八年级数学平方根练习题包含答案
(完整)初二数学平方根练习题

算术平方根
一、选择题
1、下列叙述正确的是()
A.如果a存在平方根,则a>0 B.=±4
C.是5的一个平方根D.5的平方根是
2、“的平方根是”用数学式表示为()
A.B.
C.D.
3、已知正方形的边长为a,面积为S,则()
A.B.
C.D.
4、下列说法正确的是()
A.一个数的平方根一定是两个
B.一个正数的平方根一定是它的算术平方根
C.一个正数的算术平方根一定大于这个数的相反数
D.一个数的正的平方根是算术平方根
5、一个正数的算术平方根为m,则比这个数大2的数的算术平方根是()A.B.
C.m2+2D.m+2
6、如果a是b的一个平方根,则b的算术平方根是()
A.a B.-a
C.±a D.|a|
7、若x<2,化简的正确结果是()
A.-1B.1
C.2x-5D.5-2x
8、数a在数轴上表示如图所示,则化简的结果是()
A.-1B.1-2a
C.1D.2a-1
9、的算术平方根是()
A.-4B.4
C.2D.-2
10、已知,650.12=422630,则x=()
A.4226.3B.42.263
C.0.042263D.42263000
二、解答题
11、求下列各式的值.
12、求下列各式中x的值.
13、已知,求x的值.
14、。
初二上册数学人教版平方根练习题

初二上册数学人教版平方根练习题在初二上学期的数学课程中,学生将接触到平方根的概念和相关的练习题。
平方根作为数学中的基础知识点,对学生的数学学习和应用能力有着重要的影响。
接下来,我们来练习一些初二上册数学人教版的平方根练习题,通过这些题目的练习,巩固我们对平方根的理解和运用能力。
1. 计算下列各题的平方根:a) √16b) √25c) √36d) √49e) √64f) √81g) √1002. 将下列各题化简,并求出结果:a) √4 × √9b) √5 × √20c) √18 ×√2d) √16 × √64e) √81 ÷ √9f) √32 ÷ √8g) √144 ÷ √123. 用适当的数字填空:a) √ (20 × 25) = √(____ × ____)b) √(15 × 10) = √(____ × ____)c) √(12 × 18) = √(____ × ____)d) √(16 × 64) = √(____ × ____)e) √(9 ÷ 3) = √(__ ÷ __)f) √(25 ÷ 5) = √(__ ÷ __)g) 9 × √(64 ÷ 4) = ____ × √(__ ÷ __)4. 按要求计算:a) 计算√36 + √49 - √16b) 计算√81 - √9 + √64c) 计算√(4 × 9) - √(16 ÷ 4) + √(81 ÷ 9)d) 计算√(25 × 5) + √(100 ÷ 10) - √(16 + 64)以上是一些初二上册数学人教版的平方根练习题,通过这些题目的练习,我们能够巩固和提升自己对平方根的理解和运用能力。
初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
数学平方根练习题

数学平方根练习题1. 计算下列各数的平方根:- 1. 4- 2. 9- 3. 16- 4. 25- 5. 362. 找出以下数的平方根,并将结果保留到小数点后两位:- 1. 81- 2. 144- 3. 289- 4. 576- 5. 10243. 判断下列说法是否正确,正确的写“√”,错误的写“×”: - 1. √4 = 2- 2. √9 = 3- 3. √16 = 4- 4. √25 = 5- 5. √36 = 64. 计算下列各数的平方根,并说明结果是否为整数:- 1. 49- 2. 64- 3. 81- 4. 100- 5. 1215. 将下列数的平方根表示为分数形式:- 1. √36- 2. √49- 3. √64- 4. √81- 5. √1006. 计算下列各数的平方根,并将结果表示为最简根式:- 1. √75- 2. √108- 3. √147- 4. √196- 5. √2257. 已知一个数的平方根是5,求这个数。
8. 已知一个数的平方根是-4,求这个数。
9. 计算下列各数的平方根,并说明结果是否为无理数:- 1. √2- 2. √3- 3. √5- 4. √6- 5. √710. 将下列数的平方根表示为最简根式,并说明结果是否为无理数: - 1. √50- 2. √72- 3. √98- 4. √12511. 计算下列各数的平方根,并说明结果是否为有理数:- 1. √4- 2. √9- 3. √16- 4. √25- 5. √3612. 已知一个数的平方根是√2,求这个数。
13. 已知一个数的平方根是√3,求这个数。
14. 计算下列各数的平方根,并说明结果是否为整数:- 1. 169- 2. 289- 3. 361- 4. 529- 5. 78415. 将下列数的平方根表示为分数形式,并说明结果是否为无理数: - 1. √8- 2. √15- 3. √24- 4. √27- 5. √3216. 计算下列各数的平方根,并说明结果是否为有理数:- 1. √1- 2. √4- 3. √9- 5. √2517. 已知一个数的平方根是√5,求这个数。
八年级数学(平方根)练习题 试题

轧东卡州北占业市传业学校平方根练习题1.判断正误〔1〕 5是25的算术平方根. 〔 〕〔2〕4是2的算术平方根. 〔 〕〔3〕6. 〔 〕〔4〕37是237⎛⎫- ⎪⎝⎭的算术平方根. 〔 〕 〔5〕56-是2536的一个平方根. 〔 〕 〔6〕81的平方根是9. 〔 〕〔7〕平方根等于它本身的数有0和1. 〔 〕2.填空题〔1〕如果一个数的平方等于a ,这个数就叫做 .〔2〕一个正数的平方根有 个,它们 .〔3〕一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示. 〔4〕0的平方根是 ,0的算术平方根是 .〔5表示3的 ;925的算术平方根为 . 〔6〕没有算术平方根的数是 .〔7〕一个数的平方为719,这个数为 .〔8〕假设a=15±,那么a 2= ;假设=0,那么a= .假设2=9,那么a= . 〔9〕一个数x 的平方根为7±,那么x= .〔10〕假设是x 的一个平方根,那么这个数是 .〔11〕比3的算术平方根小2的数是 .〔12〕假设a 9-的算术平方根等于6,那么a= .〔13〕2yx 3=-,且y 的算术平方根是4,那么x= .〔14的平方根是 .〔16〕1y3=+,那么x= ,y= .3.选择题〔1〕以下各数中,没有平方根的是〔〕〔A〕0 〔B〕()23-〔C〕23-〔D〕()3--〔2〕25的算术平方根是〔〕.〔A〕5 〔B〔C〕5-〔D〕5±〔3〕9的平方根是〔〕.〔A〕3 〔B〕3-〔C〕3±〔D〕81〔4〕以下说法中正确的选项是〔〕.〔A〕5的平方根是〔B〕5的平方根是5〔C〕5-的平方根是5±〔D〕2-〔5的值为〔〕.〔A〕6-〔B〕6 〔C〕8±〔D〕36〔6〕一个正数的平方根是a,那么比这个数大1的数的平方根是〔〕.〔A〕2a1-〔B〕〔C〔D〕〔7 1.3110.1311==,那么x等于〔〕.〔A〕0.0172 〔B〕0.172 〔C〕2 〔D〕0.00172〔82=,那么()2m2+的平方根是〔〕.〔A〕16 〔B〕16±〔C〕4±〔D〕2±4.求以下各数的算术平方根和平方根:〔1〕0.49 〔2〕11125〔3〕()25-〔4〕6110〔5〔6〕0 5.求以下各式的值:〔1〔2〔36.求满足以下各式的未知数x:〔1〕2x3=〔2〕2x0.010-=〔3〕23x 120-= 〔4〕()24x 125-=y 4=+,你能求出x ,y 的值吗?y 10++=,你能求出20032004x y +的值吗?。
2.2平方根 同步达标测试题 2022-2023学年北师大版八年级数学上册

2022-2023学年北师大版八年级数学上册《2.2平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.25的算术平方根是()A.﹣5B.5C.±5D.2.化简的结果是()A.2B.1C.﹣2D.﹣13.若|x﹣5|+=0,则x+y=()A.﹣5B.6C.0D.54.下列计算正确的是()A.B.C.±D.5.的平方根是()A.4B.2C.4或﹣4D.2或﹣26.81的算术平方根是()A.9B.﹣9C.±9D.37.一个正数的平方根分别为:2a+6与a﹣3,则这个正数是()A.1B.4C.9D.168.如图,用边长为3的两个小正方形拼成一个大正方形,则大正方形的边长最接近的整数是()A.3B.4C.5D.6二.填空题(共6小题,满分30分)9.2的算术平方根是;2是的算术平方根.10.若a、b为实数,且满足,则b﹣a的值为.11.已知2a﹣1的平方根是±3,a+2b+3的算术平方根是4.则a﹣2b的值为.12.已知:≈1.421267…,≈4.494441…,则(精确到0.1)≈.13.的平方根是,的算术平方根是.14.如图,一个长方形被分割成四部分,其中图形①,②,③都是正方形,且正方形①,③的面积分别为16和3,则图中阴影部分的面积为.三.解答题(共6小题,满分50分)15.已知a+3与2a﹣15是一个正数的平方根,求这个正数.16.已知实数与互为相反数,y的算术平方根是14,z的绝对值为,且m 和n互为倒数,求2mn+x﹣z2的平方根.17.求下列各式中x的值:(1)49x2=25;(2)(x﹣2)2=9.18.已知实数a,b,c满足(a﹣2)2+|2b+6|+=0.(1)求实数a,b,c的值;(2)求的平方根.19.(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知≈2.236,则≈,≈;(3)拓展:已知≈2.449,≈7.746,计算和的值.20.小强同学用两个小正方形纸片做拼剪构造大正方形游戏:(他选用的两个小正方形的面积分别为S1,S2).(1)如图1,S1=1,S2=1,拼成的大正方形A1B1C1D1边长为;如图2,S1=1,S2=4,拼成的大正方形A2B2C2D2边长为;如图3,S1=1,S2=16,拼成的大正方形A3B3C3D3边长为.(2)若将(1)中的图3沿正方形A3B3C3D3边的方向剪裁,能否剪出一个面积为14.52且长宽之比为4:3的长方形?若能,求它的长、宽;若不能,请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:25的算术平方根为:=5.故选:B.2.解:=2,故选:A.3.解:∵|x﹣5|≥0,≥0,∴当|x﹣5|+=0时,|x﹣5|=0,=0.∴x=5,y=0.∴x+y=5+0=5.故选:D.4.解:A、∵=5,∴选项A错误,不符合题意;B、∵==5,∴选项B错误,不符合题意;C、∵=±5,∴选项C正确,符合题意;D、∵﹣=﹣5,∴选项D正确,不符合题意.故选:C.5.解:∵,(±2)2=4,∴的平方根是±2.故选:D.6.解:=9,A选项符合题意.故选:A.7.解:∵一个正数的平方根分别为:2a+6与a﹣3,∴2a+6+a﹣3=0.解得a=﹣1.∴2a+6=4.a﹣3=﹣4.∵(±4)2=16.∴这个正数是16.故选:D.8.解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:,∵<<,∴4<<4.5,∴大正方形的边长最接近的整数是4.故选:B.二.填空题(共6小题,满分30分)9.解:2的算术平方根是;2是4的是算术平方根.故答案为:;4.10.解:根据题意得:,解得:,所以b﹣a﹣1,故答案为:1.11.解:∵2a﹣1的平方根是±3,a+2b+3的算术平方根是4.∴2a﹣1=9,a+2b+3=16,解得a=5,b=4,∴a﹣2b=5﹣8=﹣3,故答案为:﹣3.12.解:∵≈4.494,∴≈44.9(精确到0.1),故答案为:44.9.13.解:±=±=±;=4,的算术平方根就是求4的算术平方根,即=2,故答案为:±,2.14.解:正方形①的边长是=4,正方形③的边长是,正方形②的边长是(4﹣),即阴影的宽是()=,阴影的长是:×()=,故答案为:.三.解答题(共6小题,满分50分)15.解:(1)如果a+3与2a﹣15相等时,有a+3=2a﹣15,解得a=18,此时a+3=2a﹣15=21,所以这个正数为441;(2)当a+3与2a﹣15不等时,有a+3+2a﹣15=0,解得a=4,此时a+3=7,2a﹣15=﹣7,所以这个正数为49,答:这个正数是49或441.16.解:∵实数与互为相反数,∴7﹣2x=0,∴x=,∵y的算术平方根是14,z的绝对值为,且m和n互为倒数,∴=14,z=,mn=1,∴2mn+x﹣z2=2×1+14﹣()2=2+49﹣2=49,∵49的平方根为±7,∴2mn+x﹣z2的平方根为±7.17.解:(1)49x2=25,x2=,x=;(2)(x﹣2)2=9,x﹣2=±3,x﹣2=3或x﹣2=﹣3,解得x=5或x=﹣1.18.解:(1)∵(a﹣2)2+|2b+6|+=0,∴a﹣2=0,2b+6=0,5﹣c=0,解得:a=2,b=﹣3,c=5;(2)由(1)知a=2,b=﹣3,c=5,则==4,故的平方根为:±2.19.解:(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知≈2.236,则≈0.2236,≈22.36;故答案为:0.2236,22.36;(3)==≈2×7.746≈15.492,==×≈3×0.2449≈0.7347.20.解:(1)如图1,当S1=1,S2=1,拼成的大正方形A1B1C1D1的面积为1+1=2,因此其边长为;如图2,当S1=1,S2=4,拼成的大正方形A2B2C2D2的面积为1+4=5,因此其边长为;如图3,当S1=1,S2=16,拼成的大正方形A3B3C3D3的面积为1+16=17,因此其边长为;故答案为:,,;(2)不能,理由如下:设长方形的长为4x,宽为3x,则有4x•3x=14.52,所以x2=1.21,即x=1.1(x>0),因此长方形的长为4x=4.4,宽为3x=3.3,因为(4.4)2=19.36>17,所以不能用正方形A3B3C3D3剪出一个面积为14.52且长宽之比为4:3的长方形.。
初二数学求算术平方根练习题

初二数学求算术平方根练习题算术平方根是数学中的一个重要概念,它能帮助我们求解方程、解决实际问题等。
为了帮助初二学生更好地理解和掌握算术平方根的求解方法,下面给出了一些练习题。
练习1:求算术平方根
1. 求算术平方根:√36 = ?
2. 求算术平方根:√64 = ?
3. 求算术平方根:√100 = ?
4. 求算术平方根:√121 = ?
5. 求算术平方根:√144 = ?
练习2:使用算术平方根解决问题
1. 一个正方形的面积是16平方单位,求它的边长。
2. 若一块田地的面积为225平方米,求它的边长。
3. 一块菱形的面积为49平方厘米,求它的对角线长度。
练习3:应用算术平方根解决实际问题
1. 烟花以每秒10米的速度上升,若烟花升高了100米,请问它上升的时间是多少?
2. 一辆汽车以每小时60公里的速度行驶,若车程为240公里,请问这段行程需要的时间是多少?
3. 一颗子弹射出后以每秒700米的速度飞行,若子弹射出后经过5秒才撞到墙壁,请问墙壁与枪离得有多远?
以上是一些关于算术平方根的练习题,希望能帮助到初二的同学们更好地理解和掌握相关知识。
通过多做题、多思考、多实践,相信你们一定能够掌握算术平方根的求解方法,并能够熟练地运用它解决实际问题。
加油!。
人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)类型一、利用被开方数的非负性化简二次根式例. )A .1x ≥B .1x ≥-C .1x ≥或1x ≤-D .1x ≠±【变式训练1】已知m n 为实数 且3n -= =________.【详解】依题意可得m -2≥0且2-m ≥0 ∴m =2 ∴n -3=0∴n =3【变式训练2】已知a b c 是ABC 的三边长 ||0b c -=ABC 的形状是_______.【详解】解:2220a b c b c 2220a b c 0b c222a b c ∴=+ 且b c =∴ABC 为等腰直角三角形故答案为:等腰直角三角形.【变式训练3】3x =- 则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≤【变式训练4】已知a 、b 、c 为一个等腰三角形的三条边长 并且a 、b 满足7b = 求此等腰三角形周长.【答案】17 【详解】解:由题意得:3030a a -≥⎧⎨-≥⎩ 解得:a =3 则b =7 若c =a =3时 3+3<7 不能构成三角形.若c =b =7 此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示 化简a b a -+-的结果是是( )A .b c --B .c b -C .222b c -+D .2b c ++ 【答案】A【详解】解:由数轴知:00c b a <,<<∴0b a -<∴原式=a b a c ----()=a b a c --+-=b c --.故选:A .【变式训练1】已知实数m n 、在数轴上的对应点如图所示 ||m n +=_____【变式训练2】实数a b 在数轴上对应点的位置如图所示 化简||a 的结果是( )A .2a b -+B .2a b -C .b -D .b 【答案】A【解析】根据数轴上点的位置得:a <0<b ∴a -b <0则原式=|a |+|a -b |=-a +b -a = -2a +b .故选:A .【变式训练3】已知实数a 、b 、c 表示在数轴上如图所示 a b -【变式训练4】如图 a b c 是数轴上三个点A 、B 、C 所对应的实数.a b b c ++.类型三、利用字母的取值范围化简二次根式例1.已知 化简:25m -<<5m -=__________.【答案】23m -##32m -+【详解】解:2m -<<例2.ABC 的三边长分别为1、k 、3 则化简723k -=_____. ∴ABC 的三边长分别为90-<812k +-()23k --A B C .D .【详解】解:20b a -≥0ab > 所以a 和b 同号22b b b a a a a a---=-【变式训练2】若35x << _______; 【答案】【变式训练3】化简:2-=_______. 【答案】0【解析】由题意可知:3-x ≥0 ∴23x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长 求另一条直角边的长度. )解:25a -+2525≥≤ a ∴)解:25225a -+-a 、b 分别为一直角三角形的斜边长和一直角边长∴另一条直角边的长度为:类型四、双重二次根式的化简例.阅读下列材料 然后回答问题.在进行二次根式的化简与运算时其实我们还可以将其进===1=以上这种化简的步骤叫做分母有理化.(1;(2【答案】(1(2【详解】(13133333333;(2222(53)2(53)5353(53)(53)53.【变式训练1】阅读理解“分母有理化”7==+除此之外我们也可以用平方之后再开方的方式来化简一些有特点的无理数设x=故0x>由22x=33=-2=解得x==根据以上方法【答案】5-【详解】解:设x∴0x<∴266x =-+ ∴212236x =-⨯= ∴x =2532==-- ∴原式55=--【变式训练2】先阅读材料 然后回答问题.(1)小张同学在研究二次根式的化简时经过思考 小张解决这个问题的过程如下:①===④在上述化简过程中 第 步出现了错误 化简的正确结果为 ;(2)请根据你从上述材料中得到的启发 化简【变式训练3】先阅读下列解答过程 然后再解答:437+= 4312⨯= 即:227+= 所以2==+问题:(1=__________ =____________﹔(2)进一步研究发现: 只要我们找到两个正数a b (a b >)使a b m += ab n = 即22m += =__________.(3【答案】(11 (2)a b >;(3【详解】解:(11;(2)a b =>;(3. 【变式训练4】阅读材料:小明在学习二次根式后 发现一些含根号的式子可以写成另一个式子的平方 如(231+ 善于思考的小明进行了以下探索:设()2a m +=(其中a 、b 、m 、n 均为正整数) 则有222a m n =++∴a =m 2+2n 2 b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时 若()2a m =+ 用含m 、n 的式子分别表示a 、b 得:a = b = ;(2)若()2a m ++ 且a 、m 、n 均为正整数 求a 的值;(3课后作业120b -= 那么这个等腰三角形的周长为( ) A .8B .10C .8或10D .9 【答案】B【详解】解:20b -=∴40a -= 20b -= 解得4a = 2b =当腰长为2 底边为4时 ∴224+= 不满足三角形三边条件 不符合题意; 当腰长为4 底边为2时 ∴2464+=> 4402-=< 满足三角形三边条件 此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A BC .D .x x x -=--3.已知a 、b 、c 在数轴上的位置如图所示 则||a c b ++ )A .2b c -B .2b a -C .2a b --D .2c b -4.若()230a -= 则a b +的平方根是______. 【详解】解:(5.设a b 是整数 方程20x ax b ++= 则a b +=___________.∴113060a b a ++=⎧⎨+=⎩解得67a b =-⎧⎨=⎩∴671a b +=-+=.故答案为:16.已知x 、y 为实数 4y = 则x y 的值等于______.7.已知实数a b c 、、在数轴上的位置如图所示 且a b = 化简a a b ++8.阅读:根据二次根式的性质 a b =+.根据这一性质 我们可以将一些“双重二次根式”去掉一层根号 达到化简效果.解:设24+=(a b 为非负有理数) 则4a b +++ ∴43a b ab +=⎧⎨=⎩①② 由①得 4b a =- 代入②得:()43a a -= 解得11a = 23a =∴13b = 21b =∴224(1+=+1=请根据以上阅读理解 解决下列问题:(1)的化简结果是__________;(2)(3) 如果能化简 请写出化简后的结果 如果不能 请说明理由.9.在二次根式的计算和比较大小中有时候用“平方法”会取得很好的效果例如比较a=b=的大小我们可以把a和b分别平方∴a2=12 b2=18 则a2<b2∴a<b.请利用“平方法”解决下面问题:(1)比较c=d=c d(填写><或者=).(2)猜想m=n=并证明.(3)=(直接写出答案).10.(1)已知a、b为实数4b+求a、b的值.(2)已知实数a 满足2021a a -= 求22021a -的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根检测题
◆随堂检测
1、25
9的算术平方根是 ;___ __ 2、一个数的算术平方根是9,则这个数的平方根是
3x 的取值范围是 ,若a ≥04、下列叙述错误的是( )
A 、-4是16的平方根
B 、17是2(17)-的算术平方根
C 、164的算术平方根是18
D 、0.4的算术平方根是0.02 ◆典例分析
例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围
|4|0b -=0 |4|b -≥0|4|b -=0
所以a=3 b=4 又因为b-a<c<a+b 所以 1<c<7
◆课下作业
●拓展提高
一、选择
12=,则2(2)m +的平方根为( )
A 、16
B 、16±
C 、4±
D 、2±
2 )
A 、4
B 、4±
C 、2
D 、2±
二、填空
3、如果一个数的算术平方根等于它的平方根,那么这个数是
42(4)y +=0,则x y =
三、解答题
5、若a 是2(2)-的平方根,b 2a +2b 的值
6、已知a b-1是400
●体验中考
1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )
A .1a +
B .21a +
C .21a +
D .1a +
2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=
3、(08年广州)如图,实数a 、b 在数轴上的位置,
化简 222()a b a b --- =
4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2
的房间,小明想知道每块瓷砖的规格,请你帮助算一算.
参考答案:
随堂检测:
1、35
,3 2、9±
3、x ≥-2,≥
4、D
拓展提高:
1、C
2、D
3、0
4、16
5、由题意知:2a =2(2)-= 4 ,b=2 所以2a +2b= 4+4=8
6、解:因为a ,所以a=13,又因为b-1是400的算术
平方根,所以b-1=20 b=21 =●体验中考:
1、B
2、9;7,8
3、-2b
40.4==,所以每块瓷砖的边长为0.4米.。