学生心目中‘权威人物’,是儿童心目中最神圣偶像.〞因此,我们教师在教学中要建立民主师生关系,要有意突破常规,让学生敢于在课堂上表现自己,教师也要善于表扬他们.教学时,教师要让学生充分发挥自己潜能,培养他们会对现有知识独立钻研创新精神,并培养他们会用现有知识合理辐射数学思维,得出一些具有个人特色正确结论.三维目标了解系统抽样概念及抽样步骤,会用系统抽样从总体中抽取样本,能运用所学知识判断、分析与选择抽取样本方法.能从现实生活或其他学科提出有价值数学问题,并能加以解决,培养学生运用统计思想表达思考与解决现实世界中问题能力,让学生感受数学美学价值在于鲜活实际应用,立志于学习与研究数学,最大限度地用数学知识效劳于社会,同时自身也能获得最正确生存环境.重点难点教学重点:系统抽样应用.教学难点:对系统抽样中“系统〞思想理解;对样本随机性理解.课时安排1课时教学过程导入新课当总体中个体数比拟多时,采用抽签法或随机数表法那么比拟烦琐,那么该如何抽样?如:某校高一年级共有20个班,每班有50名学生.为了了解高一学生视力状况,从这1 000人中抽取一个容量为100样本进展检查,应该怎样抽取?学生思考,交流讨论,然后代表发言,教师修改总结.推进新课新知探究1.将总体平均分成几个局部,然后按照一定规那么,从每个局部中抽取一个个体作为样本,这样抽样方法称为系统抽样〔systematic sampling〕.2.假设要沉着量为N总体中抽取容量为n样本,系统抽样步骤为:〔1〕采用随机方式将总体中N 个个体编号;〔2〕将编号按间隔k 分段,当n N 是整数时,取k=n N ;当n N 不是整数时,从总体中剔除一些个体,使剩下总体中个体个数N′能被n 整除,这时取k=nN ,并将剩下总体重新编号; 系统抽样与简单随机抽样联系:将总体均分后每一局部进展抽样时,采用是简单随机抽样.系统抽样优点是简便易行,当对总体构造有一定了解时,充分利用已有信息对总体中个体进展排队再抽样,可提高抽样效率;当总体中个体存在一种自然编号时,便于施行系统抽样法.系统抽样缺点是在不了解样本总体情况下,所抽出样本具有一定偏差.〔3〕在第一段中用简单随机抽样确定起始个体编号l ;〔4〕按照一定规那么抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k 个体抽出.应用例如〔多媒体出示题目,学生思考〕例1 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线8件产品作检验.这里采用了哪种抽取样本方法分析:此抽样选用了“等时〞抽样,与“等间距〞类似而作出判断.解:系统抽样.点评:解决此题要弄清楚目前所学两种抽样概念与特点.例2 某校为了了解全校住校生对学校食堂意见,打算从全校1 000名住校生中抽取50名进展调查,用系统抽样法进展抽取,并写出过程.分析:根据系统抽样步骤可解此题.解:首先将这1 000名学生从1开场进展编号,然后按号码顺1000=20,再从号码1~20第一段中序均分成50段,每段个体数为50用简单随机抽样抽取一个号码,假设抽到是9号,然后从9 开场,每隔20个号码抽取一个,这样就得到容量为50样本编号:9、29、49、…、989,这样,我们就得到一个容量为50样本,这种抽样方法就是系统抽样.N是整数.点评:此题“分段〞比拟方便,因为分段间隔k=n例3 某单位在岗职工共624人,为了调查工人用于上班途中所用时间,决定抽取10%工人进展调查,如何采用系统抽样方法完成这一抽样?分析:总体中每一个个体,都必须等可能地入样.为了实现“等距〞入样,且又等概率,应先剔除,再“分段〞,后定起始数.解:抽样过程如下:〔1〕先将在岗工人624人,用随机方式编号〔如按出生年月日编号〕:000,001,002, (623)〔2〕由题知应抽取62人作为样本,因为624不能被62整除,所以应从总体中剔除4个,将余下620人按编号顺序补齐000,001,002,…,619,并分成62个段,每段10人.〔3〕在第一段000,001,002,…,009这十个编号中,随机定一个起始号l 〔如006〕.〔4〕最后编号为006,016,026,…,59610名工人就为所要抽取样本.点评:1.系统抽样步骤可概括为:〔1〕编号〔采用随机方式将总体中个体编号,为简便起见,有时可直接利用个体所带号码,如考生准考证号、街道上各户门牌号,等等〕.n N 〔N 为总体中个体数,n 为样本容量〕是整数时, k=n N ;当n N 不是整数时,通过从总体中剔除一些个体,使剩下个体数N′能被n 整除,这时k=nN 〕. 〔3〕确定起始个体编号l 〔在第一段用简单随机抽样确定起始个体编号l 〕.〔4〕按照事先确定规那么.......抽取样本〔通常是将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕.“事先确定规那么〞说明不一定按“通常〞方法〔即将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕来抽取样本.2.学生解答,归纳步骤后由学生修改整理,教师巡视点拨,对整理较好同学进展及时表扬或鼓励,激发学生自信.思考:在用系统抽样方法抽样过程中,会用怎样“规那么〞来取除起始号以外其他编号呢?看例4.例4 一个总体中有100个个体,随机编号为0、1、2、 (99)依编号顺序平均分成10个小组,组号依次为1、2、3、…、10,现用系统抽样方法抽取一个容量为10样本,规定如果在第1组随机抽取号码为m,那么在第k(k≥2)组中抽取号码个位数字与m+k个位数字一样.假设m=6,那么第7组中抽取号码为__________________.分析:此题与课本中总结“通常〞方法〔即每隔10抽出一个号码〕有所不同,挖掘点在于条件“第一个号码m之后,在第k组中抽取号码个位数字与m+k个位数字一样〞.解:因为,第1组号码0~9;第2组号码10~19;第3组号码20~29;依次下去第7组中抽取号码十位数字是6.此题要求“在抽取了第一个号码m之后,在第k组中抽取号码个位数字与m+k 个位数字一样〞限制了各组抽出号码个位数.利用m及k值,求出m+k个位数字,即此题中由m=6,k=7得m+k=13,显然,m+k=13个位数字是3,故从第7组中抽取号码是63.所有被抽出号码依次为:6,18,29,30,41,52,63,74,85,96.它们“不等距〞.点评:此题是福建2004年高考卷第15〔文〕题,如果按照系统抽样经历做法“等间距〞做此题话,那么不达.一位教育专家曾指出:学习如果过分地依赖学习者经历或感情世界,即通过纯粹经历积累,而不是通过认知活动对经历进展加工,那么学习将会出现危机,因此必须重视人思维教育.所以,我们在教学时要留足够时间给学生探究,充分暴露学生思维,让学生自己打破思维中过多“经历〞束缚,展示学生创造性学习思维活动过程.知能训练课本本节练习.解答:1.系统抽样中总体与样本比必须是整数,而1 252被50整除余2,因此必须随机剔除2人.应选A.2.具体步骤为:第一步,将1 003名学生,用随机方式编号〔如按出生年月日编号〕:0000,0001,0002,…,1 002.第二步,由题知:应抽取20名学生作为样本,因为1 003不能被20整除,所以应从总体中随机剔除3名学生,将余下1 000名学生按编号顺序补齐为0000,0001,0002,…,0999,并分成20个段,每段50名学生.第三步,在第一段0000,0001,0002,…,0049这50个编号中,随机定一个起始号l〔如0006〕.第四步,编号为0006,0056,0106,…,095620名学生就是所要抽取样本.3.可选择在某个年级进展,如选择高一年级.先将所有学生随机地进展编号;然后将他们分成m段,每段n人〔如总人数不能被均分,可随机地剔除几个人再分〕;再从第一段随机抽取一个号码〔如l〕;那么编号为l,l+n,l+2n,…,l+(m-1)n学生就是需要.最后测量这些学生两臂平展长度及身高,再分别计算两组数据平均数.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕(1)系统抽样适用于总体中个数较多情况,因为这时采用简单随机抽样显得不方便.(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中个体均分后每一段进展抽样时,采用是简单随机抽样.(3)与简单随机抽样一样,系统抽样也属于等概率抽样.作业为了了解某地参加英语口语水平测试5 027名学生成绩,从中抽取了200名学生成绩进展统计分析,请写出运用系统抽样抽取样本步骤.解:具体步骤为:第一步,将参加计算机水平测试5 027名学生用随机方式编号〔如按准考证编号〕0000,0001, (5026)第二步,由题知:应抽取200人作为样本,因为5 027不能被200整除,所以应从总体中剔除27个,将余下5 000人按编号顺序补齐0000,0001,…,4999,分成200个段,每段25人.第三步,在第一段0000,0001,…,0024这25个编号中,随机定一个起始号l〔如0022〕.第四步,编号为0022,0047,…,4997工人就为所要抽取样本.设计感想由于这局部内容比拟简单,所以整节课以学生为主,尤其是根底在中下游学生,要激发他们学习积极性,从而活泼课堂气氛,使每个学生都全身心投入,动脑、举例.。
2.1随机抽样
例2:某车间工人加工一种轴100件,为 了了解这种轴的直径,要从中抽取10件 轴在同一条件下测量,如何采用简单随 机抽样的方法抽取样本?
B.与第几次抽样有关,第一次抽的可能性最小
C.与第几次抽样无关,每次抽到的可能性相等
D.与第几次抽样无关,与抽取几个样本无关
引例:某学校为了了解高一年级学生对教师 教学的意见,打算从高一年级500名学生中 抽取50名进行调查。请设计抽样方法。 问题: (1)例中总体容量、样本容量分别为 多少? (2)除了用简单随机抽样法完成抽样外还可 以设计怎样的抽样方法?
抽签法有哪些优点和缺点? 优点: 简单易行,当总体个数不多的时候 搅拌均匀很容易,个体有均等的机会被 抽中,从而能保证样本的代表性. 缺点: 当总体个数较多时很难搅拌均匀, 产生的样本代表性机数表、随机数骰 子或计算机产生的随机数进行抽样, 叫随机数表法,这里仅介绍随机数表 法。 怎样利用随机数表产生样本呢?下面通 过例子来说明,
解法1:(抽签法)将100件轴编号为1, 2,…,100,并做好大小、形状相同的号签, 分别写上这100个数,将这些号签放在一起, 进行均匀搅拌,接着连续抽取10个号签,然 后测量这个10个号签对应的轴的直径。
解法2:(随机数表法)将100件轴编号为00, 01,…99,在随机数表中选定一个起始位 置,如取第21行第1个数开始,选取10个 为68,34,30,13,70,55,74,77, 40,44,这10件即为所要抽取的样本。
样本中个体的数量. 5.样本容量:
1、为了了解全校240名学生的身高情况,从中 抽取40名学生进行测量,下列说法正确的是 ( ) D A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是40
第二章 抽样技术的基本概念
2、中心极限定理;
3、t分布定理;
对于样本比例,在重复抽样时服从二项分布,在 不重复抽样时服从超几何分布,它们的极限形式都是 正态分布。
正态分布是最重要、最常用的抽样分布。 我们可 以根据正态分布理论,在一定的概率保证下,以所抽 样本所给出的估计值为依据对总体指标作出区间估计。
4、在实践中,我们还经常要对总体中某 特定的组或类进行调查研究,这样的组或类就 称为研究域或子总体。
5
二、调查单位与抽样单位
总体是由单位构成的,单位有调查单位与 抽样单位之分。
调查单位就是调查项目的承担者,即我们 想通过调查取得其观测值的单位,它通常是构 成总体的最基本单位。但有时调查单位与基本 单位并不相同。
标θ ,也就是要在一定的概率保证下,想办 法找出两个数值θ1和θ2(θ1≤θ2),使θ处
于这两个数值之间,即:
Pr(θ1 ≤ θ ≤ θ2 )=1- α
27
区间(θ1,θ2)就被称为抽样的置信区 间或估计区间,θ1被称为置信区间的下限, θ2被称为置信区间的上限 。
在正态分布下,估计量关于总体指标对称
23
二、抽样误差的表现形式
抽样误差的表现形式一般有三种:抽样实 际误差、抽样标准误和抽样极限误差。
抽样实际误差是指抽样估计值与总体指标 值之间的离差。
特点: 1、若估计量无偏,所有可能的实际误差 的总和为0; 2、每一次抽样的实际误差是不可知的; 3、抽样实际误差是随机变量。
24
抽样标准误是衡量抽样误差大小的核心指标,是对总 体指标作出区间估计的一个重要因素,狭义上所指的抽样 误差就是抽样标准误。它就是抽样分布或抽样估计量的标 准差,是抽样分布方差或抽样估计量方差(均方误差)的 平方根。
《抽样调查教案》课件
《抽样调查教案》课件第一章:抽样调查简介1.1 抽样调查的概念与意义1.2 抽样调查的分类1.3 抽样调查的步骤与方法1.4 抽样调查的优势与局限性第二章:随机抽样方法2.1 简单随机抽样2.2 分层随机抽样2.3 系统随机抽样2.4 整群随机抽样2.5 多种随机抽样方法的比较与选择第三章:样本容量的确定3.1 样本容量的概念与作用3.2 样本容量的计算方法3.3 影响样本容量的因素3.4 样本容量确定的实际应用案例第四章:抽样调查的实施与数据处理4.1 抽样调查的实施步骤4.2 样本数据的收集与整理4.3 抽样误差与无回答误差4.4 样本数据的代表性分析4.5 数据处理的统计方法第五章:抽样调查的评估与改进5.1 抽样调查的评估指标5.2 抽样调查的质量评价5.3 抽样调查的改进方法5.4 抽样调查在实际应用中的案例分析5.5 抽样调查的发展趋势与展望第六章:概率抽样与非概率抽样6.1 概率抽样的概念与特点6.2 非概率抽样的概念与特点6.3 概率抽样与非概率抽样的比较6.4 常见概率抽样方法介绍6.5 常见非概率抽样方法介绍第七章:样本数据的统计分析7.1 描述性统计分析7.2 推断性统计分析7.3 假设检验方法7.4 相关与回归分析7.5 统计分析软件的应用第八章:抽样调查在各个领域的应用8.1 市场调查中的应用8.2 社会调查中的应用8.3 医学研究中的应用8.4 教育研究中的应用8.5 环境监测中的应用第九章:抽样调查的伦理与法律问题9.1 抽样调查的伦理问题9.2 抽样调查的法律问题9.3 保护受访者隐私的原则9.4 确保调查结果真实性的措施9.5 抽样调查的合规性检查与评估第十章:现代抽样调查技术的发展10.1 计算机辅助调查技术10.2 网络调查技术10.3 大数据抽样调查10.4 移动设备抽样调查10.5 在抽样调查中的应用10.6 未来抽样调查技术的发展趋势重点和难点解析一、抽样调查的分类难点解析:不同抽样调查方法的选择和应用,需要根据研究目的和条件来决定。
抽样方法有哪些
抽样方法有哪些抽样方法是统计学中非常重要的概念,它指的是从总体中选择部分个体以便对总体进行研究的方法。
在实际应用中,我们往往无法对整个总体进行调查,因此需要通过抽样方法来获取代表性的样本数据,从而进行统计推断和分析。
下面将介绍一些常见的抽样方法。
首先,最常见的抽样方法之一是简单随机抽样。
简单随机抽样是指从总体中随机地抽取n个个体作为样本,每个个体被抽中的概率相等。
这种抽样方法简单易行,且能够保证样本的代表性,因此在实际调查中应用广泛。
其次,分层抽样是另一种常见的抽样方法。
在分层抽样中,总体根据某种特征进行分层,然后从每一层中分别进行简单随机抽样,最终得到样本。
这种抽样方法能够保证不同层次的个体在样本中的比例与总体中的比例相近,因此在样本代表性方面具有优势。
另外,还有系统抽样这一抽样方法。
系统抽样是指在总体中按照一定的间隔,从第一个个体开始每隔k个个体抽取一个个体作为样本。
这种抽样方法简单方便,且能够保证样本的随机性,适用于总体个体排列有序的情况。
此外,还有方便抽样和整群抽样等抽样方法。
方便抽样是指根据研究者的方便选择样本,这种抽样方法操作简单但样本代表性较差;整群抽样是指将总体按照一定特征分成若干群,然后随机抽取部分群作为样本。
这两种抽样方法在实际应用中也有一定的使用场景。
总的来说,不同的抽样方法适用于不同的调查对象和研究目的。
在选择抽样方法时,需要根据具体情况进行合理选择,以确保样本的代表性和研究结论的可靠性。
同时,在进行抽样调查时,也需要注意抽样误差的控制和样本容量的确定,以保证统计推断的准确性。
希望本文介绍的抽样方法能够为大家在实际应用中提供一定的帮助。
第二章(简单随机抽样)
1 ∑ Yi = N i =1
N
∑Y
i =1
N
i
=Y
性质二
对于简单随机抽样,V(y) =
1− f 2 n S , 其中f = ,为抽样比。 n N
证明:
n 1 n 1 2 V(y) E ( y − Y ) = E[ ∑ yi − Y ] = 2 E[∑ ( yi − Y )]2 = n i =1 n i =1 2
引入一个0 引入一个0-1变量
αi
1 i ∈s = 0 i ∉s
n P(αi =1) = = f N
n E(αi ) = E(α ) = N
2 i
n n n n 2 V(αi ) = E(αi ) − E(αi ) = − = (1− ) = f (1− f ) N N N N
| θˆ − θ | P( ≤ µα ) = 1 − α ˆ) S (θ
[θ ± µ S (θˆ)]
α
【例2.3】 例2.3
• 我们从某个N=100的总体中抽出一个大小为 n=10的简单随机样本,要估计总体平均水 平并给出置信度为95%的区间估计。
序号
i
1 4
2 5
3 2
4 0
5 4
6 6
7 6
8 15
序号1 yi 4 2 5 3 2 简单随机样本的指标值 4 5 6 7 2 3 4 5 8 4 9 13 10 6
1 n( N − 1) 2 N −n 2 = S −n S ] = S2 [ n −1 N nN
1− f 2 1− f 1− f 2 2 所以,E[v( y )] = E ( )s = E (s ) = S n n n
• 大样本下,抽样调查估计量渐进正态
高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3
2.1.3 分层抽样整体设计教材分析本课是在学生已经学习了简单随机抽样与系统抽样之后所要学习又一种抽样方法——分层抽样.由前两节课我们知道简单随机抽样或系统抽样有时获得样本不具有很好代表性,比方,当个体间差异比拟大时,如果采用简单随机抽样,不同人就有可能得到差异很大结果;同样,如果采用系统抽样也很可能得不到具有代表性样本.为此,为了更大程度地提高样本代表性,我们需要事先对总体有一定了解,然后根据已有了解,再按照一定方式抽取,这就是分层抽样.本教案着眼点是让学生主体参与,让学生动手、动脑,并通过观察、分析、比拟、归纳等进展合情推理,鼓励学生积极活动,勇于探索.针对本节课概念性强、思维量大、例习题较多特点,本课教法是以启发学生观察思考分析讨论为主启发式教学.三维目标1.了解分层抽样概念,理解科学、合理选用抽样方法必要性.2.掌握分层抽样操作步骤,对实际问题比照分析.3.了解各种抽样方法使用范围,使学生能根据具体情况选择适当抽样方法.4.结合教学内容培养学生学习数学兴趣以及“用数学〞意识,培养学生科学探索精神.重点难点教学重点:通过实例了解分层抽样方法.教学难点:分层抽样步骤.课时安排1课时教学过程导入新课设计思路一:〔事例引入〕有一条消息“抽查局部考生成绩了解知道,江苏省2005年高考物理学科平均分约为95分.〞请问这个数据是用什么样抽样方法得到?分析:不能单纯地用简单随机抽样或系统抽样,因为江苏省有很多地区,而每个地区学生成绩不平衡,甚至相差太大.那么,设计抽样方法时,最核心问题是什么,应该注意什么呢?一定要使抽取样本具有很好代表性.为此,在设计抽样方法时,我们应充分利用自己对总体情况已有了解,选择适合抽样方法.师:请同学们一起来探讨一例,你认为应当怎样抽取样本?设计思路二:〔实例引入〕某校高一、高二与高三年级分别有学生1 000,800与700名,为了了解全校学生视力情况,欲从中抽取容量为100样本,怎样抽样较为合理?〔让中档生配合教师引入新课,增强他们赶超意识;优秀生补充,树立他们“我要更强〞竞争意识;后进生主动参与,提高他们课堂上有效思考活动时间〕分析:由于不同年级学生视力状况有一定差异,不能在2 500名学生中随机抽取100名学生,也不宜在三个年级平均抽取.为准确反映客观实际,不仅要使每个个体被抽到概率相等,而且要注意总体中个体层次性,所以,先将全体学生分成高一、高二与高三年级三层,分别抽样.三局部学生人数有较大差异,应考虑各层个体数在总体中所占比例.用各层个体数与总体个体数比乘以样本容量就可得各层所要抽取个体数.推进新课新知探究学生思考,交流讨论,然后代表发言.一般地,当总体由差异明显几个局部组成时,为了使样本更客观地反映总体情况,我们常常将总体中个体按不同特点分成层次比拟清楚几局部,然后按各局部在总体中所占比实施抽样,这种抽样方法叫做分层抽样〔stratified sampling〕,其中所分成各个局部称为“层〞.分层抽样步骤是:〔1〕将总体按一定标准分层;〔2)计算各层个体数与总体个体数比;〔3〕按各层个体数占总体个体数比确定各层应抽取样本容量;〔4〕在每一层进展抽样〔可用简单随机抽样或系统抽样〕.分层抽样特点是:分层抽样时,每个个体被抽到可能性是相等.由于分层抽样充分利用了信息,使样本具有较好代表性,而且在各层抽样时,可以根据具体情况采取不同抽样方法,因此分层抽样在实践活动中有着广泛应用.应用例如例1 某电视台在因特网上就观众对其某一节目喜爱程度进展调查,参加调查总人数为12 000人,其中持各种态度人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072电视台为进一步了解观众具体想法与意见,打算从中抽选出60人进展更为详细调查,应怎样进展抽样?分析:因为总体中人数较多,所以不宜采取简单随机抽样,又由于持不同态度人数差异较大,故也不宜用系统抽样,而以分层抽样为妥.解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很喜爱〞“喜爱〞“一般〞“不喜爱〞;②因为总人数为12 000人,所以各层个体数与总体个体数之比分别为“很喜爱〞占;“喜爱〞占;“一般〞占;“不喜爱〞占;③因为抽选出60人,所以从每层中抽出人数为:“很喜爱〞有×60≈12人,“喜爱〞有×60≈23人,“一般〞有×60≈20人,“不喜爱〞有×60≈5人.④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:〔1〕分层抽样四个步骤中按比例分配各层所要抽取个体数时,有时计算出个体数可能是一个近似数,但这并不影响样本容量.〔2〕分层抽样适用于总体由差异比拟明显几个局部组成情况,是等概率抽样,它是客观、公平.〔3〕分层抽样是建立在简单随机抽样或系统抽样根底上,由于它充分利用了调查者对被调查对象〔总体〕事先所掌握各种信息,并充分考虑了保持样本构造与总体构造一致性,从而使抽取样本具有较好代表性.并且在各层抽样时可以根据情况采用不同抽样方法,因此分层抽样在实践中有着非常广泛应用.例2 一工厂生产了某种产品16 800件,他们来自甲、乙、丙生产三条线.为检查这批产品质量,决定采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么乙生产线生产了________________件产品.分析:审题是思维入口,抓住问题透露信息,进展分检、组合与加工,找出解题思路.非常有价值信息是从甲、乙、丙3条生产线抽取个体数组成一个等差数列.解法一:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,故设从甲、乙、丙三条生产线抽出个体数分别为a,a+d,a+2d,那么各层抽出个体合在一起就得到了所需样本容量3a+3d,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a+d,x=5 600.解法二:设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d,那么各层抽得个体合在一起就得到了所需样本容量为3a,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a,x=5 600.解法三:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,由分层抽样原理知甲、乙、丙3条生产线生产产品件数也组成一个等差数列.故设甲、乙、丙生产线生产产品件数分别为y-m,y,y+m件,那么(y-m)+y+(y+m)=16 800,即y=5 600.点评:解法二妙在设三数时考虑了“三数成等差且它们与〞条件.解法三思路:由于此题采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么甲、乙、丙3条生产线生产产品件数也组成一个等差数列.因为从各条生产线抽出人数占总体比〔设为k〕是不变,那么设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d〔等差数列〕,那么甲、乙、丙3条生产线生产产品件数分别为:〔等差数列〕.思考:求出了乙生产线生产了5 600件产品,能否求出甲与丙生产线分别生产了多少件产品.如果不能,能否加一些条件,求出甲与丙生产线分别生产产品件数.解:不能,因d,k,a都不知.可以通过加条件求出甲与丙生产线分别生产产品件数,如a=56,d=4,那么k==1100,所以甲、丙生1,那么产线生产产品件数分别为:=5 200,=6 000.或者d=4,k=1001,所以a=56,以下解法同前.k=3a16 800=100例3 为了考察某校教学水平,将抽查这个学校高三年级局部学生本学年考试成绩.为了全面地反映实际情况,采用以下三种方式进展抽查〔该校高三年级共有20个教学班,并且每个班内学生已经按随机方式编好了学号,假定该校每班学生人数都一样〕:①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们学习成绩;②每个班抽取一人,共计20人,考察这20个学生成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进展考察〔:假设按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人〕.根据上面表达,试答复以下问题:〔1〕上面三种抽取方式中,其中总体、个体、样本分别指是什么?每一种抽取方式抽取样本中,其样本容量分别是多少?〔2〕上面三种抽取方式中各自采用何种抽取样本方法?〔3〕试分别写出上面三种抽取方式各自抽取样本步骤.分析:此题主要考察数理统计中一些根本概念与根本方法.做这种题目时,应该注意表达完整性与条理性.解:〔1〕这三种抽样方式中,其总体都是指该校高三全体学生本年度考试成绩,个体都是指高三年级每个学生本年度考试成绩.其中第一种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第二种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第三种抽取方式中样本为所抽取100名学生本年度考试成绩,样本容量为100.〔2〕上面三种抽样方式中,第一种方式采用方法是简单随机抽样法;第二种方式采用方法是系统抽样法与简单随机抽样法;第三种方式采用方法是分层抽样法与简单随机抽样法.〔3〕第一种方式抽样步骤如下:第一步:在这20个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一个学生,记其学号为a;第二步:在其余19个班中,选取学号为a学生,共计19人.第三种方式抽样步骤如下:第一步:分层.因为假设按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步:确定各个层次抽取人数.因为样本容量与总体个体数比为:100∶1000=1∶10,所以在每个层次抽取个体数依次为,即15,60,25.第三步:按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取20人.点评:1.弄清考察对象是明确总体、个体、样本关键,这里考察对象指是数据.样本中有多少个个体,样本容量就是多少.总体、个体、样本考察对象是同一,所不同是范围大小.2.判断采用何种抽样方法时,应充分理解三种抽样方法定义.三种抽样方法共同点、各自特点、三者之间联系以及适用范围:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取概率相等从总体中逐个抽取总体中个数较少系统抽样将总体均分成几局部,按事先确定规那么分别在各局部中抽取在起始局部抽样时采用简单随机抽样总体中个数较多分层抽样将总体分成几层,分层进展抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显几局部组成例4 以下问题中,采用怎样抽样方法较为合理〔1〕从10台冰箱中抽取3台进展质量检查;〔2〕某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会完毕后为听取意见,需留下32名听众进展座谈;〔3〕某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面意见,拟抽取一个容量为20样本.此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.分析:此题特征是:总体情况来分析选择抽样方法.解:〔1〕总体容量比拟小,用抽签法或随机数表法都很方便. 〔2〕总体容量比拟大,用抽签法或随机数表法比拟麻烦.由于人员没有明显差异,且刚好32排,每排人数一样,可用系统抽样.具体做法是:将每排40人组成一组,共32组,从第1排至第32排分别为1~32组,先在第1排用简单随机抽样抽取一名听众,再将其他各排与此听众座位号一样听众全部取出.〔3〕由于学校各类人员对这一问题看法可能差异较大,故应采用分层抽样方法.具体做法是:总体容量为160,故样本中教师人数应为20×160120=15名,行政人员人数应为20×16016=2名,后勤人员应为20×16024=3名. 点评:此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.知能训练1.在10 000个有时机中奖参加港澳七日游号码〔编号为0000~9999〕中,在公证部门监视下按照随机抽取方法确定后三位数为369号码为中奖号码.请你分析这里运用了哪种抽样方法来确定中奖号码?依次写出这10个中奖号码.2.某校共有118名教师,为了支援西部教育事业,现要从中抽出16名教师组成暑期西部讲师团.请用系统抽样法选出讲师团成员.3.某大学共有全日制学生15 000人,其中专科生3 788人、本科生9 874人、研究生1 338人,现为了调查学生上网查找资料情况,欲从中抽取225人,为了使样本具有代表性,应该怎样抽取样本?〔充分给予学生思考时间,由学生分析思路,写出详细解题过程,培养学生标准化书写解题过程意识,教师点拨与指导.出示投影片上准备好解题过程,让学生对照自己书写过程,扬长避短〕4.某市3个区共有高中学生2 000人,且3个区高中学生人数之比为2∶3∶5,现要用分层抽样方法从所有学生中抽取一个容量为200样本,这3个区分别应抽取多少人?写出抽样过程.解答:1.因为中奖号码后三位数一样,因此10个中奖号码依次为:0369,1369,2369,3369,4369,5369,6369,7369,8369,9369.它们间隔一样,因此采用是系统抽样方法.2.(1)对这118名教师进展编号1,2, (118)(2)计算间隔k=16118=7.375.由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进展系统抽样.例如我们随机剔除了3、46、59、57、112、93这6名教师,然后再对剩余112名教师编号,计算间隔k=7.(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第二个个体编号12,再加上7得到第三个个体编号19,依次进展下去,直到获取整个样本.3.采用分层抽样.具体抽样步骤如下:①将总体分成三层:“专科生〞“本科生〞“研究生〞;②因为总人数为15 000人,所以各层个体数与总体个体数之比分别为:“专科生〞占;“本科生〞占;“研究生〞占;③因为抽选出225人,所以从各层中抽出人数为:“专科生〞有×225≈57人;“本科生〞有×225≈148人;“研究生〞有×225≈20人;④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.4.由分层抽样原理知从各层中抽取样本个数之比等于各层个体数之比,所以从各层中抽出人数为:“第一区〞有102×200=40人;“第二区〞有103×200=60 人;“第三区〞有105×200=100人;然后在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:有针对性与例题配套,加强学生对上课例题理解.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕〔1〕分层抽样定义;〔2〕分层抽样实施方法及步骤;〔3〕简单随机抽样、系统抽样及分层抽样区别与联系.作业课本习题2.1 2、8.设计感想由于课程标准对分层抽样要求层次为“了解〞,因此没有在如何合理分层这个层面上花过多时间,而是以例题、习题形式补充了一些与学习、生活、生产相关背景材料,让学生感受分层抽样应用广泛性与必要性.习题详解1.解:采用分层抽样方法.具体为:①将全市800家企业分成四个层:“中外合资企业〞“私营企业〞“国有企业〞“其他性质企业〞;②“中外合资企业〞与全市企业总数之比为160∶800=1∶5;“私营企业〞与全市企业总数之比为320∶800=2∶5;“国有企业〞与全市企业总数之比为240∶800=3∶10;“其他性质企业〞与全市企业总数之比为80∶800=1∶10;③应抽取“中外合资企业〞40×51=8家 ;“私营企业〞40×52=16家;“国有企业〞 40×103=12家;“其他性质企业〞40×101=4家; ④将抽出40家企业合在一起就组成所要样本.2.解:由题意知:抽取高二年级学生15人.故抽取高二年级学生与高二年级学生总数之比为15∶300=1∶20,所以高一年级学生总数为20×20=400人,高三年级学生总数为10×20=200人,全校学生总数为400+300+200=900人.3.解:因为4个区学生人数之比为3∶2.8∶2.2∶2,因此各个区学生数分别占总数3∶(3+2.8+2.2+2)=3∶10,2.8∶(3+2.8+2.2+2)=7∶25, 2.2∶(3+2.8+2.2+2)=11∶50,2∶(3+2.8+2.2+2)=2∶10,所以应分别从各个区抽取学生200×103=60人,200×257=56人,200×5011=44人,200×102=40人. 4.解:可先将高一年级学生按年龄分为15岁、16岁、17岁,然后再将每一个年龄段内学生分为男、女调查他们身高,这样整个年级学生就可分为9个层,最后采用分层抽样方法抽取一些学生调查他们作为样本.5.解:可对全校学生分为三个层:“高一学生〞“高二学生〞“高三学生〞,然后在每一层中采用系统抽样方法抽取出各层学生,最后调查这些学生身高与心率,获得数据,制成表格.6.解:先将学生按年级分为几个局部,然后对每一局部学生采用随机抽样方法抽取一些学生组成样本,调查他们父母年龄,收集数据以制成表格.7.可对班级学生按男、女分为两个局部,然后按男、女生在班级所占比例在每一局部采用随机抽样方法抽取一些学生,以调查他们对这一问题看法.8.解:〔1〕采用分层抽样方法,具体步骤如下:①将500名学生分为4个层:“血型为O 型学生〞“血型为A 型学生〞“血型为B 型学生〞“血型为AB 型学生〞;②“血型为O 型学生〞占总人数比为,“血型为A 型学生〞占总人数比为,“血型为B 型学生〞占总人数比为,“血型为AB 型学生〞占总人数比为;③应抽取血型为O 型学生40×52=16人;血型为A 型学生40×41=10人;血型为B 型学生40×41=10人;血型为AB 型学生40×101=4人; ④从各层用随机抽样方法抽出学生组成样本.〔2〕AB 血型样本抽样过程〔抽签法〕步骤:①将血型为AB 型学生进展随机编号为1,2, (50)②用白纸做成形状、大小完全一样1至50号签;③把1至50号签集中在一起放在一个大容器中充分搅拌均匀; ④沉着器中随机地抽出4个签;⑤最后把编号与抽中号码相一致学生抽出即可.9.解:抽签法或随机数表法:如检查某个班级同学对英语单词掌握情况;系统抽样:检查高一年级同学对英语单词掌握情况;分层抽样:检查全校同学对英语单词掌握情况.10.略.。
第二章分层抽样
分层抽样
总体中的个体 总体中的个 总体由存在明显差
适用范围
数较少
体数较多 异的几部分组成
①抽样过程中每个个体被抽到的可能性相等; 共同点
②每次抽出个体后不再放回,即不放回抽样
三、课程讲授
题型一:分层抽样的概念
[例 1] (1)某政府机关在编人员共 100 人,其中副处级以上
干部 10 人,一般干部 70 人,工人 20 人,上级部门为了了解该
[类题通法] 1.分层抽样的步骤
2.确定每层抽取的个体数的方法 (1)已知总体容量、样本容量及各层的个体数时,首先确定 抽样比Nn,其中 N 为总体容量,n 为样本容量;然后确定每层 抽取的个体的个数 ni=Ni×Nn,其中 Ni 为第 i(i=1,2,…,k) 层的个体数,ni 为第 i 层应抽取的样本数. (2)已知各层个体数之比为 m1∶m2∶…∶mk,样本容量为 n 时,每层抽取的个体数为 ni=n×m1+m2m+i…+mk.
因为样本容量=120,总体个数=500+3 000+4 000 =7 500,则抽样比:7152000=1225,
所以有 500×1225=8,3 000×1225=48, 4 000×1225=64,
所以在教职员工、初中生、高中生中抽取的个体数 分别是 8、48、64.
分层抽样的步骤是: ①分层:分为教职员工、初中生、高中生,共三层. ②确定每层抽取个体的个数:在教职员工、初中生、 高中生中抽取的个体数分别是 8、48、64. ③各层分别按简单随机抽样或系统抽样的方法抽取 样本.
解:(1)上面三种抽取方式中,其总体都是高三全体学生 本学年的考试成绩,个体都是指高三年级每个学生本学年的 考试成绩.其中第一种抽取方式中样本为所抽取的 20 名学生 本学年的考试成绩,样本容量为 20;第二种抽取方式中样本 为所抽取的 20 名学生本学年的考试成绩,样本容量为 20; 第三种抽取方式中样本为所抽取的 100 名学生本学年的考试 成绩,样本容量为 100.
车用汽油柴油产品质量监督抽查实施细则
车用汽油柴油产品质量监督抽查实施细则第一章总则第一条为加强对车用汽油、柴油产品质量监督的实施,规范抽查工作,保障消费者的合法权益,根据相关法律法规,制定本实施细则。
第二条本实施细则适用于全国范围内对车用汽油、柴油产品质量监督的抽查工作。
第三条抽查工作采用抽样检验的方式,旨在对车用汽油、柴油产品进行质量监督,确保产品符合相关标准和技术规范的要求。
第二章抽样方法第四条抽样应满足以下原则:(一)随机性原则,通过随机选择的方式,确保样品具有代表性;(二)公正性原则,抽样过程应当公正、透明;(三)科学性原则,采用科学的抽样方法,保证抽样结果的可靠性。
第五条抽样的具体方法:(一)按照地区划分,分别从不同地区的汽油、柴油销售点进行抽样;(二)按照规模划分,从不同规模的加油站、加油点进行抽样;(三)按照产品类型划分,从不同类型的车用汽油、柴油产品进行抽样。
第三章抽查内容第六条抽检内容主要包括以下方面:(二)产品质量指标,包括燃烧性能、燃料经济性、环境排放等方面;(三)相关标准和技术规范的要求,包括燃料规定的石油产品等级、车用燃料质量标准等。
第七条抽查内容还可根据实际需要,增加其他相关内容,以确保抽查工作的全面性和有效性。
第四章抽查程序第八条抽查工作的程序如下:(一)确定抽查计划,包括抽样点、抽样数量、抽样时间等;(二)选定抽样人员,确保抽样人员具备相关的专业知识和技术能力;(四)按照抽样方法进行抽样,包括现场取样、封样等步骤;(五)将抽样样品送往实验室进行检验,确保检验结果的准确性和可靠性;(六)对检验结果进行分析和评估,形成抽查报告;(七)抽查报告应当及时向抽查对象公布,并进行解释说明;(八)根据抽查结果,采取相应的处理措施,包括修缮产品、召回产品、罚款等。
第五章报告和处理第九条抽查报告应包括以下内容:(一)抽样点的基本信息,包括名称、地址、经营者等;(二)抽样数量和抽样时间;(三)检验结果和评价;(四)处理意见和建议。
抽样调查基本原理
第二章抽样调查基本原理第一节有关基本概念一、总体总体也叫母体,它是所要认识对象的全体,是具有同一性质的许多单位的集合。
组成总体的每个个体叫做单位。
总体可以是有限的,也可以是无限的。
如果总体中所包含个体的数目为有限多个,则该总体就是有限总体,反之是无限总体。
总体也可区分成汁量总体(由测量值组成的)与计数总体(由品质特征组成的)。
在抽样以前,必须根据实际情况耙总体划分成若干个互不重叠并且能组合成总体的部分,每个部分称为一个抽样单元,不论总体是否有限,总体中的抽样单元数一泄是有限的, 而且是已知的,因此说抽样调查的总体总是有限的。
抽样单元又有大小之分,一个大的抽样单元可以分成若干个小的抽样单元,最小的抽样单元就是每一个个体。
如一项全国性的调查, 如果把省作为一级单元,则可以把县作为二级单元,乡作为三级单元,村作为四级单元等等。
又如在流动人口抽样中,可以以居委会作为抽样单元,而在家计调查中,则以户为抽样单元。
总体应具备同质性、大量性与差异性的特征。
在抽样调査中,通常将反映总体数呈:特征的综合指标称为总体参数。
常见的总体参数主要有:1•总体总与Y:例如全国人口数。
Y 二L y:=yi+y:+**.+y x2.总体均值Y :例如职工平均工资。
r =Y/N=z yi /N3•总体比率R:是总体中两个不同指标的总与或均值的比值。
如总收入与总支出之比。
R二Y/X二Y/X4.总体比例P:是总体中具有某种特性的单元数目所占比重。
如产品的合格率。
二、样本样本是由从总体中所抽选出来的若干个抽样单元组成的集合体。
抽样前,样本是一个n 维随机变量,属样本空间;抽样后,样本是一个n元数组,是样本空间的一个点。
样本是总体的缩影,是总体的代表。
抽样的效果好不好,依赖于样本对总体是否有充分的代表性。
样本的代表性愈强,用样本指标对总体全而特征的推断就愈精确,即推断的误差就愈小;反之,如果样本的代表性愈弱,推断的误差就愈大,推断结果就愈不可靠。
水产品质量安全抽样规范最新版全文内容
水产品质量安全抽样规范最新版全文内容水产品质量安全抽样规范最新版全文内容近年来,水产品质量安全成为了广大消费者关注的焦点之一。
为了保障人们的饮食安全,有关部门发布了水产品质量安全抽样规范的最新版。
本文将全面介绍该规范的内容,以期提高大家对水产品质量安全的认知和保护意识。
第一章:总则根据国家卫生和计划生育委员会、国家食品药品监督管理局等相关部门的要求,制定了水产品质量安全抽样规范。
该规范适用于水产品生产、加工、储存、流通环节的监督抽样工作。
第二章:抽样基本原则抽样应符合以下原则:科学性、公正性、准确性、可靠性。
抽样工作应有计划,根据风险评估结果确定抽样频次和抽样样本数量。
第三章:抽样方法抽样方法包括代表性、无歧义性、草稿性,以及不影响样品的品质和营养成分等要求。
抽样应当选择典型样品,对于水产品的特殊要求,应注意抽样的时间、地点、方式等。
第四章:抽样人员抽样人员应经过相关培训和资格认证,具备抽样技能和知识。
抽样人员要严格遵守工作纪律,履行职责,保证抽样的质量。
第五章:抽样设备及器具抽样设备和器具应符合相关标准要求,保证它们的准确性和稳定性。
抽样设备的维护和保养要定期进行,以确保抽样质量。
第六章:抽样环境抽样环境要达到相应的卫生标准。
抽样过程中应避免任何可能对样品质量产生影响的因素,比如异味、高温等。
第七章:抽样前的准备工作抽样前要对相关信息进行收集和整理,了解抽样对象的基本情况。
根据抽样计划准备所需的表格、器具和登记工具。
第八章:抽样过程抽样过程要严格遵守规定的程序和要求。
抽样员应依次进行样品编号、样品采集、样品名称标签粘贴等工作。
抽样时要保持专注、细致、耐心,确保抽样质量。
第九章:样品处理样品处理要根据不同的水产品进行不同的处理方法,以确保样品的质量和可检测性。
对于易变质样品,要及时采取保鲜措施。
第十章:抽样记录抽样人员在抽样过程中要详细记录相关信息,包括抽样人员的姓名、时间、地点、抽样方式、样品编号等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这样一来,规模大的群以大概率入样,规模小的 群以小概率入样.由于抽取PSU的过程是不等概 群以小概率入样.由于抽取PSU的过程是不等概 率抽样,因此如果要保证总抽样比不变,就需要 以一个固定的样本规模从抽中的PSU内抽取样本 以一个固定的样本规模从抽中的PSU内抽取样本 单位. 因为如果抽取的单位规模对每个PSU都一样,那 因为如果抽取的单位规模对每个PSU都一样,那 单位入样的概率就会与群的规模成反比.这样大 概率抽取群,小概率抽取样本单位,一大一小相 互抵消,就保证了总体单位抽取的等概率性.与 此同时,由于不论PSU大小,都抽取固定规模的 此同时,由于不论PSU大小,都抽取固定规模的 样本单位,于是也控制了样本规模的变动.
第二节 一阶段抽样 一阶段抽样
在抽样中,如果样本是一次直接从抽样框 中抽出的,则称之为一阶段抽样.它是最 基本的抽样方法,其他形式的抽样方法都 是在此基础上发展出来的.
一,简单随机抽样 一,简单随机抽样 简单随机抽样(simple 简单随机抽样(simple random sampling)也 sampling)也 称纯随机抽样,是严格按照随机原则从含 有N个单位的总体中抽取n个单位组成样 个单位的总体中抽取n 本(N>n),在抽样过程中总体的每个单 本(N>n),在抽样过程中总体的每个单 位都有同等的机会入选样本,而且每个单 位的抽取都是相互独立的.
(一)样本量在各层的分配 (一)样本量在各层的分配 最常见的样本量分配方式是按比例分配 (proportional allocation),即各层的子样本 allocation),即各层的子样本 单位在总样本中所占的比例,与各层单位 在总体中所占的比例完全相同.
(二)层的划分 (二)层的划分 理论上,按调查目标变量进行分层是最好 的,但在调查之前目标变量的值是不知道 的,因此只能是根据与目标变量最相关的 辅助变量进行分层,常用的辅助变量包括 性别,年龄,职业,教育程度,收入,地 域,民族和宗教等.
一,简单随机抽样的抽样误差 一,简单随机抽样的抽样误差 放回简单随机抽样 放回简单随机抽样 不放回简单随机抽样 不放回简单随机抽样 标准误差的意义 标准误差的意义
二,简单随机抽样的样本规模 二,简单随机抽样的样本规模 样本规模又称样本容量,是指样本中所包 含元素的数量.样本规模一方面会影响到 样本的代表性,另一方面,则直接影响到 调查成本的大小.太小的样本其代表性可 能较差,但太大的样本又会增加不必要的 成本.因此,在实际抽样中,选择合适的 样本规模是非常重要的.
(三)分层抽取样本的方法 (三)分层抽取样本的方法 在分层抽样中,有两种常见的样本抽取方法. 一种方法是先将所有总体元素按分层变量 进行分层,并计算各层在总体中的比例. 接着如果采用等比例分层抽样,则直接将 总体比例视为样本比例;如果采用不等比 例分层抽样,则需要对样本比例做一定的 调整.最后,再按确定的样本比例,用简 单随机或系统抽样方法,抽出适量的样本 元素.
二,PPS抽样 二,PPS抽样 在PPS抽样中,第一阶段抽样即抽取PSU的 PPS抽样中,第一阶段抽样即抽取PSU的 阶段,要先放弃等概率抽样条件,采用 "概率与规模成比例"(probability 概率与规模成比例" proportional to size,PPS)的方法,即赋予 size,PPS)的方法,即赋予 规模不等的群与其规模(或辅助变量)成 比例的入样概率.
(一)群的性质 (一)群的性质 群的划分可以遵循以下原则:群内方差尽 可能大,群间方差尽可能小,即群内各单 位的差异尽可能大,群与群之间的差异尽 可能小.这个原则与分层原则恰好相反, 简言之,异质的群,同质的层. 简言之,异质的群,同质的层.
(二)规模不等的群 为了保证样本单位满足等概率原则,可以 采取相应措施来控制样本规模的变动.一 方面可以按群的大小进行分层,然后对各 个层使用相同的抽样比. 个层使用相同的抽样比.
主要方法: 抽签法 抽签法 随机数法 随机数法
二,系统抽样 二,系统抽样 实际抽样中经常采用的是系统抽样 (systematic sampling),又称机械抽样,即 sampling),又称机械抽样,即 将N个总体单位按一定顺序排列,然后 先随机抽取一个单位作为起始单位,再按 某种确定的规则抽取其他 某种确定的规则抽取其他n-1个样本单 位.
(一)整数抽样间距 (一)整数抽样间距 (二)非整数抽样间距 (二)非整数抽样间距 (三)总体单位的排列 (三)总体单位的排列
三,分层抽样 分层抽样(stratified sampling)也称类型抽 分层抽样(stratified sampling)也称类型抽 样,是先将总体 样,是先将总体N个单位,按某种特征 划分成若干个子总体,称为层,然后在每 个层中分别独立地进行抽样,最后,将抽 出的子样本合起来构成总体的样本. 出的子样本合起来构成总体的样本.
三,规模测量值 进行PPS抽样的一个前提条件是要在具体抽 进行PPS抽样的一个前提条件是要在具体抽 样前,知道各级抽样单位的规模.可是在 抽样前一般无法确切知道抽样单位的实际 规模,为了能使用PPS方法,只能代之以各 规模,为了能使用PPS方法,只能代之以各 级抽样单位规模的估计值 级抽样单位规模的估计值M,称为规模 测量值(measure size).估计值可以从 测量值(measure of size).估计值可以从 离调查时点最近的一次普查资料或其他统 计资料中查找到.
第三节 多阶段抽样 多阶段抽样
一,按规模分层抽样 在多阶段抽样中,最初从总体中抽出的群 被称为初级抽样单位(primary 被称为初级抽样单位(primary sampling unit, unit, PSU),如果PSU的规模相等,用简单随机 PSU),如果PSU的规模相等,用简单随机 抽样或等距抽样方法,直接进行第二阶段 的抽样,这时第二级单位是等概率入样的, 而且样本规模是常数.这个原则也适用于 更多阶段的抽样.
第二章 基本抽样方法
基本抽样技术是指调查研究中,设计抽样 方案所依赖的一些基本设计要素.具体说 来,这些基本抽样技术包括抽样框的制定, 一阶段抽样,多阶段抽样,估计抽样误差 和确定样本规模.
第一节 调查总体与抽样框 调查总体与抽样框
抽样一般包括以下几个步骤: 确定总体(population) 确定总体(population) 抽样框(sampling frame) 抽样框(sampling frame) 制定抽样方案 实际抽取样本 评估样本质量.
(一)影响样本规模的因素 首先,抽样精度是指抽样中希望达到的精 确度,其实就是能够容忍的抽样误差e 确度,其实就是能够容忍的抽样误差e. 其次,总体标准差α 其次,总体标准差α是反映总体元素间异质 性程度的指标,一般说来,在给定抽样精 度后,总体异质性程度越小,所需样本规 模也越小,反之亦然.
�
另一种方法适用于等比例分层抽样.先将 所有总体元素按分层变量进行分层,然后 将各层的总体元素一层一层连续排列,最 后对连续排列的总体元素进行等距抽样.
四,整群抽样 整群抽样(c1uster sampling)是先将总体划 整群抽样(c1uster sampling)是先将总体划 分成若干个群(视为初级单位),每个群 包含若干个次级单位,然后以一定方式从 总体中抽取一部分群,并由中选群中的所 有次级单位构成总体的样本.
第四节 抽样误差与样本规模 抽样误差与样本规模
实际抽样中, 实际抽样中,影响样本代表性的有两类误差: 抽样误差和非抽样误差.其中抽样误差是 一种随机误差. 抽样中的随机误差并非都是抽样误差,有 些可能是由于调查人员的失误引起的非抽 样误差.它是由于样本范围与总体范围的 差异而引起的误差,无论抽样设计多么精 致,都会产生抽样误差.不过在概率抽样 中,抽样误差是可以估算出来的.