高考数学专题复习:解三角形
2024高考数学二轮专题复习——解三角形之三斜求积巧求面积
三斜求积巧求面积典例研究【例1】(2024·广东广州·铁一中学校考一模)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,在该书的第五卷“三斜求积”中,提出了由三角形的三边直接求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成公式,就是2222221[()]42c a b S c a +--S 为三角形面积,a 为小斜,b 为中斜,c 为大斜).在ABC中,若2a =3b ,3c =,则ABC 的面积等于()A 24B .22C .34D .32【例2】(24高三上·内蒙古呼和浩特·期末)若向量()11a x y = ,,()22b x y = ,,则以a 、b为邻边的平行四边形的面积S 可以用a 、b的外积a b ⨯ 表示出来,即1221S a b x y x y =⨯=- .已知在平面直角坐标系xOy 中,(cos 3A α,、()sin 22cos B αα,,π02α⎡⎤∈⎢⎥⎣⎦,,则OAB 面积的最大值为()A .1B 2C .2D .3【例3】已知点()()()100122A B C --,,,,,,求:(1)2AB AC -的模;(2)ABC 的面积.上面三个问题虽然呈现的形式不一样,但都源于一个共同的背景:三角形面积的海伦—秦九韶公式.我国著名的数学家秦九韶(约1202—1261)在他所著的《数书九章》卷五“田域类”里给出了一道题目:问沙田一段,有三斜.其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何?问题的本质是已知三角形的三边长,求三角形的面积.《数书九章》中给出了这类问题的一般性结论,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.三斜求积术就是用小斜平方加大斜平方减中斜平方,取得数的一半,自乘而得一个数;小斜平方乘大斜平方,减上面所得到的那个数,相减后的数被4除,所得的数作为“实”;取1作为“隅”,开平方后即得面积.所谓“实”“隅”,即在方程2px qk =中,p 为“隅”,q 为“实”.(参见下面的④式)《普通高中教科书数学必修第三册B 版》(人民教育出版社2019年4月第1版)第88页拓展阅读“向量的数量积与二角形的面积”介绍了如下结论:如图,在ABC 中,()(),AB x y AC u v == ,,,求证:ABC 的面积为12S xv yu =-.该题的证法如下.1sin 2S AB AC A ====因为()()AB x y AC u v ==,,,,所以12S xv yu ===-②.注②式是三角形面积公式的向量形式,也是前面“经典题组”中问题1的结论.②式可作如下推广:在平面直角坐标系中,,,A B C 为不共线的三点,()()()112233A x y B x y C x y ,,,,,,则ABC 的面积为()()()()2131312112S x x y y x x y y =-----③.《普通高中教科书数学必修第二册A 版》(人民教育出版社2019年7月第1版)第55页阅读与思考中,介绍了三角形面积的三斜求积公式:△=ABCS 在ABC 中,根据数量积的定义,不难发现222cos 2AB AC BCAB AC AB AC A +-⋅==,这表明,④式等价于①式.将④式进行化简,可推出海伦公式:ABC S ==△==,这里,()12p a b c =++为ABC 的半周长.秦九韶提出的三斜求积术虽然与古希腊数学家提出的海伦公式在形式上有所不同,但完全与海伦公式等价,它填补了中国数学史上的空白,从中可以看出中国古代已经具有很高的数学水平.三斜求积术,是我国数学史上的一颗明珠.【庖丁解题例1】利用题中所给三角形的面积公式即可求解.在ABC 中,若a =b =3c =,则ABC 的面积S 故选:B .[庖丁解题例2]第一步:利用三角形面积的外积公式结合三角恒等变换化简;已知在平面直角坐标系xOy 中,(cos A α、()sin 22cos B αα,,π02α⎡⎤∈⎢⎣⎦,,因为22112cos 222cos 22OAB S OA OB αααα=⨯==- △()1π21cos 22cos 212sin 2126ααααα⎛⎫=-+=--=-- ⎪⎝⎭,第二步:结合正弦函数性质求解值域即可.因为π02α≤≤,则ππ5π2666α-≤-≤,则1πsin 2126α⎛⎫-≤-≤ ⎪⎝⎭,则π22sin 2116α⎛⎫-≤--≤ ⎪⎝⎭,则[]1π2sin 210126S α⎛⎫=--∈ ⎪⎝⎭,,当ππ266α-=-时,即当0α=时,OAB 面积取最大值1.故选:A.【庖丁解题例3】第一步:利用坐标运算及模的坐标运算求解;(1)因为()()()100122A B C --,,,,,,所以()()1132AB AC =-= ,,,,所以()214AB AC -=--,2AB AC ∴-= 第二步:利用夹角公式求得cos BAC ∠,进而得到sin BAC ∠;(2)因为()()1132AB AC =-= ,,,,所以cosAB AC BAC AB AC ∠⋅==[]0BAC ∠π∈ ,,所以sin BAC ∠==第三步:利用三角形面积公式求解.15sin 22ABCS AB AC BAC ∠∴== .题型归纳类型1由三角形的边长求面积例1《数书九章》中记载了三斜求积术:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以S a b c ,,,分别表示三角形的面积、大斜、中斜、小斜;a b c h h h ,,分别为对应的大斜、中斜、小斜上的高;111222a b c S ah bh ch ===.若在ABC 中,23a b c h h h ===,,根据上述公式,可以推出该三角形外接圆的半径为______.解析根据题意可知:::3:2a b c =,故设()320a b xc x x ===>,,.由111222a b c S ah bh ch ===,可得x =由余弦定理可得1cos 12A =,从而143sin 12A =,由正弦定理得ABC 的外接圆半径为2sin 2sin 143a A A ==.升华原则上,由海伦公式ABC S =求三角形的面积,需要知道三角形的三边长,但是,用三斜求积公式S =求三角形的面积,只需求得22c a 和222c a b +-即可.【举一反三1-1】1.我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC 的三个内角,,A B C所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =,若2sin 2sin a C A =,()226a c b +=+,则用“三斜求积”公式求得ABC 的面积为()A2B C .12D .1【答案】A【分析】对于2sin 2sin a C A =,利用正弦定理角化边可得2ac =,继而化简()226a c b +=+可得2222a c b +-=,代入“三斜求积”公式即得答案.【详解】由2sin 2sin a C A =得22,2a c a ac =∴=,由()226a c b +=+得222622+-=-=a c b ac ,故=S ,股癣:A 【举一反三1-2】2.我国南宋著名数学家秦九韶(约1202-1261)被国外科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”.他独立推出了“三斜求积”公式,求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成从三条边长求三角形面积的公式,就是S =现有ABC 满足sin :A sin :sin 2:3:BC =ABC的面积是ABC 的周长为,AB 边中线CD 的长为【答案】10+10【分析】由正弦定理得出三边关系,再由面积公式求出各边得出周长,再利用ACD S =△CD 的长.【详解】因为sin :sin :sin 2:3:A B C =::2:a b c =设2,3,a k b k c ===,则由题可得6S =2k =,则ABC的周长为(510a b c k ++=+=+因为CD 为中线,ACD中,6,ACAD ==CD x =,则ACD S ==,解得x =又在三角形中,BD BC CD +>,所以CD =故答案为:10+【举一反三1-3】3.《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边a ,b ,c ,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有ABC满足sin :sin :sin 2:3:A B C =且ABC的面积S =)A .ABC的周长为10+B .ABC 三个内角A ,B ,C 满足2C A B =+C .ABC 外接圆的直径为4213D .ABC 的中线CD的长为【答案】ABC【分析】对于选项A ,由正弦定理得三角形三边之比,由面积求出三边,代入公式即可求出周长;对于选项B ,根据余弦定理可求得cos C 的值为12,可得3C π=,可得ABC 三个内角A ,C ,B 成等差数列;对于选项C ,由正弦定理可得,ABC 外接圆直径2sin cR C=可得2R 的值;对于选项D ,由题意利用中线定理即可计算得解.【详解】由正弦定理可得::2:a b c =设2,3,(0),a mb mc m ==>26S ∴==,解得2,m ABC =∴的周长为4610a b c ++=++=+,故A 正确;由余弦定理得2221636281cos 22462a b c C ab +-+-===⨯⨯,π2π.π,,233C A B C A B C A B ∴=++=∴+=∴=+ ,故B 正确;由正弦定理知,ABC外接圆的直径2sin sin 3c R C ===,故C 正确;由中线定理得2222122a b c CD +=+,即2111636281922CD ⎛⎫=⨯+-⨯= ⎪⎝⎭,CD ∴=,故D 错误.故选:ABC .类型2由三角形两边的向量坐标求面积例2已知()()cos22cos682cos522cos38AB AC ︒=︒︒=︒,,,,则ABC 的面积为()A .12B.2CD .1解析1cos222cos38cos682cos522ABC S =⨯︒⨯︒-︒⨯︒△1cos22cos38sin22sin38cos602=︒︒-︒︒=︒=.故选A .升华给定三角形两边的向量坐标或三顶点的坐标求面积,直接由②式计算.【举一反三1-1】4.已知)1,2AB BC ⎛==⎝⎭,则ABC 的面积为()A .12BC .1D【答案】A【分析】由三角形面积公式、向量数量积以及模的坐标运算即可得解.【详解】因为)1,2AB BC ⎛==⎝⎭,所以111sin ,222ABC S AB BC BA BC AB BC AB BC ==12=.故选:A .【举一反三1-2】5.在四边形ABCD 中,()()2,4,6,3AC BD ==-,则四边形ABCD 的面积为()A.B .C .2D .15【答案】D【分析】设,AC BD 相交于点O ,首先证明四边形ABCD 对角线互相垂直,从而由12ABCD A S C BD = 四边形即可得解.【详解】因为()()2,4,6,3AC BD ==- ,所以12120AC BD -⋅=+=,即四边形ABCD 对角线互相垂直,设,AC BD 相交于点O ,则1122ABD CBD ABCD AO BD CO BD S S S +=+=四边形△△()11122152AO CO BD AC BD =+===.故选:D .【举一反三1-3】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP 面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB = 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d =故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABP S AB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.类型3已知三角形三边的关系式求面积的最大值例3我国南宋时期著名的数学家秦九韶在其著作《数书九章》中提出了已知三角形三边长求三角形面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即S =,其中a b c ,,分别为ABC 的内角,,A B C 12tan b C ==,,则ABC 的面积S 的最大值为()AB C .2D解析1tan C =,所以tan C =,又sin tan cos C C C =sin cos CC=,()cos sin 1sin cos B C C B C C B ==,所以)()sin sin cos cos sin C B C B C B C A =++,由正弦定理得c =.因为2b =,所以ABC 的面积S ==将2a 看成整体并利用二次函数性质知,当24a =,即2a =时,ABC 的面积SA .升华由三角形的一边的长度和另外两边的关系式求面积的最大值,都可运用例3的思路解决,即根据海伦公式,将三角形面积转化为关于一边的表达式,运用函数性质或基本不等式求面积的最大值.【举一反三1-1】7.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是S =其中,,a b c 是ABC 的内角,,A B C 的对边为.若sin 2sin cos C A B =,且222b c +=,则ABC 面积S 的最大值为.【分析】根据正弦定理和余弦定理,由sin 2sin cos C A B =可得a b =,再由S =及函数求最值的知识,即可求解.【详解】sin 2sin cos C A B = ,222222cos 22a c b c a B a a b a bac+-∴==⋅⇒=⇒=又222b c += ,222a c ∴=-,S ∴==245c ∴=时,ABC ∆面积S 故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.【举一反三1-2】8.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,设ABC 的面积为S ,若22232a b c =+,则22S 2b c +的最大值为.【分析】根据题中条件利用余弦定理进行简化,运用均值不等式求cos A 的范围,然后由面积公式化简为三角函数,求最值即可.【详解】由题知22232a b c =+⇒2221(2)3a b c =+,则222222222co 22322s 6b c b c b c a b c cA bc bc b ++-+-+===63bc ≥=,当且仅当b =时取等号.22221sin 222bc A S b c b c=++ 22sin sin tan 2(2)12cos 12bc A bc A Ab c bc A ===+,而tan 2A =≤=,22tan 212S A b c ∴=≤+【举一反三1-3】9.已知ABC ∆的内角A 的平分线交BC 于点D ,ABD ∆与ADC ∆的面积之比为2:1,2BC =,则ABC ∆面积的最大值为.【答案】43【详解】根据题意ABD ∆与ADC ∆的面积之比为2:1,可得到AB 是AC 的二倍,设AB=2x,AC=x,由余弦定理得到2225494016cos ,sin 44x A A x x -=三角形面积为2194016940162··244S x x x =⨯=2242,439x x <<<<上式在2209x =出取得最大值,代入得到43.故答案为43.点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.。
高考数学(理)总复习:解三角形(解析版)
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
高考数学(解三角形)第一轮复习
高考数学(解三角形)第一轮复习资料1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.第一节 正弦定理与余弦定理1.(2008·陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2答案 D2.(2008·福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( ) A.6πB.3π C.6π或65π D.3π或32π答案 D3.下列判断中正确的是 ( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 答案 B4. 在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形 答案 B5. 在△ABC 中,A =120°,AB =5,BC =7,则CBsin sin 的值为( )A.58 B.85C.35D.53答案 D6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则∠C 的度数是 ( ) A.60° B.45°或135° C.120°D.30°答案 B7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = . 答案65π 8. 在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 . 答案 3109. (2008·浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案33 10. 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c . 解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解. 由正弦定理得sin A =b B a sin =245sin 3︒=23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°, c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A =120°时,C =180°-(A +B )=15°, c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A =60°,C =75°,c =226+或A =120°,C =15°,c =226-.11. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =ac b c a 2222-+,cos C =ab c b a 2222-+.将上式代入C Bcos cos =-c a b +2得:ac b c a 2222-+·2222c b a ab -+=-ca b +2整理得:a 2+c 2-b 2=-ac ∴cos B =acb c a 2222-+=ac ac 2- =-21∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ∴b 2=16-2ac ⎪⎭⎫⎝⎛-211,∴ac =3.∴S △ABC =21ac sin B =433. 12. 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π 得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a acb c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.13. 已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C . 所以,ab sin C =2ab (1+cos C ),即sin C =2+2cos C ,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C =2.从而tan C =2tan 12tan22C C-=-34. 14. 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0, 即(2cos B -1)(2cos B -3)=0. 解得cos B =21或cos B =23(舍去).∴cos B =21.∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acbc a 2222-+=acc a c a 2)2(222+-+=21,化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫⎝⎛-A 32π=3,∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π,∴C =3π,∴△ABC 为等边三角形. 15. (2008·广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积. 解 (1)∵A +B +C =180°,由4sin 22B A +-cos2C =27,得4cos 22C-cos2C =27,∴4·2cos 1C +-(2cos 2C -1)=27,整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21×6×23=233. 第二节 正弦定理、余弦定理的应用1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则βα、的关系为( ) A.α>βB.α=βC.α+β=90°D.α+β=180°答案 B2.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 ( ) A.10 km B.3 km C.510 km D.107 km答案 D3. 为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 ( )A.)331(20+m B.)231(20+ m C.)31(20+ m D.30 m答案 A4.如图,位于港口O 正东20海里B 处的渔船回港时出现故障.位于港口南偏西30°,距港口10海里C 处的拖轮接到海事部门营救信息后以30海里/小时的速度沿直线CB 去营救渔船,则拖轮到达B 处需要________小时.解析:由余弦定理得BC =202+102-2×10×20cos120°=107,从而需73小时到达B 处.答案:735.(2010年南京市高中联考)如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.解析:连结AC .则AC =5,在△ACD 中,AD =32,AC =5,∠DAC =45°,由余弦定理得CD =13.答案:136.(2010年宁波十校联考)一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是________海里/小时.解析:假设该船从A 处航行到了D 处,两座灯塔分别在B 、C 位置,如图,设AD 长为x ,则AB =x tan60°,AC =x tan75°,所以BC =x tan75°-x tan60°=10,解得x =5,所以该船的速度v =50.5=10(海里/小时).答案:107.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析:连结OC ,在三角形OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17500,∴OC =507.答案:5078.(原创题)在Rt △ABC 中,斜边AB =2,内切圆的半径为r ,则r 的最大值为________.解析:∵r =a +b -c 2=a +b 2-1,∵4=a 2+b 2≥(a +b )22,∴(a +b )2≤8,∴a +b ≤22,∴r ≤2-1.答案:2-19.(2009年高考辽宁卷)如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B 、D 的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).解:在△ACD 中,∠DAC =30°, ∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线,所以BD =BA .在△ABC 中,AB sin ∠BCA =AC sin ∠ABC,所以AB =AC sin60°sin15°=32+620. 同理,BD =32+620≈0.33(km),故B 、D 的距离约为0.33 km.。
高考数学复习专题:三角函数、解三角形、向量 OK
高考专题:三角函数、解三角形及平面向量一、知识点1、三角函数的定义:设角α终边与单位圆相交于点),(y x P ,则____sin =α,_____cos =α,_____tan =α.2、特殊角的三角函数值3、三角函数在各象限的符号:αs i n αc o s αt a n4、同角三角函数的基本关系:(1) (2) 5、三角函数的诱导公式:(1)=+)2sin(παk ___________,=+)2cos(παk ___________,=+)2tan(παk ___________. (2)=-)sin(απ___________,=-)cos(απ___________,=-)tan(απ___________. (3)=+)sin(απ___________,=+)cos(απ___________,=+)tan(απ___________. (4)=-)sin(α___________,=-)cos(α___________,=-)tan(α___________.(5)=-)2sin(απ___________,=-)2cos(απ___________,=-)2tan(απ___________.(6)=-)2sin(απ_______,=-)2cos(απ_______.=+)2sin(απ_______,=+)2cos(απ_______.8、函数sin 0,0y x ωϕω=A +A >>:1)概念:①振幅:_______;②周期:________;③频率:________;④相位:________;⑤初相:________. 函数()sin y x ωϕ=A ++B ,最小值m in y =_________;最大值为max y =_________, 2)图像的平移伸缩 (1)先平移后伸缩sin sin ()sin (2)2sin (2)2sin (2)13333y x y x x x x ππππ=⇒=+⇒+⇒+⇒++(2)先伸缩后平移sin sin 2sin (2)2sin (2)2sin (2)1333y x y x x x x πππ=⇒=⇒+⇒+⇒++9、和角公式与差角公式sin()___________________A B += ___________________)sin(=-B A _________________)c o s (=+B A _________________)c o s (=-B A _________________)t a n (=+B A _________________)t a n (=-B A 倍角公式sin 2_______A =,cos 2_____________________A ===,____________2tan =A降幂公式:2sin α=______________.2cos α=______________. 10、归一公式: ;__________________cos sin =+A b A a 其中ab =ϕtan ,)2,2(ππϕ-∈如:(1)sin ___________x x += (2)sin ___________x x -= (3)sin ___________x x -+= (4)sin ___________x x --=11、解三角形(1)正弦定理:Aa sin =___________________________(R 为△ABC 外接圆半径)正弦定理的三种变形:①边化为角:_____________________________________②角化为边:_____________________________________ ③比例关系:_____________________________________(2)余弦定理: 2__________________a =⇔cos ____________________A =2__________________b =⇔cos ____________________B = 2__________________c =⇔cos ____________________C =(3)解三角形常用结论:1、三角形面积公式:______________________________ABC S ∆===2、在△ABC 中:︒=++180C B A , 即C B A -︒=+180,则sin()__________A B +=;cos()__________A B +=;tan()__________A B +=12、平面向量(1)设A 、B 两点的坐标分别为),(11y x ,),(22y x ,则=AB __________________.. (2)向量运算公式定义运算:(1) =∙b a __________,],0[πθ∈;(2)⇔⊥b a __________,(3)⇔b a //__________坐标运算:),(11y x a =,),(22y x b =,则(1) =∙b a __________________ (2)⇔⊥b a ______________ (3)⇔b a //________________ (4)=||a ______________二、巩固练习1、)629tan(π-的值得为( )A 、33- B 、33 C 、3 D 、3-2、7sin6π的值等于( )A 、21 B 、23 C 、-21 D 、-233、53sin -=α,α是第二象限角,则=αtan ( )A 、34-B 、34 C 、43-D 、434、已知3sin()5πα+=-,且α是第二象限角,则)cos(απ-的值是( ) A 、54 B 、54-C 、53 D 、53-5、2sin x y =是( )A 、周期为π4的奇函数B 、周期为π2的奇函数C 、周期为π4的偶函数D 、周期为π2的偶函数6、函数2sin(2)6y x π=-的一条对称轴为( )A 、12x π=B 、6x π=C 、3x π=D 、2x π=7、在A B C ∆中,若向量2cos ,sin 22A A m ⎛⎫= ⎪⎝⎭ , n = cos ,2sin 22A A ⎛⎫- ⎪⎝⎭,且1m n ⋅=- ,则A =( )A 、6π B 、56π C 、3πD 、23π8、已知A B C ∆的内角,,A B C 的对边分别为,,a b c ,若A =3π,a =3,b =1,则c =( )A 、1B 、2C 、3—1D 、39、已知tan 2,α=-且2παπ<<,则cos α=______________;10、已知312sin(),sin()5413παββ+=--=,3,(,),4παβπ∈则=+)4cos(πα______________;11、已知向量cos sin m x x = (,),],0[π∈x ,(1,n =,且||m n -=,则x =__________;12、将函数()sin 2f x x =的图像向左平移3π个单位,再将所得到的图像上各点的横坐标缩短为原来的12倍,纵坐标伸长为原来的2倍,那么最后所得图像的函数表达式为__________.13、已知向量)sin ,(cos αα=a, )sin ,(cos ββ=b , 552||=-b a .(1)求cos()αβ-的值; (2)若02πα<<, 02πβ-<<, 且5sin 13β=-, 求sin α.14、已知函数2()sin(2)sin(2)2sin 66f x x x x ππ=++-+,(1)若R x ∈,求)(x f 的单调递减区间;(2)若x ∈ [,]36ππ-,求函数)(x f 的值域。
高考数学专题复习-三角函数与解三角形
第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 B2.(全国Ⅲ卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 答案 D3.(全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B4.(全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4. 答案 A考 点 整 合1.常用三种函数的图象与性质(下表中k ∈Z )图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的定义【例1】 (1)(北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α=________.解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-223,∴cos(α-β)=cos αcos β+sin αsin β=223×⎝ ⎛⎭⎪⎫-223+13×13=-79. 当cos α=-1-sin 2α=-223时,cos β=223,∴cos(α-β)=cos αcos β+sin αsin β=-79.综上可知,cos(α-β)=-79.法二 由已知得β=(2k +1)π-α(k ∈Z ),∴sin β=sin[(2k +1)π-α]=sinα, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .当sin α=13时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-79.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825. 答案 (1)-79 (2)1825探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练1】 (1)(潍坊三模)在直角坐标系中,若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,则sin(π-α)=( ) A.12B.32C.-12D.-32(2)(北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析 (1)∵角α的终边过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,且|OP |=1.∴由三角函数定义,知sinα=cos 2π3=-12.因此sin(π-α)=sin α=-12.(2)设点P 的坐标为(x ,y ),由三角函数的定义得yx <x <y ,所以-1<x <0,0<y <1.所以P 所在的圆弧是EF ︵. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A.向左平移π4个单位长度,再向上平移1个单位长度 B.向右平移π4个单位长度,再向上平移1个单位长度 C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度(2)(湖南六校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π12,0对称B.关于点⎝ ⎛⎭⎪⎫-π12,0对称C.关于直线x =π12对称D.关于直线x =-π12对称解析 (1)因为y =sin 2x +1=cos ⎝ ⎛⎭⎪⎫2x -π2+1=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+1,故只需将函数y =cos 2x 的图象向右平移π4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.又y =f ⎝ ⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z . 由|φ|<π2,取φ=-π6,因此f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,代入检验f ⎝ ⎛⎭⎪⎫π12=0,A 正确.答案 (1)B (2)A探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.考法2 由函数的图象特征求解析式【例2-2】 (1)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6B.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3C.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π12D.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(2)(济南调研)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.1B.12C.22D.32解析 (1)由题意知A =2,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,因为当x =5π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ, 所以2×5π12+φ=2k π+π2,k ∈Z ,解得φ=2k π-π3,k ∈Z , 因为|φ|<π2,得φ=-π3. 因此函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)观察图象可知,A =1,T =π,则ω=2. 又点⎝ ⎛⎭⎪⎫-π6,0是“五点法”中的始点,∴2×⎝ ⎛⎭⎪⎫-π6+φ=0,φ=π3. 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,则x 1+x 2=π6,因此f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32. 答案 (1)B (2)D探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12. 热点三 三角函数的性质 考法1 三角函数性质【例3-1】 (合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调递增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3.由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤kx +5π12,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练3】 (湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π2. (1)求函数f (x )的单调增区间;(2)若将函数f (x )的图象先向左平移π4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,求函数g (x )的值域.解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π4.依题意知,最小正周期T =π.∴ω=1,因此f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,求得f (x )的增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z .(2)将函数f (x )的图象先向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4的图象.故g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4,由π4≤x ≤π2,知5π4≤4x +π4≤9π4.∴-1≤sin ⎝ ⎛⎭⎪⎫4x +π4≤22.故函数g (x )的值域是[-2,1].1.已知函数y=A sin(ωx+φ)+B(A>0,ω>0)的图象求解析式(1)A=y max-y min2,B=y max+y min2.(2)由函数的周期T求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ.2.运用整体换元法求解单调区间与对称性类比y=sin x的性质,只需将y=A sin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”,采用整体代入求解.(1)令ωx+φ=kπ+π2(k∈Z),可求得对称轴方程;(2)令ωx+φ=kπ(k∈Z),可求得对称中心的横坐标;(3)将ωx+φ看作整体,可求得y=A sin(ωx+φ)的单调区间,注意ω的符号.3.函数y=A sin(ωx+φ)+B的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx +φ)+B(一角一函数)的形式;第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.一、选择题1.(全国Ⅲ卷)函数f(x)=tan x1+tan2x的最小正周期为()A.π4 B.π2 C.π D.2π解析f(x)=tan x1+tan2x=sin xcos x1+sin2xcos2x=sin x cos xcos2x+sin2x=sin x cos x=12sin 2x,所以f(x)的最小正周期T=2π2=π.答案 C2.(全国Ⅲ卷)函数f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6的最大值为()A.65 B.1 C.35 D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A3.(湖南六校联考)定义一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,将函数f (x )=⎪⎪⎪⎪⎪⎪2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π6B.π3C.2π3D.5π6解析 f (x )=2cos x -23sin x =4cos ⎝ ⎛⎭⎪⎫x +π3,依题意g (x )=f (x +φ)=4cos ⎝ ⎛⎭⎪⎫x +π3+φ是偶函数(其中φ>0).∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )A.22B.62C. 2D.2 2解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2.答案 C5.(天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C.在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析 把函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为⎣⎢⎡⎦⎥⎤3π4,5π4.答案 A 二、填空题6.(江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.答案 -π67.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |=2 5.则f (x )的解析式为________.解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1-x 2|=4,即2πω=4,解得ω=π2.又函数图象过点(0,-3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π3.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π38.(北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.答案 23 三、解答题9.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z },f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.10.(西安模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π,k ∈Z ,∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos(x 1-x 2)=23.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3,已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx=32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12. 因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
高考数学:解三角形(复习学案)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)
专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
题型三 三角函数与解三角形 ——高考数学高频题型专项讲解
题型三三角函数与解三角形——高考数学高频题型专项讲解一、思路分析三角函数定义的应用,利用同角三角函数的基本关系、诱导公式化简与求值都是高考中的热点考查内容,常与三角恒等变换结合命题,同时应注意象限角、终边相同的角等与三角函数的综合,以及扇形的弧长和面积公式的考查,考查基本运算能力,题型以选择题、填空题为主.三角恒等变换在高考中重点考查两角和与差的正弦、余弦、正切公式以及二倍角公式的综合应用,主要体现在:(1)三角函数式的化简;(2)三角函数的求值;(3)通过恒等变换研究函数的性质等.注意三角恒等变换与三角函数的图象和性质、解三角形、平面向量的综合命题,难度中等偏下.高考考查三角函数的命题点主要有三个方面:(1)三角函数的图象及应用;(2)三角函数的性质及应用;(3)三角函数图象与性质的综合应用,有时也与三角恒等变换、平面向量、不等式等综合考查.多以选择题和填空题的形式出现,难度中等,多了解命题新角度、新综合以及三角函数模型的应用问题.解三角形是高考的重点和热点,主要考查正弦定理、余弦定理和三角形面积公式的应用,有时也与三角恒等变换、立体几何等进行综合命题,加强解三角形与其他章节知识的综合训练以及解三角形在生活、生产实践中的应用,题型既有选择题、填空题,也有解答题,难度属于中低档.二、考纲要求1.任意角和弧度制、三角函数的概念和诱导公式(1)了解任意角的概念和弧度制,能进行弧度与角度的互比.(2)理解并掌握同角三角函数的基本关系式.(3)掌握诱导公式及其应用.2.三角恒等变换(1)掌握两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式.(2)能进行简单的三角恒等变换.3.三角函数的图象与性质(1)理解三角函数的定义,掌握三角函数的周期性、单调性、奇偶性、最大(小)值等性质及其应用.(2)了解sin()y A x ωϕ=+的实际意义,理解参数A ,ω,ϕ的意义以及参数的变化对函数图象的影响.(3)会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.4.解三角形(1)掌握余弦定理、正弦定理.(2)能用余弦定理、正弦定理解决简单的实际问题.三、方法技巧1.利用诱导公式化简求值的思路(1)给角求值问题,关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解,转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)在对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名称搞错.2.弧长和扇形面积问题的解题策略(l )求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.(2)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(3)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.3.三角函数定义问题的常见类型及解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值:先求点P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某个三角函数值,求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)三角函数值的符号及角的终边位置的判断.已知一角的三角函数值中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角终边的位置.注意终边在坐标轴上的特殊情况.4.应用三角恒等变换公式的策略(1)正用三角函数公式时,要记住公式的结构特征和符号变化规律,如两角差的余弦公式可简记为“同名相乘,符号反”.(2)逆用公式时,要准确找出所给式子和公式的异同,创造条件逆用公式.(3)注意和差角和倍角公式的变形.(4)三角恒等变换常与同角三角函数基本关系、诱导公式等综合应用.5.解决三角函数的图象变换问题的基本方法(1)直接法:平移变换规则是“左加右减,上加下减”,并且在变换过程中只变换自变量x ,如果x 的系数不是1,那么要先把x 的系数提取出来再确定平移的单位长度和方向.(2)方程思想法:可以把变换前后的两个函数变为同名函数,且x 的系数变为一致,通过列方程求解.(3)数形结合法:平移变换的实质就是点的坐标的变换,横坐标的平移交换对应着图象的左右平移,纵坐标的平移变换对应着图象的上下平移,一般可选定变换前后的两个函数()f x ,()g x 的图象与x 轴的交点(如图象上升时与x 轴的交点),其分别为1(,0)x ,2(,0)x (1()0f x =,2()0g x =),则由21x x -的值可判断出左右平移的情况,由()()g x f x -的值可判断出上下平移的情况,由三角函数最小正周期的变化可判断出伸缩变换的情况.6.给值求值问题的解题策略从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.7..解给值求角问题的一般步骤(1)确定角的范围,根据条件确定所求角的范围.(2)求所求角的某种三角函数值,为防止增解最好选取在上述范围内单调的三角函数.(3)结合三角函数值及角的范围求角.8.利用三角函数处理物理学问题的策略(1)常涉及的物理学问题有单摆,光波,电流,机械波等,其共同的特点是具有周期性.(2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.9.正、余弦定理判断三角形形状的方法(1)角化边:通过正、余弦定理化角为边,通过因式分解、配方等方法得出边与边之间的关系进行判断.(2)边化角:通过正、余弦定理化边为角,利用三角恒等变换公式、三角形内角和定理及诱导公式等推出角与角之间的关系进行判断.10.解三角形中的最值(取值范围)问题的求解方法(1)函数法:通过正、余弦定理将边转化为角,再根据三角恒等变换:及三角形内角和定理转化为“一角一函数”的形式,最后结合角的范围利用三角函数的单调性和值域求解,(2)基本不等式法:利用正、余弦定理,面积公式建立a b +,ab ,22a b +之间 的等量关系与不等关系,然后利用基本不等式求解.(3)几何法:根据已知条件画出图形,结合图形,找出临界位置,数形结合求解.11.利用正弦定理、余弦定理解三角形的步骤(1)找条件.寻找三角形中已知的边和角,确定转化方向.(2)定工具,根据已知条件和转化方向,选择使用的定理和公式,进行边角之间的转化.(3)求结果,根据前两步的分析,代入求值得出结果.(4)反思,转化过程中要注意转化的方向,审视结果的合理性.12.几个典型三角形应用问题的处理方法.(1)求距离问题的注意事项:①选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.②确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(2)处理高度问题的注意事项:①在处理有关高度问题时,理解仰角、俯角(视线在水平线上方、下方的角分别称为仰角、俯角)是一个关键.②在实际问题中,可能会遇到空间与平面同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)测量角度问题的一般步骤:①在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离;②用正弦定理或余弦定理解三角形;③将解得的结果转化为实际问题的解.。
高考数学总复习培优练习:解三角形(含答案)
高考数学总复习培优练习:解三角形(含答案)1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若2c 6b ,60B =,则C =_____.【答案】30C =【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=,所以30C =.2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边, 且有cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,且ABC △3b ,c . 【答案】(1)3π;(2)2,2. 【解析】(1)cos 3sin 0a C a C b c --= sin cos 3sin sin sin sin 0A C A C B C ⇒--=()sin cos 3sin sin sin sin 0A C A C A C C ⇒-+-=sin cos 3sin sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,13cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=; (2)1sin 342ABC S bc A bc ==△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) A 62+ B 62- C 6D 2 【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 42sin sin 6a Bb A π⨯===π,且()()62cos cos cos cos sin sin C A B A B A B -=-+=--= 由余弦定理可得:2262622cos 122124c a b ab C -+=+-++⨯⨯⨯.故选A . 2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅等于( ) A .19 B .19-C .18D .18-【答案】B【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯, ()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭.故选B .3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,7c =3b a =,则ABC △对点增分集训的面积为( ) A 33B 23- C 2D 23+ 【答案】A 【解析】已知3C π=,7c 3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11333sin 1322ABCSab C ==⨯⨯=A . 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin 23sin C B =,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒【答案】A【解析】根据正弦定理由sin 23sin C B =得:23c b =, 所以2223323a b bc b =-,即227a b =, 则22222223cos 243b c a A bc b +-===,又()0,A ∈π,所以6A π=.故选A . 6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且3a ABC △外接圆的半径为( ) A .1 B 2C .2D .4【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=, 由正弦定理可得322sin 3aR A===,所以1R =,故选A .7.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C .8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=,∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B .9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为315,2b c -=,1cos 4A =-,则a 的值为( ) A .8 B .16 C .32 D .64【答案】A【解析】因为0A <<π,所以215sin 1cos A A =- 又115sin 3152ABCSbc A ===,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣,∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入, 得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D .12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知23a =,22c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得3sin A =,由正弦定理sin sin a c A C =,解得2sin C =所以4C π∠=或34π(舍).故选B .二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,22c =,2216b a -=,则角C 的最大值为_____; 【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知222222222332cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max 6C π=.当且仅当22a =,26b =14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.【答案】(2⎤⎦,【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 224B B B π⎛⎫⎤+=+∈ ⎪⎦⎝⎭,,故答案为(2⎤⎦,. 15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且23a =,则ABC △面积的最大值是________3【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-, 则2sin cos b B A -=,结合正弦定理得223cos sin a A A -==,即tan 3A =-,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥, 故4bc ≤,113sin 4322ABC S bc A =≤⨯=△3 16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,3b则ABC △面积的取值范围是__________.【答案】333⎝⎦,【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得32sin sin sin sin 3a c b A C B ====π,∴2sin a A =,2sin c C =, ∴132sin 3sin 3sin 23ABC S ac B A C A A π⎛⎫===- ⎪⎝⎭△ 23133331cos23sin sin sin cos sin 22242AA A A A A A A ⎫-=+==⎪⎪⎝⎭ 33333sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,3333326A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是333⎝⎦,.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C 3cos 2sin a A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △3a 的值. 【答案】(1)23π;(221 【解析】(13sin cos 2sin A A C+=,∵sin 0C ≠,∴3sin cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=. (2)由3ABC S =△可得1sin 32S bc A ==.∴4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=, ∴21a =.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,27AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=,求AC 的长. 【答案】(1)23;(27 【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍), ∴ABD △的面积113sin 42322S DB DA ADB =⋅⋅⋅∠=⨯⨯= (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠, 代入得21sin B =B 为锐角,故57cos B =, 所以()21sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠, 213=,解得7AC。
高考数学复习:解三角形 课件
sin C C-- 23sin
C
=
2
cos sin
CC+
. 3
由△ABC 为锐角三角形,得 0<C<π2,0<B=56π-C<π2,所以π3<C<π2,从而 tan C> 3,
(2020·枣庄二模)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且 a-b
cos C= 3c sinB. (1) 求角 B 的大小; (2) 若 a=2,且△ABC 为锐角三角形,求△ABC 的面积 S 的取值范围.
【解答】 (1) 由题设条件及正弦定理,得 sin A-sin B cos C= 3sin Csin B.
第四章 三角函数与解三角形 第25讲 解三角形
链教材 ·夯基固本
激活思维
1. 在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,且满足 2bcos B=acos C
+ccos A,则 B 的大小为( B )
π
π
A. 2
B. 3
π
π
C. 4
D. 6
【解析】 因为 2bcos B=acos C+ccos A,所以 2sin Bcos B=sin B,解得 cos B=12.
【解析】 由 b2+c2-a2=8,得 2bc cos A=8,可知 A 为锐角,且 bc cos A=4.由已 知及正弦定理得 sin B sin C+sin C sin B=4sin A sin B sin C,因为 sin B≠0,sin C≠0, 所以 sin A=12,所以 A=30°,所以 bc cos 30°=4,即 bc=833,故△ABC 的面积 S=12bc sin A=12×833×12=233.
备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(解析版)
专题06解三角形及应用易错点一:易忽视三角形解的个数(解三角形多解情况)1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式sin a b Asin b A a ba b a b a b解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C .技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题问题1:已知两角及其一边,求其它的边和角。
这时有且只有一解。
问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间 0, 内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。
题设三角形中,已知一个角A 和两个边b a ,,判断三角形个数,遵循以下步骤第一步:先画一个角并标上字母A 第二步:标斜边(非对角边)b 第三步:画角的高,然后观察(A b a sin ,)易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.故选:ABD变式2.在ABC 中,内角,A A .若A B ,则cos A B .若2BC BA AB ,则角1.在ABC 中,已知3cos 5A ,sinB a ,若cosC 有唯一值,则实数a 的取值范围为()由BD DC ,可得OD OBOC 由2cos OB AB O OC AB B P 可得cos AB DP OP OD AB B sin2A =sin2B 《正弦定理》①正弦定理:R CcB b A a 2sin sin sin ②变形:acA C c b CB b a B A sin sin ,sin sin ,sin sin ③变形:C B A c b a sin :sin :sin :: ④变形:CcB b A aC B A c b a sin sin sin sin sin sin⑤变形:B c C b A c C a A b B a sin sin ,sin sin ,sin sin 《余弦定理》①余弦定理:Cab c b a B ac b c a A bc a c b cos 2,cos 2,cos 2222222222②变形:abc b a C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222核心问题:什么情况下角化边什么情况下边化角?⑴当每一项都有边且次数一样时,采用边化角⑵当每一项都有角《sin 》且次数一样时,采用角化边⑶当每一项都是边时,直接采用边处理问题⑷当每一项都有角《sin 》及边且次数一样时,采用角化边或变化角均可三角形面积公式①A bc S B ac S C ab S ABC ABC ABC sin 21,sin 21,sin 21 ② rl c b a r S ABC2121 其中l r ,分别为ABC 内切圆半径及ABC 的周长推导:将ABC 分为三个分别以ABC 的边长为底,内切圆与边相交的半径为高的三角形,利用等面积法即可得到上述公式③RabcC B A R S ABC 4sin sin sin 22(R 为ABC 外接圆的半径)推导:将A R a sin 2 代入ACB a S ABCsin sin sin 212可得C B A R S ABC sin sin sin 22 将C R c B R b A R a sin 2sin 2,sin 2 ,代入CB A R S ABC sin sin sin 22 可得RabcS ABC 4④CBA c SBC A b S A C B a S ABC ABC ABC sin sin sin 21,sin sin sin 21,sin sin sin 21222 ⑤海伦公式 c p b p a p p S ABC (其中 c b a p 21)推导:根据余弦定理的推论ab c b a C 2cos 222222222121cos 121sin 21ab c b a ab C ab C ab S ABCc b a b a c a c b c b a c b a ab 4124122222令 c b a p 21,整理得c p b p a p p S ABC 正规方法:面积公式+基本不等式① C c ab ab c C ab b a C ab c b a C ab S cos 122cos 2cos 2sin 212222222② B b ac ac b B ac c a B ac b c a B ac S cos 122cos 2cos 2sin 212222222③ A a bc bc a A bc c b Abc a c b A bc S cos 122cos 2cos 2sin 212222222易错提醒:当解题过程中出现类似于sin2A =sin2B 这样的情况要注意结合三角形内角范围进行讨论,另外当题设中出现锐角三角形时一定要注意条件之间的相互“限制”1.在ABC 中,sin sin 2,2B A c a ,则()A .B 为直角B .B 为钝角C .C 为直角D .C 为钝角易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)解三角形的实际应用问题的类型及解题策略1、求距离、高度问题(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.2、求角度问题(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.易错提醒:实际问题应用中有关名词、术语也是容易忽视和混淆的。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
高考数学专题三角函数、解三角形
第三章 三角函数、解三角形第一节任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=yx,但若不是单位圆时,如圆的半径为r,则sin α=yr,cos α=xr,tan α=yx.[试一试]1.若α=k·180°+45°(k∈Z),则α在()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限答案:A2.已知角α的终边经过点(3,-1),则sin α=________.答案:-1 21.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C由sin α<0,知α在第三、第四象限或α终边在y轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限.1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.设集合M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N ,故选B.法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.终边在直线y =3x 上的角的集合为________.解析:终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z }. 答案:{α|α=k π+π3,k ∈Z }4.在-720°~0°范围内找出所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360, 从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315° [类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.[典例] (1)已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6(2)(2013·临川期末)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝ ⎛⎭⎪⎫α+π2=________.[解析](1)由题意知点P在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2kπ-π6(k∈Z),所以α的最小正值为11π6.(2)由题意得cos α=x5+x2=24x,解得x=0或x=3或x=- 3.又α是第二象限角,∴x=- 3.即cos α=-64,sin⎝⎛⎭⎪⎫α+π2=cos α=-64.[答案](1)D(2)-64[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.解:设α终边上任一点为P(k,-3k),则r=k2+(-3k)2=10|k|.当k>0时,r=10k,∴sin α=-3k10k=-310,1cos α=10 kk=10,∴10sin α+3cos α=-310+310=0;当k<0时,r=-10k,∴sin α=-3k-10k =310,1 cos α=-10kk=-10,∴10sin α+3cos α=310-310=0. 综上,10sin α+3cos α=0.扇形的弧长及面积公式[典例] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [解] (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎨⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r ) =-(r -10)2+100 ≤100,当且仅当r =10时,S max =100,θ=2. 所以当r =10,θ=2时,扇形面积最大.解析:设圆半径为r ,则圆内接正方形的对角线长为2r , ∴正方形边长为2r , ∴圆心角的弧度数是2rr = 2. 答案: 2 [类题通法]弧度制应用的关注点(1)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形. [针对训练]已知扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l . 解:设扇形的半径为r cm , 如图. 由sin 60°=6r , 得r =4 3 cm ,∴l =|α|·r =2π3×43=833π(cm).第二节同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z .2.六组诱导公式对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.1.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 2.注意求值与化简后的结果一般要尽可能有理化、整式化. [试一试]1.(2013·全国大纲卷)已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.1213解析:选A 因为α是第二象限角,所以cos α=-1-⎝ ⎛⎭⎪⎫5132=-1213.2.(2013·洛阳统考)cos ⎝ ⎛⎭⎪⎫-20π3=( )A.12B.32 C .-12D .-32答案:C1.诱导公式的应用原则负化正,大化小,化到锐角为终了. 2.三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….[练一练]1.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( ) A .-π6 B .-π3 C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.2.(2013·芜湖调研)若sin θ·cos θ=12,则tan θ+cos θsin θ的值是( ) A .-2 B .2 C .±2D.12解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.1.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2; k 为奇数时,A =-sin αsin α-cos αcos α=-2. 2.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32.答案:323.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.解析:tan ⎝ ⎛⎭⎪⎫56π+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-334.tan (π+α)cos (2π+α)sin ⎝ ⎛⎭⎪⎫α-3π2cos (-α-3π)sin (-3π-α)=________.解析:原式=tan αcos αsin ⎣⎢⎡⎦⎥⎤-2π+⎝ ⎛⎭⎪⎫α+π2cos (3π+α)[-sin (3π+α)]=tan αcos αsin ⎝ ⎛⎭⎪⎫π2+α(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.答案:-1 [类题通法]诱导公式应用的步骤提醒:诱导公式应用时不要忽略了角的范围和三角函数的符号.[典例] 已知α是三角形的内角,且sin α+cos α=15. (1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[解] (1)联立方程 ⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1,②由①得cos α=15-sin α,将其代入②, 整理得25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α =sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257.解:由例题可知:tan α=-4 3.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎪⎫-43+2=87.(2)sin2α+2sin αcos α=sin2α+2sin αcos αsin2α+cos2α=tan2α+2tan α1+tan2α=169-831+169=-825.[类题通法]1.利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.[针对训练]已知sin α=2sin β,tan α=3tan β,求cos α.解:∵sin α=2sin β,tan α=3tan β,∴sin2α=4sin2β,①tan2α=9tan2β.②由①÷②得:9cos2α=4cos2β.③由①+③得sin2α+9cos2α=4.又sin2α+cos2α=1,∴cos2α=38,∴cos α=±64.[典例]在△ABC中,若sin(2π-A)=-2sin(π-B),3cos A=-2cos (π-B),求△ABC的三个内角.[解]由已知得sin A=2sin B,3cos A=2cos B两式平方相加得2cos2A=1,即cos A=22或cos A=-22.(1)当cos A=22时,cos B=32,又角A、B是三角形的内角,∴A=π4,B=π6,∴C=π-(A+B)=7π12.(2)当cos A=-22时,cos B=-32,又角A、B是三角形的内角,∴A=3π4,B=5π6,不合题意.综上知,A=π4,B=π6,C=7π12.[类题通法]1.诱导公式在三角形中经常使用,常用的角的变形有:A+B=π-C,2A+2B=2π-2C,A2+B2+C2=π2等,于是可得sin(A+B)=sin C,cosA+B2=sinC2等;2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.[针对训练]在△ABC中,sin A+cos A=2,3cos A=-2cos(π-B),求△ABC的三个内角.解:∵sin A+cos A=2,∴1+2sin A cos A=2,∴sin2A=1.∵A为△ABC的内角,∴2A=π2,∴A=π4.∵3cos A=-2cos(π-B),∴3cos π4=2cos B,∴cos B=32.∵0<B<π,∴B=π6.∵A+B+C=π,∴C=7π12.∴A=π4,B=π6,C=7π12.第三节三角函数图像与性质正弦、余弦、正切函数的图像与性质(下表中k∈Z).1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件.[试一试]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4,x ∈RB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4,x ∈RC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-3π4,k ∈Z ,x ∈RD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+3π4,k ∈Z ,x ∈R答案:D2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A.⎝ ⎛⎭⎪⎫-π4,0 B.⎝ ⎛⎭⎪⎫0,π2 C.⎝ ⎛⎭⎪⎫π2,3π4D.⎝ ⎛⎭⎪⎫3π4,π 解析:选B 由f (x )=-cos 2x 知递增区间为⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z ,故只有B满足.1.三角函数单调区间的求法先把函数式化成形如y =A sin(ωx +φ)(ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间的不同:(1)y =sin ⎝ ⎛⎭⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .2.求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图像写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. [练一练]1.函数y =|sin x |的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 解析:选C 作出函数y =|sin x |的图像观察可知,函数y =|sin x |在⎝ ⎛⎭⎪⎫π,3π2上递增.2.(2013·天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22 C.22D .0解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3 解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.(2014·湛江调研)函数y =lg(sin x )+ cos x -12的定义域为________.解析:要使函数有意义必须有 ⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z , ∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z3.当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )= 2⎝ ⎛⎭⎪⎫sin x -142+78.∴当sin x =14时,y min =78,当sin x =-12或sin x =1时,y max =2. 答案:78 2 [类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.[典例] (1)y =2sin ⎝ ⎛⎭⎪⎫x -π4;(2)y =tan ⎝ ⎛⎭⎪⎫π3-2x .[解] (1)由2k π+π2≤x -π4≤2k π+3π2,k ∈Z , 得2k π+3π4≤x ≤2k π+7π4,k ∈Z . 故函数y =2sin ⎝ ⎛⎭⎪⎫x -π4的单调减区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ). (2)把函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 变为y =-tan ⎝ ⎛⎭⎪⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z , 得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 的单调减区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).解:画出函数y =2⎪⎪⎪⎪sin ⎝ ⎭⎪⎫x -4的图像,易知其单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π4,k π+5π4(k ∈Z ). [类题通法]三角函数的单调区间的求法(1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图像法:函数的单调性表现在图像上是:从左到右,图像上升趋势的区间为单调递增区间,图像下降趋势的区间为单调递减区间,画出三角函数的图像,结合图像易求它的单调区间.提醒:求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[针对训练]1.(2013·安徽师大附中3月月考)设ω>0,若函数f (x )=sin ωx 2cos ωx2在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则ω的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎦⎥⎤0,32 C.⎣⎢⎡⎭⎪⎫32,+∞D .[1,+∞)解析:选B f (x )=sin ωx 2cos ωx 2=12sin ωx ,若函数在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则T 2=πω≥π3+π3=2π3,即ω∈⎝ ⎛⎦⎥⎤0,32,故选B.2.函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为________. 解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z )角度一 求三角函数的对称轴或对称中心1.(2014·揭阳一模)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x ( )A .是奇函数且图像关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图像关于点(π,0)对称C .是奇函数且图像关于直线x =π2对称 D .是偶函数且图像关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值, ∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ).∴f (x )=A sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=A sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =A sin(-x )=-A sin x .∴y =f ⎝ ⎛⎭⎪⎫3π4-x 是奇函数,且图像关于直线x =π2对称.角度二 由三角函数的对称性求参数值2.(1)(2013·哈尔滨二模)若f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,且f ⎝ ⎛⎭⎪⎫π8=-3,则实数m 的值等于( ) A .-1B .±5C .-5或-1D .5或1解析:选C 由f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t 得,函数的对称轴为x =π8.故当x =π8时,函数取得最大值或最小值,于是有-2+m =-3或2+m =-3,即m =-1或-5.(2)(2014·辽宁六校联考)已知ω>0,函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝ ⎛⎭⎪⎫π12,0,则ω有( ) A .最小值2 B .最大值2 C .最小值1D .最大值1解析:选A 由题意知π3-π12≥T 4,T =2πω≤π,ω≥2,故选A 角度三 三角函数对称性的应用3.(2013·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34 B .-14 C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f⎝ ⎛⎭⎪⎫16=12cos π6=34. [类题通法]1.若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.2.对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.第四节函数y =A sin(ωx +φ)的图像及三角函数模型的简单应用1.y =A sin(ωx +φ)的有关概念用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:1.函数图像变换要明确,要弄清楚是平移哪个函数的图像,得到哪个函数的图像;2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;3.由y =A sin ωx 的图像得到y =A sin(ωx +φ)的图像时,需平移的单位数应为⎪⎪⎪⎪⎪⎪φω,而不是|φ|. [试一试]1.y =2sin ⎝ ⎛⎭⎪⎫2x -π4的振幅、频率和初相分别为( ) A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π8答案:A2.把y =sin 12x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为( )A .1B .4 C.14D .2答案:C1.由函数y =sin x 的图像变换得到y =A sin(ωx +φ)(A >0,ω>0)的图像的两种方法2.学会列表技巧表中“五点”相邻两点的横向距离均为T4,利用这一结论可以较快地写出“五点”的坐标.[练一练]1.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位解析:选C ∵y =cos(2x +1)=cos 2⎝ ⎛⎭⎪⎫x +12,∴只要将函数y =cos 2x 的图像向左平移12个单位即可.2.用五点法作函数y =sin ⎝ ⎛⎭⎪⎫x -π6在一个周期内的图像时,主要确定的五个点是________、________、________、________、________.答案:⎝ ⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1 ⎝ ⎛⎭⎪⎫7π6,0 ⎝ ⎛⎭⎪⎫5π3,-1 ⎝ ⎛⎭⎪⎫13π6,0的解析式1.(2013·四川高考)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3 B .2,-π6 C .4,-π6D .4,π3解析:选A 因为5π12-⎝ ⎛⎭⎪⎫-π3=2πω·34,所以ω=2,又因为2×5π12+φ=π2+2k π(k∈Z ),且-π2<φ<π2,所以φ=-π3,故选A.2.(2014·东北三校联考)已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图像的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2解析:选D 由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图像的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-56π,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω,确定函数的周期T ,则可得ω=2πT ; (3)求φ,常用的方法有:①代入法:把图像上的一个已知点代入(此时A ,ω,b 已知)或代入图像与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图像上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图像的“峰点”)时ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图像的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.的图像[典例] 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图像作怎样的变换可得到f (x )的图像? [解] (1)列表取值:描出五个关键点并用光滑曲线连接,得到一个周期的简图.(2)先把y =sin x 的图像向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图像.解:把y =sin x 的图像上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图像,再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图像上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像,最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图像.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图像的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图像.(2)图像变换法:由函数y =sin x 的图像通过变换得到y =A sin(ωx +φ)的图像,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.提醒:五点作图取值要准确,一般取一个周期之内的;函数图像变换要注意顺序,平移时两种平移的长度不同.[针对训练]1.(2013·全国卷Ⅱ)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像重合,则φ=________.解析:y =cos(2x +φ)的图像向右平移π2个单位得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π. 即φ=5π6+2k π.又∵-π≤φ<π,∴φ=5π6. 答案:5π62.(2014·合肥模拟)设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图像. 解:(1)最小正周期T =2πω=π,∴ω=2.∵f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32,∴sin φ=-32. ∵-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3,列表:图像如图所示.的图像与性质的综合应用[典例] (2013·安徽望江中学模拟)如图是函数f (x )=A sin(ωx+φ)⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的部分图像,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点F (0,1)是线段MD的中点,MD ·MN=π218.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解] (1)由已知F (0,1)是线段MD 的中点,可知A =2,∵MD ·MN=T 4·T 2=π218(T 为f (x )的最小正周期), ∴T =2π3,ω=3,∴f (x )=2sin(3x +φ),设D 点的坐标为(x D,2),则由已知得点M 的坐标为(-x D ,0), ∴x D -(-x D )=14T =14×2π3,则x D =π12, 则点M 的坐标为⎝ ⎛⎭⎪⎫-π12,0,∴sin ⎝ ⎛⎭⎪⎫π4-φ=0.∵0<φ<π2,∴φ=π4,∴函数f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫3x +π4. (2)由2k π-π2≤3x +π4≤2k π+π2(k ∈Z ), 得2k π-3π4≤3x ≤2k π+π4(k ∈Z ), 得2k π3-π4≤x ≤2k π3+π12(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π3-π4,2k π3+π12(k ∈Z ).[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:φ=k π时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)存在周期性,其最小周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ的单调性来研究,由-π2+2k π≤ωx +φ≤π2+2k π,k ∈Z 得单调增区间;由π2+2k π≤ωx +φ≤3π2+2k π,k ∈Z 得单调减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )求解,令ωx +φ=k π(k ∈Z ),求得x .利用y =sin x 的对称轴为x =k π+π2(k ∈Z )求解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.[针对训练](2013·安徽江南十校联考)将函数y =sin x 的图像向右平移π3个单位,再将所得的图像上各点的横坐标不变,纵坐标伸长到原来的4倍.这样得到函数f (x )的图像.若g (x )=f (x )cos x + 3.(1)将函数g (x )化成g (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫其中A ,ω>0,φ∈⎣⎢⎡⎦⎥⎤-π2,π2的形式;(2)若函数g (x )在区间⎣⎢⎡⎦⎥⎤-π12,θ0上的最大值为2,试求θ0的最小值.解:(1)由题意可得f (x )=4sin ⎝ ⎛⎭⎪⎫x -π3,∴g (x )=4sin ⎝ ⎛⎭⎪⎫x -π3cos x + 3=4⎝ ⎛⎭⎪⎫12sin x -32cos x cos x + 3=2(sin x cos x -3cos 2x )+ 3 =2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,θ0,∴2x -π3∈⎣⎢⎡⎦⎥⎤-π2,2θ0-π3,要使函数g (x )在⎣⎢⎡⎦⎥⎤-π12,θ0上的最大值为2,当且仅当2θ0-π3≥π2,解得θ0≥512π. 故θ0的最小值为512π.第五节两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β;cos(α∓β)=cos_αcos_β±sin_αsin_β;tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin_αcos_α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=2tan α1-tan2α.1.在使用两角和与差的余弦或正切公式时运算符号易错.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.[试一试]1.sin 68°sin 67°-sin 23°cos 68°的值为()A.-22 B.22C.32D.1答案:B2.(2013·江西高考)若sin α2=33,则cos α=()A.-23B.-13C.13D.23解析:选C 因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×⎝ ⎛⎭⎪⎫332=13.1.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 2.角的变换技巧 2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2; α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. 3.三角公式关系[练一练]1.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941B.129C.141 D .1 答案:D2.(2013·全国卷Ⅱ)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( )A.16 B.13 C.12D.23解析:选A 法一:cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16.法二:cos ⎝ ⎛⎭⎪⎫α+π4=22cos α-22sin α,所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.1.已知sin α=35,α∈⎝ ⎛⎭⎪2,π,则cos 2α2sin ⎝ ⎛⎭⎪⎫α+π4=________. 解析:cos 2α2sin ⎝ ⎛⎭⎪⎫α+π4= cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75. 答案:-752.(2013·四川高考)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12,又α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan2α=-231-(-3)2= 3.答案: 33.已知函数f(x)=2sin⎝⎛⎭⎪⎫13x-π6,x∈R.(1)求f⎝⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f⎝⎛⎭⎪⎫3α+π2=1013,f(3β+2π)=65,求cos(α+β)的值.解:(1)∵f(x)=2sin⎝⎛⎭⎪⎫13x-π6,∴f⎝⎛⎭⎪⎫5π4=2sin⎝⎛⎭⎪⎫5π12-π6=2sinπ4= 2.(2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f⎝⎛⎭⎪⎫3α+π2=1013,f(3β+2π)=65,∴2sin α=1013,2sin⎝⎛⎭⎪⎫β+π2=65.即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.[类题通法]两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.[典例](1)(2013·长春二模)在△ABC中,若tan A·tan B=tan A+tan B+1,则cos C 的值是( )A .-22 B.22 C.12D .-12(2)sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12 B.12 C.32D .-32[解析] (1)由tan A tan B =tan A +tan B +1,可得 tan A +tan B1-tan A tan B=-1,即tan(A +B )=-1,所以A +B =3π4,则C =π4,cos C =22.故选B. (2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50° =12sin 40°sin 40°=12. [答案] (1)B (2)B [类题通法]运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.[针对训练]1.(2014·赣州模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=435,则sin ⎝ ⎛⎭⎪⎫α+π3的值为( )A.45 B.35 C.32D.35解析:选A 由条件得32sin α+32cos α=435,即12sin α+32cos α=45. ∴sin ⎝ ⎛⎭⎪⎫α+π3=45.2.若α+β=3π4,则(1-tan α)(1-tan β)的值是________. 解析:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:2[典例] (2014·常州一模)已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值; (2)求cos β的值. [解] (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0. ∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010 =91050.解:∵cos β=91050,sin β=131050.∴sin(α-2β)=sin [(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425. [类题通法]1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;3.注意角变换技巧. [针对训练]1.设tan ()α+β=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A.1318 B.1322 C.322D.16解析:选C tan ⎝ ⎛⎭⎪⎫α+π4=tan(α+β)-⎝ ⎛⎭⎪⎫β-π4=tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫β-π4=322.2.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析:因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝ ⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4 =2425×22-725×22=17250. 答案17250第六节简单的三角恒等变换1.化简:sin 2sin ⎝ ⎛⎭⎪⎫α-π4=________. 解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .解:原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=12(1-sin 22x )2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x=12cos 2x .3.化简:⎝ ⎛⎭⎪⎪⎫1tan α2-tanα2·(1+tan α·tan α2). 解:⎝ ⎛⎭⎪⎪⎫1tan α2-tanα2·(1+tan α·tan α2) =⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2cos α2·cos αcos α2+sin αsin α2cos αcos α2=2cos αsin α·cos α2cos αcos α2=2sin α.[类题通法]三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.研究三角函数式的求值,解题的关键都是找出条件中的角与结论中的角的联系,依据函数名称的变换特点,选择合适的公式求解.归纳起来常见的命题角度有:(1)给值求值; (2)给角求值; (3)给值求角.角度一 给值求值1.(2013·广东高考)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝ ⎛⎭⎪⎫θ-π6. 解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f ⎝ ⎛⎭⎪⎫π3=2cos ⎝ ⎛⎭⎪⎫π3-π12=2cos π4=2×22=1.(2)因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=-1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45. 所以f ⎝ ⎛⎭⎪⎫θ-π6=2cos ⎝ ⎛⎭⎪⎫θ-π6-π12=2cos ⎝ ⎛⎭⎪⎫θ-π4=2×⎝ ⎛⎭⎪⎫22cos θ+22sin θ=cos θ+sin θ=35-45=-15. 角度二 给角求值2.(1)(2013·重庆高考)4cos 50°-tan 40°=( ) A.2 B.2+32C. 3D .22-1解析:选C 4cos 50°-tan 40°=4cos 50°-sin 40°cos 40° =4sin 40°·cos 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2cos 10°-sin 40°cos 40°=2cos 10°-sin (30°+10°)cos 40°=32cos 10°-32sin 10°cos 40°=3(cos 30°cos 10°-sin 30°sin 10°)cos 40°=3cos 40°cos 40°= 3.(2)化简:sin 50°(1+3tan 10°)=________. 解析:sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.答案:1角度三 给值求角3.已知α,β为锐角,sin α=35,cos ()α+β=-45,求2α+β. 解:∵sin α=35,α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π), ∴sin(α+β)=35,∴sin(2α+β)=sin [α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝ ⎛⎭⎪⎫-45+45×35=0.又2α+β∈⎝ ⎛⎭⎪⎫0,3π2.∴2α+β=π.4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=tan(α-β)+tan β1-tan(α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan2α=2×131-⎝⎛⎭⎪⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.[类题通法]三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边长,则
a2= b2+ c2- 2bccosA, b2= a2+ c2- 2accosB, c2= a2+ b2-
2abcosC.
余弦定理揭示了三角形中两边及其夹角与对边之间的关系,它
的另一种表示形式是
cosA=b2+2cb2c-a2,cosB=
a2+c2-b2, 2ac
cosC=a2+2ba2b-c2.
a=2RsinA,b=2RsinB,c=2RsinC
sinA=
2aR,sinB=2bR,sinC=
c 2R
asinB = bsinA , csinB = bsinC , csinA = asinC , a b c =
sinA B C 以上这些关系式,可根据问题的条件和结论加以选择应用.
(2)利用正弦定理解斜三角形 利用正弦定理可以解决如下有关三角形的问题: ①已知三角形的两角和任一边,求三角形的其他边和角. ②已知三角形的两边和其中一边的对角,求三角形的其他边和角. 对于已知两边和其中一边的对角,要注意解的讨论,因为这时三 角形是不能唯一确定的,解这类三角形问题将出现无解、一解和两解 的情况.图 1 和图 2 就表示了在△ABC 中,已知 a,b 和 A 时解三角 形的各种情况.
教材面面观 1.正弦定理:sinaA=______=______=2R,其中 R 是______.
答案 b
c 三角形外接圆半径
sinB sinC
2.余弦定理: a2= b2+ c2- 2bccosA, b2= ________, cosA= ________.
答案
a2+c2-2accosB
b2+c2-a2 2bc
典例对对碰
题型一 利用正余弦定理进行边角转化 例 1 在△ABC 中,a、b、c 分别是角 A、B、C 的对边,且ccoossBC =-2ab+c. (1)求角 B 的大小; (2)若 b= 13,a+c=4,求△ABC 的面积.
3.三角形常用面积公式: (1)S=12a·ha(ha 表示 a 边上的高). (2)S=12absinC=________=12bcsinA=a4bRc. (3)S=12r(a+b+c)(r 为内切圆半径).
答案 12acsinB
考点串串讲
1.解直三角形 在 Rt△ABC 中,∠C=90°, (1)三边满足勾股定理 (2)两锐角互余,即∠A+∠B=90° (3)边角之间有如下关系 sinα=α的斜对边边 cosα=α的斜邻边边
(4)特殊三角形的性质:如等腰三角形、正三角形、锐角三角形等. (5)三角形的重心、内心、外心、垂心的性质以及中线、高、角分 线的性质等.
5.解三角形实际应用 (1)应用解三角形知识解决实际问题的解题步骤: ①根据题意作出示意图; ②确定实际问题所涉及的三角形,并理清该三角形的已知元与 未知元; ③选用正、余弦定理进行求解,有时需综合运用这两个定理, 并注意运算的正确性; ④给出答案.
⑥余弦定理
c2=a2+b2-2abcosC;cosC=
a2+b2-c2 2ab .
易知勾股定理是余弦定理的特殊情况.
⑦在△ABC 中有:a>b⇔A>B⇔sinA>sinB⇔cosA<cosB.
(2)三角形的面积公式 ①S△=12ah(其中 h 是 a 边上的高). ②S△=12absinC. ③S△= ss-as-bs-c=sr,s 为周长的一半,r 为内切圆 半径. ④S△=a4bRc,其中 R 为外接圆半径. (3)由 A+B+C=π,易推出 ①sinA=sin(B+C),cosA=-cos(B+C), tanA=-tan(B+C). ②sinA2 =cosB+2 C,cosA2 =sinB+2 C.
4.解三角形常用的公式和结论 (1)关于三角形边、角的主要关系式 ①三角形内角和等于 180°. ②三角形中任意两边之和大于第三边,任意两边之差小于第三边.
③三角形中大边对大角,小边对小角.
④正弦定理sinaA=sinbB=sincC=2R.
⑤勾股定理 c2=a2+b2.(其中 c 为直角三角形的斜边).
(4)常用的三角形面积公式 S=12aha=12bhb=12chc(ha、hb、hc 分别表示 a、b、c 边上的高) S=12absinC=12bcsinA=12acsinB S=a4bRc(R 为外接圆半径) S=12 pp-ap-bp-c(其中 p=12(a+b+c)) S=12(a+b+c)·r(r 为内切圆半径)
tanα=αα的 的对 邻边 边(其中 α 为某个锐角)
2.正弦定理
(1)正弦定理
的顶点
A、B、C
所对的边长,则 a sinA
=sinbB=sincC=2R,其中 R 是△ABC 外接圆的半径. 正弦定理不仅揭示了三角形中边与角之间的正弦关系,而且还
揭示了它们与三角形的外接圆半径之间的关系,其变形形式有:
1°当 A 为锐角时,见图 1. 2°当 A 为直角或钝角时,见图 2.
(3)几点说明: ①正弦定理的本质揭示了三角形的边和所求角的关系,适用范 围是任何三角形. ②若题设中出现的边或角的正弦是齐次的,则一般可以利用正 弦定理或将边转化为角的三角函数或将角的三角函数转化为边.
3.余弦定理
(1)余弦定理:若 a、b、c 分别是△ABC 的顶点 A、B、C 所对
余弦定理是勾股定理的推广,勾股定理是余弦定理的特例,∠A
为钝角⇔a2>b2+c2,∠A 为直角⇔a2=b2+c2,∠A 为锐角⇔a2<
b2+c2.
(2)利用余弦定理可以解决如下两类问题: ①已知三边,求各角. ②已知两边和它们的夹角,求第三边和其他两个角. 这两类问题在有解时都只有一个解. (3)提示: 余弦定理的每一个等式中均含有四个不同的量,它们分别是三 角形的三边和一个角,知道其中的三个量,代入等式,便可求出第 四个量来.
(2)解斜三角形的实际问题中几个测量中的角度: ①坡度:指坡面角的正切值,坡度 i=hd=tanα.
②俯角:视线在水平线以下时,视线与水平线在铅垂面内所成 的角为俯角,如图 α 为俯角.
③仰角:视线在水平线以上时,视线与水平面在铅垂面内所成 的角为仰角,如图 β 为仰角.
④方位角:由指北方向作为 0°,顺时针方向转到目标方向的水 平角.方位角的范围在 0°到 360°之间.