《用尺规作三角形》同步练习1

合集下载

北师大版七年级下册数学 4.4 用尺规作三角形 同步练习(含答案)

北师大版七年级下册数学 4.4 用尺规作三角形 同步练习(含答案)

4.4 用尺规作三角形同步练习一.选择题1.尺规作图是指()A.用量角器和刻度尺作图 B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图 D.用量角器和无刻度的直尺作图2.如图,两钢条中点连在一起做成一个测量工件,AB的长等于内槽宽A'B',那么判定△OAB≌△OA'B'的理由是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4. 如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS6.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理()A.SAS B.HL C.AAS D.ASA7.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第块.8.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD=a,EH=b,则四边形风筝的周长是.9.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.10.如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB= ;(2)分别以、为圆心,以为半径画弧,两弧交于C点;(3)连接、,则△ABC就是所求作的三角形.11.作图题的书写步骤是、、,而且要画出和结论,保留.12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.13.如图,已知△ABC,用尺规作出△ABC的角平分线BD.(保留作图的痕迹,不写作法)14.如图所示,要测量河两岸相对的两点A,B的距离,因无法直接量出A,B两点的距离,请你设计一种方案,求出A,B的距离,并说明理由.15.数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.一.选择题1.【答案】C;【解析】尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.2.【答案】B;【解析】∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OB′=OA,∵∠AOB=A′OB′,∴△AOB≌△A′OB′.所以AB的长等于内槽宽A'B',用的是SAS的判定定理.3.【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.4.【答案】C;【解析】根据已知所给条件,结合图形中隐含的公共边条件,可以得到A、B、D中的三角形是可以全等,唯有C答案中的两个三角形不能全等,所以答案为C.5.【答案】D;【解析】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角角边”定理作出完全一样的三角形.故选D.6.【答案】C ;【解析】作出图形,利用“角角边”证明全等三角形的判定即可.二.填空题7.【答案】2;【解析】解:1、3、4块玻璃不同时具备包括一条完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.8.【答案】2a+2b;【解析】△DEH和△DFH中ED=FD,∠EDH=∠FDH,DH=DH∴△DEH≌△DFH∴EH=FH=b又∵ED=FD=a,EH=b∴该风筝的周长=2a+2b.9.【答案】SAS;【解析】用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.10.【答案】a;A;B;2a;AC,BC;【解析】作法:(1)作一条线段AB=a;(2)分别以A、B为圆心,以 2a为半径画弧,两弧交于C点;(3)连接AC、BC,则△ABC就是所求作的三角形.11.【答案】已知、求作、作法,图形,作图痕迹;【解析】作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.12. 【答案】75°.【解析】如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°.三.解答题13. 【解析】解:如图:14.【解析】解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.15. 【解析】证明:在△AOE和△COE中,,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,同理∠COE=∠FOD,∴∠AOE=∠EOF=∠FOD.。

初中数学冀教版八年级上册第十三章 全等三角形13.4 三角形的尺规作图-章节测试习题(1)

初中数学冀教版八年级上册第十三章 全等三角形13.4 三角形的尺规作图-章节测试习题(1)

章节测试题1.【答题】下列关于尺规作图的语句错误的是().A. 作,使B. 以点为圆心作弧C. 以点为圆心,线段的长为半径作弧D. 作,使【答案】B【分析】根据基本作图的方法,逐项分析,从而得出结论.【解答】作弧不仅需要确定圆心,还需要确定半径,B选项错误.选B.2.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。

故C。

方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。

3.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。

4.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.5.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.6.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.7.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.8.【答题】一个角的平分线的尺规作图的理论依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】连接NC,MC,在△ONC和△OMC中,∵ ON=OM ,NC=MC,OC=OC ,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,选B.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】已知:∠AOB作法:(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.(3)以点O'为圆心,以OC长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A. 平分已知角B. 作一个角等于已知角C. 作一个三角形等于已知三角形D. 作一个角的平分线【答案】B【分析】这个作图题属于基本作图中的作一个角等于已知角.【解答】选:B .14.【答题】如图所示,点在的边上,用尺规作出了,作图痕迹中,是().A. 以点为圆心,为半径的弧B. 以点为圆心,为半径的弧C. 以点为圆心,为半径的弧D. 以点为圆心,为半径的弧【答案】D【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB 即可,然后再根据作一个角等于已知角的作法解答.【解答】根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.选D.方法总结:本题主要考查了作图-基本作图,解题的关键是熟习作一个角等于已知角的方法.15.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.16.【答题】已知点C在∠AOB的OB边上,用尺规过点C作CN∥OA,作图痕迹如图所示.下列对弧FG的描述,正确的是( )A. 以点C为圆心,OD的长为半径的弧B. 以点C为圆心,OM的长为半径的弧C. 以点E为圆心,DM的长为半径的弧D. 以点E为圆心,CE的长为半径的弧【答案】C【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB 即可,然后再根据作一个角等于已知角的作法解答.【解答】解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,弧FG是以点E为圆心,DM为半径的弧.选C.17.【答题】用直尺和圆规作一个角等于已知角,如图,能得出的依据是 ( )A.B.C.D.【答案】B【分析】过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.【解答】作图的步骤:①以O为圆心,任意长为半径画弧,分别交OB、OA于点C、D;②任意作一点O′,作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′,所以∠A′O′B′就是与∠AOB相等的角;理由:在△OCD与△O′C′D′中,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS,选B.18.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.19.【答题】用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A.B.C.D.【答案】D【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】A、由图示可知应用了垂径定理作图的方法,所以CD是Rt△ABC斜边AB上的高线,不符合题意; B、由直径所对的圆周角是直角可知∠BDC=90°,所以CD是Rt△ABC斜边AB上的高线,不符合题意; C、根据相交两圆的公共弦被连接两圆的连心线垂直平分可知,CD是Rt△ABC斜边AB上的高线,不符合题意; D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.选D.方法总结:本题主要考查尺规作图,能正确地确定作图的步骤是解决此类问题的关键.20.【答题】一个角的平分线的尺规作图的理论依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【解答】解:连接NC,MC,在△ONC和△OMC中,∵,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,选B.。

湘教版八年级数学上册《2.6用尺规作三角形》同步练习(含答案)

湘教版八年级数学上册《2.6用尺规作三角形》同步练习(含答案)

2.6用尺规作三角形同步检测一、选择题1.下列作图语言规范的是()A. 过点P作线段AB的中垂线B. 过点P作∠AOB的平分线C. 在直线AB的延长线上取一点C,使AB=ACD. 过点P作直线AB的垂线2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG ,交BC边于点D .则∠ADC的度数为()A. 40°B. 55°C. 65°D. 75°3.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线4.如图,已知△ABC ,∠ABC=2∠C ,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P ,作射线BP交AC于点,则下列说法不正确的是()A. ∠ADB=∠ABCB. AB=BDC. AC=AD+BDD. ∠ABD=∠BCD5.已知线段a,求作等边三角形ABC,使AB=a,作法如下:①作射线AM;②连结AC、BC;③分别以点A和点B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB,使AB=a.其合理顺序为()A. ①②③④ B. ①④②③C. ①④③②D. ②①④③6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于BC长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的个数为()A. 1个B. 2个C. 3个D. 4个7.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定8.观察图中尺规作图痕迹,下列结论错误的是()A. PQ为∠APB的平分线B. PA=PBC. 点A、B到PQ的距离不相等D. ∠APQ=∠BPQ9.按下列条件画三角形,能唯一确定三角形形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个300的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.一个三角形木板,去了一个角,你能作出所缺角的平分线所在的直线吗?________(填“能”或“不能”)12.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规在边AC上作一点P,且使PA=PB(不写作法,保留作图痕迹);________(2)当∠B=________ 度时,PA:PC=2:1.13.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB ,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________14.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是________15.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是________ .16.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F 为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为________度.17.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为________18.已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c.①以点B为圆心,c为半径圆弧;②连接AB,AC;③作BC=a;④以C点为圆心,b为半径画弧,两弧交于点A.作法的合理顺序是________三、解答题19.如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)20.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.21.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.22.如图,已知点E在直线AB外,请用三角板与直尺画图,并回答第(3)题:①过E作直线CD,使CD∥AB;②过E作直线EF,使EF⊥AB,垂足为F;③请判断直线CD与EF的位置关系,并说明理由.23.如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)24.按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.参考答案一、选择题1.D2. C3.C4.B5.C6.C7.C8. C9.D 10.D二、填空题11.能 12.;60 13.③⑤ 14.SSS15.到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.16.32 17.65° 18.③①④②.三、解答题19.解:20.解:作法:①做∠DO'B'=∠AOB;②在∠DO'B'的外部做∠A'OD=∠AOB,∠A'O'B'就是所求的角.21.(1)解:如图,AP为所作;(2)解:∵AD∥BC,∴∠DAP=∠APB=55°,∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB,∴BA=BP,∵BE=FE,AE平分∠BAF,∴△ABF为等腰三角形,∴AB=AF,∴AF=BP,而AF∥BP,∴四边形ABPF是平行四边形,∵AB=BP,∴四边形ABPF是菱形.22.解:①、②如图所示:③CD⊥EF.理由:∵CD∥AB,∴∠CEF=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CEF=90°,∴CD⊥EF.23.解:如图,△ABC就是所求三角形.24.解:(1)如图所示:BE即为所求;(2)如图所示:BF即为所求;(3)如图所示:AG即为所求.。

鲁教版初中数学七年级上册《三角形的尺规作图》同步练习1

鲁教版初中数学七年级上册《三角形的尺规作图》同步练习1

1.4 三角形的尺规作图一、判断题1.只要知道三角形的三个基本元素,就可以作出惟一的三角形.()2.用量角器作一个角等于已知角也是尺规作图的一种.()3.已知两边和一角一定能做出惟一的三角形.()4.作一个角等于已知角是尺规作图中的最常用的基本作图之一.()二、填空题1.在几何里,把只用_________和_________画图的方法称为尺规作图.2.完成下列作图语言:(1)作射线_________(2)以点O为圆心,以OB为半径画弧,交射线_________于点B.(3)延长线段_________到_________,使_________=_________.(4)以_________为圆心,以_________为半径作弧,交_________于_________,交_________于_________.三、选择题1.尺规作图的画图工具是()A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.利用基本作图,不能作出惟一三角形的是()A.已知两边及其夹角B.已知两角及夹边C.已知两边及一边的对角D.已知三边3.已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和4.用尺规画直角的正确方法是()A.用量角器B.用三角板C.平分平角D.作两个锐角互余5.作△ABC的高AD,中线AE,角平分线AF,三者中有可能画在△ABC外的是()A.ADB.AEC.AFD.都有可能四、用尺规作图已知线段a及锐角α,求作:三角形ABC,使∠C=90°,∠B=∠α,BC=a.(1)(2)(3)作法:1.作∠MCN=90°.2.以_________为圆心,_________为半径,在CM上截取_________.3.以_________为顶点,_________为一边作∠ABC=_________交CN于点A连结AB,则△ABC即为所作的三角形.参考答案一、1.× 2.× 3.× 4.√二、1.直尺圆规2.(1)OA(2)OA(3)AB C BC AB(4)O OD OA D OB E三、1.D 2.C 3.C 4.C 5.A四、2.C a CB=a3.B BC∠α。

初一数学用尺规作三角形试题

初一数学用尺规作三角形试题

初一数学用尺规作三角形试题1.(2014•滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.点评:此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.2.(2014•湖州)如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.点评:本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.3.(2014•河西区模拟)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS【答案】D【解析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4.(2014•崇左)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS【答案】C【解析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选:C.点评:本题考查了全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.5.(2013•咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1C.2a﹣b=1D.2a+b=1【答案】B【解析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.6.(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【答案】D【解析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.7.(2012•河北)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【答案】D【解析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB即可,然后再根据作一个角等于已知角的作法解答.解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,是以点E为圆心,DM为半径的弧.故选D.点评:本题考查了基本作图,根据题意,判断出题目实质是作一个角等于已知角是解题的关键.8.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B.边角边C.角边角D.角角边【答案】A【解析】通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.9.如图,已知线段AB,以下作图不可能的是()A.在AB上取一点C,使AC=BCB.在AB的延长线上取一点C,使BC=ABC.在BA的延长线上取一点C,使BC=ABD.在BA的延长线上取一点C,使BC=2AB【答案】C【解析】根据线段垂直平分线上的点到线段两端的距离相等作图.解:A、可能,只要做AB的垂直平分线即可;B、可能,在AB的延长线上取一点C,使BC=AB;C、不可能,因为BC始终大于AB;D、可能,在BA的延长线上取一点C,使BC=2AB.故选C.点评:此题根据线段垂直平分线上的点到线段两端的距离相等作图,比较简答.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1B.2C.3D.4【答案】D【解析】根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.根据直角三角形中30°角所对的直角边等于斜边的一半可得④正确.解:①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故③说法正确,④∵∠C=90°,∠B=30°,∴AB=2AC,故选:D.点评:此题主要考查了角平分线的做法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.。

北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(9)

北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(9)

北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.选择题(共12小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°3.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图所示的作图痕迹作的是()A.线段的垂直平分线B.过一点作已知直线的垂线C.一个角的平分线D.作一个角等于已知角5.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°6.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个7.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A.100°B.65°C.75°D.105°8.如图,已知∠AOB.小明按如下步骤作图:(1)以点O为圆心,适当长为半径画弧,交OA于D,交OB于点E.(2)分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.根据上述作图步骤,下列结论正确的是()A.射线OC是∠AOB的平分线B.线段DE平分线段OCC.点O和点C关于直线DE对称D.OE=CE9.如图,已知△ABC,∠ABC=2∠C,以B为圆心任意长为半径作弧,交BA、BC于点E、F,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P,作射线BP交AC 于点D,则下列说法不正确的是()A.∠ADB=∠ABC B.AB=BD C.AC=AD+BD D.∠ABD=∠BCD 10.已知Rt△ABC中,∠ABC=90°,点D是BC中点,分别过B、C为圆心,大于线段BC 长为半径作弧,两弧交于点P,作直线PD交AC于点E,连接BE,则下列结论中不正确的是()A.ED⊥BC B.BE平分∠AEDC.E为△ABC的外接圆圆心D.ED=AB11.已知两角及夹边作三角形,所用的基本作图方法是()A.作已知角的平分线B.作已知线段的垂直平分线C.过一点作已知直线的高D.作一个角等于已知角和作一条线段等于已知线段12.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.选择题(共12小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线【分析】利用线段垂直平分线的作法进而判断得出答案.【解答】解:如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.故选:A.【点评】此题主要考查了基本作图,正确把握作图方法是解题关键.2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.3.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.4.如图所示的作图痕迹作的是()A.线段的垂直平分线B.过一点作已知直线的垂线C.一个角的平分线D.作一个角等于已知角【分析】根据图形发现此基本作图为过直线外一点作已知直线的垂线,据此求解.【解答】解:观察作图痕迹发现该基本作图为:过直线外一点作已知直线的垂线.故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解五个基本作图,只要了解这五个基本作图解决本题就很简单了.5.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故选:A.【点评】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.6.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.【解答】解:根据作法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.7.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A.100°B.65°C.75°D.105°【分析】利用等腰三角形的性质结合三角形内角和定理得出∠ABC=∠C=50°,再利用角平分线的性质与作法得出即可.【解答】解:∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由题意可得:BD平分∠ABC,则∠ABD=∠CBD=25°,∴∠BDC的度数为:∠A+∠ABD=105°.故选:D.【点评】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.8.如图,已知∠AOB.小明按如下步骤作图:(1)以点O为圆心,适当长为半径画弧,交OA于D,交OB于点E.(2)分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.根据上述作图步骤,下列结论正确的是()A.射线OC是∠AOB的平分线B.线段DE平分线段OCC.点O和点C关于直线DE对称D.OE=CE【分析】根据题干中的作图步骤得到OC是∠AOB的平分线,从而确定正确的选项.【解答】解:根据作图过程可知:OC是∠AOB的平分线,故选:A.【点评】本题考查了基本作图的知识,解题的关键是了解如何平分已知角,难度不大.9.如图,已知△ABC,∠ABC=2∠C,以B为圆心任意长为半径作弧,交BA、BC于点E、F,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P,作射线BP交AC 于点D,则下列说法不正确的是()A.∠ADB=∠ABC B.AB=BD C.AC=AD+BD D.∠ABD=∠BCD 【分析】根据作图方法可得BD平分∠ABC,进而可得∠ABD=∠DBC=∠ABC,然后根据条件∠ABC=2∠C可证明∠ABD=∠DBC=∠C,再根据三角形内角和外角的关系可得A说法正确;根据等角对等边可得DB=CD,进而可得AC=AD+BD,可得C说法正确;根据等量代换可得D正确.【解答】解:由题意可得BD平分∠ABC,A、∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC,∵∠ABC=2∠C,∠ADB=∠C+∠DBC,∴∠ADB=2∠C,∴∠ADB=∠ABC,故A不合题意;B、∵∠A≠∠ADB,∴AB≠BD,故此选项符合题意;C、∵∠DBC=∠ABC,∠ABC=2∠C,∴∠DBC=∠C,∴DC=BD,∵AC=AD+DC,∴AC=AD+BD,故此选项不合题意;D、∵∠ABD=∠ABC,∠ABC=2∠C,∴∠ABD=∠C,故此选项不合题意;故选:B.【点评】此题主要考查了基本作图,以及等腰三角形的判定和性质,关键是掌握角平分线的作法.10.已知Rt△ABC中,∠ABC=90°,点D是BC中点,分别过B、C为圆心,大于线段BC 长为半径作弧,两弧交于点P,作直线PD交AC于点E,连接BE,则下列结论中不正确的是()A.ED⊥BC B.BE平分∠AEDC.E为△ABC的外接圆圆心D.ED=AB【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴AED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴B、EB平分∠AED错误;C、E为△ABC的外接圆圆心正确;D、ED=AB正确,故错误的为B,故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.11.已知两角及夹边作三角形,所用的基本作图方法是()A.作已知角的平分线B.作已知线段的垂直平分线C.过一点作已知直线的高D.作一个角等于已知角和作一条线段等于已知线段【分析】根据题意可得作图过程中需要作一条线段等于已知线段,然后再作两个角等于已知角.【解答】解:两角及夹边作三角形,所用的基本作图方法是作一个角等于已知角和作一条线段等于已知线段.故选:D.【点评】此题主要考查了基本作图,关键是掌握基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.12.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.。

七年级数学下册4.4用尺规作三角形同步练习1(新版)北师大版

七年级数学下册4.4用尺规作三角形同步练习1(新版)北师大版

4.4 用尺规作三角形基础训练1.基本尺规作图包括:①作一条线段等于___________;②作一个角等于___________;③作一个角的___________;④作一条线段的___________;⑤过一点作已知直线的___________.2.尺规作图的画图工具是( )A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规3.如图,用尺规作出∠OBF=∠AOB,作图痕迹是( )A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧4.利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“”.5.已知三边作三角形,用到的基本作图是( )A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和6.利用基本作图方法,不能作出唯一三角形的是( )A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边7.根据下列已知条件,能唯一画出△ABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=1D.∠C=90°,AB=68.如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A.SSSB.SASC.ASAD.AAS9.下列尺规作图,能判断AD是△ABC边上的高是( )10.如图,已知线段a,b和∠α=40°,你能作出符合如下要求的唯一三角形吗?AB=a,BC=b,∠A=∠α,若能,写出作法;若不能,请说明理由.11.如图是数轴的一部分,其单位长度为a,已知在△ABC中,AB=3a,BC=4a,AC=5a.用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法).12.如图,已知线段a,c,∠α.求作△ABC,使BC=a,AB=c,∠ABC=∠α.提升训练13.如图,已知∠α,∠β且∠α>∠β.求作∠γ,使∠γ=∠α-∠β.14.市政建筑公司要在学校东面分别建造一座桥和一个汽车站(汽车站在学校的正东方向),桥在汽车站北面,现已知学校到桥、桥到汽车站及学校到汽车站的距离分别为500 m,500 m,250 m,请根据以上信息确定桥与汽车站应分别建在何处,在下面图纸上标出来(不写作法,保留作图痕迹);这三个场所构成一个什么形状的三角形?15. “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).参考答案1.【答案】①已知线段②已知角③平分线④垂直平分线⑤垂线2.【答案】D3.【答案】D4.【答案】(1)SAS (2)ASA (3)SSS5.【答案】C解:在已知三边作三角形时,是作边等于已知线段,即作一条线段等于已知线段.6.【答案】C解:能作出唯一三角形的是能够得出三角形全等的条件,“已知两边及一边的对角”,即“SSA”是不能判定三角形全等的.7.【答案】A 8.【答案】C 9.【答案】B10.解:如图,能作出两个三角形:△ABC'和△ABC,所以不能作出唯一的符合要求的三角形.理由:SSA不能说明两个三角形全等,所以一般情况下,已知两边和其中一边的对角不能作出唯一的三角形.11.解:如图.解:作法如下:(1)在数轴上截取AC=5a.(2)分别以A,C为圆心,以3a,4a为半径画弧,两弧相交于点B.(3)连接AB,BC,则△ABC即为所求作的三角形.12.解:(1)作∠MBN=∠α.(2)在射线BM上截取BA=c,在射线BN上截取BC=a.(3)连接AC,则△ABC即为所求作的三角形(如图).13.解:如图.(1)作射线OA.(2)以OA为一边,作∠BOA,使∠BOA=∠α.(3)以OB为一边在∠AOB内作∠BOC,使∠BOC=∠β,则∠AOC=∠α-∠β.故∠AOC=∠γ就是所求作的角.14.解:如图,A为汽车站的位置,B为桥的位置,这三个场所构成一个等腰三角形.15.解:(1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)只有a=2,b=3,c=4的一个三角形.如图,△ABC即为满足条件的三角形.。

2020北师大版七年级数学下册 4.4用尺规作三角形同步训练(含解析)

2020北师大版七年级数学下册 4.4用尺规作三角形同步训练(含解析)

4.4用尺规作三角形同步训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,用尺规作AOB∠的平分线的方法如下:以O为圆心,任意长为半径画弧交OA,OB于点C,D,再分別以点C,D为圆心,大于12CD的长为半径画弧,两弧交于点P,作射线OP.由作法得OGP ODP∆≅∆,从而得两角相等.那么这两个三角形全等的根据是()A.SAS B.SSS C.AAS D.ASA2.根据下列条件作出的三角形不唯一是()A.AB=6,∠A=60°,∠C=40° B.AB=5,BC=4,CA=6C.AB=5,AC=4,∠C=40° D.∠A=50°,AB=8,AC=63.根据下列条件不能唯一画出∆ABC的是( )A.AB=5,BC=6,AC=7B.AB=5,BC=6,∠B=45︒C.AB= 5,AC=4,∠C= 90︒D.AB=5,AC=4,∠C=45︒4.已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和5.根据下列已知条件,能画出唯一∠ABC的是()A.AB=3,BC=4,AC=8B.∠A=100°,∠B=45°,AB=5C.AB=3,BC=5,∠A=75°D.∠C=90°,∠A=30°,∠B=60°6.以下列各组线段为边,能组成三角形的是( )A.2、2、4B.2、6、3C.8、6、3D.11、4、6 7.如图所示,∠ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三A.2B.4C.6D.88.利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A.已知三条边B.已知三个角C.已知两角和夹边D.已知两边和夹角二、填空题9.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.10.如图,作一个角等于已知角,其尺规作图的原理是________(填SAS,ASA,AAS,SSS).11.下列四种基本尺规作图分别表示:∠作一个角等于已知角;∠作一个角度平分线;∠做一条线段的垂直平分线;∠过直线外一点作已知直线的垂线.则对应选项中做法错误的是_____.∆全等的格点三角形(顶点都是小正方形的顶点的三角形称12.如图,画出一个与ABC∆)?并画为格点三角形),在图中共可以画出________个符合题意的三角形(不包括ABC出其中4个。

初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题(1)

初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题(1)

章节测试题1.【答题】尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法______.【答案】SSS【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理.【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS,即边边边公理.故答案为:SSS.2.【答题】画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=______AB.【答案】6【分析】先根据题意分别画出各线段.再比较大小.【解答】(1)画线段AB;(2)延长线段AB到点C,使BC=2AB;(3)反向延长AB到点D,使AD=AC;由图可知,BC=2AB,AD=AC=3AB,故CD=6AB.3.【答题】如图,作一个角等于已知角,其尺规作图的原理是______(填SAS,ASA,AAS,SSS).【答案】SSS【分析】根据作图过程以及全等三角形的判定方法进行判断解答.【解答】解:根据作图过程可知,OC=O′C′,OD=O′D′,CD=C′D′,∴利用的是三边对应成比例,两三角形全等,即作图原理是SSS.故答案为:SSS.4.【答题】如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB=______;(2)分别以______、______为圆心,以______为半径画弧,两弧交于C点;(3)连接______、______,则△ABC就是所求作的三角形.【答案】a,A,B,2a,AC,BC【分析】可先作出长2a的线段;作出底边,进而作出两腰的交点,连接顶点和底边的端点即可.【解答】解:作法:(1)作一条线段AB=a;(2)分别以A、B为圆心,以 2a为半径画弧,两弧交于C点;(3)连接AC、BC,则△ABC就是所求作的三角形.故答案为a;A;B;2a;AC,BC.5.【题文】已知:线段,,求作:,使,.【答案】答案见解析【分析】首先作进而以B为圆心的长为半径画弧,再以为圆心为半径画弧即可得出的位置.【解答】解:如图所示:△ABC即为所求.6.【题文】已知:线段、、;求作:△ABC,使,,;【答案】答案见解析【分析】先画出与相等的角,再画出的长,连接,则即为所求三角形.【解答】解:如图所示:①先画射线BC,②以α的顶点为圆心,任意长为半径画弧,分别交α的两边交于为A′,C′;③以相同长度为半径,B为圆心,画弧,交BC于点F,以F为圆心,C′A′为半径画弧,交于点E;④在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC,结论:△ABC即为所求三角形.7.【题文】已知:如图所示,线段a,m,h(m>h),O为线段a的中点.求作:ΔABC,使它的一边等于a,这条边上的中线和高分别等于m和h(m>h).【答案】见解析.【分析】(1)作直角ΔAED,使∠AED=90°,AE=h,AD=m(AD在AE右侧);(2)延长ED到B,使DB=a;(3)在DE上截取DC=a;(4)连接AB,AC.则ΔABC得求.【解答】作法:如图所示.(1)作ΔAED,使∠AED=90°,AE=h,AD=m(AD在AE右侧);(2)延长ED到B,使DB=a;(3)在DE上截取DC=a;(4)连接AB,AC.则ΔABC即为所求作的三角形.【方法方法总结】本题目是一道尺规作图,灵活运用直角三角形的判定——HL,再确定BC的位置,连接AB、AC即可.难度较大.8.【题文】已知:任画两条线段a,b(a>b).求作:边长为a-b的等边三角形(三边长相等).【答案】见解析.【分析】根据SSS定理作图.【解答】如图所示.(1)作线段BC=a-b;(2)分别以B,C为圆心,a-b长为半径在BC同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.9.【题文】已知:任意画出一个∠α、一个∠β(都是锐角)和一条线段a.求作:ΔA BC,使∠A=∠α,∠B=∠β,AC=a.【答案】见解析.【分析】根据ASA作图.【解答】作在AE上截AC=a.作,交AF于点B. 即为所求.10.【题文】已知:任画一条线段a.求作:等腰三角形(两腰长相等),使底边长为2a,腰长为3a.【答案】作法见解析.【分析】根据SSS定理作图.【解答】作法:如图所示.(1)作线段BC=2a;(2)分别以B,C为圆心,3a长为半径在BC同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.11.【题文】已知,求作,使,根据下图填空:作法:()作射线__________;()以点____为圆心,以任意长为半径画弧,交于点_____,交______于点_____;()以点_____为圆心,以______长为半径画弧,交于点_______;()以点______为圆心,以______长为半径画弧,交前面的弧于点;()过点_______作射线_______,则________就是所求作的角.【答案】【分析】根据做一个角等于已知角的方法即可.【解答】作法:()作射线;()以点O为圆心,以任意长为半径画弧,交于点C,交OB于点D;()以点O′为圆心,以OC长为半径画弧,交于点C′;()以点C′为圆心,以CD长为半径画弧,交前面的弧于点;()过点D′作射线OB′,则就是所求作的角.故答案为:();()O C, OB,D;()O′,OC,C′;()C′,CD,;()D′,OB′,.12.【题文】利用尺规,用三种不同的方法作一个是三角形与已知直角三角形ABC 全等,并简要说明理由。

用尺规作三角形试题与答案

用尺规作三角形试题与答案

教师填写内容考查【 】命题人张媛绝密★启用前用尺规作三角形测试时间:20分钟一、选择题1.利用尺规作图作出的三角形不唯一的是( )A.已知三边B.已知两边及其夹角C.已知两角及其夹边D.已知两边及其中一边的对角2.已知三边作三角形,所用到的知识是( )A.作一个角等于已知角B.在射线上截取一条线段等于已知线段C.平分一个已知角D.作一条直线的垂线3.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A'O'B'=∠AOB的依据是( )A.SSSB.SASC.ASAD.AAS4.(2018河北秦皇岛抚宁期末)根据已知条件,能画出唯一△ABC的是( )A.AC=4,AB=5,BC=10B.AC=4,AB=5,∠B=60°C.∠A=50°,∠B=60°,AB=2D.∠C=90°,AB=5二、填空题5.我们知道只要三角形的三边长度确定了,那么它的形状和大小是固定不变的,这说明三角形具有性;作一个三角形,使它与已知三角形全等的理论依据有.6.已知一条线段作等边三角形,使其边长等于已知线段的长,则作图的依据是.7.如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以作出个.三、解答题8.如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B.(保留作图痕迹,不写作法)9.(2017北京昌平临川育人学校月考)尺规作图:已知∠α,线段a,b.(如图)求作:△ABC,使∠A=∠α,AB=a,AC=b.(不写作法,保留痕迹)10.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图的方法画一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹)横线以内不许答题参考答案 一、选择题1.答案D2.答案 B 已知三边作三角形实际上就是作线段等于已知线段.3.答案 A由作法知,OC=OD=O'C'=O'D',CD=C'D'.由SSS 可知,△OCD≌△O'C'D',从而说明∠A'O'B'=∠AOB,故选A.4.答案 C A.AC+AB=4+5=9<10=BC,三边不能组成三角形,A 不正确;B.∵AC=4,AB=5,∠B=60°,SSA 不能证出两三角形全等,∴AC=4,AB=5,∠B=60°不能确定唯一的三角形,B 不正确;C.∵∠A=50°,∠B=60°,AB=2,ASA 能证出两三角形全等,∴∠A=50°,∠B=60°,AB=2能确定唯一的三角形,C 正确;D.∵∠C=90°,AB=5,缺少证明两三角形全等的条件,∴∠C=90°,AB=5不能确定唯一的三角形,D 不正确.故选C.二、填空题5.答案 稳定;SSS 、SAS 、ASA 、AAS6.答案 SSS7.答案 4解析 可以使B 、D 为对应顶点,C 、E 为对应顶点,这样可以分别在DE 的上下方各作一个三角形,同理,使B 、E 为对应顶点,C 、D 为对应顶点,也可以作2个三角形,故一共可作4个满足条件的三角形.三、解答题8.解析 如图所示,△ABC 即为所求.9.解析 如图,△ABC 即为所求作的三角形.10.解析 如图所示,△ABC 就是所求作的三角形.。

用尺规作三角形

用尺规作三角形

4.数学活动课上,老师拿了一个三角形硬纸板(△ABC),让每 位同学制作一个大小相同的模型,小明测量了三个角∠A, ∠B,∠C的大小,小丽测量了三角形的三条边AB,BC,AC的
长度,小亮测量了AB,BC的长度和∠C的大小,然后都各自按
照自己的测量数据作出相应的三角形,这三位同学谁能作出 符合要求的图形.________(填他们的名字).
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
4 用尺规作三角形
1
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
1.尺规作图的工具:圆规和直尺 ___________. 已知角 2.作三角形用到的基本作图:(1)作一个角等于 _______;(2) 作
已知线段
16
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
5. 利用尺规作图,在下列条件中不能作出惟一直角三角形的

( (A)已知两个锐角 (B)已知一直角边和一个锐角 (C)已知两条直角边
)
(D)已知一个锐角和斜边
17
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
(A)已知底边及底边上的高 (B)已知底边及顶角 (C)已知底边上的高及腰 (D)已知两底角
)
8
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
【解析】选D.已知底边和底边上的高,可以判定两个三角形
全等,所以A可作;已知底边和顶角,AAS或ASA能判定两个三
角形全等,所以B可作;已知底边上的高及腰,可以判定两个 三角形全等,所以C可作;已知两底角,AAA不能判定两个三 角形全等,所以D不可作.

北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(3)

北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(3)

北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS 10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=°.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:;直线AC与EF的位置关系是:.29.用尺规作出△ABC的中线AD.30.如图,已知△ABC中,∠ACB>∠ABC,用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹)31.如图,已知∠AOB,求作∠ECF,使∠ECF=∠AOB.(要求:尺规作图,保留作图痕迹,不写作法)32.如图,平面上有三点A、B、C,(1)按下列要求画出图形:①、画直线AB;②、画射线AC;③连接BC;(2)写出图中有哪几条线段;(3)指出图中有几条射线,并写出其中能用字母表示的射线(不再添加字母).33.拿起圆规和直尺,耐心做一做,不写作法,保留作图痕迹.已知线段a、b,作线段AB=2a﹣b(要求:保留作图痕迹)34.(1)在方格纸上过点P作线段AB的平行线l;(2)在方格纸上以AB为边画一个正方形;(3)填空:若图中小方格的面积为1cm2,则(2)中所作正方形的面积=cm2.35.如图,已知△ABC,请作出该三角形的外接圆⊙O(要求尺规作图,保留作图痕迹,不要写作图过程).36.如图,在同一个平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.37.如图,已知△ABC,请你作出AC边上的高和BC边上的高.38.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)39.读句画图并填空:如图,点P是∠AOB外一点,根据下列语句画图,(1)过点P,作线段PC⊥OB,垂足为C;(2)过点P,作直线PD∥OB,交OA于D;(3)结合所作图形,若∠O=50°,则∠ADP=°.40.按要求用尺规作图并填空(保留作图痕迹):如图,点P是∠AOB边OA上一点.过点P作直线PC∥BO.你的作图方法使PC∥BO 的依据是.41.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.42.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.43.已知∠AOC,请用尺规作图的方法作出该角的角平分线.44.已知:∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹)45.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)46.如图,C是线段AB外一点,用圆规和直尺画图.(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.47.已知∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:(1)PC与OB一定平行吗?答:(2)简要说明理由:48.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)49.已知∠AOB,用直尺和圆规作图:(1)作∠AOB的平分线;(2)过∠AOB边OA上一点P分别作边OA、OB的垂线.(不写作法,保留作图痕迹)50.利用尺规作图(保留作图痕迹即可):如图,在射线BC上,作线段BD,使BD=2AB;以点D为顶点,射线DC为一边,作∠EDC(两种情况),使∠EDC=∠ABC.北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:∵四个选项中只有AD⊥BC,∴C正确.故选:C.【点评】本题考查的是作图﹣基本作图,熟记三角形高线的定义是解题的关键.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理和等腰三角形的性质.3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP【分析】直接利用线段垂直平分线的性质得出AP=BP,进而利用三角形外角的性质得出答案.【解答】解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.【点评】此题主要考查了基本作图,正确得出AP=BP是解题关键.4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】此题考查了作图﹣基本作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】根据作一个角等于已知角的步骤即可得.【解答】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①【分析】根据角平分线的尺规作图的步骤解答即可得.【解答】解:作已知∠AOB的平分线OC,合理的顺序是:②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.①作射线OC;故选:C.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握利用尺规作图作角平分线的步骤.8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧【分析】根据作一个角等于已知角的作法即可得出结论.【解答】解:先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故选:D.【点评】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【分析】先证明三角形全等,再利用全等的性质证明角相等.【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.【点评】本题考查作图﹣基本作图、全等三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,属于基础题.10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.【分析】根据最长边上的高在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上即可得.【解答】解:最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上,故选:C.【点评】本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部;当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部;当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=70°.【分析】根据作图痕迹可知:AD平分∠CAB,再由直角三角形性质可得∠CAB的度数,最后由三角形的外角可得结论.【解答】解:∵∠C=90°,∠B=50°,∴∠CAB=40°,由作图痕迹可知:AD平分∠CAB,∴∠DAB=20°,∴∠ADC=∠DAB+∠B=20°+50°=70°,故答案为:70.【点评】本题考查了基本作图﹣角平分线,三角形外角的性质和直角三角形的性质,熟练掌握角平分线的基本作图是关键.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线..【分析】依据作图痕迹可得四边形OCED是菱形,再根据菱形的性质,即可得到OE平分∠AOB.【解答】解:如图所示,连接DE,CE,∵OD=DE=EC=OC,∴四边形OCED是菱形(四条边都相等的四边形是菱形),∴OE平分∠AOB(菱形的每一条对角线平分一组对角),故答案为:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.【点评】本题主要考查了基本作图依据菱形的性质,解题时注意:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB 的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB度数是解题关键.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为100°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,故答案是:100.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG 是∠CAB平分线是解答此题的关键.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【分析】通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线.【解答】解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【分析】把过一点作已知直线的垂线转化为作已知线段的垂直平分线.【解答】解:他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.故答案为到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点评】本题考查了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是SSS.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:在△ODC和△O′D′C′中,,∴△ODC≌△O′D′C′(SSS),故答案为:SSS.【点评】此题主要考查了基本作图,以及全等三角形的判定,关键是掌握作一个角等于已知角的方法.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).【分析】利用三角板的60度角作∠POQ=60°,然后利用刻度尺在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB;利用三角板的30度角即可作出∠AOB的平分线,然后利用刻度尺测量AC和OC的长.【解答】解:如图所示:测量得:AC=26 mm,OC=50 mm.【点评】本题考查了利用三角板作图,理解三角板的特点是关键.三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.【分析】(1)根据几何语言画出对应几何图形;(2)利用圆规截取AE=AB;(3)计算DA和AE的和即可.【解答】解:(1)如图,直线AB、射线DC为所作;(2)如图,点E为所作;(3)DE=DA+AE=DA+AB=2+4=6,即线段DE的长为6cm.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是 1.5cm.(精确到0.1cm)【分析】(1)根据线段和射线的画法进行画图即可;(2)直线外一点到直线的垂线段的长度,叫做点到直线的距离.【解答】解:(1)如图所示:(2)根据测量可得,点B到直线AC的距离,大约是1.5cm,故答案为:1.5.【点评】本题主要考查了基本作图以及点到直线的距离.解决问题的关键是掌握线段和射线的概念.24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD【分析】(1)直接利用过直线外一点作已知垂线的作法得出答案;(2)利用直角三角形的性质结合垂线的定义得出答案.【解答】(1)解:如图所示:AD即为所求;(2)证明:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD是△ABC的高,AD⊥BC,∴∠CDA=90°,在Rt△CAD中,∠C+∠CAD=90°,∴∠C=∠BAD.【点评】此题主要考查了基本作图以及直角三角形的性质,正确掌握基本作图方法是解题关键.25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.【分析】(1)根据角平分线的尺规作图可得;(2)连接OC、BC、AC,利用“SSS”证明△OAC≌△OBC可得.【解答】解:(1)如图,射线OC是∠MON的平分线,(2)证明:如图,连接OC、BC、AC,根据作法可得BC=AC,OA=OB,在△OAC和△OBC中,∵∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC,即射线OC是∠MON的平分线.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及全等三角形的判定与性质.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【分析】(1)以点C为顶点,作∠OCD=∠COA,交AO于点D;(2)作一个角等于已知角的依据为SSS.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.【点评】本题主要考查了基本作图,解决此类题目的关键是熟悉基本几何图形的性质,基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:AF=EF;直线AC与EF的位置关系是:AC∥EF.【分析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用圆规与直尺截取得出E,F位置进而得出答案;。

2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题

2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题

2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题A 组(基础题)一、填空题1.已知∠A 和线段AB ,要作一个唯一的△ABC ,还需给出的一个条件是___________. 2.已知线段AB 和BC ,要作一个唯一的△ABC ,还需给出的一个条件是_______.3.(1)用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是_______. (2)已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是_______. 4.如图,已知线段a ,c 和∠α,求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠α,根据作图在下面空格填上适当的文字或字母.(1)如图①,作∠MBN =_______;(2)如图②,在射线BM 上截取BC =_______,在射线BN 上截取BA =_______; (3)连接AC ,如图③,△ABC 就是_______. 二、选择题 5.不能用尺规作出唯一三角形的是( ) A .已知两角和夹边 B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角6.已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m ,作法:①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m.合理的顺序依次为( ) A .③①②B .①②③C .②③①D .③②①三、解答题7.(1)已知线段a ,b ,c ,如图,求作△ABC ,使AB =c ,BC =a ,AC =b.(不写作法,保留作图痕迹)(2)如图,已知∠1,∠2 和线段m,求作△ABC,使得∠A=∠1,∠B=∠2,AB=2m.(要求:尺规作图,保留作图痕迹,不写作法)8.已知三角形的两个角分别是∠α和∠β,这两角所夹的边等于a,如图所示,求作△ABC,使∠A=∠α,∠B=∠β,AB=a.(不写作法,保留作图痕迹)9.(1)如图,△ABC是任意一个三角形.作△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.(2)如图所示,已知线段a,n,h,求作△ABC,使BC=a,BC边上的中线AD=n,高AE=h.B组(中档题)一、填空题10.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_______.11.根据下列要求,判断是否一定能作出图形:①过已知三点作一条直线;②作直线OP的垂直平分线MN;③过点A作线段MN的垂线AB;④过点A作线段MN的垂直平分线;⑤过已知线段外一点作其平行线;⑥作△ABC的边BC的高AD且平分BC;⑦以点O为圆心作弧;⑧以点O为圆心,任意长为半径作弧.能作出图形的是_______,不能作出图形的是_______.12.已知∠a和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为_______.(填序号即可)①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.二、解答题13.如图,在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过点C作CD⊥AB,垂足为D;(2)过点D作DE∥BC,交AC于点E;(3)说明∠EDC=∠GFB的理由.C组(综合题)14.如图,在△ABC中,D为BC的中点,E,F分别是AB,AC上的点,且DE⊥DF,求证: BE +CF>EF.参考答案2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题A 组(基础题)一、填空题1.已知∠A 和线段AB ,要作一个唯一的△ABC ,还需给出的一个条件是已知AC(或∠B). 2.已知线段AB 和BC ,要作一个唯一的△ABC ,还需给出的一个条件是已知AC(或∠B). 3.(1)用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是SAS . (2)已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是SSS . 4.如图,已知线段a ,c 和∠α,求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠α,根据作图在下面空格填上适当的文字或字母.(1)如图①,作∠MBN =∠α;(2)如图②,在射线BM 上截取BC =a ,在射线BN 上截取BA =c ; (3)连接AC ,如图③,△ABC 就是所求作的三角形. 二、选择题 5.不能用尺规作出唯一三角形的是(D) A .已知两角和夹边 B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角6.已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m ,作法:①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m.合理的顺序依次为(A) A .③①②B .①②③C .②③①D .③②①三、解答题7.(1)已知线段a,b,c,如图,求作△ABC,使AB=c,BC=a,AC=b.(不写作法,保留作图痕迹)解:如图所示:∴△ABC即为所求.(2)如图,已知∠1,∠2 和线段m,求作△ABC,使得∠A=∠1,∠B=∠2,AB=2m.(要求:尺规作图,保留作图痕迹,不写作法)解:如图,△ABC即为所求.8.已知三角形的两个角分别是∠α和∠β,这两角所夹的边等于a,如图所示,求作△ABC,使∠A=∠α,∠B=∠β,AB=a.(不写作法,保留作图痕迹)解:如图所示,△ABC即为所求.9.(1)如图,△ABC是任意一个三角形.作△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.(2)如图所示,已知线段a ,n ,h ,求作△ABC ,使BC =a ,BC 边上的中线AD =n ,高AE =h.解:(1)作法:①作线段A ′B ′=AB ;②在A ′B ′的同旁,分别以点A ′,B ′为顶点作∠DA ′B ′=∠A ,∠EB ′A ′=∠B ,A ′D ,B ′E 交于点C ;③连接B ′C ′,得△A ′B ′C ′.(图略)(2)作法:①作角∠MEN =90°;②在射线EN 上截取线段EA =h ;③以点A 为圆心,线段n 为半径画弧交射线EM 于点D ,连接AD ;④延长DE ,以点D 为圆心,线段a2为半径画弧,交直线DE 于点B ,C ;⑤连接AB ,AC ,则△ABC 就是所求作的三角形.(图略)B 组(中档题)一、填空题10.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°,以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为6.11.根据下列要求,判断是否一定能作出图形: ①过已知三点作一条直线; ②作直线OP 的垂直平分线MN ; ③过点A 作线段MN 的垂线AB ; ④过点A 作线段MN 的垂直平分线; ⑤过已知线段外一点作其平行线; ⑥作△ABC 的边BC 的高AD 且平分BC ;⑦以点O为圆心作弧;⑧以点O为圆心,任意长为半径作弧.能作出图形的是③⑤⑧,不能作出图形的是①②④⑥⑦.12.已知∠a和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为②③①④.(填序号即可)①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.二、解答题13.如图,在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过点C作CD⊥AB,垂足为D;(2)过点D作DE∥BC,交AC于点E;(3)说明∠EDC=∠GFB的理由.解:(1)(2)图略.(3)∵DE∥BC,∴∠EDC=∠BCD.∵FG⊥AB,CD⊥AB,∴CD∥FG.∴∠BCD=∠GFB.∴∠EDC=∠GFB.C组(综合题)14.如图,在△ABC中,D为BC的中点,E,F分别是AB,AC上的点,且DE⊥DF,求证: BE +CF>EF.证明:延长ED至点M,使DM=ED,连接MC,MF,则点F在线段EM的垂直平分线上,∴EF=FM.又∵BD=CD,DE=DM,∠BDE=∠CDM,∴△BDE≌△CDM(SAS).∴BE=CM.在△CFM中,CF+CM>MF,∴BE+CF>EF.。

八年级数学上册13.4三角形的尺规作图同步练习题(新版)冀教版

八年级数学上册13.4三角形的尺规作图同步练习题(新版)冀教版

13.4三角形的尺规作图一•选择题(共10小题) 1.下列画图语句中,正确的是( )A.画射线0P=3cmB . 连接A , B 两点C.画出A B 两点的中点D. 画出A , B 两点的距离2.下列作图语句正确的是( )A.作线段AB,使a =ABB . 延长线段AB 到C, 使 AC=BCC.作/ A0B 使/ A0B MaD. 以0为圆心作弧「3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明/A 0' B' =Z A0B的依据是( )A. SASB. SSSC. AASD. ASA(3题图)4.如图,已知/ AOB 小明按如下步骤作图: (1) (2)以点0为圆心,适当长为半径画弧,交 0A 于 D,交0B 于点E.分别以D, E 为圆心,大于 丄DE 的长为半径画弧,两弧在/ A0B 的内部相交于点 C. 2画射线0C (3)根据上述作图步骤,下列结论正确的是(A.射线0C 是/ AOB 的平分线 C.点0和点C 关于直线DE 对称 5•某探究性学习小组仅利用一副三角板不A.作已知直线的平行线C.测量钢球的直径)B .线段DE 平分线段0C D. OE=CE 能完成的操作是()B .作已知角的平分线D.作已知三角形的中位线 6.如图,已知△ ABC ( AB< BC < AC ),用尺规在 AC 上确定一点 P ,使PB+PC=AC 则下列选项 7•利用尺规作图,在下列条件中不能作出惟一直角三角形的是A.已知两个锐角B .已知一直角边和一个锐角 C.已知两条直角边D.已知一个锐角和斜边B'EB(4题图)C)&如图,在△ ABC中,/ C=90,/ CAB=50,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB AC于点E、F;②分别以点E、F为圆心,大于一EF长为半径画弧,两弧相交于点G;2③作射线AG交BC边于点D.则/ ADC的度数为()9.如图,点C在/ AOB的边0B上,用尺规作出了/ BCN M AOC 作图痕迹中,弧FG是()A.以点C为圆心,0D为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,0D为半径的弧D.以点E为圆心,DM为半径的弧10•如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等二.填空题(共9小题)11. ______________________________ 作图题的书写步骤是 _________ 、_____________________________________ 、 ____________ ,而且要画出_和____________ ,保留______________ .12. 下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作/ AOB使/A OB=/ 1;④作直线AB使AB=a⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有 _________________ .(填序号即可)13. ______________________________________________________________ 如图,用直尺和圆规画/ AOB的平分线OE其理论依据是___________________________________ .(13)(14 题图)14. 已知:/ AOB求作/ AOB的平分线;如图所示,填写作法:① ____________ .② ____________ .③ ____________ .15 .已知:线段a, c (a v c),求作:Rt △ ABC 使/ C=90 , AB=c, BC=a 作法:(1)作/MCN=9° ;(2)以C为圆心, ___________ 为半径画弧,交射线CM于点B;(3)以B为圆心, ___________ 为半径画弧,交射线CN于点A;(4)连接, △ ABC就是所求.16. 如图所示,已知线段a, c和/a,求作:△ ABC使BC=a, AB=q / ABC Ma,根据作图把下面空格填上适当的文字或字母.(1)如图①所示,作/ MBN=____________ ;(2) __________________________________________ 如图②所示,在射线BM上截取BC=______________________________________________ ,在射线BN上截取BA= ___________ (3)连接AC,如图③所示,△ ABC就是______________ .17. 如图所示,已知线段a,用尺规作出△ ABC使AB=a, BC=AC=2a作法:(1)作一条线段AB= ____________ ;(2) __________________ 分别以 ______ 、______________________ 为圆心,以为半径画弧,两弧交于C点;(3) ________________ 连接__________ 、,则△ ABC就是所求作的三角形.(11题图) (12题图)18. 已知线段a,b,c,求作△ ABC使BC=a AC=b AB=c,下面作法的合理顺序为________________①分别以B, C为圆心,c , b为半径作弧,两弧交于点A;②作直线BP,在BP上截取BC=a③连接AB AC, △ ABC为所求作的三角形.19. 如图所示,已知线段a , b, /a,求作△ ABC使BC=a AC=b, / ACB/a , ?根据作图在下面空格中填上适当的文字或字母.(1)如图甲所示,作/ MCN= _________; 「(2)如图乙所示,在射线CM上截取BC= _________ ,在射线CN上截取AC= _________ .(3) _______________________________________ 如图丙所示,连接AB, △ ABC即为 . 三•解答题(共7小题)20. 已知三角形的两边及其夹角,求作这个三角形.21. 如图,已知线段a和b , a> b,求作直角三角形ABC使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)22. 尺规作图:以线段a为斜边,b为直角边作直角三角形(不写画法,保留痕迹)a b23•已知/a 和以及线段a,(1)用直尺和圆规求作△ ABC要求/ A=/a,/ B=/3, AC=a(2)用直尺和圆规作AB边的高CD24.已知:线段a, h求作:等腰△ ABC使底边BC=a且BC边上的中线等于h.25.已知:/a,/B,线段a,求作:△ ABC 使/ B=/a,/ C=/3, BC=a(不写作法, 保留作图痕迹)冀教版八年级数学上册第13章1 3.4三角形的尺规作图同步练习题参考答案.选择题(共10小题)的长为半径画弧,两弧在/ AOB的内部交于点C画射线0C射线0C艮卩为所求.15. 如图所示:18.②①③.19 . Z a b三.解答题(共7小题)1. B2. C3. B4. A5. C6. C7. A8. C9. D 10. A4小题)二.填空题(共11 .已知求作作法图形结论作图痕迹12.③⑤14•以0为圆心,适当长为半径画弧,交13.全等三角形,对应角相等0A于M交OB于N分别以M N为圆心,大于-MN△ ABC为所求作的直角三角形.a, c, AB.所求作的三角形所求17. a; A; B; 2a;AC BC.A H.、C L ‘ R22.解:如图所示: *23.解:(1)如图所示:△ ABC即为所求;(2)如图所示:CD即为所求;24.解:如图,△ ABD即为所求三角形.25.解:如图,△ ABC为所求.。

4.4 用尺规作三角形-北师大版七年级数学下册同步提升训练(含解析)

4.4 用尺规作三角形-北师大版七年级数学下册同步提升训练(含解析)

4.4用尺规作三角形同步提升训练1.用尺规作已知∠ABC的角平分线,步骤如下:①以B为圆心,以m为半径画弧,分别交射线BA,BC于点D,E;②分别以D,E为圆心,以n为半径画弧,两弧在∠ABC 内部交于点P;③画射线BP.射线BP即为所求.对m,n的描述,正确的是( )A.m>0,n>0B.m>0,n<m C.m>0,n>DE D.m>0,n<DE 2.如图,在△ABC中.∠C=90°,∠CAB=60°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E、F;②分别以点E、F为圆心,大于EF 长为半径画弧,两弧交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为( )A.40°B.50°C.60°D.70°3.按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,下列图形符合题意的是( )A.B.C.D.4.如图,已知锐角∠AOB,按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作圆弧MN,交射线OB于点D,连接CD;②分别以点C、D为圆心,CD 长为半径作圆弧,两圆弧交于点P,连接CP、DP;③作射线OP交CD于点Q.下列说法不正确的是( )A.∠AOP=∠BOP B.∠CDO=∠PDB C.CP=2QC D.CD⊥OP5.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容如图,已知∠AOB,求作:∠AOB的角平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交☺于点N;②分别以点⊕为圆心,大于♡的长为半径画弧,两弧在⊗内部交于点C;③画射线OC,OC即为所求.( )A.☺表示OA B.⊕表示M、C C.♡表示ON D.⊗表示∠AOB 6.如图,点C在∠AOB的OB边上,用尺规作出了∠BCD=∠AOB.以下是排乱的作图过程:则正确的作图顺序是( )①以C为圆心,OE长为半径画,交OB于点M.②作射线CD,则∠BCD=∠AOB.③以M为圆心,EF长为半径画弧,交于点D.④以O为圆心,任意长为半径画,分别交OA,OB于点E,F.A.①﹣②﹣③﹣④B.③﹣②﹣④﹣①C.④﹣①﹣③﹣②D.④﹣③﹣①﹣②7.下列关于用尺规作图的结论错误的是( )A.已知一个三角形的两角与一边,那么这个三角形一定可以作出B.已知一个三角形的两边与一角,那么这个三角形一定可以作出C.已知一个直角三角形的二条边,那么这个三角形一定可以作出D.已知一个三角形的三条边,那么这个三角形一定可以作出8.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧9.如图,在∠MON中,以点O为圆心,任意长为半径作弧,分别交该角的两边于A,B两点,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,连接OC,若∠MON=60°,则∠ACO的度数是( )A.15°B.30°C.45°D.60°10.如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为( )A.50°B.52°C.58°D.64°11.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧MN,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中正确的是 .①CP∥OB;②CP=2QC;③∠AOP=∠BOP;④CD⊥OP.12.为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是 .13.已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为 .14.阅读下面材料:在数学课上老师提出如下问题:尺规作图:作∠A′O′B′=∠AOB.已知:∠AOB,求作:∠A′O′B′=∠AOB.小米的作法如下:如图:(1)作射线O′A′;(2)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;(3)以点O′为圆心,OC为半径作弧C′E′,交O′A′于点C′;(4)以点C′为圆心,CD为半径作弧,交弧C′E′于D′;(5)过点D′作射线O′B′.所以∠A′O′B′就是所求作的角.老师说:“小米的做法正确.”请回答:小米的作图依据是 .15.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB= .16.在如图所示的方格纸中不用量角器与三角尺,仅用直尺.(1)经过点P画CB的平行线PQ.(2)过点A,画CB的垂线AM.(3)过点C,画CB的垂线CN.(4)请直接写出AM、CN的位置关系.17.如图,已知△ABC,M是边BC延长线上一定点,请用尺规作图法,在边AC的延长线上求作一点P,使∠CPM=∠B.(保留作图痕迹,不写作法)18.尺规作图:已知:∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB.(不写作法,保留作图痕迹,画在答题纸的方框中)写出这样作图的两点依据:① ;② .19.如图,已知∠AOB,点P是OA边上的一点.(1)在OA的右侧作∠APC=∠AOB(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,判断直线PC与直线OB的位置关系,并说明理由.20.如图,△ABC中,用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法)21.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹,不写作法,答案不唯一)22.已知平面内有∠α,如图(1).(1)尺规作图:在图(2)∠AOB的内部作∠AOD=∠α(保留作图痕迹,不需要写作法);(2)已知(1)中所作的∠AOD=40°,OE平分∠BOC,∠AOE=2∠BOE,求∠BOD.参考答案1.解:作∠ABC的平分线的步骤如下:①以B为圆心,以任意长度为半径画弧,分别交射线BA,BC于点D,E;②分别以D,E为圆心,以大于DE为半径画弧,两弧在∠ABC内部交于点P;③画射线BP.射线BP即为所求.∴m>0,n>DE,故选:C.2.解:在△ABC中,∠C=90°,∠CAB=60°,根据作图过程可知:AD是∠CAB的平分线,∴∠DAC=∠DAB=CAB=30°,∵∠C=90°,∴∠ADC=60°.故选:C.3.解:∵点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,∴点M是直线a与直线b的交点,是直线c外的一点,∴图形符合题意的是选项B.故选:B.4.解:由作法得OP平分∠AOB,∴∠AOP=∠BOP,所以A选项的说法正确;由作法得OC=OD,PC=PD,∴OP垂直平分CD,所以D选项的说法正确;∴CD=2CQ,∵CP=CD=PD,∴CP=2CQ,所以C选项的说法正确;∵∠AOB不能确定为60°,∴不能确定∠CDO等于∠PDB,所以B选项的说法错误.故选:B.5.解:作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC,OC即为所求.故选:D.6.解:根据作一个角等于已知角的过程可知:④以O为圆心,任意长为半径画,分别交OA,OB于点E,F.①以C为圆心,OE长为半径画,交OB于点M.③以M为圆心,EF长为半径画弧,交于点D.②作射线CD,则∠BCD=∠AOB.故选:C.7.解:A.根据一个三角形的两角与一边,AAS或ASA,这个三角形一定可以作出;所以A选项不符合题意;B.已知一个三角形的两边与一角,不一定作出这个三角形,所以B选项符号题意;C.已知一个直角三角形的二条边,这个三角形一定可以作出;所以C选项不符合题意;D.已知一个三角形的三条边,这个三角形一定可以作出.所以D选项不符合题意.故选:B.8.解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.9.解:由题意可得,OC为∠MON的角平分线,∵∠MON=60°,∴∠AOC=30°,∵AC=AO,∴∠AOC=∠ACO=30°.故选:B.10.解:由作图可知,AD平分∠BAC,∵∠C=90°,∠B=26°,∴∠BAC=64°,∴∠DAC=∠BAC=32°,∴∠ADC=90°﹣32°=58°,故选:C.11.解:由作图可知,OC=OD,PC=PD,OP平分∠AOB,∴OP垂直平分线段CD,故③④正确,∵△PCD是等边三角形,PQ⊥CD,∴CQ=DQ,∴CP=2QC,故②正确,故答案为②③④.12.解:如图,连接PM,PQ.∵OP=OQ,PM=QM,OM=OM,∴△POM≌△QOM(SSS),∴∠POM=∠QOM,即OM是∠AOB的角平分线.故答案为SSS.13.解:由题意得,直线MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=40°,∵∠ACD=30°,如图1,∴∠ACB=40°+30°=70°,∴∠BAC=180°﹣70°﹣40°=70°;如图2,∴∠ACB=40°﹣30°=10°,∴∠BAC=180°﹣10°﹣40°=130°,综上所述,∠BAC的度数为70°或130°,故答案为:70°或130°.14.解:根据作图过程可知:在△OCD和△OC′D′中所以△OCD≌△OC′D′(SSS)所以∠A′O′B′=∠AOB(全等三角形对应角相等).故答案为:全等三角形对应角相等.15.解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.16.解:(1)如图,PQ为所作;(2)如图,AM为所作;(3)如图,CN为所作;(4)AM∥CN.17.解:如图,点P即为所求.18.解:如图∠A′O′B′即为所求;作图的依据:①三边对应相等两三角形全等.②全等三角形的对应角相等.故答案为:三边对应相等两三角形全等.全等三角形的对应角相等.19.解:(1)如图,∠APC就是所要求作的角;(2)直线PC与直线OB的位置关系为:PC∥OB,理由如下:由(1)作图可得:∠APC=∠AOB,∴PC∥OB.20.解:如图,射线BD即为所求.21.解:如图,点P即为所求.22.解:(1)如图2所示,∠AOD即为所求;(2)∵OE平分∠BOC,∴∠COE=∠BOE,又∵∠AOE=2∠BOE,∴∠AOB=∠BOE,∴∠AOB=∠AOC=60°,又∵∠AOD=40°,∴∠BOD=∠AOB﹣∠AOD=60°﹣40°=20°。

七年级数学下册试题一课一练4.4《用尺规作三角形》习题1-北师大版(含答案)

七年级数学下册试题一课一练4.4《用尺规作三角形》习题1-北师大版(含答案)

4.4《用尺规作三角形》习题1一、选择题1.已知点C在∠AOB的OB边上,用尺规过点C作CN∥OA,作图痕迹如图所示.下列对弧FG的描述,正确的是( )A.以点C为圆心,OD的长为半径的弧B.以点C为圆心,OM的长为半径的弧C.以点E为圆心,DM的长为半径的弧D.以点E为圆心,CE的长为半径的弧2.如图,点C在∠AOB的边OB上,用直尺和圆规作∠BCN=∠AOC,这个尺规作图的依据是( )A.SAS B.SSS C.AAS D.ASA3.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③过直线外一点作已知直线的垂线;④作一条线段的垂直平分线,则对应作法错误的是( )A.①B.②C.③D.④4.下列四种基本尺规作图分别表示,则对应选项中作法错误的是( ) A.作一个角等于已知角B.作一个角的平分线C.作一条线段的垂直平分线D.过直线外一点P作已知直线的垂线5.下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是( )①②③A.①②B.①③C.②③D.①②③6.根据圆规作图的痕迹,可用直尺成功地找到三角形角平分线交点的是( ) A.B.C.D.7.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O 为圆心,任意长为半径所画的弧;(2)弧②是以P 为圆心,任意长为半径所画的弧;(3)弧③是以A 为圆心,任意长为半径所画的弧;(4)弧④是以P 为圆心,任意长为半径所画的弧;其中正确说法的个数为( )A .4B .3C .2D .18.如图是作ABC ∆的作图痕迹,则此作图的已知条件是( )A .已知两边及夹角B .已知三边C .已知两角及夹边D .已知两边及一边对角二、解答题 1.已知:如图,ABC ∆,点D 是BC 延长线上的一点,且CD BC =.求作:ECD ∆,使ECD ABC ∆≅∆,且点E 与点A 在BC 同侧.(要求:尺规作图,保留作图痕迹)2.已知:AC 是ABCD 的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E ,连接CE .(保留作图痕迹,不写作法);(2)在(1)的条件下,若3,5AB BC ==,求DCE 的周长.3.如图所示,已知△ABC .(1)用直尺和圆规作∠A 的平分线1l 和边BC 的垂直平分线2l ;(要求:不写作法,但需要保留画图痕迹)(2)设(1)中的1l 和直线2l 交于点P ,过点P 作PE ⊥AB ,垂足为点E ,过点P 作PF ⊥AC 交AC 的延长线于点F .请你探究BE 和CF 之间的数量关系,并加以证明.4.如图,已知△ABC ≌△EBD ,(1)若BE =6,BD =4,求线段AD 的长;(2)若∠E =30°,∠B =48°,求∠ACE 的度数.5.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,点E ,F 在线段AD 上,且2DF AF =,12BAC ∠=∠=∠.若BE 的长为5,求AD 的长.6.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.(1)DE=AB吗?请说明理由;(2)如果DE的长度是8 m,则AB的长度是多少?7.如图所示,要测量一个沼泽水潭的宽度.现由于不能直接测量,小军是这样操作的:他在平地上选取一点C,该点可以直接到达A与B点,接着他量出AC和B C的距离,并找出AC与BC的中点E、F,连接EF,测量EF的长,于是他便知道了水潭AB的长等于2EF,小军的做法有道理吗?说明理由.你还有比小军更简单的方法吗?8.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B 路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与△QFC全等?请说明理由.9.如图,在△ABC中,∠ACB=90°,AC=BC,点D在△ABC外部,且AD⊥CD,BE⊥CD,垂足分别为D、E.(1)求证:△BEC≌△CDA;(2)若AD=1.7cm,DE=2.5cm,求BE的长度.10.明明同学用10块高度都是3cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙上面刚好可以放进一个等腰直角三角形(AC=BC ∠ACB=90°)点C在DE 上,点A和点B分别与木墙的顶端重合,求两堵木墙之间的距离.答案一、选择题1.C .2.B .3.D .4.C .5.A .6.B .7.C .8.C.二、解答题1.解:如图,ECD ∆即为所求作的三角形.(作法不唯一)2.解:(1)如图,CE 为所作;(2)∵四边形ABCD 为平行四边形,∴5,3AD BC CD AB ====,∵点E 在线段AC 的垂直平分线上,∴EA EC =,∴DCE 的周长538CE DE CD EA DE CD AD CD =++=++=+=+=.3.解:(1)(2)BE=CF.连接PB 和PC∵AP 平分∠CAB ,PE ⊥AB ,PF ⊥AC ∴PE=PF. ∵l 2垂直平分BC 边,∴PC=PB.由HL 证明△PFC ≌△PEB ∴BE=CF.4.(1)∵△ABC ≌△EBD , ∴AB =BE =6,∵AD =AB -BD ,BD =4,∴AD =6-4=2;(2)∵△ABC ≌△EBD ,∴∠A =∠E =30°,∵∠ACE =∠A +∠B ,∠B =48°, ∴∠ACE =30°+48°=78°.5.解:∵12BAC ∠=∠=∠,且1BAE ABE ∠=∠+∠,2CAF ACF ∠=∠+∠, ∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF .在ABE △和CAF 中,BAE ACF AB CA ABE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABE CAF ASA ≌△△. ∴AF BE =∵2DF AF =,BE 的长为5,∴10DF =,5AF BE ==,∴51015AD AF DF =+=+=.6.(1)解:由题意知AC=DC ,BC=EC ,且∠ACB=∠DCE ,在△ABC 和△DEC 中,AC DC ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEC(SAS),∴DE=AB .(2)由(1)知AB =DE =8m .7.解:小军的作法有道理,理由如下:过点B 作BG ∥AC 交EF 的延长线于点G,连接BE∵ 点E 、F 分别是AC 、BC 的中点∴ AE=CE, BF=CF∵ BG ∥AC∴ ∠ECF=∠GBF ,∠AEB=∠GBE (两直线平行,内错角相等)∵ECF GBF BF CF CFE BFG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ECF ≌△GBF (两角及其夹边对应相等的两个三角形全等)∴ EF=GF ,CE=BG (全等三角形的对应边相等)∵ EF=GF ,EF+GF=EG∴ EG=2EF∵ CE=BG, AE=CE∴ AE=BG∵ 在△AEB 和△GBE 中,AE GB AEB GBE EB BE =⎧⎪∠=∠⎨⎪=⎩∴ △AEB ≌△GBE (两边及其夹角对应相等的两个三角形全等)∴ AB=GE (全等三角形的对应边相等)∵ GE=2EF, AB=GE∴ AB=2EF故小军的做法是有道理的;取直接能到达A ,B 两点的C 点,延长BC ,AC ,使EC AC =,DC BC =, 连接DE ,在△ABC 和△EDC 中,EC AC DCE BCA DC BC =⎧⎪∠=∠⎨⎪=⎩则ABC EDC △≌△,所以DE AB =.8.解:设运动时间为t秒时,△PEC与△QFC全等,∵△PEC与△QFC全等,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ =CP ,CQ =AC =6,CP =t ﹣6,∴t ﹣6=6∴t =12∵t <14∴t =12符合题意答:点P 运动1或3.5或12秒时,△PEC 与△QFC 全等.9.解:(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠BEC =∠D =90°,∵∠BCE +∠ACD =90°,∠BCE +∠CBE =90°, ∴∠CBE =∠ACD ,∵AC =BC ,∴△BEC ≌△CDA ;(2)∵△BEC ≌△CDA∴AD =CE =1.7cm ,∴BE =CD =CE +DE =1.7+2.5=4.2cm .10.解:由题意得:AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB(AAS);由题意得:AD=EC=9cm ,DC=BE=21cm ,∴DE=DC+CE=30(cm),答:两堵木墙之间的距离为30cm .。

2022年北师七下《用尺规作三角形》同步练习(附答案)

2022年北师七下《用尺规作三角形》同步练习(附答案)

《用尺规作三角形》练习一、选择——根底知识运用1.一个角的平分线的尺规作图的理论依据是〔〕A.SAS B.SSS C.ASA D.AAS2.用尺规作图,三边作三角形,用到的根本作图是〔〕A.作一个角等于角B.作直线的垂线C.作一条线段等于线段D.作角的平分线3.∠AOB,用尺规作一个角∠A’O’B’等于角∠AOB的作图痕迹如下图,那么判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是〔〕A.SAS B.ASA C.AAS D.SSS4.用尺规作一个直角三角形,使其两条直角边分别等于线段时,实际上就是的条件是〔〕A.三角形的两条边和它们的夹角B.三角形的三边C.三角形的两个角和它们的夹边D.三角形的三个角5.利用尺规进行作图,根据以下条件作三角形,画出的三角形不是唯一的是〔〕A.三条边B.三个角C.两角和夹边D.两边和夹角二、解答——知识提高运用6.作图:画一个三角形与△ABC全等,保存作图痕迹。

7.线段BC=2,用尺规作△ABC,使∠A=45°,你能作出多少个满足条件的三角形?8.如图,a和∠α,用尺规作一个三角形ABC,使AB=AC=2a,∠BAC=180°-∠α。

9.尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想方法用尺规作图画一个出来,并说明,你的理由.10.作图:求作一个三角形,使它的两边分别为a和2a,其夹角为∠α。

〔要求:用尺规作图,并写出,求作,保存作图痕迹,不写作法〕11.利用尺规,用三种不同的方法作一个是三角形与直角三角形ABC全等,并简要说明理由。

参考答案一、选择——根底知识运用1.【答案】B【解析】连接NC,MC,在△ONC和△OMC中,∵ON=OM ,NC=MC,OC=OC ,∴△ONC≌△OMC〔SSS〕,∴∠AOC=∠BOC,应选:B。

2.【答案】C【解析】根据三边作三角形用的的根本作图是:作一条线段等于线段。

山东省东营市垦利区郝家镇七年级数学下册第4章三角形4.4用尺规作三角形同步练习(新版)北师大版

山东省东营市垦利区郝家镇七年级数学下册第4章三角形4.4用尺规作三角形同步练习(新版)北师大版

用尺规作三角形一、选择题1.已知三边作三角形,要用到的所学知识是()作一个角等于已知角在射线上截取一条线段等于已知线段C.均分已知角D、作直线的垂线同学们,你还记得如何作一个角等于已知角吗?这类作法本质是利用了全等三角形的判断与性质,此顶用到的鉴别两个三角形全等的方法是()D. 以上都不是3. 已知三角形的两边及夹角,求作这个三角形时,第一步应为()作一条线段等于已知线段作一个角等于已知角C.作两条线段等于已知线段并使其夹角等于已知角D.先作或一条线段等于已知线段或先作一个角等于已知角4. 用尺规作一个直角三角形,使其两直角边分别等于已知线段,本质就是知道了()A.三角形两边和它们夹角B. 三角形三边C.三角形两角和它们夹边D. 三角形三个角5. 以下条件不可以确立独一三角形的是()已知两边和夹角已知两边和此中一边的对角C.已知两角和夹边D.已知三边二、填空题6. 已知线段a和,求作三角形ABC,使AB=AC=a, A .作法是:(1)作∠MAN=;(2)分别在射线 AM、AN上截取AB=_____,AC=______;3)连结__________,则△ABC即为所求的三角形.如图,在△ABC中,∠B>∠C,小明以BC为一边作△DBC,使它与△ABC全等,而且点D与点A不重合,这样的三角形能够作 ______个.第7题第8题8. 考先人员在西周古墓中发现一块残破的碎片,如图,你以为_____把它还原(填“能”或“不可以”),你判断的依照是全等三角形判断方法中的__________.9. 尺规作图作∠AOB的均分线方法以下:如图,以O为圆心,随意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于1CD长为半径画弧,两弧交于点P,作射线OP2就是所求作角均分线.由作法得_____≌_____,因此∠1=∠2,因此OP就是∠ACB的均分线.三、解答题如图,在△ABC中,∠ACB=2∠B.(1)依据要求作图:①作∠ACB的均分线交AB于D;②过D点作DE⊥BC,垂足为E.(2)在(1)的基础上找出一对全等三角形,请选择此中一对加以证明.11.如图,一块三角形模具的暗影部分已损坏.(1)只需从残留的模具片中胸怀出哪些边、角,就能够不带残留的模具片到商铺加工一块与本来的模具ABC的形状和大小完整同样的模具ABC ABC?请简要说明原因.(2)作出模具ABC的图形(要求:尺规作图,保存作图印迹,不写作法和证明).已知线段a,b和m,求作△ABC,使BC=2a,AC=b,BC边上的中线AD=m.盈盈想出了一种作法,依据图中她的作图印迹,你能想出她是如何作出来的吗?把你的详细作法写下来吧!已知:∠a、∠b和线段a.求作:△ABC,使∠A=∠a,∠B=∠b,BC=a.已知:线段a、b.求作:△ABC,使∠C=90°,BC=aAC=b.参照答案6. (1);(2)a,a;(3)BC 8. 能,ASA △OCP,△ODP(1)略;(2)△BDE≌△CDE.由于DC均分∠ACB,因此∠DCE1∠ACB.2又由于∠ACB2∠B,因此∠B12∠ACB.因此∠DCE∠B.由于DE⊥BC,因此∠DEC∠DEB90°.又由于DEDE,因此△BDE≌△CDE.11.(1)只需胸怀残留的三角形模具片的B,C的度数和边BC的长,由于两角及其夹边对应相等的两个三角形全等.(2)按尺规作图的要求,正确作出ABC的图形.3.12.作法:(1)作线段C=a,延伸CD至B,是DB=CD;4.2)以C为圆心,b为半径画弧;5.3)以D为圆心,m为半径画弧,两弧交于A;6.4)连结AC、AB、AD.7.△ABC就是所求作三角形.8.13.作法:1.作∠NCN=90°.9.2.在射线CN上截取CB=a 在射线CM上截取CA=b.10.连结AB.△ABC即为所求作的三角形.评论:此题其实是已知两边及其夹角求作三角形,依照三角形全等的边角边公义判断△ABC就是所求的三角形.14.(1) 作直线MN,并在MN上取一点O;以ON为一边,在ON的同侧按序作∠NOP=∠a,∠POQ=∠b;(3)作线段BC=a;(4)分别以B、C为极点,在BC的同侧作∠CBD=∠b,∠BCE=∠QOM,BD和CE订交于点A.则△ABC是所求作的三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用尺规作三角形
一、判断题
1.只要知道三角形的三个基本元素,就可以作出惟一的三角形.()
2.用量角器作一个角等于已知角也是尺规作图的一种.()
3.已知两边和一角一定能做出惟一的三角形.()
4.作一个角等于已知角是尺规作图中的最常用的基本作图之一.()
二、填空题
1.在几何里,把只用_________和_________画图的方法称为尺规作图.
2.完成下列作图语言:(1)作射线_________
(2)以点O为圆心,以OB为半径画弧,交射线_________于点B.
(3)延长线段_________到_________,使_________=_________.
(4)以_________为圆心,以_________为半径作弧,交_________于_________,交_________于_________.
三、选择题
1.尺规作图的画图工具是()
A.刻度尺、圆规
B.三角板和量角器
C.直尺和量角器
D.没有刻度的直尺和圆规
2.利用基本作图,不能作出惟一三角形的是()
A.已知两边及其夹角
B.已知两角及夹边
C.已知两边及一边的对角
D.已知三边
3.已知三边作三角形,用到的基本作图是()
A.作一个角等于已知角
B.作已知直线的垂线
C.作一条线段等于已知线段
D.作一条线段等于已知线段的和
4.用尺规画直角的正确方法是()
A.用量角器
B.用三角板
C.平分平角
D.作两个锐角互余
5.作△ABC的高AD,中线AE,角平分线AF,三者中有可能画在△ABC外的是()
A.AD
B.AE
C.AF
D.都有可能
四、用尺规作图
已知线段a及锐角α,求作:三角形ABC,使∠C=90°,∠B=∠α,BC=a.
(1)(2)(3)
图2
作法:1.作∠MCN=90°.
2.以_________为圆心,_________为半径,在CM上截取_________.
3.以_________为顶点,_________为一边作∠ABC=_________交CN于点A.
连结AB,则△ABC即为所作的三角形.
参考答案
一、1.× 2.× 3.× 4.√
二、1.直尺圆规 2.(1)OA(2)OA(3)AB C BC AB(4)O OD OA D OB E
三、1.D 2.C 3.C 4.C 5.A
四、2.C a CB=a 3.B BC∠α。

相关文档
最新文档