复数概念及公式总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数系的扩充和复数概念和公式总结
1.虚数单位i:
它的平方等于-1,即21
i=-
2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i
3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1
4.复数的定义:形如(,)
a bi a
b R
+∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)
=+∈
z a bi a b R
5.复数与实数、虚数、纯虚数及0的关系:对于复数(,)
+∈,当且仅当b=0时,
a bi a
b R
复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:N Z Q R C.
6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di⇔a=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小
7.复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴
数
(1)实轴上的点都表示实数
(2)虚轴上的点都表示纯虚数
(3)原点对应的有序实数对为(0,0)
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,
8.复数z1与z2的加法运算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
9.复数z1与z2的减法运算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
10.复数z 1与z 2的乘法运算律:z 1·z 2=(a +bi )(c +di )=(ac -bd )+(bc +ad )i .
11.复数z 1与z 2的除法运算律:z 1÷z 2=(a +bi )÷(c +di )=i d c ad bc d c bd ac 2
222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数
通常记复数z 的共轭复数为z 。例如z =3+5i 与z =3-5i 互为共轭复数
13.共轭复数的性质
(1)实数的共轭复数仍然是它本身
(2)2
2Z Z Z Z ==⋅ (3)两个共轭复数对应的点关于实轴对称
14.复数的两种几何意义:15几个常用结论
(1)()i i 212=+,(2)()i i 212-=-
i -i = 16.复数的模:(5)i i i -=+-11 复数bi a Z +=的模22b a Z +=(6)()()22b a bi a bi a +=-+ 点),(b a Z r 一一对应 复数()R b a bi a Z ∈
+=,