2021年中考数学总复习:专题52 中考数学最值问题(解析版)
2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)
专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。
有时也要根据题目的动点问题产生解的不确定性或多样性。
解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2022•青海)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△P AB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.(请在图2中探讨)【例2】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.【例3】(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【例4】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.1.(2022•金坛区二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx﹣2的图象与x轴交于点A (3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD.(1)填空:b=;(2)将△AOC平移到△EFG(点E,F,G依次与A,O,C对应),若点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T.若∠CPT+∠DAC=180°,求△AHT与△CPT的面积之比.2.(2022•罗城县模拟)如图,已知抛物线y=ax2+b经过点A(2,6),B(﹣4,0),其中E、F(m,n)为抛物线上的两个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当﹣4<x<2且S△ABC最大时,求点C的坐标;(3)若EF∥x轴,点A到EF的距离大于8个单位长度,求m的取值范围.3.(2022•老河口市模拟)在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S 关于m的函数关系式;②S的最小值及S取最小值时m的值.4.(2022•新吴区二模)如图,已知抛物线y=+bx过点A(﹣4,0)、顶点为B,一次函数y=x+2的图象交y轴于M,对称轴与x轴交于点H.(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N.①若点N恰好落在抛物线的对称轴上,求点N的坐标;②请直接写出△MHN面积的最大值.5.(2022•开福区校级二模)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)如图①,若a=2,点D在抛物线的对称轴上,DB=DC,求△BCD与△ACO的周长之比;(3)如图②,若a=3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.6.(2022•官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线.(1)如图1,若点C坐标为(0,2),则b=,c=;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MN∥CD别交抛物线于点M,N,当MN=3CD时,求c 的值.7.(2022•徐州二模)如图,四边形ABCD中,已知AB∥CD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线AD﹣DC﹣CB运动点B停止,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,已知y与x之间函数关系如图②,其中MN为线段,曲线OM,NK为抛物线的一部分,根据图中信息,解答下列问题:(1)图①AB=,BC=;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,△APQ的面积为6?8.(2022•茌平区一模)如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△P AD的面积有最大值还是最小值,并求出此时点P的坐标.(3)连接OD,在(2)的条件下,求出的值.9.(2022•碑林区校级模拟)抛物线W1:y=a(x+)2﹣与x轴交于A(﹣5,0)和点B.(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点M(﹣1,0)对称后得到抛物线W2,点A、B的对应点分别为A',B',抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得S△P A′B′=S△P A'C,若存在,求出P点坐标,若不存在,请说明理由.10.(2021秋•钦北区期末)如图,抛物线y=ax2+bx+6与直线y=x+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PC⊥x轴于点D,交抛物线于点C,点E是直线AB与x轴的交点.(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求△BCE的面积;(3)是否存在点P,使得△BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由.11.(2022•保定一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B (1,﹣5),D(4,0).(1)求c,b(含t的代数式表示);(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式.并求t为何值时,△MPN的面积为.12.(2022•黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PE⊥x 轴,垂足为E,交直线l于点F.(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S.①求S 关于m的函数解析式及S的最大值;②点Q是直线PE上一动点,当S取最大值时,求△QOC周长的最小值及FQ的长.13.(2022•哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CF⊥y轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在(2)的条件下,过F作FM∥y轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当∠BAD+2∠AMN=90°,MN:EG=,求点D的坐标.14.(2022•利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y 轴和x轴上,点C的坐标为(3,4),且AC平行于x轴.(1)求直线AB的解析式;(2)求过B,C两点的抛物线y=﹣x2+bx+c的解析式;(3)抛物线y=﹣x2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当△ABM的面积与△ABC的面积相等时,求点M的坐标.15.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.16.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.17.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).18.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD 的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.19.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.20.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.21.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.22.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;(3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.。
2021年中考数学复习-新定义型(解析版)
新定义型【典例1】对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b=2a+b .例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x ⊗(-y )=2,且2y ⊗x=-1,求x+y 的值.【解析】(1)依据关于“⊗”的一种运算:a ⊗b=2a+b ,即可得到2⊗(﹣5)的值; (2)依据x ⊗(﹣y )=2,且2y ⊗x=﹣1,可得方程组,即可得到x+y 的值. 【典例2】对于实数x ,规定[]x 表示不小于x 的最小整数,例如[]1.2=2,[]3=3,[]-2.5=-2,则(1)填空:①[]-=π ;②若[]x =-2,则x 的取值范围是 .(2)已知x 为正整数,且x 132+⎡⎤=⎢⎥⎣⎦,求x 的值.【解析】(1)①[﹣π]=﹣3;②x 的取值范围是﹣3<x ≤﹣2; (2)由x 132+⎡⎤=⎢⎥⎣⎦知2<x 12+ ≤3,解得:3<x ≤5,∵x 取正整数, ∴x 的值为4或5.【典例3】在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么? 【解析】(1)设这一对“互换点”的坐标为M(m ,n) 和N(n ,m) . ① 当mn=0时,它们不可能在反比例函数的图像上; ② 当mn ≠0 时,M 、N 两点均在反比例函数的图像上. 于是得到结论“不一定”.(2)M ,N 是一对“互换点”,若点M 的坐标为(m ,n),求直线MN 的表达式(用含m ,n 的代数式表示);【解析】(2)设直线 MN 的表达式为 y = kx + b( k ≠0) . 把 M( m,n) ,N( n ,m) 代入 y = kx + b ,解得 k=-1,b=m + n ,∴ 直线 MN 的表达式为y=-x+m+n . (3)在抛物线y =x 2+bx +c 的图象上有一对“互换点”A ,B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P1122⎛⎫ ⎪⎝⎭,,求此抛物线的表达式.【解析】 ( 3)因为点A 在反比例函数2y x=-的图象上, 故设A(m ,2m -) ,则B(2m-,m) .由(2)的结论可得,直线AB 的表达式为y=-x+m2m-.将P 点坐标1122⎛⎫ ⎪⎝⎭,代入可得2m 10m--=, 解得m=2或-1. 【典例4】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 【解析】解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数, ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5. ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54, ∴k 的最大值为54.【解析】 (1)322x y x -+=+,是 “奇特函数”;(2)①296x y x -=-;②(7,5)或53,3⎛⎫- ⎪⎝⎭或715,3⎛⎫ ⎪⎝⎭或(5,1)-.试题分析:(1)根据题意列式并化为322x y x -+=+,根据定义作出判断. (2)①求出点B ,D 的坐标,应用待定系数法求出直线OB 解析式和直线CD 解析式,二者联立即可得点E 的坐标,将B (9,3),E (3,1)代入函数6ax ky x +=-即可求得这个“奇特函数”的解析式.②根据题意可知,以B 、E 、P 、Q 为顶点组成的四边形是平行四边形BPEQ 或BQEP ,据此求出点P 的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是 “奇特函数”.(2)①由题意得,.易得直线OB 解析式为,直线CD 解析式为,由解得.∴点E (3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.【典例6】定义[a,b,c]为函数y=a x2+bx c+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x轴所得的线段长度大于32;③当m<0时,函数在x>14时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y=2m x2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴224144(6)248,22(6)344(6)3b ac ba a-⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y=2m x2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣12mm+,0),当m>0时,1﹣(﹣12mm+)=313222m+>,正确;③当m<0时,函数y=2m x2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴111444xm=->,错误;④当m≠0时,x=1代入解析式y=0,则函数一定经过点(1,0),正确.故选:①②④【典例7】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
江苏省盐城市2021年中考数学试题(解析版)
盐城市二〇二一年初中毕业与升学考试数学试卷一、选择题1. 2021-的绝对值是( ) A. 12021 B. 12021- C. 2021- D. 2021【答案】D【解析】【分析】根据绝对值的意义进行计算,再进行判断即可【详解】解:2021-的绝对值是2021;故选:D【点睛】本题考查了绝对值的意义,熟练掌握绝对值的性质是解题的关键2. 计算:⋅2a a 的结果是( )A. 3aB. 2aC. aD. 22a【答案】A【解析】【分析】利用同底幂乘法的运算法则计算可得【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意3. 北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【点睛】本题考查了轴对称图形的定义,准确理解定义是解题的关键.4. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的是主视图,由此可得答案. 【详解】解:观察图形可知,该几何体的主视图是 .故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的是主视图.5. 2020年12月30日盐城至南通高速铁路开通运营,盐通高铁总投资约2628000万元,将数据2628000用科学记数法表示为( )A. 70.262810⨯B. 62.62810⨯C. 526.2810⨯D. 3262810⨯【答案】B【解析】【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵2628000=62.62810⨯,故选B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.6. 将一副三角板按如图方式重叠,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【详解】解:如图所示:由题意可得,∠2=30°,∠3=45°则∠1=∠2+∠3=45°+30°=75°.故选:C .【点睛】此题主要考查了三角形的外角以及三角尺的特征,正确利用三角形外角的性质是解题关键. 7. 若12,x x 是一元二次方程2230x x --=的两个根,则12x x +的值是( )A. 2B. -2C. 3D. -3【答案】A【解析】【分析】根据一元二次方程根与系数的关系解答即可.【详解】解:∵12,x x 是一元二次方程2230x x --=的两个根,∴12x x +=2.故选:A .【点睛】本题考查了一元二次方程根与系数的关系,属于基本题目,熟练掌握该知识是解题的关键. 8. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知,OC OD MC MD ==在OCM ODM △和△中OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩∴OCM ODM ≅△△(SSS )∴COM DOM ∠=∠∴OM 就是AOB ∠的平分线故选:D【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、填空题9. 一组数据2,0,2,1,6的众数为________.【答案】2【解析】【分析】根据众数的定义进行求解即可得.【详解】解:数据2,0,2,1,6中数据2出现次数最多,所以这组数据的众数是2.故答案为2.【点睛】本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.10. 分解因式:a 2+2a +1=_____.【答案】(a +1)2【解析】【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.11. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____. 【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是912. 如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【解析】【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:∵ABCD 是⊙O 的内接四边形,∠ABC =100°,∴∠ABC +∠ADC =180°,∴180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.13. 如图,在Rt ABC 中,CD 为斜边AB 上的中线,若2CD =,则AB =________.【答案】4【解析】【分析】根据直角三角形斜边中线等于斜边的一半即可解决问题;【详解】解:如图,∵△ABC 是直角三角形,CD 是斜边中线,∴CD 12=AB , ∵CD =2,∴AB =4,故答案为4.【点睛】本题考查直角三角形的性质,解题的关键是记住直角三角形斜边上的中线等于斜边的一半. 14. 一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解. 【详解】解:该圆锥的侧面积=12×2π×2×3=6π. 故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15. 劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x +=【解析】【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2;依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .16. 如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形. 【答案】78或43【解析】【分析】对AEC '是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt △ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得△ABE ≌△AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =. 【详解】解:当=AE EC '时,设BE x =,则4EC x =-,∵ECF △沿EF 翻折得EC F '△,∴=4EC EC x '=-,在Rt △ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+, 解得:7=8x ; 当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,∵AH ⊥EC ',=AE AC ',∴EH C H '=,∵EF AE ⊥,∴=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠∵ECF △沿EF 翻折得EC F '△,∴=C EF FEC '∠∠,∴BEA AEH =∠∠,在△ABE 和△AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△AHE (AAS ),∴BE HE =,∴=BE HE HC '=, ∴12BE EC '= ∵EC EC '=, ∴12BE EC =, ∴14=33BE BC =, 综上所述,7483BE =或, 故答案为:7483或 【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.三、解答题17. 计算:1031(21)43-⎛⎫+- ⎪⎝⎭【答案】2.【解析】【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案. 【详解】1031(21)43-⎛⎫+-- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键. 18. 解不等式组:311424x x x x -≥+⎧⎨-<+⎩【答案】1x 2≤<【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再找到解集的公共部分.【详解】311424x x x x -≥+⎧⎨-<+⎩①② 解:解不等式①得:1≥x解不等式②得:2x <在数轴上表示不等式①、②的解集(如图)∴不等式组的解集为12x ≤<.【点睛】本题考查了解一元一次不等式组,熟练解一元一次不等式是解题的关键,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. 先化简,再求值:21111m m m -⎛⎫+ ⎪-⎝⎭,其中2m =. 【答案】1m +,3【解析】【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m-+-+=⋅- (1)(1) 1m m m m m -+=⋅-1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键. 20. 已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.【答案】(1)1a =,4h =-;(2)242y x x =-+【解析】【分析】(1)将点(0,3)-和(3,0),代入解析式求解即可;(2)将2(1)4y x =--,按题目要求平移即可.【详解】(1)将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩∴1a =,4h =-(2)原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得:∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+【点睛】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.21. 如图,点A 是数轴上表示实数a 的点.(1)用直尺和圆规在数轴上作出表示实数的2的点P;(保留作图痕迹,不写作法)(2)利用数轴比较2和a的大小,并说明理由.【答案】(1)见解析;(2)2a>,见解析【解析】【分析】(1)利用勾股定理构造直角三角形得出斜边为2,再利用圆规画圆弧即可得到点P.(2)在数轴上比较,越靠右边的数越大.【详解】解:(1)如图所示,点P即为所求.(2)如图所示,点A在点P的右侧,所以2a>【点睛】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.22. 圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)【答案】(1)110;(2)见解析,12【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为1 10,故答案为:1 10;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴P(其中有一幅是祖冲之)61 122 ==.【点睛】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.23. 如图,D、E、F分别是ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【解析】【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形. (2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB∵//DE AF∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC ∠∵AE 平分BAC ∠∴DAE FAE ∠=∠又∵平行四边形ADEF∴//EF DA∴=∠∠FAE AEF∴AF EF =∴平行四边形ADEF 是菱形选③AB AC =∵//EF AB 且12EF AB = //DE AC 且12DE AC =又∵AB AC =∴EF DE = ∴平行四边形ADEF菱形故答案为:②或③ 【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.24. 如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的⊙O 交PB 于点A ,点C 在⊙O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是⊙O 的切线;(2)若3AB PA =,求AC BC的值. 【答案】(1)见解析;(2)12 【解析】【分析】(1) 连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC∵2PC PA PB =⋅ ∴PC PB PA PC=, 又∵∠P =∠P ,∴PAC PCB ∽∴PAC PCB =∠∠,PCA PBC ∠=∠∵PCO PCB OCB ∠=∠-∠∴PCO PAC OCB ∠=∠-∠又∵OC OB =∴OCB OBC ∠=∠∴PCO PAC ABC ACB ∠=∠-∠=∠已知C 是O 上的点,AB 是直径,∴90ACB ∠=︒,∴90PCO ∠=︒∴AC PO ⊥,∴PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a =∴ 1.5OC a =在Rt △PCO 中∵ 2.5OP a =, 1.5OC a =,∴2PC a =已知PAC PCB ∽,AC PA BC PC= ∴12AC BC =. 【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.25. 某种落地灯如图1所示,AB 为立杆,其高为84cm ;BC 为支杆,它可绕点B 旋转,其中BC 长为54cm ;DE 为悬杆,滑动悬杆可调节CD 的长度.支杆BC 与悬杆DE 之间的夹角BCD ∠为60︒.(1)如图2,当支杆BC 与地面垂直,且CD 的长为50cm 时,求灯泡悬挂点D 距离地面的高度; (2)在图2所示的状态下,将支杆BC 绕点B 顺时针旋转20︒,同时调节CD 的长(如图3),此时测得灯泡悬挂点D 到地面的距离为90cm ,求CD 的长.(结果精确到1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)【答案】(1)点D 距离地面113厘米;(2)CD 长为58厘米【解析】【分析】(1)过点D 作DF BC ⊥交BC 于F ,利用60°三角函数可求FC ,根据线段和差FA AB BC CF =+-求即可;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,可证四边形ABGN 为矩形,利用三角函数先求cos20CN BC =⨯︒50.76(cm)≈,利用MG 与CN 的重叠部分求6(cm)MN =,然后求出CM ,利用三角函数即可求出CD .【详解】解:(1)过点D 作DF BC ⊥交BC 于F ,∵60FCD ∠=︒,90CFD ∠=︒∴cos60FC CD =⨯︒,1502=⨯, 25(cm)=,∴845425113(cm)FA AB BC CF =+-=+-=,答:点D 距离地面113厘米;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,∴∠BAG =∠AGN =∠BNG =90°,∴四边形ABGN 矩形,∴AB =GN =84(cm),∵54(cm)BC =,将支杆BC 绕点B 顺时针旋转20︒,∴∠BCN =20°,∠MCD =∠BCD -∠BCN =40°,∴cos20CN BC =⨯︒,540.94=⨯,50.76(cm)=,∴CG =CN +NG =50.76+84=134.76(cm),∴50.7690134.766(cm)MN CN MG CG =+-=+-=,∵6(cm)MN =,∴44.76(cm)CM CN MN =-=,∵44.76(cm)CM =,∴cos40CD CM =÷︒,44.760.77=÷,58(cm)≈,答:CD 长为58厘米.【点睛】本题考查解直角三角形应用,矩形的判定与性质,掌握锐角三角函数的定义,矩形判定与性质是解题关键.26. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表 周次 第1周 第2周 第3周第4周 第5周 第6周 第7周 第8周 接种人数(万人) 710 12 18 25 29 37 42该地区全民接种疫苗情况扇形统计图A :建议接种疫苗已接种人群B :建议接种疫苗尚未接种人群C :暂不建议接种疫苗人群根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为66y x =-),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;(2)若从第9周开始,每周接种人数仍符合上述变化趋势.①估计第9周的接种人数约为________万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少(0)a a >万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 1.8a =,那么该地区的建议接种人群最早将于第几周全部完成接种?【答案】(1)22.5,800;(2)①48;②最早到13周实现全面免疫;(3)25周时全部完成接种【解析】【分析】(1)根据前8周总数除以8即可得平均数,8周总数除以所占百分比即可;(2)①将9x =代入66y x =-即可;②设最早到第x 周,根据题意列不等式求解;(3)设第x 周接种人数y 不低于20万人,列不等式求解即可【详解】(1)1(710121825293742)8+++++++=22.5,18022.5%800÷=故答案为:22.5,800.(2)①把9x =代入66,y x =- 54648.y ∴=-=故答案为:48②∵疫苗接种率至少达到60%∴接种总人数至少80060%480⨯=万设最早到第x 周,达到实现全民免疫的标准则由题意得接种总人数为180(696)(6106)(66)x +⨯-+⨯-+⋅⋅⋅+-∴180(696)(6106)(66)480x +⨯-+⨯-+⋅⋅⋅⋅⋅+-≥化简得(7)(8)100x x +-≥当13x =时,(137)(138)205100+-=⨯=∴最早到13周实现全面免疫(3)由题意得,第9周接种人数为42 1.840.2-=万以此类推,设第x 周接种人数y 不低于20万人,即42 1.8(8) 1.856.4y x x =--=-+∴ 1.856.420x -+≥,即1829x ≤∴当20x 周时,不低于20万人;当21x =周时,低于20万人;从第9周开始当周接种人数为y , 1.856.4,(920)20(21)x x y x -+≤≤⎧=⎨≥⎩∴当21x ≥时总接种人数为:18056.4 1.8956.4 1.81056.4 1.82020(20)800(121%)x +-⨯+-⨯+⋅⋅⋅+-⨯+-≥⨯-解之得24.42x ≥∴当x 为25周时全部完成接种.【点睛】本题考查的是扇形统计图的综合运用,平均数的概念,一次函数的性质,列不等式解决实际问题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27. 学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.【初步感知】如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P'的坐标为________; (2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.深入感悟】(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x=-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP '的面积.【灵活运用】(4)如图3,设A (1,,60α=︒,点P是二次函数2172y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.【答案】(1)(1,3);(2)1322y x =+;(3)12;(4)存在最小值,118 【解析】 【分析】(1)根据旋转的定义得112AP AP '==,观察点1P '和(1,1)A 在同一直线上即可直接得出结果. (2)根据题意得出2P 的坐标,再利用待定系数法求出原一次函数表达式即可.(3)先根据1(0)y x y x x =-⎧⎪⎨=-<⎪⎩计算出交点坐标,再分类讨论①当1x ≤-时,先证明()PQA P MA AAS '≌再计算OMP '面积.②当-10x <<时,证()PHO OP M AAS '≌,再计算122P MO PHO k SS '===即可.(4)先证明OAB 为等边三角形,再证明()C AO CAB SAS '≌,根据在Rt C GB '中,9030C GB C B C '''∠=︒-∠=︒,写出1,22C ⎛'⎝⎭,从而得出OC '的函数表达式,当直线l 与抛物线相切时取最小值,得出112y =+,由'B C T B C P S S '''=计算得出BCP '△的面积最小值.【详解】(1)由题意可得:112AP AP '== ∴1P '的坐标为(1,3) 故答案为:(1,3);(2)∵2(2,1)P ',由题意得2P 坐标为(1,2)∵1(1,1)P -,2(1,2)P 在原一次函数上,∴设原一次函数解析式为y kx b =+则12k b k b -+=⎧⎨+=⎩∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴原一次函数表达式为1322y x =+; (3)设双曲线与二、四象限平分线交于N 点,则1(0)y x y x x =-⎧⎪⎨=-<⎪⎩解得(1,1)N -①当1x ≤-时作PQ x ⊥轴于Q∵45QAM POP '∠=∠=︒∴PAQ P AN '∠=∠∵PM AM ⊥∴90P MA PQA '∠=∠=︒∴在PQA △和P MA '中PQA P MA PAQ P AM AP AP ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PQA P MA AAS '≌122P MA PQA k S S'=== 即12OMP S '=;②当-10x <<时作PH ⊥于y 轴于点H∵45POP NOY '∠=∠=︒∴PON P OY '∠=∠∴90MP O MOY P OY ''∠=︒-∠-∠45P OY '=︒-∠∴POH POP P OY ''∠=∠-∠45P OY '=︒-∠∴POH OMP '∠=∠在POH 和OP M '中PHO OMP POH MP O PO P O ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PHO OP M AAS '≌ ∴122P MO PHO kS S '===;(4)连接AB ,AC ,将B ,C 绕A 逆时针旋转60︒得B ',C ',作AH x ⊥轴于H ∵(13)A ,(2,0)B∴1OH BH ==∴2OA AB OB ===∴OAB 为等边三角形,此时B '与O 重合,即(0,0)B '连接C O ',∵60CAC BAO ∠=∠='︒∴CAB C AB ''∠=∠∴在C AO '和CAB △中C A CA C AO CAB BA OA =⎧⎪∠=∠'⎨='⎪⎩∴()C AO CAB SAS '≌∴1C O CB '==,120C OA CBA ∠'=∠=︒∴作C G y '⊥轴于G在Rt C GB '中,9030C GB C B C '''∠=︒-∠=︒ ∴1sin 2C G OC C BG '''=⋅∠= ∴32OG =,即1322C ⎛' ⎝⎭,此时OC '的函数表达式为:3y x = 设过P 且与B C ''平行 的直线l 解析式为3y x b =+∵B P BC C P S S '''=∴当直线l 与抛物线相切时取最小值则2312372y x b y x x ⎧=+⎪⎨=++⎪⎩即2132372x b x x +=++ ∴213702x x b ++-= 当0∆=时,得112b =∴1132y x =+ 设l 与y 轴交于T 点∵'B C T B C P SS '''= ∴12B C P S B T CG '''=⨯⨯ 1111222=⨯⨯ 118=【点睛】本题考查旋转、全等三角形的判定和性质、一次函数的解析式、反比例函数的几何意义、两函数的交点问题,函数的最小值的问题,灵活进行角的转换是关键.。
天津市2021年中考数学真题(解析版)
【答案】C
【解析】
【分析】根据平行四边形性质以及点的平移性质计算即可.
【详解】解:∵四边形ABCD是平行四边形,
点B的坐标为(-2,-2),点C的坐标为(2,-2),
∴点B到点C为水平向右移动4个单位长度,
∴A到பைடு நூலகம்也应向右移动4个单位长度,
∵点A的坐标为(0,1),
则点D的坐标为(4,1),
∴abc>0,
∵ ,
∴△= = >0,
∴ 有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
【答案】D
【解析】
【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】∵抛物线 ( 是常数, )经过点 ,当 时,与其对应的函数值 .
∴c=1>0,a-b+c= -1 4a-2b+c>1,
∴a-b= -2 2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算 的结果等于_____.
【答案】
【解析】
【分析】根据合并同类项的性质计算,即可得到答案.
【详解】
故答案为: .
【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.
重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学
重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
2021年九年级数学中考复习专题之二次函数考察:最值问题综合(五)
2021年九年级数学中考复习专题之二次函数考察:最值问题综合(五)1.如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一点,设P点的横坐标为m.过点P作PD⊥x轴,交BC 于点D,过点D作DE⊥y轴,垂足为E,连接PE,当△PDE和△BOC相似时,求点P的坐标;(3)连接AC,Q是线段BC上一动点,过Q作QF⊥AC于F,QG⊥AB于G,连接FG.请直接写出FG的最小值和此时点Q的坐标.2.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=x ﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.3.如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣x2+bx+c经过A,C 两点,与x轴的另一交点为B.点D是AC上方抛物线上一点.(1)求抛物线的函数表达式;,(2)连接BC,CD,设直线BD交线段AC于点E,如图1,△CDE,△BCE的面积分别为S1 S,求的最大值;2(3)过点D作DF⊥AC于F,连接CD,如图2,是否存在点D,使得△CDF中的某个角等于∠BAC的两倍?若存在,求点D的横坐标;若不存在,说明理由.4.已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M 作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.5.如图1,抛物线y=x2+2x﹣6交x轴于A、B两点(点A在点B的左侧),交y轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.(1)求△ACD的面积;(2)如图1,点P是线段AD下方的抛物线上的一点,过P作PE∥y轴分别交AC于点E,交AD于点F,过P作PG⊥AD于点G,求EF+FG的最大值,以及此时P点的坐标;(3)如图2,在对称轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以BN 为直角边的等腰Rt△BMN?若存在,求出点M的横坐标,若不存在,请说明理由.6.如图,在平面直角坐标系xOy 中,直线l :y =x +m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y =+bx +c 经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .当a 为何值时,△APC 的面积最大,并求出其最大值.(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1,若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.7.如图1,已知抛物线y =ax 2﹣12ax +32a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)连接BC ,若∠ABC =30°,求a 的值.(2)如图2,已知M 为△ABC 的外心,试判断弦AB 的弦心距d 是否有最小值,若有,求出此时a 的值,若没有,请说明理由;(3)如图3,已知动点P (t ,t )在第一象限,t 为常数.问:是否存在一点P ,使得∠APB 达到最大,若存在,求出此时∠APB 的正弦值,若不存在,也请说明理由.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C.直线y=x﹣5经过点B、C.(1)求抛物线的解析;(2)点P是直线BC上方抛物线上一动点,连接PB、PC.①当△PBC的面积最大时,求点P的坐标;②在①的条件下,y轴上存在点M,使四边形PMAB的周长最小,请求出点M的坐标;③连接AC,当tan∠PBO=2tan∠ACO时,请直接写出点P的坐标.9.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.10.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?参考答案1.解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=﹣;(2)如图1,令x=0,得y=4,∴C(0,4),∴OC=4,∵B(3,0),∴OB=3,设直线BC的解析式为y=kx+n(k≠0),则,解得:,∴直线BC的解析式为:y=﹣x+4,设P(m,﹣m2+m+4),则D(m,﹣m+4),∴DP=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,DE=m,∵∠BOC=∠PDE=90°,∵,∴当△PDE和△BOC相似时,∴=或,∴3PD=4ED或4PD=3ED,①当3PD=4ED时,3(﹣m2+4m)=4m,4m2﹣8m=0,m=0(舍)或2,∴P(2,4),②当4PD=3ED时,4(﹣m2+4m)=3m,解得:m=0(舍)或,∴P(,);综上,点P的坐标为:(2,4)或(,);(3)∵A(﹣1,0),C(0,4),同理可得:AC的解析式为:y=4x+4,设F(t,4t+4),﹣1<t<0,∵FQ⊥AC,∴k FQ=﹣=﹣,同理可得:FQ的解析式为:y=﹣x+t+4,则,解得:x=﹣t,∴G(﹣t,0),∴FG2=(t+t)2+(4t+4)2=,∴当t=﹣时,FG2有最小值=,∴FG的最小值是,此时Q(,).2.解:(1)对于直线y=x﹣2,令x=0,则y=﹣2,令y=0,即x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=,故抛物线的表达式为y=x2﹣x﹣2①;(2)如图2,过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣2),则点H(x,x﹣2),S=S△PHB +S△PHC=PH•(x B﹣x C)=×4×(x﹣2﹣x2+x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点C作SC⊥BC交x轴于点R,交BQ于点S,过点S作SK⊥x 轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RSB为等腰三角形,则点C是RS的中点,在△BOC中,tan∠OBC===tan∠ROC=,则设RC=x=SB,则BC=2x,则RB==x=BS,=×SR•BC=BR•SK,即2x•2x=KS•x,解得:KS=,在△SRB中,S△RSB∴sin∠RBS===,则tan∠RBH=,在Rt△OBH中,OH=OB•tan∠RBH=4×=,则点H(0,﹣),由点B、H的坐标得,直线BH的表达式为y=(x﹣4)②,联立①②并解得:x=4(舍去)或,当x=时,y=﹣,故点Q(,﹣);②当点Q在BC上方时,同理可得:点Q的坐标为(﹣,);综上,点Q的坐标为(,﹣)或(﹣,).3.解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)如图1,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,﹣a2﹣a+2),∴M(a,a+2),∵B(1,0),∴N(1,),∴===﹣(a+2)2+;∴当a=﹣2时,的最大值是;(3)∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图2,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即=,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴=,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=﹣,∴点D的横坐标为﹣2或﹣.4.解:(1)将点A、C的坐标代入抛物线表达式得,解得:,故抛物线的表达式为:y=x2﹣2x﹣3①,将点A的坐标代入直线L的表达式得:0=﹣k﹣1,解得:k=﹣1,故直线L的表达式为:y=﹣x﹣1②;(2)设点M的坐标为(m,m2﹣2m﹣3),点N的纵坐标与点M的纵坐标相同,将点N的纵坐标代入y=﹣x﹣1得:m2﹣2m﹣3=﹣x﹣1,解得:x=﹣m2+2m+2,故点N(﹣m2+2m+2,m2﹣2m﹣3),则MN=﹣m2+2m+2﹣m=﹣m2+m+2,∵﹣1<0,故MN有最大值,当m=﹣=时,MN的最大值为;(3)设点M(m,n),则n=m2﹣2m﹣3③,点M′(s,﹣s﹣1),①当CD为边时,点C向右平移2个单位得到D,同样点M(M′)向右平移2个单位得到M′(M),即m±2=s且n=﹣s﹣1④,联立③④并解得:m=0(舍去)或1或,故点M的坐标为(1,﹣4)或(,)或(,);②当CD为对角线时,由中点公式得:(0+2)=(m+s)且(﹣3﹣3)=(n﹣s﹣1)⑤,联立③⑤并解得:m=0(舍去)或﹣1,故点M(1,﹣4);综上,点M的坐标为(1,﹣4)或(,)或(,).5.解:(1)令x=0,得y=x2+2x﹣6=﹣6,∴C(0,﹣6),令y=0,得y=x2+2x﹣6=0,解得,x=﹣6或2,∴A(﹣6,0),点B(2,0),设直线AC的解析式为:y=kx+b(k≠0),则,∴,∴直线AC的解析式为:y=﹣x﹣6,∵y=x2+2x﹣6=(x+2)2﹣8,∴D(﹣2,﹣8),过D作DM⊥x轴于点M,交AC于点N,如图1,则N(﹣2,﹣4),∴,∴△ACD的面积=;(2)如图1,过点D作x轴的平行线交FP的延长线于点H,由点A、D的坐标得,直线AD的表达式为:y=﹣2x﹣12,故tan∠FDH=2,则sin∠FDH=,∵∠HDF+∠HFD=90°,∠FPG+∠PFG=90°,而∠HFD=∠PFG,∴∠FPG=∠FDH,在Rt△PGF中,PF===FG,则EF+FG=EF+PF=EP,设点P(x,x2+2x﹣6),则点E(x,﹣x﹣6),则EF+FG=EF+PF=EP=﹣x﹣6﹣(x2+2x﹣6)=﹣x2﹣3x,∵﹣<0,故EP有最大值,此时x=﹣=﹣3,最大值为;当x=﹣3时,y=x2+2x﹣6=﹣,故点P(﹣3,﹣);(3)存在,理由:设点M的坐标为(m,n),则n=m2+2m﹣6①,点N(0,s),(Ⅰ)当点M在x轴下方时,①当∠MNB为直角时,如图2,过点N作x轴的平行线交过点B与y轴的平行线于点H,交过点M与y轴的平行线于点G,∵∠MNG+∠BNH=90°,∠MNG+∠GMN=90°,∴∠GMN=∠BNH,∵∠NGM=∠BHN=90°,MN=BN,∴△NGM≌△BHN(AAS),∴GN=BH,MG=NH,即n﹣s=2且﹣m=﹣s②,联立①②并解得:m=﹣2±2(舍去正值),故m=﹣2﹣2;②当∠NBM为直角时,如图3,过点B作y轴的平行线交过点N与x轴的平行线于点G,交过点M与x轴的平行线于点H,同理可证:△MHB≌△BGN(AAS),则BH=NG,即n=﹣2,当n=﹣2时,m2+2m﹣6=﹣2,解得:m=﹣2±2(舍去正值),故m=﹣2﹣2;(Ⅱ)当点M在x轴上方时,同理可得:m=﹣﹣或﹣3﹣;综上,点M的横坐标为﹣2﹣2或﹣2﹣2或﹣﹣或﹣3﹣.6.解:(1)直线l:y=x+m过点B(0,﹣1),则m=﹣1,则直线l:y=x﹣1,将点C(4,n)代入上式并解得:n=2,故点C(4,2),将点B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣x﹣1;(2)如图1,过点P作PD∥y轴交AC于点D,点D在线段AC上,由题意得P(a,a﹣1),则D(a,a﹣1),A(,0),∴PD==﹣+2a,∵A(,0),C(4,2),∴△APC 的面积=S △PAD +S △PDC =×PD ×(4﹣)=××=﹣(a ﹣2)2+,∴a =2时,△APC 的面积最大,最大值为.同理当点D 在线段AB 上时,S △APC =S △PDC ﹣S △PAD =×PD ×(4﹣)=﹣(a ﹣2)2+, ∴a =2时,△APC 的面积最大,最大值为.综合以上可得a =2时,△APC 的面积最大,最大值为. (3)∵△AOB 绕点M 沿逆时针方向旋转90°, ∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x ,①如图2,点O 1、B 1在抛物线上时,点O 1的横坐标为x ,点B 1的横坐标为x +1,∴x 2﹣x ﹣1=(x +1)2﹣(x +1)﹣1, 解得x =,②如图3,点A 1、B 1在抛物线上时,点B 1的横坐标为x +1,点A 1的纵坐标比点B 1的纵坐标大,∴x 2﹣x ﹣1=(x +1)2﹣(x +1)﹣1+, 解得x =﹣,综上所述,点A 1的横坐标为或﹣.7.解:(1)连接BC ,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=,解得,a=;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH==2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+=,∴当4时,有,即当a=时,有;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x 交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=,∴MS==,∵MS+MT=ST=6,∴,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=∠AMB=∠APB,∴sin∠APB=sin∠BMT=.8.解(1)∵直线y=x﹣5经过点B,C,∴点B(5,0),C(0,﹣5),∵抛物线y=﹣x2+bx+c经过点B,C,∴,解得:,∴抛物线的解析式为y=﹣x2+6x﹣5①;(2)①如图1,过点P作PD⊥x轴,交BC于点D,设点P(m,﹣m2+6m﹣5),则点D的坐标为(m,m﹣5),∴PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m,S=PD×OB=×(﹣m2+5m)×5=﹣m2+m=﹣,△PBC取得最大值,此时点P的坐标为(,);∵0<m<5,当m=时,S△PBC②如图2,作点P关于y轴的对称点P’,连接P’A交y轴于点M,连接MP,此时,MP+MA的值最小,∵PB,AB为定长线段,此时四边形PMAB的周长最小,∵P 的坐标为(,); ∴点P ′的坐标为(﹣,), ∵抛物线y =﹣x 2+6x ﹣5交x 轴于A ,B 两点,且B (5,0),点A 的坐标为(1,0), ∴直线P ′A 的解析式为y =﹣x +, ∴点M 的坐标为(0,);③在Rt △AOC 中,tan ∠ACO ==,则tan ∠P ′BO =2tan ∠ACO =, 如图3,当点P ′位于第一象限时,过点B 作直线BE 交抛物线于点P ′、交y 轴于点E ,∵tan ∠P ′BO ==,∴, ∴OE =2,∴E (0,2),设直线BP ′的表达式为:y =kx +2,将点B 的坐标代入上式并计算得:k =﹣, 故直线BP ′的表达式为:y =﹣x +2②,联立①②并解得:x 1=0(不合题意值舍去),x 2=, 则点P ′的坐标为(,); 当点P ″位于第四象限时,同理可得P ″(,﹣); 综上,点P 的坐标为(,)或(,﹣).9.解:(1)∵直线y=x+3经过A、B两点.∴当x=0时,y=3,当y=0时,x=﹣4,∴直线y=x+3与坐标轴的交点坐标为A(﹣4,0),B(0,3).分别将x=0,y=3,x=﹣4,y=0代入y=﹣x2+bx+c得,,解得,b=﹣,c=3,(2)由(1)得y=﹣x2﹣x+3,设点P(m,﹣m+3),则D(m,m+3),∴PD=﹣=﹣,∴当m=﹣2时,PD最大,最大值是.(3)存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,G点的坐标为或或;∵y=﹣x2﹣x+3,∴y=0时,x=﹣4或x=2,∴C(2,0),由(2)可知D(﹣2,),抛物线的对称轴为x=﹣1,设G(n,﹣n+3),Q(﹣1,p),CD与y轴交于点E,E为CD的中点,①当CD为对角线时,n+(﹣1)=0,∴n=1,此时G(1,).②当CD为边时,若点G在点Q上边,则n+4=﹣1,则n=﹣5,此时点G的坐标为(﹣5,﹣).若点G在点Q上边,则﹣1+4=n,则n=3,此时点G的坐标为(3,﹣).综合以上可得使得以C、D、G、Q为顶点的四边形是平行四边形的G点的坐标为或或;10.解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.。
2021年江苏省南京市中考数学压轴题总复习(附答案解析)
2021年江苏省南京市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.
(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;
(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;
(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.
2.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。
贵阳市2021年中考数学试卷(解析版)
中考数学试卷一、选择题(每题3分.共30分)1. 当x=﹣1时,代数式3x+1的值是()A. ﹣1B. ﹣2C. 4D. ﹣4【答案】B【解析】【分析】把x的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.2. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A. 线段DEB. 线段BEC. 线段EFD. 线段FG【答案】B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.【点睛】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3. 如图是一个几何体的主视图和俯视图,则这个几何体是()A. 三棱柱B. 正方体C. 三棱锥D. 长方体【答案】A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4. 在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调査【答案】D【解析】【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调査,具有代表性和广泛性,合理,故选D.【点睛】本题考查了抽样调查,样本的确定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.5. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 6. 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. ﹣2B. 0C. 1D. 4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.7. 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B. 1 C. D.【答案】B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A. B. C. D.【答案】A【解析】【分析】先找出符合的所有情况,再得出选项即可.【详解】如图所示,共有12种情况,恰好摆放成如图所示位置的只有1种,所以概率是,故选A.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,能找出符合的所有情况是解本题的关键.9. 一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (﹣5,3)B. (1,﹣3)C. (2,2)D. (5,﹣1)【答案】C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10. 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A. ﹣<m<3B. ﹣<m<2C. ﹣2<m<3D. ﹣6<m<﹣2【答案】D【解析】【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.二、填空題(每小题4分,共20分)11. 某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为_____人.【答案】10【解析】【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【详解】∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10,故答案为:10.【点睛】本题考查了频数与频率,熟练掌握频数与频率间的关系是解题的关键.12. 如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.【答案】【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO =S△APO+S△OPB==,故答案为:.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.13. 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.【答案】72【解析】【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【详解】如图,连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【解析】【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.15. 如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=(4﹣x),由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴,即,则EF=DG=(4﹣x),∴EG===,∴当x=时,EG取得最小值,最小值为,故答案为:.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分)16. 在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【答案】(1)99分,补全表格见解析;(2)270;(3)初二年级掌握禁毒知识的总体水平较好,理由见解析.【解析】【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数乘以其满分率之和即可得;(3)根据平均数和中位数的意义解答可得.【详解】(1)由题意知初二年级的中位数在90≤x≤100分数段中,将90≤X≤100的分数从小到大排列为90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为99分,补全表格如下:年级平均教中位教满分率初一90.1 93 25%初二92.8 99 20%(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共600×(25%+20%)=270人,故答案为:270;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点睛】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17. 如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【答案】(1)矩形的周长为4m;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.18. 如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【答案】==,理由见解析.【解析】【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【详解】==,理由为:如图,过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点睛】本题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.19. 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【答案】(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20. 如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE 与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【答案】(1)证明见解析;(2)S△ADF=.【解析】【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【详解】(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=×.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、含30°角的直角三角形,轴对称的性质,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21. 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【答案】(1);(2)棋子最终跳动到点C处的概率为.【解析】【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C 处的数字是8,则棋子跳动到点C处的概率是,故答案为:;(2)列表得:9 8 7 69 9,9 8,9 7,9 6,98 9,8 8,8 7,8 6,87 9,7 8,7 7,7 6,76 9,6 8,6 7,6 6,6共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22. 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/cm 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【答案】(1)他需要199.500625s才能到达终点;(2)y=2(x+)2+.【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据函数图象平移“上加下减,左加右减”的原则进行解答即可.【详解】(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式为y=2(x+2+)2﹣+5=2(x+)2+.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23. 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【答案】(1)∠PMO=135°;(2)内心M所经过的路径长为2πcm.【解析】【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【详解】(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°;(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点睛】本题考查了弧长的计算公式、三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹.24. 如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB 能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【答案】(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF 折叠,②沿AE折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.25. 如图,在平面直角坐标系xOy中,点A是反比例函数y=(x>0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE= ,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F 为顶点的四边形是平行四边形?【答案】(1)点A坐标为(3,6);(2)1,y=(x>2);(3)m=2时,以A、B、D、F为顶点的四边形是平行四边形.【解析】【分析】(1)根据题意代入m值即可求得;(2)利用ED∥y轴,AD=AC构造全等三角形将求DE转化为求FC,再利用三角形相似求出FC;用m表示D点坐标,利用代入消元法得到y与x函数关系.(3)数值上线段中点坐标等于端点坐标的平均数,坐标系中同样可得线段中点横纵坐标分别是端点横纵坐标的平均数,利用此方法表示出F点坐标代入(2)中函数关系式即可.【详解】(1)当m=3时,y=,∴当x=3时,y=6,∴点A坐标为(3,6);(2)如图,延长EA交y轴于点F,∵DE∥x轴∴∠FCA=∠EDA,∠CFA=∠DEA,∵AD=AC,∴△FCA≌△EDA,∴DE=CF,∵A(m,m2﹣m),B(0,﹣m),∴BF=m2﹣m﹣(﹣m)=m2,AF=m,∵Rt△CAB中,AF⊥x轴,∴△AFC∽△BFA,∴AF2=CF•BF,∴m2=CF•m2,∴CF=1,∴DE=1,故答案为:1;由上面步骤可知,点E坐标为(2m,m2﹣m),∴点D坐标为(2m,m2﹣m﹣1),∴x=2m,y=m2﹣m﹣1,∴把m=代入y=m2﹣m﹣1,∴y=(x>2);(3)由题意可知,AF∥BD当AD、BF为平行四边形对角线时,由平行四边形对角线互相平分可得A、D和B、F的横坐标、纵坐标之和分别相等设点F坐标为(a,b)∴a+0=m+2mb+(﹣m)=m2﹣m+m2﹣m﹣1∴a=3m,b=2m2﹣m﹣1代入y=,得2m2﹣m﹣1=,解得m1=2,m2=0(舍去)当FD、AB为平行四边形对角线时,同理设点F坐标为(a,b),则a=﹣m,b=1﹣m,则F点在y轴左侧,由(2)可知,点D所在图象不能在y轴左侧∴此情况不存在,综上当m=2时,以A、B、D、F为顶点的四边形是平行四边形.【点睛】本题为代数几何综合题,考查了反比例函数图象上点的坐标特征、三角形的全等、相似三角形的判定与性质、平行四边形判定及用字母表示坐标等基本数学知识,熟练掌握和灵活应用相关知识、利用数形结合和分类讨论的数学思想是解题的关键.。
2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)
牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。
精品解析:安徽省2021年中考数学真题(解析版)
∴所选矩形含点 A 的概率是
9
故选:D 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
10. 在 ABC 中, ACB 90 ,分别过点 B,C 作 BAC 平分线的垂线,垂足分别为点 D,E,BC 的中
点是 M,连接 CD,MD,ME.则下列结论错误的是( )
的边长与侧面等腰三角形底边上的高的比值是 5 1 ,它介于整数 n 和 n 1之间,则 n 的值是______.
【答案】1 【解析】
【分析】先估算出 5 ,再估算出 5 1 即可完成求解. 【详解】解:∵ 5 2.236 ; ∴ 5 1 1.236 ;
因 为1.236 介于整数 1 和 2 之间,
故选:C. 【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.
6. 某品牌鞋子的长度 ycm 与鞋子的“码”数 x 之间满足一次函数关系.若 22 码鞋子的长度为 16cm,44 码
鞋子的长度为 27cm,则 38 码鞋子的长度为(
A. 23cm
B. 24cm
A. CD 2ME
B. ME / / AB
C. BD CD
D. ME MD
【答案】A
【解析】
【分析】设 AD、BC 交于点 H,作 HF AB 于点 F,连接 EF.延长 AC 与 BD 并交于点 G.由题意易证 CAE FAE (SAS ) , 从 而 证 明 ME 为 V CBF 中 位 线 , 即 ME / / AB , 故 判 断 B 正 确 ; 又 易 证
) C. 25cm
D. 26cm
【答案】B
【解析】
【分析】设 y kx b ,分别将 22,16 和 44, 27 代入求出一次函数解析式,把 x 38 代入即可求解.
中考数学回归教材重难点07 几何最值问题(解析版)
回归教材重难点07 几何最值问题几何最值问题是初中几何章节的重点内容,考查的范围比较广,把几何图形性质与平移、翻折等图形变换结合起来。
在中考数学中,主要是以压轴题形式出现。
通过熟练的几何模型的应用,提升数学学科素养,提高逻辑思维推断能力。
本考点是中考五星高频考点,在全国各地的中考试卷中均有出现,题目难度较大,甚至有些地方将其作为选填题的压轴题。
1.将军饮马模型;2.瓜豆模型;3.隐圆模型1.(2021·辽宁盘锦·中考真题)如图,四边形ABCD为矩形,AB=23AD=2点P为边AB上一点.以DP为折痕将△DAP翻折,点A的对应点为点A'.连结AA',AA' 交PD于点M,点Q为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________【答案】42【分析】如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.想办法求出RM,RT,求出MT的最小值,再根据QA+QM=QM+QT≥MT,可得结论.【详解】解:如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.△四边形ABCD 是矩形,△△RAT =90°,△AR =DR 2AT =2AB =3△RT 2222(2)(43)52AR AT ++△A ,A′关于DP 对称,△AA′△DP ,△△AMD =90°, △AR =RD ,△RM =12AD 2△MT ≥RT −RM ,△MT 2, △MT 的最小值为2△QA +QM =QT +QM ≥MT ,△QA +Q M 2,△QA +QM 的最小值为2.故答案为:2【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT 的最小值,属于中考常考题型.2.(2021·四川成都·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.【答案】 1 5【分析】第一步:设EF 与AA’交于点O ,连接AF ,易证明△AOE △ADC ,利用对应边成比例可得到OA =2OE ,由勾股定理可求出OE 35从而求得OA 及OC ;由AD △BC ,易得△AOE △△COF ,由对应边成比例可得AE 、FC 的关系式,设BF =x ,则FC =8-x ,由关系式可求得x 的值;第二步:连接NE ,NF ,根据折叠的性质,得到NF =NE ,设B’N =m ,分别在Rt △NB F '和Rt △ EA N '中,利用勾股定理及NF =NE 建立方程,可求得m ,最后得出结果.【详解】如图所示,连接AF ,设EF 与AA’交于点O ,由折叠的性质得到AA’△EF , 3A E AE '==△四边形ABCD 是矩形△△ADC =90°,CD =AB =4 ,AD △BC△△AOE =△ADC ,△OAE =△DAC △△AOE △ADC ,△12OE CD OA AD == ,△OA =2OE , 在直角△AOE 中,由勾股定理得:2249OE OE += ,△OE 35,△OA 65, 在Rt △ADC 中,由勾股定理得到:AC 224845+=,△OC =6514545 令BF =x ,则FC =8-x ,△AD △BC ,△△AOE △△COF ,△37OA AE OC FC == ,即7AE =3FC △3(8-x )=7×3解得:1x =,△BF 的长为1. 连接NE ,NF ,如图,根据折叠性质得:BF =B’F =1,MN △EF ,NF =NE ,设B’N =m ,则22222213(4)NF m NE m =+==+- ,解得:m =3,则NF 10,△EF 222425+=△MF 5△MN 5故答案为:15【点睛】本题主要考查了折叠的性质、勾股定理、三角形相似的判定与性质,矩形的性质等知识,熟练运用这些知识是解决本题的关键,本题还涉及到方程的运用.3.(2021·内蒙古鄂尔多斯·中考真题)如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接,CF DF ,且ADF =DCF ∠∠,点E 是AD 边上一动点,连接,EB EF ,则EB EF +长度的最小值为___________.【答案】3133【分析】根据正方形的性质得到△ADC =90°,推出△DFC =90°,点F 在以DC 为直径的半圆上移动,,如图,设CD 的中点为O ,作正方形ABCD 关于直线AD 对称的正方形APGD ,则点B 的对应点是P ,连接PO 交AD 于E ,交半圆O 于F ,则线段FP 的长即为BE +FE 的长度最小值,根据勾股定理即可得到结论.【详解】解:△四边形ABCD 是正方形,△△ADC =90°,△△ADF +△CDF =90°,△ADF =DCF ∠∠,△△DCF +△CDF =90°,△△DFC =90°,△点F 在以DC 为直径的半圆上移动,如图,设CD 的中点为O ,作正方形ABCD 关于直线AD 对称的正方形APGD ,则点B 的对应点是P , 连接PO 交AD 于E ,交半圆O 于F ,则线段FP 的长即为BE +FE 的长度最小值,OF =3,△△G =90°,PG =DG =AB =6,△OG =9,△OP 222269313PG OG +=+△FP =3133, △BE +FE 的长度最小值为3133,故答案为:3133.【点睛】本题考查了轴对称−最短路线问题,正方形的性质,勾股定理以及圆的基本性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4.(2021·山东聊城·中考真题)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,顶点A ,C 分别在x 轴,y 轴上,B ,D 两点坐标分别为B (﹣4,6),D (0,4),线段EF 在边OA 上移动,保持EF =3,当四边形BDEF 的周长最小时,点E 的坐标为__________.【答案】()0.4,0-【分析】先得出D 点关于x 轴的对称点坐标为H (0,-4),再通过转化,将求四边形BDEF 的周长的最小值转化为求FG +BF 的最小值,再利用两点之间线段最短得到当F 、G 、B 三点共线时FG +BF 的值最小,用待定系数法求出直线BG 的解析式后,令y =0,即可求出点F 的坐标,最后得到点E 的坐标.【详解】解:如图所示,△D (0,4),△D 点关于x 轴的对称点坐标为H (0,-4),△ED =EH ,将点H 向左平移3个单位,得到点G (-3,-4),△EF =HG ,EF △HG ,△四边形EFGH 是平行四边形,△EH =FG ,△FG =ED ,△B (-4,6),△BD ()()224064=25--+-又△EF =3,△四边形BDEF 的周长=BD +DE +EF +BF =25FG +3+BF ,要使四边形BDEF 的周长最小,则应使FG +BF 的值最小,而当F 、G 、B 三点共线时FG +BF 的值最小, 设直线BG 的解析式为:()0y kx b k =+≠△B (-4,6),G (-3,-4),△4634k b k b -+=⎧⎨-+=-⎩,△1034k b =-⎧⎨=-⎩,△1034y x =--, 当y =0时, 3.4x =-,△()3.4,0F -,△()0.4,0E -,故答案为:()0.4,0-.【点睛】本题综合考查了轴对称的性质、最短路径问题、平移的性质、用待定系数法求一次函数的解析式等知识,解决问题的关键是“转化”,即将不同的线段之间通过转化建立相等关系,将求四边形的周长的最小值问题转化为三点共线和最短的问题等,本题蕴含了数形结合与转化的思想方法等.5.(2021·广东·中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____. 52-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =,1AN BN ==,22112AO ∴=+112ON OM AB ===,3BC =,221(31)5OC ∴=+-=52CO OD ∴-=CD 长度的最小值为52-52-【点睛】本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.6.(2021·河南周口·三模)如图,在边长为4的正方形ABCD 中,动点E ,F 分别在BC ,AB 上移动,AF =BE ,AE 和DF 交于点P ,点M 为边AB 上一动点,点N 为平面上一动点,CN =1,则NM +MP 的最小值是 ___.【答案】133【分析】首先证明△APD =90°,推出点P 在以AD 为直径的圆上运动,设圆心为T ,作点T 关于AB 的对称点R ,以R 为圆心,AR 为半径作△R ,则点P 关于AB 的对称点L ,在△R 上,连接CR ,R L ,ML .根据RL +ML +MN +NC ≥CR ,MP =ML ,求出CR ,可得结论.【详解】解:如图,△四边形ABCD 是正方形,△△B =△DAF =90°,AD =AB ,在△AB E 和△DAF 中,AB DA B DAF BE AF =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△DAF (SAS ),△△BAE =△ADF ,△△BAE +△DAP =90°,△△ADP +△DAE =90°,△△APD =90°,△点P 在以AD 为直径的圆上运动,设圆心为T ,作点T 关于AB 的对称点R ,以R 为圆心,AR 为半径作△R ,则点P 关于AB 的对称点L ,在△R 上,连接CR ,RL ,ML .△CN =1,△点N 在以C 为圆心,半径为1的△C 上运动,在Rt △CD R 中,CR 22DR CD +2264+13△RL +ML +MN +NC ≥CR ,MP =ML ,△PM +MN 132-1,△PM +MN 133,△PM +MN 的最小值为133.【点睛】本题考查轴对称最短问题,正方形的性质,勾股定理,轨迹等知识,解题的关键是学会把问题转化为两点之间线段最短,属于中考填空题中的压轴题.7.(2021·河南郑州·一模)如图,在边长为4的正方形ABCD 中,P 是AB 边上一动点(不与点A ,B 重合),连接PD ,过点B 作BM △PD 交DP 的延长线于点M ,连接AM ,过点A 作AN △AM 交PD 于点N ,连接BN ,CN ,则△BNC 面积的最小值为________.【答案】1242-【分析】点N 在正方形内部,所以S △AND +S △BNC =12S 正方形ABCD =14482⨯⨯=,由BM △PD 可得点M 在以BD 中点为圆心,12BD 长为半径的圆上,先证明△AMB 与△ADN 全等,然后求△ABM 最大面积即可求出△BNC 的最小面积.【详解】解:△四边形ABCD 为正方形, △AD =AB ,△BAD =△BAN +△NAD =90°,△△MAB +△BAN =△MAN =90°,△△MAB =△NAD ,△△BMP +△BPM +△MBP =△P AD +△PDA +△APD =180°,△MPB =△APD ,△BMP =△DAP =90°,△△MBP =△ADP , 在△AMB 和△AND 中,MAB NAD MBA NDA AB AD ∠∠⎧⎪∠∠⎨⎪=⎩==,△△AMB △△AND (ASA ).△S △AMB =S △AND , △S △AND +S △BNC =12S 正方形ABCD =14482⨯⨯=,△当S △AMB 面积最大时,S △BNC 面积最小, △△BMD =90°,△点M 在以BD 中点为圆心,12BD 长为半径的圆上,当△ABM面积最大时,OM △AB ,如图,△点O 为BD 中点,OM △AD ,△OK =12AD =2,△BD 2=42△OM =12BD =22△MK =OM ﹣OK =222,△S △AMB =12AB •MK =424, △S △BNC =8﹣S △AMB =8﹣(424)=1242-故答案为:1242-【点睛】本题考查正方形的性质、三角形面积计算、全等三角形的判定、圆周角定理等知识点,将求△BNC 的最小面积转化为求△ABM 最大面积并找出M 点运动轨迹是解题关键.8.(2021·河南·三模)如图,在正方形ABCD 中,AB =8,点E ,F 分别为边AB ,AD 上的动点,且EF =6,点G ,M 分别为边BC ,CD 的中点,连接BM ,DG 交于点O .将△EF A 沿EF 折叠得到△EF A ',点H 是边EF 上一动点,连接A 'H ,HO ,OA '.当A 'H +HO 的值最小时,OA '的长为 __________________.16216- 【分析】连接AH 、AO ,由折叠的性质,点A 与点A '关于直线EF 对称,则可得当A 、H 、O 三点共线时,A 'H +HO 的值最小,连接OC 、AH ,过点O 作NO △BC 于点N ,可知四边形AF A 'E 是正方形,△ACB =45°,设CN =x ,则ON =CN =x ,BN =8﹣x ,可证明△BON △△BMC ,可求出CN =83,CO =823,在Rt △ABC 中,由勾股定理得AC =2A 'O =AC ﹣AA '﹣OC 162. 【详解】解:连接AH 、AO ,如图,由折叠的性质,点A 与点A '关于直线EF 对称,AH A H '∴= A H HO AH HO AO '∴+=+≥A H O ∴、、三点共线时,A H HO '+的值最小,连接OC 、AH ,过点O 作NO △BC 于点N ,如图2,∴四边形AFA E '是正方形,6AA EF '∴==,A O C 、、三点共线,45ACB ∴∠=︒M 是DC 中点,4MC ∴=设CN =x ,则ON =CN =x ,BN =8﹣x ,BNO BCM ∠=∠,BON BMC ∴~,ON MC BN BC ∴=即488x x =-,83x ∴=,83CN ∴= 822CO CN ∴==在Rt ABC 中,由勾股定理得,2282AC AB BC =+=8216282616A O AC AA OC ''∴=--== 16216-. 【点睛】本题考查相似的判定与性质、折叠的性质、正方形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.9.(2021·四川绵阳·一模)等边△ABC 的边长为6,P 是AB 上一点,AP =2,把AP 绕点A 旋转一周,P 点的对应点为P ′,连接BP ′,BP ′的中点为Q ,连接CQ .则CQ 长度的最小值是_____.【答案】331【分析】取AB中点D,连接DQ,CD,AP',利用等边三角形求出CD=33根据三角形中位线定理得到DQ=1,利用三角形三边关系得出结果.【详解】解:如图,取AB中点D,连接DQ,CD,AP',△AP=2,把AP绕点A旋转一周,△AP'=2,△等边△ABC的边长为6,点D是AB中点,△BD=AD=3,CD△AB,△CD22226333BC BD--△点Q是BP'是中点,△BQ=QP',又△AD=BD,△DQ=12AP'=1,在△CDQ中,CQ≥DC﹣DQ,△CQ的最小值为31,故答案为331.【点睛】本题考查最短路径、中位线、等边三角形等知识,解决问题的关键是已知中点的常见思路:等腰三角形中构造三线合一,一般三角形中构造中位线.10.(2021·福建·厦门五缘实验学校二模)如图,在平面直角坐标系中,反比例函数ykx=(k>0)的图象与半径为5的△O交于M、N两点,△MON的面积为3.5,若动点P在x轴上,则PM+PN的最小值是______.【答案】2【详解】设点M(a,b),N(c,d),先求出a2+b2=c2+d2=25,再求出ac()227k c a-=,同理:bd()227k b d-=,即可得出ac﹣bc=0,最后用两点间的距离公式即可得出结论.【解答】解:如图,设点M(a,b),N(c,d),△ab=k,cd=k,△点M,N在△O上,△a2+b2=c2+d2=25,作出点N关于x轴的对称点N'(c,﹣d),△MN'即为PM+PN的最小值△S△OMN12=k12+(b+d)(a﹣c)12-k=3.5,△ad﹣bc=7,△kc kaa c-=7,△ac()227k c a-=,同理:bd()227k b d-=,△ac﹣bc()()2222777k c a k b d k--=-=[(c2+d2)﹣(a2+b2)]=0,△M(a,b),N'(c,﹣d),△MN'2=(a﹣c)2+(b+d)2=a2+b2+c2+d2﹣2ac+2bd=a2+b2+c2+d2﹣2(ac﹣bd)=50,△MN'=2故答案为:2【点睛】此题主要考查了反比例函数的性质、圆的性质、两点间的距离公式,判断出ac-bd=0是解本题的关键.11.(2021·广东·雷州市第八中学一模)如图,把矩形ABCD沿EF对折,使B与D重合,折痕EF交BD于G,连AG,若tan△AGE7BF=8,P为DG上一个动点,则PF+PC的最小值为_____.【答案】10【分析】如图,连接BE,CE,PE,取BE的中点O,连接OA,OG.首先证明△EGD△△FGB(ASA),推出BF=DE=8,EG=FG,再证明PF=PE,推出PF+PC=PE+PC≥EC,想办法求出EC即可解决问题.【详解】解:如图,连接BE,CE,PE,取BE的中点O,连接OA,OG.由题意,EF 垂直平分线段BD ,△EB =ED ,BG =GD ,△四边形ABCD 是矩形,△AD △BC ,△△EDG =△FBG ,△△EGD =△FGB ,△△EGD △△FGB (ASA ),△BF =DE =8,EG =FG ,△DB △EF ,△PE =PF ,△PF +PC =PE +PC ≥EC ,△△BAE =△BGE =90°,OB =OE ,△OA =OB =OE =OG ,△A ,B ,G ,E 四点共圆,△△ABE =△AGE ,△tan△ABE =tan△AGE 7AE AB , 设AE 7,AB =3k ,△AB 2+AE 2=BE 2,BE =DE =8,△7k )2+(3k )2=82,△k =2,△AB =CD =6,△△EDC =90°,△EC 222268CD DE ++,△PF +PC ≥10,△PF +PC 的最小值为10.故答案为:10.【点睛】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,线段的垂直平分线的判定和性质,解直角三角形,四点共圆等知识,本题综合性比较强. 12.(2022·上海·一模)如图,在ABC 中,90ACB ∠=︒,2AC 22BC =ABC 绕点C 按逆时针方向旋转得到DEC ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 的最大值为__________.10【分析】取AB 的中点H ,连接CH 、FH ,设EC ,DF 交于点G ,在△ABC 中,由勾股定理得到AB 10由旋转可知:△DCE △△ACB ,从而△DCA =△BCE ,△ADC =△BEC ,由△DGC =△EGF ,可得△AFB =90º,由直角三角形斜边上的中线等于斜边的一半,可得FH=CH=12AB10△FCH中,当F、C、H在一条直线上时,CF10【详解】取AB的中点H,连接CH、FH,设EC,DF交于点G,在△ABC中,△ACB=90º,△AC2,BC2△AB2210AC BC+由旋转可知:△DCE△△ACB,△△DCE=△ACB,DC=AC,CE=CB,△△DCA=△BCE,△△ADC=12(180º-△ACD) ,△BEC=12(180º-△BCE),△△ADC=△BEC,△△DGC=△EGF,△△DCG=△EFG=90º,△△AFB=90º,△H是AB的中点,△FH=12AB,△△ACB=90º,△CH=12AB,△FH=CH=12AB10在△FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF 101010=△线段CF10.10【点睛】本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.13.(2022·重庆·一模)如图,已知ABC ,外心为O ,18BC =,60BAC ∠=︒,分别以AB ,AC 为腰向形外作等腰直角三角形ABD △与ACE ,连接BE ,CD 交于点P ,则OP 的最小值是______.【答案】933-【分析】由ABD △与ACE 是等腰直角三角形,得到90BAD CAE ∠=∠=︒,DAC BAE ∠=∠,根据全等三角形的性质得到ADC ABE ∠=∠,求得在以BC 为直径的圆上,由ABC 的外心为O ,60BAC ∠=︒,得到120BOC ∠=︒,如图,当PO BC ⊥时,OP 的值最小,解直角三角形即可得到结论.【详解】解:ABD 与ACE 是等腰直角三角形,90BAD CAE ∴∠=∠=︒,DAC BAE ∴∠=∠,在DAC △与BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,DAC ∴△()BAE SAS ,ADC ABE ∴∠=∠,90PDB PBD ∴∠+∠=︒, 90DPB ∴∠=︒,P ∴在以BC 为直径的圆上,ABC 的外心为O ,60BAC ∠=︒,120BOC ∴∠=︒,如图,当PO BC ⊥时,OP 的值最小,18BC =,9BH CH ∴==,12OH OB =,223BH OB OH OH ∴- 33OH ∴=9PH =,933OP ∴=-OP 的最小值是933-,故答案为:933-【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.。
2021中考数学专题05 瓜豆原理中最值问题
专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
2023年安徽中考数学总复习专题:最值问题(PDF版,有答案)
2023年安徽中考物理总复习专题:最值问题类型一单动点求两线段和的最小值将军饮马问题:两点在一直线同侧时,作一个点的对称点与另一个点连接,所得线段的长即为所求。
典例1如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,点P是边BC上一动点,点D在边AB上,且BD=14AB,则PA+PD的最小值为( )A.8B.43C.213D.833【思路】作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,根据勾股定理即可得到结论.解:作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC 交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,∵∠ACB=90°,∠B=30°,AB=8,∴AC=12AB=4,∠ADH=∠B=30°,∵BD=14AB=2,∴AD=6,CF=12DE=12BD=1,∴AF=5,∴DH=AD2―AH2=33,∴EF=33,∴AE=AF2+EF2=213,∴PA+PD的最小值为213.【总结】本题考查了轴对称﹣最短路线问题,含30°角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.针对训练1如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,AD=5,BE=6,P是AD上的一个动点,连接PE,PC,则PC+PE的最小值是( )A.5B.6C.7D.8类型二求一条线段的最小值垂线段最短典例2如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值是 .【思路】过P作PE⊥OB于E,根据垂线段最短得出此时PE的长最小,根据角平分线的性质得出PE=PD,再求出答案即可.解:过P作PE⊥OB于E,此时PE的长最小,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD,∵PD=3,∴PE=3,即PE的最小值是3.【总结】本题考查了垂线段最短和角平分线的性质,能找出当PE最小时点E的位置是解此题的关键.针对训练2如图,在△ABC中,∠C=90°,BD为△ABC的角平分线,过点D作直线l∥AB,点P为直线l上的一个动点,若△BCD的面积为16,BC=8,则AP最小值为 .类型三双动点求两线段和的最小值将军饮马问题与垂线段最短的综合典例2如图,在Rt△ABC中,∠ABC=90°,AB=6,∠BAC=30°,∠BAC的平分线交BC 于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是 .【思路】根据对称性,过点F作FG⊥AC交AD于点Q,连接BG交AD于点E,此时BG=BE+EF,当BG垂直于AC30°直角三角形的边的性质即可求解.解:方法一:如图1所示:在AC边上截取AB′=AB,作B′F⊥AB于点F,交AD于点E,∵AD平分∠BAC,∴∠BAE=∠B′AE,AE=AE,∴△ABE≌△AB′E(SAS).∴BE=B′E,∴B′F=B′E+EF=BE+EF,∵垂线段最短,∴此时BE+EF最短.∵AB=AB′=6,∠BAC=30°,∴B′F=12AB′=3.方法二:如图2所示:在AC边上截取AG=AF,连接BG交AD于点E,作BH⊥AC于点H,同方法一:得△AEG≌△AFG(SAS)∴EG=EF,∴BG=BE+EG=BE+EF,当BG垂直于AC时最短,即BH的长最短,∵AB=6,∠BAC=30°,∴BH=3.【总结】本题考查了最短路线问题、角分线的性质、含30度角的直角三角形,解决本题的关键是作对称点.针对训练3 已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是( )A.5B.3C.245D.72针对训练4 在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=23+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是( )A.23+2B.3+3C.22+2D.2+4类型四一点两线求周长最小值根据轴对称的性质,结合三角形三边关系定理典例4 如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是( )A.5B.15C.20D.30【思路】根据题意画出符合条件的图形,求出OD=OE=OP,∠DOE=60°,得出等边三角形DOE,求出DE=15,求出△PMN的周长=DE,即可求出答案.解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB 于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°=60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15.【总结】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.针对训练5 如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为( )A.60°B.90°C.100°D.120°类型五求两条线段差的最大值两点在一直线两侧时,作一个点的对称点,再将对称点与另一点连接所得线段的长。
二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)
二次函数中求线段,线段和,面积等最值问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =−++++交x 轴于点()10A −,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.【答案】(1)234y x x =−++;(2)PM 的最大值为(3)点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【分析】(1)将点()10A −,代入()22131y x n x n =−++++,求得1n =,即可得解;(2)求得点B 和C 的坐标,推出45OAB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,得到PEM △是等腰直角三角形,2PM PE =,设()234P m m m −++,,求得PM 关于m 的二次函数,利用二次函数的性质求解即可;(3)作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,求得BC =ACO GCB ∠=∠,利用正切函数的定义求得BG ,证明HBG 是等腰直角三角形,求得()31G −,,再求得直线CG 的解析式,据此求解即可.【详解】(1)解:∵抛物线()22131y x n x n =−++++交x 轴于点()10A −,, ∴()121310n n −−+++=,解得1n =,∴抛物线的函数解析式为234y x x =−++; (2)解:当0x =时,4y =;当0y =时,2340x x −++=,解得4x =或=1x −;∴()40B ,,()04C ,,∴4OA OB ==,∴45OCB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,∴9045PEM BEF OBC ∠=∠=︒−∠=︒,∴PEM △是等腰直角三角形,∴PM =,设直线BC 的解析式为4y kx =+,把()40B ,代入得044k =+,解得1k =−,∴直线BC 的解析式为4y x =−+,设()234P m m m −++,,则()4E m m −+,,∴))223442PM PE m m m m ==−+++−=−+∵0>,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,∵()10A −,,()40B ,,()04C ,,∴1OA =,4OB OC ==,BC =∵45ACQ ∠=︒,45OCB ∠=︒,∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠,即OA BG OC BC =,∴14=∴BG ,∵45OBC ∠=︒,∴45HBG ∠=︒,∴HBG 是等腰直角三角形,∴1BH GH ==,∴413OH =−=,∴()31G −,,同理直线CG 的解析式为543y x =−+, 联立得235434x x x =−+++−,解得0x =或143x =; 当143x =时,514344339y =−⨯+=−, ∴点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)()20A ,,(B ;(2)①EDA ∠的大小不变,理由见解析;②线段BF 的长度存在最大值为12【分析】(1)0y =得20+=,解方程即可求得A 的坐标,把2y =+化为顶点式即可求得点B 的坐标;(2)①在AB 上取点M ,使得BM BE =,连接EM ,证明AED △是等边三角形即可得出结论;②证BDF OAD ∽,利用相似三角形的性质得BD BF OA OD =即22x BF x −=,解得()211122BF x =−−+进而利用二次函数的性质即可得解.【详解】(1)解:∵)221y x =+=−+∴顶点为(B ,令0y =,20+=,解得0x =或2x =,∴()20A ,;(2)解:①EDA ∠的大小不变,理由如下:在AB 上取点M ,使得BM BE =,连接EM ,∵)21y x =−∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,∴AB AC BC ==,60C ∠=︒,∵()20A ,,(B ,()00O ,,1ON =,∴2OA =,OB =2,AB =2=,∴OA OB AB ==,∴OAB 是等边三角形,2OA OB AC BC ====,∴60∠=∠=∠=︒OAB OBA AOB ,∵60MBE ∠=︒,BM BE =,∴BME 是等边三角形,∴60BME ABE ∠∠=︒=,ME BE BM ==,∴180120AME BME ∠∠=︒−=︒,BD EM ∥,∵120DBE ABO ABC ∠∠∠=+=︒,∴DBE AME ∠∠=,∵BD EM ∥,∴18012060FEM BED AEF MEA FEM ∠∠∠∠∠+=︒−︒=︒==+,∴BED MEA ∠∠=,∴BED MEA ≌,∴DE EA =,又60AED ∠=︒,∴AED △是等边三角形,∴60ADE ∠=︒,即ADE ∠的大小不变;②设OD x =,则2BD x =−,∵OAB 是等边三角形,60ADE ∠=︒,∴60DOA FBD ADE ∠∠∠===︒,∵BDA BDF ADE DOA OAD ∠∠∠∠∠=+=+,∴BDF OAD ∠∠=,∴BDF OAD ∽,∴BD BF OA OD =即22x BF x −=, ∴()211122BF x =−−+,∴当1x =时,BF 有最大值为12.【点睛】本题主要考查了二次函数的图像及性质,全等三角形的判定及性质,相似三角形的判定及性质以及等边三角形的判定及性质,题目综合性较强,熟练掌握各知识点是解题的关键.1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)−.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−(2)当32m =时,PD取得最大值为.此时315,24P ⎛⎫− ⎪⎝⎭ (3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c −+=⎧⎨=−⎩,解得:23b c =−⎧⎨=−⎩.则抛物线的解析式为:223y x x =−−;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x −−=,解得=1x −或3,∴(3,0)B设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=−⎩,解得:113k b =⎧⎨=−⎩∴3y x =−设点()2,23P m m m −−(03m <<),则3G m m −(,), ∴()()223233PG m m m m m =−−−−=−, ∵OB OC =,∴45OBC OCB ∠=∠=︒,∴45BGH ∠=︒∴45PGD BGH ∠=∠=︒,∴PD =.)22332228PD m m m ⎫=−+=−−+⎪⎝⎭ ∴当32m =时,PD取得最大值为8.此时315,24P ⎛⎫− ⎪⎝⎭. (3)在EB 上存在点M ,使CMN 为直角三角形.抛物线顶点(1,4)E −,设直线BE 的解析式为:22y k x b =+,则2222430k b k b +=−⎧⎨+=⎩,解得:2226k b =⎧⎨=−⎩,∴26y x =−.设26M n n −(,)13n ≤<(),①∵90CNM ONC ∠=︒−∠,∴90CNM ∠<︒,不可能为直角;②当90CMN ∠=︒时,则90CMN MNB ∠=∠=︒ ∴//MC x 轴,则263n −=−,∴32n =,∴3,32M ⎛⎫− ⎪⎝⎭. ③当90MCN ∠=︒时,过点M 作MF y ⊥轴于点F .∵90MCF NCO ∠+∠=︒,90CNO NCO ∠+∠=︒,∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽, ∴CF MF NO CO =, ∴()3263n nn −−−=,∴2690n n +−=,解得:123,3n n ==−.∵13n ≤<,∴23n =−不合题意,应舍去,∴3n =∴()12M综上所述,CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12.【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.【答案】(1)211344y x x =+−;(2)PD 的最大值为45,此时点52,2P ⎛⎫−− ⎪⎝⎭; (3)Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭,()0,2F ,勾股定理分别表示出2EF ,2QE ,2QF 进而分类讨论即可求解. 【详解】(1)解:将点()3,0B ,()0,3C −,代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=−⎩,解得:143b c ⎧=⎪⎨⎪=−⎩,∴抛物线解析式为:211344y x x =+−; (2)∵211344y x x =+−与x 轴交于点A ,B ,当0y =时,2113044x x +−=,解得:124,3x x =−=, ∴()4,0A −, ∵()0,3C −, 设直线AC 的解析式为3y kx =−,∴430k −−=, 解得:34k =−,∴直线AC 的解析式为334y x =−−,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭, ∴223111334444PQ t t t t t ⎛⎫=−−−+−=−− ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ⎛⎫==−−=−−=−++ ⎪⎝⎭, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=⨯−+⨯−−=−, ∴52,2P ⎛⎫−− ⎪⎝⎭; (3)∵抛物线211344y x x =+−211494216x ⎛⎫=+− ⎪⎝⎭, 将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =, 点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭, ∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯−= ⎪⎝⎭, ∴()0,2F , ∴22251173224EF ⎛⎫=++= ⎪⎝⎭, ∵Q 为平移后的抛物线的对称轴上任意一点,则Q 点的横坐标为92, 设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+− ⎪⎝⎭, 当QF EF =时,()229117224m ⎛⎫+−= ⎪⎝⎭, 解得:1m =−或5m =,当QE QF =时,()222295932222m m ⎛⎫⎛⎫⎛⎫−++=+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得:74m =, 综上所述,Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.3.(2024·山西阳泉·一模)综合与探究 如图,二次函数213442y x x =−−的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A −,,()80B ,,()04C −,,直线BC 的表达式为1y x 42=−;(2)线段MN长的最大值为(3)点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得MN ,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x −−=,解得12x =−,28x =,令0x =,则4y =−,∴()20A −,,()80B ,,()04C −,,设直线BC 的表达式为4y kx =−,代入()80B ,得084k =−,解得12k =, ∴直线BC 的表达式为1y x 42=−; (2)解:∵()20A −,,()80B ,,()04C −,,∴2OA =,8OB =,4OC =, 设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,2211314422424PM m m m m m ⎛⎫=−−−−=−+ ⎪⎝⎭,∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠, ∴41tan tan 82OC PNM OBC OB ∠=∠===,∴2PN PM =,MN ,∴)221244MN m m m ⎫=−+=−+⎪⎭∵0<,∴当4m =时,线段MN 长的最大值为 (3)解:∵()20A −,,()80B ,,()04C −,, ∴对称轴为直线2832x −+==, ∴()30D ,,∴()325AD =−−=,5CD ==,AC == ∴5AD DC ==,作DG AC ⊥于点G ,∴12AG CG AC ===∴DG == ∴tan 2DG DCA CG ∠==, ∵tan 2OB BCO OC ∠==,∴DCA BCH ∠=∠,以H ,C ,B 为顶点的三角形与ACD 相似,则分BC BH =和BH CH =两种情况讨论,①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =−+, 联立得241234412x x x −−−+=,解得14x =−,28x =(舍去),()14462y =−⨯−+=,∴点Q 的坐标为()46−,;①当BH CH =时,设()0H t ,,则2264BH t =+,()2224816CH t t t =+=++,∴2264816t t t +=++,解得6t =,∴()06H ,,同理求得直线BH 的表达式为364y x =−+, 联立得261434432x x x −−−+=,解得15x =−,28x =(舍去),()3395644y =−⨯−+=,∴点Q 的坐标为3954⎛⎫− ⎪⎝⎭,; 综上,点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二 将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =−++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为 ,MA MC ''+的最小值为 .【答案】(1)()0,2M −,2722y x x =−++ (2)()2,5P(3)1181,1216⎛⎫− ⎪⎝⎭,【分析】(1)根据点M 在y 轴负半轴且2OM =可得点M 的坐标为()0,2M −,利用待定系数法可得抛物线的解析式为2722y x x =−++;(2)过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,用待定系数法求得直线AC 的解析式为122y x =−+,设点P 的横坐标为()04p p <<,则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭,故24(04)PE p p p =−+<<,先求得8ACM S =△,从而得到212882PAC S PE OC p p =⋅=−+=△,解出p 的值,从而得出点P 的坐标;(3)设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 右平移m 个单位长度得到点M ',由平移的性质可知,,MA M A MC M C ''''==,MA MC ''+的值最小就是M A M C ''+最小值,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,利用两点间的距离公式求这个长度,用待定系数法求出直线AC ''的解析式,从而确定M '的坐标,继而确定平移距离,将原抛物线的解析式化为顶点式,从而得到其顶点,继而确定新抛物线的顶点.【详解】(1)解:∵点M 在y 轴负半轴且2OM =,∴()0,2M −将()0,2A ,()4,0C 代入2y x bx c =−++,得:21640c b c =⎧⎨−++=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为2722y x x =−++(2)解:过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,设直线AC 的解析式为()0y kx m k =+≠,将()0,2A ,()4,0C 代入y kx m =+,得:240m k m =⎧⎨+=⎩,解得122k m ⎧=−⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =−+ 设点P 的横坐标为()04p p << 则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭, ∴2271224(04)22PE p p p p p p ⎛⎫=−++−−+=−+<< ⎪⎝⎭∵8ACM S =△,∴212882PAC S PE OC p p =⋅=−+=△,解得122p p ==, ∴()2,5P ;(3)1181,1216⎛⎫− ⎪⎝⎭,补充求解过程如下:设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 向右平移m 个单位长度得到点M ',作出图形如下:由平移的性质可知,,MA M A MC M C ''''==,∴MA MC ''+的值最小就是M A M C ''+最小值, 显然点M '在直线=2y −上运用,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,∵点C 关于直线=2y −C '',()4,0C ∴()4,4C ''−,∴()()min min MA MC M A M C AC ''''''+=+== 设直线AC ''的解析式是:11y k x b =+将点()0,2A ,()4,4C ''−代入得:111244b k b =⎧⎨+=−⎩,解得:11322k b ⎧=−⎪⎨⎪=⎩直线AC ''的解析式是:322y x =−+令3222y x =−+=−,解得:83x =, ∴8,23M ⎛⎫'− ⎪⎝⎭,∴平移的距离是83m = 又∵22778122416y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∴平移前的抛物线的坐标是781416,⎛⎫ ⎪⎝⎭∴新抛物线的顶点坐标为7881,4316⎛⎫− ⎪⎝⎭即1181,1216⎛⎫− ⎪⎝⎭ 故答案是:1181,1216⎛⎫− ⎪⎝⎭,【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点()4,4B −,点()0,4C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值.【答案】(1)抛物线的表达式为23y x x =−+ (2)平行四边形,见解析(3)【分析】(1)利用待定系数法将B 点坐标代入抛物线2y x bx =−+中,即可求解.(2)作辅助线,根据题意,求出PD 的长,PD OC =,PD OC ∥,利用一组对边平行且相等的四边形是平行四边形即可得证.(3)作出图,证明()SAS CBP MOQ ≌,CP BQ +的最小值为MB ,根据勾股定理求出MB 即可解答. 【详解】(1)解: 抛物线2y x bx =−+过点(4,4)B −,1644b ∴−+=−,3b ∴=,23y x x ∴=−+.即抛物线的表达式为23y x x =−+. (2)解:四边形OCPD 是平行四边形,理由如下:如图1,作PD OA ⊥交x 轴于点H ,连接PC 、OD ,点P 在y x =−上,OH PH ∴=,45POH ∠=︒,连接BC ,4OC BC ==,OB ∴= 2BP =OP OB BP ∴=−=2OH PH ∴===,当2D x =时,4322D DH y ==−+⨯=,224PD DH PH ∴=+=+=, (0,4)C −,4OC ∴=,PD OC ∴=,OC x ⊥Q 轴,PD x ⊥轴,PD OC ∴∥,∴四边形OCPD 是平行四边形.(3)如图2,由题意得,BP OQ =,连接BC ,在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,4OC BC ==,BC OC ⊥,45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ =,CBP MOQ ∠=∠,BC OM ,(SAS)CBP MOQ ∴△≌△,CP MQ ∴=,CP BQ MQ BQ MB ∴+=+≥(当M ,Q ,B 三点共线时最短),CP BQ ∴+的最小值为MB ,454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,MB ∴即CP BQ +的最小值为答:CP BQ +的最小值为【点睛】本题主要考查待定系数法,二次函数图象与性质,平等四边形的判定,全等三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答醒的关键.1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB −的最大值.【答案】(1)24.y x x =- (2)()2,8B (3)()2,12,P - PA PB −的最大值为【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可; (2)设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx = 解得:1,k = 可得直线OA 为:,y x = 则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯−列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a +=⎧⎪∴⎨−=⎪⎩ 解得:1,4a b =⎧⎨=−⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =55,k \= 解得:1,k =∴ 直线OA 为:,y x =()2,2,Q ∴ ()12OAB BOQ ABQ A O SS S BQ x x ∴=+=⨯⨯− 12515,2y =−⨯=解得:8y =或4,y =−∵0,y > 则8,y =()2,8.B ∴(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,()()5,5,2,8,A BAB ∴=设AB 为:,y k x b ''=+ 代入A 、B 两点坐标,55,28k b k b '''+=⎧∴⎨+=⎩' ,解得:1,10k b =−⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =−+⎧∴⎨=−⎩ 解得:52,,512x x y y ==−⎧⎧⎨⎨==⎩⎩()2,12.P ∴−【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB −最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.【答案】(1)245y x x =−++,对称轴为直线2x =,顶点D 的坐标为()29,;(2)QAC △(3)直线MN 恒过定点,定点坐标为()28,.【分析】(1)求得点B 的坐标为()50,,点C 的坐标为()05,,利用待定系数法求解,再配成顶点式,即可得解;(2)先求得直线BC 的解析式,再求直线BC 与对称轴交点Q ,将AQ CQ +转化为BC ,在Rt AOC 中求AC ,在Rt BOC 中求BC 即可求解;(3)如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,证明MDH DNG ∽△△,求得()250mn m n −++=,再利用待定系数法求得直线MN 的解析式为()45y m n x mn =−−+++,据此求解即可. 【详解】(1)解:∵5OB OC ==,∴点B 的坐标为()50,,点C 的坐标为()05,,∴25505b c c −++=⎧⎨=⎩,解得4b =,∴抛物线的解析式为245y x x =−++, ∵()224529y x x x =−++=−−+,∴对称轴为直线2x =,顶点D 的坐标为()29,; (2)解:∵点A 与点()50B ,关于直线2x =对称,∴直线BC 与对称轴的交点为Q ,则Q 为QA QC +最小时位置,设直线BC 的解析式为5y kx =+,代入点()50B ,得055k =+,解得1k =−,∴直线BC 的解析式为5y x =−+,当2x =,253y =−+=,∴()23Q ,,∵点()10A −,,∵ACAQ CQ CB +===∴QAC △(3)解:如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,垂足分别为H ,G ,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,∵顶点D 的坐标为()29,, ∴()()222945442MH m m m m m =−−++=−+=−,2DH m =−,()()222945442GN n n n n n =−−++=−+=−,2DG n =−,由题意得90H G MDN ∠=∠=∠=︒,∴90MDH NDG DNG ∠=︒−∠=∠, ∴MDH DNG ∽△△, ∴MH HD DG NG =,即()()222222m mn n −−=−−,∴()()221m n −−=−, ∴()250mn m n −++=,∵点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,设直线MN 的解析式为11y k x b =+,∴2112114545mk b m m nk b n n ⎧+=−++⎨+=−++⎩①②,−①②得()()()2214m n k m n m n −=−−+−, ∵m n ≠,∴14k m n =−−+,将14k m n =−−+代入①得()21445m m n b m m −−++=−++,求得15b mn =+;∴直线MN 的解析式为()45y m n x mn =−−+++, ∵()250mn m n −++=,即()25m n mn +=+, ∴()()428y m n x =−−+−+, ∴当20x −=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,, ∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2Ly ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.【答案】(1)3y x =−+,223y x x =−++;(2)点P 的横坐标为时,PD AD +有最大值; (3)2154y x x =−−+.【分析】(1)利用待定系数法解答即可求解;(2)设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+,先证明ACD 为等腰直角三角形,得到)AD t =−,进而得到2PD AD t ⎛+=−+ ⎝⎭,根据二次函数的性质即可求解;(3)设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得23()4x x m −+=−−+,整理得,22(21)10x m x m −++−=,设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,由B 为MN 的中点可得210m +=,求出m 即可求解;本题考查了二次函数与一次函数的交点问题,待定系数法求函数解析式,二次函数的性质,二次函数图象的平移,掌握二次函数的图象和性质是解题的关键.【详解】(1)解:抛物线2L y ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =,930312a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪−=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩,∴抛物线L 的解析式为223y x x =−++;设直线AB 的解析式为3(0)y kx k =+≠,把(3,0)A 代入得,330k +=,解得1k =−,∴直线AB 的解析式为3y x =−+;(2)解:设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+, 3AC t ∴=−,23PD t t =−+,(3,0)A ,(0,3)B −,3OA OB ∴==,AOB ∴为等腰直角三角形,45OAB ∴∠=︒,PC x ⊥轴, ACD ∴为等腰直角三角形,)AD t ∴==−,∴223PD AD t t t ⎛+=−++=− ⎝⎭,∴当t =时,PD AD +有最大值,即点P的横坐标为32时,PD AD +有最大值;(3)解:由(1)可知,直线AB 的解析式为3y x =−+,抛物线L 为:2223(1)4y x x x =−++=−−+,∴设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得,()234y x y x m =−+⎧⎪⎨=−−+⎪⎩,23()4x x m ∴−+=−−+,整理得,22(21)10x m x m −++−=, 设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,1221x x m ∴+=+,∵B 为MN 的中点,∴120x x +=,∴210m +=, 解得12m =−,∴抛物线L '的解析式22115424y x x x ⎛⎫=−++=−−+ ⎪⎝⎭.题型三 胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A −、点B 两点,与y 轴交于点()0,2C,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N,求AN 的最大值.【答案】(1)22y x =−+(2)496【分析】(1)用待定系数法求解即可;(2)过点M 作MF y ∥轴,交AC 于点E ,先求出一次函数AC 的解析式,用解直角三角形的方法求出30OAC ∠=︒,表示出MN =,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,分别表示出EF ME AE MN ,,,,最后得到249=26AN m ⎛−+ ⎝⎭,求出最后结果即可.【详解】(1)解:点()A −,对称轴为x =(2a c ∴−−+=,2c =,2b a −=解得:1a =−,b = ∴抛物线的表达式为:22y x =−+;(2)如图,过点M 作MF y ∥轴,交AC 于点E ,设AC 的解析式为y kx b =+,02b b ⎧−+=⎪∴⎨=⎪⎩,2k b ⎧=⎪⎨⎪=⎩,∴AC的解析式为2y =+,2AO =2CO =,tan CO OAC AO ∴∠==,30OAC ∴∠=︒,90AFE MNE ∠=︒=∠,AEF MEN ∠=∠, 30M OAC ∴∠=∠=︒,2AE EF ∴=,12EN ME =,sin MN ME ACO ∴=⋅∠=,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,2EF ∴=+,2222ME m m ∴=−+−=−−,24AE EF ∴==+,21122EN ME m ==−,23MN m==−,AN ∴,AE EN=+2213422m m =+−−−224m =−+24926m ⎛=−++ ⎝⎭,20−<,∴当m =时,AN 的最大值为496.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值. 【答案】(1)214433y x x =−−+(2)①()2,2E −−;②【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【详解】(1)解:①抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C , ∴366404240a b a b −+=⎧⎨++=⎩,解得:1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴214433y x x =−−+;(2)解:214433y x x =−−+4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B −,713Q ⎛⎫ ⎪⎝⎭,∴117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩,∴直线BQ 的解析式为123=+y x ,N Q 为BQ 与y 轴交点, ()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方, 点M 在x 轴上,点E 在平面内,BME AOM ≌,4BM OA ∴==, ()6,0B −, ()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=︒,故()2,2E −−, 若M 为()10,0−,2OM ME ==,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx =++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩,AM ∴的解析式为24y x =+,AM 与BQ 相交于点P ,∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩, 所以点P 的坐标为68,55⎛⎫− ⎪⎝⎭,设直线BE 的解析式为y mx n =+,将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩, 所以直线BE 的解析式为132y x =−−,BE 与AM 相交于点H ,∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为148,55⎛⎫−− ⎪⎝⎭,BP ∴==BH ==1BP ∴当H 旋转到x 轴上时,此时1OH 最短,∴16OH BO BH =−=116BP ∴==⎭∴11BP的最小值为1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =−++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标; (3)将该抛物线沿射线CA方向平移1y ,请直接写出新抛物线1y 的表达式______.【答案】(1)1b =,4c =(2)PE 取得最大值为254,此时335,28P ⎛⎫ ⎪⎝⎭.(3)()2115322y x =−−+【分析】本题考查了二次函数的综合,待定系数法求函数解析式: (1)利用待定系数法即可求解;(2)延长PE 交x 轴于H ,根据题意求得直线AC 的解析式为4y x =−+,OC OA =,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p ,证得PHF是等腰直角三角形,从而求得232524PE PE PH p ⎛⎫=+=−−+⎪⎝⎭,即可求解; (3)先求得CA =,根据1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到,进而可求解;掌握待定系数法求函数解析式及利用数学结合是解题的关键.【详解】(1)解:抛物线212y x bx c =−++交于()4,0A 和()0,4C ,8404b c c −++=⎧∴⎨=⎩,解得:14b c =⎧⎨=⎩. (2)延长PE 交x 轴于H()4,0A ,()0,4C ,∴直线AC 的解析式为4y x =−+,OC OA =, PE y ∥Q 轴,PE x ∴⊥轴, 90AOC ∴∠=︒,45OAC ∴∠=︒,PFAC ,45OFP ∴∠=︒,2PH PF ∴=,PE PE PH ∴+=+,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p , ()221144222PE p p p p p ∴=−++−−+=−+,2142PH p p =−++,222211325243422224PE PF PE PH p p p p p p p ⎛⎫∴+=+=−+−++=−++=−−+⎪⎝⎭,PE ∴+的最大值为254,此时点P 的坐标为325,24⎛⎫ ⎪⎝⎭.(3)()4,0A ,()0,4C ,CA ∴=将抛物线y 沿射线CA 方向平移1y ,∴1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到, ()2115322y x ∴=−−+,故答案为:()2115322y x =−−+.2.(2024·海南海口·一模)如图,抛物线2y ax bx c =++过点()1,0A −,()3,0B ,()0,3C .(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点, ①当P 为抛物线的顶点时,求证:PBC 直角三角形; ②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E.当PE 的值最大时,求点P 的坐标.【答案】(1)223y x x =−++(2)①PBC 是直角三角形;②315,24P ⎛⎫ ⎪⎝⎭;③57,24P ⎛⎫ ⎪⎝⎭【分析】(1)把A 、B 、C 三点坐标代入2y ax bx c =++求解即可; (2)①作PH y ⊥轴于点H ,易证PCH △和BOC 是等腰直角三角形,即可求出90PCB ∠=︒; ②先求出直线BC 的解析式,过点P 作PD x ⊥轴于点D ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,23922PBC S x x ∆=−+,然后根据二次函数的性质求解即可; ③过点P 作PN x ⊥轴于点N ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,判断BEN是等腰直角三角形得出BE =,即可求出25PE x x =−+,然后根据二次函数的性质求解即可. 【详解】(1)解:将点()1,0A −,()3,0B ,()0,3C 代入解析式得:09303a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得:123a b c =−⎧⎪=⎨⎪=⎩,∵抛物线的解析式为223y x x =−++;(2)解:①配方得()222314y x x x =−++−−+∴点P 的坐标为()1,4,作PH y ⊥轴于点H ,则1PH CH ==,∴45HCP ∠=︒又∵在Rt BOC 中,3OB OC ==, ∴45OCB ∠=︒, ∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =−⎧⎨=⎩, ∴直线BC 的解析式为3y x =−+, ∵()3,0B ,∴3OB =, 设点()2,23P x x x −++(03x <<),过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x=−++−−+=−+,∴()22211393327332222228PBCSPE OB x x x x x ⎛⎫=⨯⨯=⨯−+⨯=−+=−−+ ⎪⎝⎭,当32x =时,PBC 的最大面积为278,2915233344x x −++=−++=,∴315,24P ⎛⎫⎪⎝⎭③设点()2,23P x x x −++(03x <<),过点P 作PN x ⊥轴于点N ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x =−++−−+=−+, ∵()0,3C ,()3,0B ,∴3OC OB ==,3BN x =−,∴45OBC OCB ∠=∠=︒,∴45NEB OBC ∠=∠=︒,∴BE ==,∴()CE BC BE =−==,∴22525524PE x x x ⎛⎫=−+=−−+ ⎪⎝⎭, ∴当52x =时,PE 有最大值,此时57,24P ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,面积问题,线段问题,掌握二次函数的性质是解题的关键.3.(2023·山东济南·一模)抛物线()21122y x a x a =−+−+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标; (3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值. 【答案】(1)2a =,2b =−,4c = (2)53,2P ⎛⎫ ⎪⎝⎭(3)【分析】(1)利用待定系数法求解即可;(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得BC l 的解析式,设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+,利用相似三角形的判定与性质可得答案; (3)在y 轴上取一点F ,使得94OF =,连接BF ,由相似三角形的判定与性质可得34FE CE ''=,可得34E B E C BE E F '''+'+=,即可解答.【详解】(1)解:将()4,0B 代入()21122y x a x a =−+−+,得()84120a a −+−+=,2a ∴=,∴抛物线的解析式为2142y x x =−++,令0x =,则4y =,4c ∴=,令0y =,则21042x x =−++,14x ∴=,22x =−,()2,0A ∴−,即2b =−; ∴2a =,2b =−,4c =(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设BC l :y kx b =+,将()0,4,()4,0代入得440b k b =⎧⎨+=⎩解得:4b =,1k =−,BC l ∴:4y x =−+, 设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+, ()221144222P D PD y y m m m m m =−=−++−−+=−+,PD HA ∥,AMH PMD ∴∽,PM PD MA HA ∴=,将2x =−代入4y x =−+,6HA ∴=,112142PMB AMBPM h S PM S AM AM h ⋅===⋅, 164PD PD HA ∴==,32PD ∴=, 231222m m ∴=−+,11(m ∴=舍),23m =,53,2P ⎛⎫∴ ⎪⎝⎭;(3)在y 轴上取一点F ,使得94OF =,连接BF ,根据旋转得性质得出:3OE OE '==,∵9494OF OC ⋅=⨯=, 2OE OFOC '∴=⋅,∴OE OC OF OE '=',COE FOE ''∠=∠,∴FOE E OC ''∽,。
2023年中考数学专题复习:二次函数最值问题训练(含答案)
2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣3每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。
最值问题之将军饮马-2023年中考数学重难点专题(解析版)
最值问题之将军饮马一、模型精讲最小?基础模型:如图,在直线上找一点P使得PA+PB模型解析:作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+模型变式:1.两定一动之点点周长最小.在OA、OB上分别取点M、N,使得△PMN2.两定两动之点点的周长最小。
在OA、OB上分别取点M、N使得四边形PMNQ3.一定两动之点线12在OA 、OB 上分别取M 、N 使得PM +MN最小。
此处M 点为折点,作点P 关于OA 对称的点P ',将折线段PM +MN 转化为P 'M +MN ,即过点P '作OB 垂线分别交OA 、OB 于点M 、N ,得PM +MN 最小值(点到直线的连线中,垂线段最短)二、针对训练一、单选题1如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,∴DN =BN ,连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .2如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125° C.136° D.124°3【答案】D【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .3如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()A.154B.245C.5D.203【答案】B【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC=2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .44如图所示,已知A (1,y 1),B (2,y 2)为反比例函数y =2x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大值时,点P 的坐标是()A.(3,0) B.72,0 C.53,0 D.52,0【答案】A 【详解】∵把A (1,y 1),B (2,y 2)代入反比例函数y =2x得:y 1=2,y 2=1,∴A (1,2),B (2,1),∵在△ABP 中,由三角形的三边关系定理得:|AP -BP |<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA -PB =AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入得:k +b =22k +b =1 ,解得:k =-1,b =3,∴直线AB 的解析式是y =-x +3,当y =0时,x =3,即P (3,0).故选:A .5如图,如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,PA,PB 与x 轴分别交于A ,B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为()A.3B.4C.5D.6【答案】D 【详解】解:连接OP ,∵PA ⊥PB ,∴∠APB =90°,∵AO =BO ,5∴AB =2PO ,若要使AB 取得最小值,则PO 需取得最小值,连接OM ,交⊙M 于点P ′,当点P 位于P ′位置时,OP ′取得最小值,过点M 作MQ ⊥x 轴于点Q ,则OQ =3、MQ =4,∴OM =5,又∵MP ′=2,∴OP ′=3,∴AB =2OP ′=6,故选:D .6如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为()A.26B.33C.27D.42【答案】C【详解】解:连接BE ,交AD 于点M ,过点E 作EF ⊥BC 交于点F ,∵△ABC 是等边三角形,AD 是BC 边上的中线,∴B 点与C 点关于AD 对称,∴BM =CM ,∴EM +CM =EM +BM =BE ,此时EM +CM 的值最小,∵AC =6,AE =2,∴EC =4,在Rt △EFC 中,∠ECF =60°,∴FC =2,EF =23,在Rt △BEF 中,BF =4,∴BE =27,故选:C .7如图,点M 是菱形ABCD 的边BC 的中点,P 为对角线BD 上的动点,若AB =2,∠A =120°,则PM +PC的最小值为()A.2B.3C.2D.1【答案】B【详解】解:连接AM 、AC ,AM 交BD 于P ,此时PM +PC 最小,连接CP ,6∵四边形ABCD 是菱形,∴OA =OC ,AC ⊥BD ,∴C 和A 关于BD 对称,∴AP =PC ,∵∠A =120°,∴∠ABC =60°,∴△ABC 是等边三角形,∴AC =AB =2,∵M 是BC 的中点,∴AM ⊥BC ,∴∠BAM =30°,∴BM =1,∴AM =AB 2-BM 2=3,∴PM +PC =AM =3.故选B .8如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD=12,7∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A.9如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A10如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【详解】解:如图,设点O 为BC 的中点,由题意可知,8点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .二、填空题11如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,EF 垂直平分BC ,点P 为直线EF 上任意一点,则AP +BP 的最小值是.【答案】4【详解】解:连接PC .∵EF 是BC 的垂直平分线,∴BP =PC ,∴PA +BP =AP +PC ,∴当点A ,P ,C 在一条直线上时,PA +BP 有最小值,最小值为AC =4.故答案为:4.12如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB ,AD 上的两个定点且BP =AQ =1cm,点M为线段BD上一动点,连接PM,QM,则PM+QM的最小值为cm.【答案】5【详解】解:如图所示,作点P关于BD的对称点P ,∵△ABC是等边三角形,BD⊥AC,∴∠ABD=∠DBC=12∠ABC=12×600=300,∴点P 在BC上,∴P M=PM,则PM+QM=P M+QM,当P ,M,Q在同一条直线上时,有最小值,∵点P关于BD的对称点P ,∠ABD=∠DBC=30°,∴PP ⊥BM,BP=BP =1cm,∴∠BP P=60°,∴△BPP 是等边三角形,即∠BP P=∠C=60°,∴PP ∥AC,且PP =AQ=1cm,∴四边形PP QA是平行四边形,∴P Q=AP=AB-BP,在Rt△ABD中,∠ABD=30°,AD=3,∴AB=2AD=2×3=6,∴AP=P Q=P M+QM=PM+QM=AB-BP=6-1=5,故答案为:5.13如图,牧童在A处,A、B处相距河岸的距离AC,BD的长分别为700m和500m,且C,D两地距离为500m,天黑前牧童从A处将牛牵到河边饮水,再赶回家,那么牧童最少要走.9【答案】1300m【详解】解:作点A关于CD的对称点A ,连接A B,则A B的长即为AP+BP的最小值,过点B作BE⊥AC,垂足为E,∵CD=500m,BD=500m,AC=700m,∴A′C=AC=700m,CE=BD=500m,CD=BE=500m∴A′E=A′C+CE=700+500=1200(m),在Rt△A′EB中,A B=12002+5002=1300(m).即牧童最少要走1300m .故答案为:1300m.14如图,菱形草地ABCD中,沿对角线修建60米和80米两条道路AC<BD,M、N分别是草地边BC、CD的中点,在线段BD上有一个流动饮水点P,若要使PM+PN的距离最短,则最短距离是米.【答案】50【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P ,连接MP ,当P点与P 重合时,MP+NP=MP +NP =NQ的值最小,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∴M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,10∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.15在平面直角坐标系中,点A 0,-3 ,点O 0,0 ,若有一点B 2a +1,-2a +2 ,当BA +BO 的值最小时,a =.【答案】12【详解】如下图所示:因为B 2a +1,-2a +2 的坐标满足关系:2a +1与-2a +2的和为3,即点B 在直线y =-x +3上,作点O 关于直线y =-x +3对称的点O ,得出点O 坐标为3,3 ,连接O A 交直线y =-x +3于点B ,此时BA +BO 最小,设直线O A 的解析式为y =kx -3,将O 3,3 代入y =kx -3,得:3=3k -3,解得k =2,即直线O A 的解析式为y =2x -3,联立两直线方程得:y =-x +3y =2x -3 ,解得:x =2y =1 ,即点B 坐标为2,1 ,即2a +1=2,-2a +2=1,解得a =12,故答案为:12.16如图,直线y =x +4与x 轴,y 轴分别交于A 和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.【答案】-1,0【详解】解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,最小值为CD ′,如图.令y =x +4中x =0,则y =4,∴点B 的坐标为0,4 ;令y =x +4中y =0,则x +4=0,解得:x =-4,∴点A 的坐标为-4,0 .∵点C 、D 分别为线段AB 、OB 的中点,∴点C -2,2 ,点D 0,2 .∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为0,-2 .设直线CD ′的解析式为y =kx +b ,∵直线CD ′过点C -2,2 ,D ′0,-2 ,∴-2k +b =2b =-2,解得k =-2b =-2 ,∴直线CD ′的解析式为y =-2x -2.令y =0,则0=-2x -2,解得:x =-1,∴点P 的坐标为-1,0 .故答案为:-1,0 .17如图,点P 是∠AOB 内任意一点,OP =3cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值是.【答案】3cm【详解】解:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OP 、OC 、OD 、PM 、PN .∵点P 关于OA 的对称点为C ,关于OB 的对称点为D ,∴PM =CM ,OP =OC ,∠COA =∠POA ;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3cm.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3cm.故答案为:3cm.18如图,在周长为12的菱形ABCD中,DE=1,DF=2,若P为对角线AC上一动点,则EP+FP的最小值为.【答案】3【详解】解:作F点关于BD的对称点F ,则PF=PF ,连接EF'交BD于点P.∴EP+FP=EP+F P.由两点之间线段最短可知:当E、P、F'在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F P=EF .∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF D是平行四边形,∴EF =AD=3.∴EP+FP的最小值为3.故答案为:3.19如图,在Rt△ABC中,∠ACB=90°,AC=BC,点C在直线MN上,∠BCN=30°,点P为MN上一动点,连接AP,BP.当AP+BP的值最小时,∠CBP的度数为度.【答案】15【详解】如图,作B关于MN的对称点D,连接AD,BD,CD,∵AP+BP的值最小,则MN交AD于P,由轴对称可知:CB=CD,PB=PD,∴∠CBD=∠CDB,∠PBD=∠PDB,∴∠CBP=∠CDP,∵∠BCN=30°,∴∠BCD=2∠BCN=60°,∴△BCD是等边三角形,∵AC=BC,∴AC=CD,∴∠CAD=∠CDA,∵∠ACB=90°,∠BCD=60°,∴∠CAD=∠CDA=12180°-∠ACB-∠BCD=15°,∴∠CBP=∠CDP=15°,故答案为:15.20如图,抛物线y=x2-4x+3与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,在其对称轴上有一动点M,连接MA,MC,AC,则△MAC周长的最小值是.【答案】32+10【详解】解:∵抛物线y=x2-4x+3与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,∴当y=0时,0=x2-4x+3解得x=1或x=3,即A1,0,,B3,0;当x=0时,y=3,即C0,3由二次函数对称性,A,B关于对称轴对称,即MA=MB,∴C△MAC=CA+CM+MA=CA+CM+MB,∵AC=OA2+OC2=10,∴△MAC周长的最小值就是CM+MB的最小值,根据两点之间线段最短即可得到CM+MB的最小值为C,M,B三点共线时线段CB长,∵CB=OC2+OB2= 32,∴△MAC周长的最小值为CA+CB=32+10,故答案为:32+10.三、解答题21如图,抛物线y=x2+bx+c与x轴交于A-1,0两点.,B3,0(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,y>0?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2-2x-3;(2)当x<-1或x>3时,y>0;(3)Q点坐标为1,-2.【详解】(1)解:∵抛物线y=x2+bx+c与x轴的两个交点分别为A-1,0,B3,0,∴1-b+c=09+3b+c=0,解得b=-2c=-3,∴所求抛物线的解析式为y=x2-2x-3;(2)解:观察函数图象,当x<-1或x>3时,y>0,故答案为x<-1或x>3;(3)解:在抛物线对称轴上存在点Q,使△QAC的周长最小.∵AC长为定值,∴要使△QAC的周长最小,只需QA+QC最小,∵点A关于对称轴直线x=-b2a=1的对称点是3,0,∴Q是直线BC与对称轴直线x=1的交点,设过点B,C的直线的解析式y=kx-3,把3,0代入,∴3k-3=0,∴k=1,∴直线BC的解析式为y=x-3,把x=1代入上式,∴y=-2,∴Q点坐标为1,-2.22教材呈现:下图是华师版八年级下册数学教材第111页的部分内容.(1)问题解决:请结合图①,写出例1的完整解答过程.(2)问题探究:在菱形ABCD中,对角线AC、BD相交于点O,AB=4,∠BAD=2∠ABC.过点D作DE⎳AC交BC 的延长线于点E.如图②,连结OE,则OE的长为.(3)如图③,若点P是对角线BD上的一个动点,连结PC、PE,则PC+PE的最小值为.【答案】(1)见解析;(2)27;(3)43【详解】(1)∵四边形ABCD是菱形,∴AD⎳BC,∴∠BAD+∠B=180°.∵∠BAD=2∠B,∴∠B=60°.∵四边形ABCD是菱形,∴AB=BC.∴△ABC是等边三角形.(2)∵四边形ABCD是菱形,∴AD⎳BC,又∵DE⎳AC,∴四边形ACED是平行四边形,由(1)可得,AB=AC=AD故四边形ACED是菱形;则∠ADE=120°,DE=AD=4,∠BDC=30°,OA=2,∴OD=AD2-OA2=42-22=23∠ODE=120°-30°=90°则OE=OD2+DE2=(23)2+42=27.(3)如图所示,过A作BE的垂线交BE于点F,连接AE,A点关于BD的对称点为点C,则PC+PE的最小值为AE;∵△ABC为等边三角形,∴∠BAF=30°,∴AF=23,CF=2,EF=6AE=AF2+EF2=(23)2+62=43则PC+PE的最小值为43.23在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点.(1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.【答案】(1)13+35;(2)23,0 ,53,0 【详解】(1)解:如图,作点D 关于x 轴的对称点D ,连接CD 与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小,∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点,∴D (0,2),C (3,4),D (0,-2),设直线CD 为y =kx +b ,把C (3,4),D (0,-2)代入,得3k +b =4,b =-2,解得k =2,b =-2,∴直线CD 为y =2x -2,令y =0,得x =1,∴点E 的坐标为(1,0).∴OE =1,AE =2,利用勾股定理得CD =32+22=13,DE =12+22=5,CE =22+42=25,∴△CDE 周长的最小值为:13+5+25=13+35.(2)解:如图,将点D 向右平移1个单位得到D (1,2),作D 关于x 轴的对称点D (1,-2),连接CD 交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,连接D F ,此时四边形CDEF 周长最小,理由如下:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形CDEF 周长最小,∵DD ∥EF ,且DD =EF ,∴四边形DD FE 为平行四边形,∴DE =D F ,根据轴对称可知,D F =D F ,∴DE +CF =D F +CF =FD +CF =CD ,设直线CD 的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4k +b =-2,解得k =3b =-5 ,∴直线CD 的解析式为y =3x -5,令y =0,得x =53,∴点F 坐标为53,0 ,∴点E 坐标为23,0 .24如图,在Rt △ABC 中,∠ACB =90°,斜边AB =8,AB 经过原点O ,点C 在y 轴的正半轴上,AC 交x 轴于点D ,且CD :AD =4:3,反比例函数y =k x的图象经过A 、B 两点.(1)求反比例函数的解析式.(2)点P 为直线AC 上一动点,求BP +OP 的最小值.【答案】(1)y =-37x;(2)42【详解】(1)解:如图①,过点A 作AE ⊥x 轴于点E ,∵AB 经过原点O ,∴A 、B 关于原点对称,∴O 为AB 的中点,∵∠ACB =90°,AB =8,∴AO =CO =BO =12AB =4,∵OD ∥EA ,∴CO OE =CD DA =43,∴4OE =43,∴OE =3,∴AE =AO 2-OE 2=42-32=7,∴点A 的坐标为7,-3 ,∴k =7×-3 =-37,∴反比例函数的解析式为y =-37x .(2)解:如图②,延长BC 至点F ,使得FC =BC ,连接OF 交直线AC 于点P ,连接BP ,∵BC ⊥AC ,FC =BC ,∴AC 垂直平分BF ,∴BP =FP ,∴BP +OP =FP +OP =OF ,由“两点间线段最短”可得BP +OP 的最小值为线段OF 的长,由(1)得A 、B 关于原点对称,∴B -7,3 ,∵C 为线段BF 的中点,∴x B +xF 2=x C ,yB +yF 2=y C ,即-7+xF 2=0,3+yF 2=4,解得x F =7,y F =5,∴点F 的坐标为7,5 ,∴OF =7 2+52=32=42,即BP +OP 的最小值为42.25如图,已知抛物线y =ax 2+bx -6与x 轴的交点A (-3,0),B (1,0),与y 轴的交点是点C .(1)求抛物线的解析式;(2)点P 是抛物线对称轴上一点,当PB +PC 的值最小时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M ,N ,使得∠CMN =90°且以点C ,M ,N 为顶点的三角形与△OAC 相似?若存在,求出点M 和点N 的坐标;若不存在,说明理由.【答案】(1)y =2x 2+4x -6;(2)P (-1,-4);(3)M (-1,-8),N 0,-172或M -74,-558 ,N 0,-838 .【详解】(1)解:将A (-3,0),B (1,0)代入y =ax 2+bx -6,得:0=a ×(-3)2+b ×(-3)-60=a ×12+b ×1-6,解得:a =2b =4 ,∴抛物线的解析式为y =2x 2+4x -6;(2)解:∵点P 是抛物线对称轴上一点,∴PA =PB ,∴PB +PC =PA +PC ≥AC ,∴连接AC ,AC 与对称轴的交点即为点P ,如图.∵对于y =2x 2+4x -6,令x =0,则y =-6,∴C (0,-6),设直线AC 的解析式为y =kx +b (k ≠0),∴0=-3k +b -6=b,解得:k =-2b =-6 ,∴直线AC 的解析式为y =-2x -6.∵抛物线对称轴为x =-42×2=-1,∴对于y =-2x -6,令x =-1,则y =-2×(-1)-6=-4,∴P (-1,-4);(3)解:设M点的坐标为(t,2t2+4t-6),当点M在点C下方时,过M点作MD⊥y轴于点D,当△CMN∽△COA时,∠MCD=∠OCA,∵∠CMN=∠MDN=90°,∴∠CMD+∠NMD=∠CMD+∠MCD=90°,∴∠NMD=∠MCD,∴△CMN∽△MDN,tan∠MCD=tan∠OCA=tan∠DMN=AOOC=1 2,即MDCD=DNMD=12,∴CD=2t ,DN=12t ,则OD=OC+CD=2t2+4t-6,即6+2t =2t2+4t-6,即6-2t=-2t2-4t+6,解得t=-1,点M和点N的坐标分别为M(-1,-8),N0,-17 2当△CMN∽△AOC时,可得CD=-12t,则-12t+6=-2t2-4t+6,解得t=-74,点M和点N的坐标分别为M-74,-558,N0,-838当t >0时,没有符合的点,存在点M ,N ,使得∠CMN =90°,点M 和点N 的坐标分别为M (-1,-8),N 0,-172 或M -74,-558 ,N 0,-838 .26如图,直线l 1经过A 92,0 、B 2,-5 两点,直线l 2:y =-x +3与直线l 1交于点C ,与x 轴交于点D .(1)求点C 的坐标;(2)点P 是y 轴上一点,当四边形PDCB 的周长最小时,求四边形PDCB 的面积;(3)把直线l 1沿y 轴向上平移9个单位长度,得到新直线l 3与直线l 2交于点E ,试探究在x 轴上是否存在点Q ,在平面内存在点F 使得以点D ,Q ,E ,F 为顶点的四边形是菱形(含正方形)?若存在,直接写出符合条件的点Q 的坐标;若不存在,说明理由.【答案】(1)点C 的坐标为4,-1 ;(2)S 四边形PDCB =9;(3)存在,点Q 的坐标为:1,0 ,3-22,0 ,3+22,0 ,-1,0 【详解】(1)解:设直线l 1的解析式为y =kx +b ,由直线l 1经过A 92,0、B 2,-5 两点可得:92k +b =02k +b =-5,解得k =2b =-9 ,∴直线l 1的解析式为y =2x -9,又∵直线l 2:y =-x +3与直线l 1交于点C ,∴-x +3=2x -9,解得x =4,当x =4时,则y =-1,∴点C的坐标为4,-1;(2)解:如图,作点D关于y轴的对称点D ,连接BD 交y轴于点P,连接DP,根据两点之间“线段最短”可知,当P、B、D 三点共线时,四边形PDCB的周长最小,直线l2:y=-x+3与x轴的交点为D3,0,又∵点D和点D 关于y轴对称,∴点D -3,0,∴DD =-3-3=6,设直线BD 的解析式为y=kx+b,可得-3k+b=02k+b=-5,解得k=-1b=-3,∴直线BD 的解析式为y=-x-3,令x=0,则y=-3,得点P0,-3,∴S△PDD=12DD ⋅y P =12×6×3=9,又∵AD =-3-9 2=152,AD=3-92=32,∴S△ABD=12AD ⋅y B =12×152×5=754,∴S△ACD=12AD⋅y C =12×32×1=34,∴S四边形PDCB =S△ABD-S△PDD-S△ACD=754-9-34=9;(3)解:由题意可得直线l3的解析式为y=2x,联立线l3与直线l2,即y=2xy=-x+3,解得x=1y=2,∴E(1,2),设Q(m,0),①当ED为菱形对角线时,QE=QD,即(m-1)2+(0-2)2=(3-m)2,解得m=1,∴Q(1,0);②当EQ为菱形对角线时,DE=DQ,∵DE=(3-1)2+(0-2)2=22,∴DQ=|3-m|=22,解得m=3-22或3+22,∴Q(3-22,0),Q(3+22,0);③当EF为菱形对角线时,EQ=ED,即(1-m)2+(2-0)2=(22)2,解得m=-1,∴Q(-1,0),综上:存在,点Q的坐标为:(1,0),(3-22,0),(3+22,0),(-1,0).27如图,已知一次函数y=kx+b的图像经过A(1,4),B(4,1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)若y 轴存在一点P 使PA +PB 的值最小,求此时点P 的坐标及PA +PB 的最小值;(3)在x 轴上是否存在一点M ,使△MOA 的面积等于△AOB 的面积;若存在请直接写出点M 的坐标,若不存在请说明理由.【答案】(1)y =-x +5;(2)P 0,175 ;34;(3)存在,-154,0 或154,0 【详解】(1)把A (1,4),B(4,1)代入y =kx +b 中,得4=k +b 1=4k +b ,解得k =-1b =5 ,∴一次函数的表达式为:y =-x +5;(2)作A (1,4)关于y 轴的对称点A ′(-1,4),连接A ′B 交y 轴于P 点,连接PA ,此时PA +PB 的值最小,且PA +PB =PA ′+PB =A ′B ,设A ′B 的表达式为y =mx +n ,则4=-m +n 1=4m +n ,解得m =-35n =175,∴直线A ′B 的表达式为y =-35x +175,当x =0时,y =175,∴P 0,175,且A B =(-1-4)2+(4-1)2=34,∴PA +PB 的最小值为34;(3)由y =-x +5得C (5,0),∴S △AOB =S △AOC -S △BOC=12×5×4-12×5×1=152,设M (xM ,yM ),∵S △MOA =S △AOB ,12x M ·y A =152,∴x M =154,∴x M =154或x M =-154,∴M 154,0 或-154,0 ,∴存在一点M ,使△MOA 的面积等于△AOB 的面积,且M 点的坐标为154,0或-154,0 .28如图,在平面直角坐标系中,直线AB 分别与x 轴的负半轴、y 轴的正半轴交于A 、B 两点,其中OA =2,S △ABC =12,点C 在x 轴的正半轴上,且OC =OB .(1)求直线AB 的解析式;(2)将直线AB 向下平移6个单位长度得到直线l 1,直线l 1与y 轴交于点E ,与直线CB 交于点D ,过点E 作y 轴的垂线l 2,若点P 为y 轴上一个动点,Q 为直线l 2上一个动点,求PD +PQ +DQ 的最小值;(3)若点M 为直线AB 上的一点,在y 轴上是否存在点N ,使以点A 、D 、M 、N 为顶点的四边形为平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)y =2x +4;(2)45;(3)存在以点A 、D 、M 、N 为顶点的四边形为平行四边形,N 的坐标为(0,-2)或(0,10)【详解】(1)解:(1)设OB =OC =m ,∵OA =2,∴AC =m +2,A (-2,0),∵S △ABC =12,∴12AC •OB =12,即12m •(m +2)=12,解得m =4或m =-6(舍去),∴OB =OC =4,∴B (0,4),设直线AB 解析式为y =kx +b ,∴0=-2k +b 4=b,解得k =2b =4 ,∴直线AB 解析式为y =2x +4;(2)将直线ABy =2x +4向下平移6个单位,则直线l 1解析式为y =2x -2,令x =0得y =-2,∴E (0,-2),垂线l 2的解析式为y =-2,∵B (0,4),C (4,0),设直线BC 解析式为y =px +q ,∴0=4p +q 4=q,解得p =-1q =4 ,∴直线BC 解析式为y =-x +4,由y =-x +4y =2x -2得:x =2y =2 ,∴D (2,2),作D 关于y 轴的对称点D ',作D 关于直线y =-2对称点D '',连接D 'D ''交y 轴于P ,交直线y =-2于Q ,此时PD +PQ +DQ 的最小,如图:∴D '(-2,2),D ''(2,-6),设直线D 'D ''解析式为y =sx +t ,则2=-2s +t -6=2s +t,解得s =-2t =-2 ,∴直线D 'D '解析式为y =-2x -2,令x =0得y =-2,即P (0,-2),令y =-2得x =0,即Q (0,-2),∴此时PD =25,PQ =0,DQ =25,∴PD +PQ +DQ 的最小值为45.(3)存在,理由如下:设P (p ,2p +4),N (0,q ),而A (-2,0),D (2,2),①以AD 、MN 为对角线,如图:此时AD 中点即为MN 中点,∴-2+2=p +00+2=2p +4+q,解得p =0q =-2 ,∴N (0,-2);②以AM 、DN 为对角线,如图:同理可得:-2+p =2+00+2p +4=2+q ,解得p =4q =10 ,∴N (0,10);③以AN 、DM 为对角线,如图:同理可得-2+0=p +20+q =2+2p +4,解得p =-4q =-2 ,∴N (0,-2),综上所述,以点A 、D 、M 、N 为顶点的四边形为平行四边形,N 的坐标为(0,-2)或(0,10).29在Rt △ABC 中,AB =BC ,在Rt △CEH 中,∠CEH =45°,∠ECH =90°,连接AE .(1)如图1,若点E 在CB 延长线上,连接AH ,且AH =6,求AE 的长;(2)如图2,若点E 在AC 上,F 为AE 的中点,连接BF 、BH ,当BH =2BF ,∠EHB +12∠HBF =45°时,求证:AE =CE;(3)如图3,若点E在线段AC上运动,取AE的中点F,作FH'∥BC交AB于H,连接BE并延长到D,使得BE=DE,连接AD、CD;在线段BC上取一点G,使得CG=AF,并连接EG;若点E在线段AC上运动的过程中,当ACD的周长取得最小值时,△AED的面积为25,请直接写出GE+BH′的值.【答案】(1)AE=6;(2)见解析;(3)GE+BH′=15+5102【详解】(1)解:在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵∠ECH=90°,∴∠ACH=45°,∴∠ACE=∠ACH,在Rt△CEH中,∠CEH=45°,∴∠CHE=45°,∴CE=CH,∵AC=AC,∴△ACE≌△ACH(SAS),∴AE=AH=6;(2)证明:如图1,连接BE,设BH与AC交于点G,∵∠BCE=∠CEH=45°,∴EH⎳BC,∴∠EHB=∠CBG,∵∠ABC=90°,∴12∠CBG+12∠HBF+12∠ABF=45°,∵∠EHB+12∠HBF= 45°,∴∠EHB=12∠CBG+12∠ABF,∴∠CBG=∠ABF,∵AB=AC,∠A=∠ACB=45°,∴△ABF≌△CBG(ASA),∴BG=BF,∵BH=2BF,∴BH=2BG,∵∠HEG=∠BCG=45°,∠EGH=∠CGB,∴△EGH≌△CGB(AAS),∴EG=CG,∴四边形EBCH是平行四边形,∴BE⎳CH,∴∠BEG=∠ECH=90°,∴AE=CE;(3)解:如图2,作DN∥AC,作点A关于直线DN′的对称点A′,连接A′C交DN于D′,连接BD′,交AC与E′,则当点D在D′处,点E在点E′处时,△ACD的周长最小,此时△ACD为等腰直角三角形,∵S△ADE=12AE2=25,∴AE′=52,∴AC=2AE′=102,∴AB=BC=22AC=10,∵AF=12AE=522,∴H′F=AH′=22AF=52,∴BH′=10-52=152,∵AF=CG,∠BAF=∠BCA=45°,AB=CE′,∴△ABF≌△CE′G(SAS),∴BF=E′G,∴E′G=BF=BH 2+FH 2=1522+52 2=5210,∴GE+BH′= 15+5102.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学总复习:专题52 中考数学最值问题
在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领
(1)两点之间线段最短;
(2)直线外一点与直线上所有点的连线段中,垂线段最短;
(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领
1.二次函数的最值公式
二次函数y ax bx c =++2
(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a
=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a
=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22
++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
【例题1】(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.
【答案】√3.
【解析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG∥AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+GD的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线上,作点D关于定直线的对称点M,连接CM交定直线于AE,解直角三角形即可得到结论.
∵在边长为1的菱形ABCD中,∠ABC=60°,
∴AB=CD=1,∠ABD=30°,
∵将△ABD沿射线BD的方向平移得到△EGF,
∴EG=AB=1,EG∥AB,
∵四边形ABCD是菱形,
∴AB=CD,AB∥CD,
∴∠BAD=120°,
∴EG=CD,EG∥CD,
∴四边形EGCD是平行四边形,
∴ED=GC,
∴EC+GC的最小值=EC+ED的最小值,
∵点E在过点A且平行于BD的定直线上,
∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,
∵∠EAD=∠ADB=30°,AD=1,
∴∠ADM=60°,DH=MH=1
2AD=
1
2,
∴DM=1,
∴DM=CD,
∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,
∴CM=2×√3
2CD=√3.
【对点练习】(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.
【答案】15.
【解析】作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.
解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.
∵BA=BA′,∠ABD=∠DBA′=30°,
∴∠ABA′=60°,
∴△ABA′是等边三角形,
∵四边形ABCD是矩形,
∴AD=BC=10,
在Rt△ABD中,AB=
AD
tan30°
=10√3,
∵A′H⊥AB,
∴AH=HB=5√3,
∴A′H=√3AH=15,
∵AM+MN=A′M+MN≤A′H,
∴AM+MN≤15,
∴AM+MN的最小值为15.
【例题2】(2020•襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,
八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
【分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.
(3)根据(2)的结论列不等式解答即可.
【解析】(1)当0≤x≤50是,设y=kx,根据题意得50k=1500,
解得k=30;
∴y=30x;
当x>50时,设y=k1x+b,
根据题意得,
{50k+b=1500
70k+b=1980,解得{k=24
b=300,。