动能定理在曲线运动中的应用
高考一轮复习 -动能定理及其应用
第2讲动能定理及其应用知识点一动能1.定义:物体由于________而具有的能.2.公式:E k=________.3.单位:________,1 J=1 N·m=1 kg·m2/s2.4.物理意义(1)动能是状态量,v是________(选填“瞬时速度”或“平均速度”).(2)动能是________(选填“矢量”或“标量”),只有正值,动能与速度方向________(选填“有关”或“无关”).5.动能的变化物体________与________之差,即ΔE k=________________________.知识点二动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中____________.2.表达式:W=________________.3.物理意义:________的功是物体动能变化的量度.4.动能定理的特点思考辨析(1)一定质量的物体动能变化时,速度一定变化;而速度变化时,动能也一定变化.( )(2)动能不变的物体一定处于平衡状态.( )(3)物体的动能不变,所受的合力必定为零.( )(4)物体做变速运动时动能不一定变化.( )(5)合力做功不等于零时,物体的动能一定变化.( )(6)如果物体的动能增加,那么合力一定做正功.( )教材改编[人教版必修2P75T5改编]运动员把质量是500 g的足球踢出后,某人观察它在空中的飞行情况,估计上升的最大高度是10 m,在最高点的速度为20 m/s.估算出运动员踢球时对足球做的功为( ) A.50 J B.100 JC.150 J D.无法确定考点一对动能定理的理解和应用自主演练1.对“外力”的两点理解(1)“外力”可以是重力、弹力、摩擦力、电场力、磁场力等,它们可以同时作用,也可以不同时作用.(2)“外力”既可以是恒力,也可以是变力.2.动能定理公式中“=”体现的“三个关系”数量关系合力的功与物体动能的变化可以等量代换单位关系国际单位都是焦耳因果关系合力做的功是物体动能变化的原因3.“一个参考系”:高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.[多维练透]1.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为( )A.Δv=0 B.Δv=12 m/s C.ΔE k=1.8 J D.ΔE k=02.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g,则在这个过程中,下列说法正确的是( )A.对物体,动能定理的表达式为W=m-m,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W-mgH=m-m,其中W为支持力做的功D.对电梯,其所受的合力做功为M-M3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图象是( )考点二动能定理的应用师生共研题型1|应用动能定理求变力的功例1 如图所示,在半径为0.2 m的固定半球形容器中,一质量为1 kg的小球(可视为质点)自边缘上的A点由静止开始下滑,到达最低点B时,它对容器的正压力大小为15 N.重力加速度g取10 m/s2,则球自A点滑到B点的过程中克服摩擦力做的功为( )A.0.5 J B.1.0 J C.1.5 J D.1.8 J题型2|动能定理在直线运动中的应用例2 有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡.某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s的水平雪道上.接着改用另一条雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h2高处的E点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )A.动摩擦因数为tan θ B.动摩擦因数为C.倾角α一定大于θ D.倾角α可以大于θ题型3|动能定理在曲线运动中的应用(多过程问题)例3 如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙.BP为圆心角等于143°,半径R=1 m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处.现有一质量m=2 kg的物块在外力作用下将弹簧缓慢压缩到D点后(不拴接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)试求:(1)若CD=1 m,物块从D点运动到C点的过程中,弹簧对物块所做的功.(2)B、C两点间的距离x.【考法拓展1】在【例3】中,求物块释放后通过与O点等高的位置Q点时对轨道的压力.【考法拓展2】在【例3】中,若BC部分光滑,把物块仍然压缩到D点释放,求物块运动到P点时受到轨道的压力大小.练1 如图,MN为半径R=0.4 m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,O 为圆心,M、O、P三点在同一水平线上,M的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m=0.01 kg的小钢珠,小钢珠每次都在M点离开弹簧枪.某次发射的小钢珠沿轨道经过N点时恰好与轨道无作用力,水平飞出后落到OP上的Q点,不计空气阻力,取g=10 m/s2.求:(1)小钢珠经过N点时速度的大小v N;(2)小钢珠离开弹簧枪时的动能E k;(3)小钢珠在平板上的落点Q与圆心O点的距离s.练2 新型冠状病毒肺炎疫情发生后,全国人民踊跃捐款捐物,支持武汉人民抗疫.为了与时间赛跑,运送抗疫物资的某运输车以恒定功率P启动后以最大速度v m行驶.已知运输车总重为m.(1)求运输车速度为v m时的加速度;(2)假设运输车启动后经过时间t1,达到最大速度v m,求时间t1内运输车行驶的距离;(3)假设运输车启动后行驶距离s到达武汉,运输车刹车时所受合外力等于正常行驶时阻力的2倍,求运输车行驶的总时间.题后反思应用动能定理解题的基本步骤考点三动能定理与图象问题的结合多维探究题型1|vt图象例4 [2020·湖南湘潭一中月考]质量为m的物体从高为h的斜面顶端由静止下滑,最后停在水平面上,若该物体以v0的初速度从顶端下滑,最后仍停在水平面上,如图甲所示.图乙为物体两次在水平面上运动的vt图象,则物体在斜面上运动过程中克服摩擦力所做的功为( )A.m-3mgh B.3mgh-mC.m-mgh D.mgh-m题型2|Fx图象例5 [2020·济南模拟]静止在地面上的物体在不同合外力F的作用下通过了相同的位移x0,下列情况中物体在x0位置时速度最大的是( )题型3|E kx图象例6 [2020·江苏卷,4]如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图象是( )练3 (多选)光滑水平面上静止的物体,受到一个水平拉力作用开始运动,拉力F随时间t变化的图象如图所示,用E k、v、x、P分别表示物体的动能、速度、位移和拉力F的功率,下列四个图象分别定性描述了这些物理量随时间变化的情况,其中正确的是( )练4 [2020·临沂二模]狗拉雪橇是人们喜爱的滑雪游戏.已知雪橇与水平雪道间的动摩擦因数μ=0.1,人和雪橇的总质量m=50 kg.在游戏过程中狗用水平方向的力拉雪橇,使雪橇由静止开始运动.人和雪橇的动能E k与其发生位移x之间的关系如图所示(g=10 m/s2).求:(1)雪橇在x=30 m时的加速度;(2)在前40 m位移过程中拉力对人和雪橇做的功.题后反思解决物理图象问题的基本思路(1)弄清纵坐标、横坐标所对应的物理量及图线的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)对比图线和函数关系式,利用图线的斜率、截距、交点、面积和特定值求物理量.思维拓展巧选过程规范答题[2020·江苏无锡6月模拟](12分)如图所示是滑板运动的轨道示意图,BC和DE是两段光滑的圆弧形轨道,BC的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.2.某运动员从轨道上的A点以v=3 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点与水平轨道CD的竖直高度分别为h=2 m和H=2.5 m,g=10 m/s2.(1)求运动员从A点运动到B点时的速度大小v B.(2)求水平轨道CD的长度L.(3)通过计算说明,第一次返回时,运动员能否回到B点?如果能,求出运动员回到B点时速度的大小;如果不能,求出运动员最后停止的位置距C点的距离.[教你解决问题](1)刚好沿着轨道的切线方向滑入圆弧轨道→B点速度分解→到达B点时的速度大小.(2)从B到E→动能定理→水平轨道CD的长度L.(3)从E到第一次返回左侧最高处→动能定理→总路程→最后停止的位置.解答规范解答书写区自查项目(1)滑板在B点刚好沿着轨道的切线方向滑入圆弧轨道,由题意得v B=①(1分)解得v B=6 m/s.②(1分)(2)从B到E的过程,由动能定理得mgh-μmgL-mgH=0-m③(2分)有必要的文字说明指明对象和所用规律列式规范,无连等式、无代数过程题后反思1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功的特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.第2讲动能定理及其应用基础落实知识点一1.运动2.mv23.焦耳4.(1)瞬时速度(2)标量无关5.末动能初动能m-m知识点二1.动能的变化量2.m-m3.合外力4.(3)曲线运动(4)变力做功(5)分阶段思考辨析(1)×(2)×(3)×(4)√(5)√(6)√教材改编解析:根据动能定理W-mgh=mv2得,W=150 J,故选项C正确.答案:C考点突破1.解析:取初速度方向为正方向,则Δv=|(-6)-6| m/s=12 m/s,由于速度大小没变,动能不变,故动能变化量ΔE k=0,故选项B、D正确.答案:BD2.解析:电梯上升的过程中,对物体做功的有重力mg、支持力F N,这两个力的总功(即合力做的功)才等于物体动能的增量,即W合=m-m,选项A、B错误,C正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,选项D正确.答案:CD3.解析:对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+,E k=mv2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A正确.答案:A例1 解析:在B点对小球由牛顿第二定律得F N-mg=m,解得E kB=mv2= (F N-mg)R,小球由A滑到B的过程由动能定理得mgR-W f=mv2-0,解得W f=R(3mg-F N)=×0.2×(30-15) J=1.5 J,故C正确,A、B、D错误.答案:C例2 解析:第一次停在BC上的某点,由动能定理得mgh1-μmgcos θ·-μmgs′=0mgh1-μmg=0mgh1-μmgs=0μ=A错误,B正确;在AB段由静止下滑,说明μmgcos θ<mgsin θ,第二次滑上CE在E点停下,说明μmgcos α≥mgsin α,若α>θ,则雪橇不能停在E点,所以C、D错误.答案:B例3 解析:(1)由x=12t-4t2知,物块在C点速度为v0=12 m/s,a=8 m/s2设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得W-mgsin 37°·=m代入数据得W=m+mgsin 37°·=156 J.(2)物块在CB段,根据牛顿第二定律,物块所受合力F=ma=16 N物块在P点的速度满足mg=C到P的过程,由动能定理得-Fx-mgR(1+cos 37°)=m-m解得x= m=6.125 m.答案:(1)156 J (2)6.125 m考法拓展1 解析:物块在P点时满足mg=,物块从Q点到P点过程中,由动能定理得-mgR=m-m.物块在Q点时有F N=.联立以上各式得F N=3mg=60 N.由牛顿第三定律可知物块通过Q点时对轨道压力为60 N,方向水平向右.答案:60 N 方向水平向右考法拓展 2 解析:物块从C到P的过程中,由动能定理得-mgxsin 37°-mgR(1+cos37°)=m-m物块在P点时满足F N+mg=,联立以上两式得F N=49 N答案:49 N练1 解析:(1)小钢珠沿轨道经过N点时恰好与轨道无作用力,则有mg=m解得v N==2 m/s(2)小钢珠在光滑圆弧轨道,由动能定理得-mgR=m-E k解得E k=0.06 J(3)小钢珠水平飞出后,做平抛运动,R=gt2,s=v N t解得s= m答案:(1)2 m/s (2)0.06 J (3) m练2 解析:(1)由P=fv m,解得f=,由P=F解得运输车速度为v m时的牵引力F=,由牛顿第二定律有F-f=ma,解得加速度a=.(2)由动能定理得Pt1-fx1=m,解得时间t1内运输车行驶的距离x1==.(3)运输车刹车时匀减速运动的加速度为a′=,从刹车到运输车停下需要的时间t3=,联立解得t3=,从刹车到运输车停下运动的距离x3==,运输车匀速运动的距离x2=s-x1-x3=,运输车匀速运动的时间t2=,又f=,则运输车行驶的总时间t=t1+t2+t3=.例4 解析:本题考查动能定理与图象结合的问题.若物体由静止开始从顶端下滑,由动能定理得mgh-W f=m,若该物体以v0的初速度从顶端下滑,由动能定理得mgh-W f=m-m,由题图乙可知,物体两次滑到水平面的速度关系为v2=2v1,由以上三式解得W f=mgh-m,D正确,A、B、C错误.答案:D例5 解析:由于Fx图象所包围的面积表示力做功的大小,已知物体在不同合外力F的作用下通过的位移相同,C选项中图象包围的面积最大,因此合外力做功最多,根据动能定理W合=mv2-0,可得C选项物体在x0位置时速度最大,故A、B、D错误,C正确.答案:C例6 解析:在斜面上,物块受竖直向下的重力、沿斜面向上的滑动摩擦力以及垂直斜面向上的支持力,设物块的质量为m,斜面的倾角为θ,物块沿斜面下滑的距离对应的水平位移为x,由动能定理有mgsinθ·-μ1mgcos θ·=E k-0,解得E k=(mgtan θ-μ1mg)x,即在斜面上时物块的动能与水平位移成正比,B、D项均错误;在水平面上,物块受竖直向下的重力、竖直向上的支持力以及水平向左的滑动摩擦力,由动能定理有-μ2mg(x-x0)=E k-E k0,解得E k=E k0-μ2mg(x-x0),其中E k0为物块滑到斜面底端时的动能,x0为物块沿斜面下滑到底端时的距离对应的水平位移,即在水平面上物块的动能与水平位移为一次函数关系,且为减函数,A项正确,C项错误.答案:A练3 解析:由于拉力F恒定,所以物体有恒定的加速度a,则v=at,即v与t成正比,选项B正确;由P=Fv=Fat可知,P与t成正比,选项D正确;由x=at2可知x与t2成正比,选项C错误;由动能定理可知E k=Fx=Fat2,E k与t2成正比,选项A错误.答案:BD练4 解析:(1)雪橇从20 m到40 m做匀加速直线运动,由动能定理得:F合·Δx=E k2-E k1由牛顿第二定律得:F合=ma联立解得:a=0.5 m/s2.(2)前40 m的运动过程由动能定理得:W-μmgx=E k2解得:W=2 900 J.答案:(1)0.5 m/s2(2)2 900 J。
动能定理的应用
动能定理的应用在物理学中,动能定理是一个非常重要的概念,它在解决各种力学问题中发挥着关键作用。
动能定理指出:合外力对物体所做的功等于物体动能的变化量。
这个定理看似简单,但其应用却十分广泛且精妙。
让我们先从一个简单的例子来理解动能定理。
想象有一个质量为 m 的物体,在一个水平面上受到一个恒力 F 的作用,沿着力的方向移动了一段距离 s。
如果物体的初速度为 v₁,末速度为 v₂,那么根据牛顿第二定律 F = ma(其中 a 为加速度),以及运动学公式 2as = v₂²v₁²,我们可以得到:Fs = ½mv₂² ½mv₁²。
这就是动能定理的表达式。
在实际问题中,动能定理的应用场景多种多样。
比如在自由落体运动中,物体只受到重力的作用。
假设一个物体从高度 h 处自由下落,其质量为 m,到达地面时的速度为 v。
重力做的功为 mgh,根据动能定理,mgh = ½mv² 0,从而可以很容易地求出物体到达地面时的速度 v=√(2gh)。
再来看一个涉及多个力的问题。
假设一个物体在粗糙水平面上受到一个水平拉力 F 的作用,同时还受到摩擦力 f 的阻碍。
物体移动了一段距离 s,初速度为 v₁,末速度为 v₂。
拉力做的功为 Fs,摩擦力做的功为 fs,合力做的功为(F f)s。
根据动能定理,(F f)s =½mv₂² ½mv₁²。
通过这个式子,我们可以求出物体在这个过程中的末速度 v₂。
动能定理在解决曲线运动问题时也非常有用。
例如一个物体在竖直平面内做圆周运动,在最低点时,绳子对物体的拉力和物体的重力共同做功,使得物体的动能增加。
根据动能定理,我们可以计算出拉力和重力做功的总和与动能变化之间的关系。
在碰撞问题中,动能定理同样能发挥作用。
当两个物体发生碰撞时,虽然碰撞过程中的内力非常复杂,但如果我们只关心碰撞前后物体动能的变化,就可以运用动能定理。
高中物理精品课件:专题13 动能定理2(曲线)
(3)运动员落到A点时的动能。
题型二
用动能定理求解曲线运动问题 之 圆周运动
例题2:如图所示,一小球通过不可伸长的轻绳悬于点,现从最低点B给小球一水
平向左的初速度,使小球恰好能在竖直平面内做圆周运动,当小球经过A点时,其
速度为最高点速度的2倍,不计空气阻力,则在点轻绳与竖直方向的夹角等于( )
圆形轨道的半径R=0.5m.(空气阻力可忽略,重力加速度g=10m/s2 ,sin53°=0.8,
cos53°=0.6)求:
(1)B点速度大小;
(2)当滑块到达传感器上方时,传感器的示数为多大;
(3)水平外力作用在滑块上的时间t.
题型五
用动能定理求解曲线运动问题 之 多过程问题
例题7:如图所示,一质量m=0.5kg的滑块(可视为质点)静止于动摩擦因数μ=0.2的
为上述正方形线圈)从轨道起点由静止出发,进入右边的匀强磁场区域ABCD ,BC长
d=0.2m,磁感应强度B=1T,磁场方向竖直向上.整个运动过程中不计小车所受的摩擦
及空气阻力,小车在轨道连接处运动时无能量损失.求:
(2)在第(1)问,小车进入磁场后做减速运动,当小车末端到达AB边界时速度刚好
减为零,求此过程中线圈产生的热量;
(1)当试验小车从h=1.25m高度无初速度释放,小车前端刚进入AB边界时产生感应
电动势的大小;
(2)在第(1)问,小车进入磁场后做减速运动,当小车末端到达AB边界时速度刚好
减为零,求此过程中线圈产生的热量;
(3)再次改变小车释放的高度,使得小车尾端
题型四
用动能定理求解曲线运动问题 之 安培力做功
水平轨道上的A点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为
动能定理的几种典型应用
动能定理的几种典型应用应用一:动能定理解决匀变速直线运动问题例1、一个质量m=2kg 的小物体由高h=1.6m 倾角︒=30α的斜面顶端从静止开始滑下,物体到达斜面底端时速率是4m/s ,那么物体在下滑的过程中克服摩擦力做功是多少焦耳?由公式20222v v aS -=可知222022/5.22.3242s m S v v a =⨯=-= 对物体受力分析并由牛顿第二定律可知:ma f mg =-αsin 所以N N ma mg f 55.2221102sin =⨯-⨯⨯=-=α J J fS W f 16)1(2.35180cos -=-⨯⨯=︒= 解法二:由动能定理221mv W mgh f =+ 可得:J J mgh mv W f 166.110242212122-=⨯⨯-⨯⨯=-= 应用二:动能定理解决曲线运动问题例2、在离地面高度h=10m 的地方,以s m v /50=水平速度抛出,求:物体在落地时的速度大小? 解法一:由221gt h =得 s s g h t 2101022=⨯== 所以s m s m gt v y /210/210=⨯== 所以s m s m v v v y /15/)210(522220=+=+=解法二:由动能定理可得 20222121mv mv mgh -=所以:s m s m v gh v /15/51010222202=+⨯⨯=+= 两种方法计算的结果完全一致,可见:动能定理同样适用于曲线运动。
并且可以求变力的功,如下题。
例3.质量m=2kg 的物体从高h=1.6m 的曲面顶部静止开始下滑,到曲面底部的速度大小为4m/s 。
求物体在下滑过程中克服摩擦力所做的功?应用3:利用动能定理求解多个力做功的问题例4、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。
2.24 动能定理的应用
动能定理的应用五 其它问题
❖ ◆运用动能定理求圆周运动问题
例:如图所示,长为L的细绳拴一个小球在竖直平 面内做圆周运动,请问:
❖ (1)小球在最低点A初速为多大时,恰好能完 成一次圆周的运动。
❖ (2)最高点和最低点绳子拉力之差为多大?
B
6m
O
解题关键:同时列g出动能定理
4、动能定理的研究对象一般是一个物体,也可以是几 个物体组成的系统;
5、动能定理的计算式是标量式,遵循代数运算,v为 相对地面的速度;
6、对状态与过程关系的理解: a.功是过程量,动能是状态量。 b.动能定理表示了过程量等于状态量的改变量的关系。
(涉及一个过程两个状态) c.动能定理反应做功的过程是能量转化的过程。等式的左
皮球,测得橡皮球落地前瞬间速度 变力做功
抛球时由动能定理:
v=12 m/s
为12
m/s,求该同学抛球时所做的
W=mv02 =0.5´ 82 J=16 J
2
2
解得Wf=-5 J
功和橡皮球在空中运动时克服空气
抛出后由动能定理:
mgh+Wf=
1 2
mv2-
1 2
mv02
即橡皮球克服空 气阻力做功为5 J
阻力做的功.(g取10 m/s2)
例1.用拉力F使一个质量为m的木箱由静止开始 在水平冰道上移动了s,拉力F跟木箱前进的方 向的夹角为α,木箱与冰道间的摩擦因数为μ, 求木箱获得的速度?
Fcos αs-fs= 1 mv2 -0
2 f= μ(mg-Fsin α )
[F cos (mg F sin )]s 1 mv2 0
2
动能定理在曲线运动中的应用
动能定理及其应用1. 如图,在光滑水平面上有一长木板,质量为M ,在木板左端放一质量为m 的物块,物块与木板间的滑动摩擦力为f ,给物块一水平向右的恒力F ,当物块相对木板滑动L 距离时,木板运动位移为x ,则下列说法正确的是( )A. 此时物块的动能为FLB. 此时物块的动能为(F -f )LC. 此时物块的动能为F (L +x )-fLD. 此时木板的动能为fx2. [2014·太原调研](多选)一物体沿直线运动,其v -t 图象如图所示.已知在前2 s 内合力对物体做的功为W ,则( )A. 从第1 s 末到第2 s 末合力做功为35W B. 从第3 s 末到第5 s 末合力做功为-WC. 从第5 s 末到第7 s 末合力做功为WD. 从第3 s 末到第7 s 末合力做功为-2W3. (多选)如图所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )A. 支持力对物块做功为零B. 支持力对小物块做功为mgL sin αC. 摩擦力对小物块做功为mgL sin αD. 滑动摩擦力对小物块做功为12mv 2-mgL sin α 4. 如图所示,将质量为m 的小球以速度v 0由地面竖直向上抛出.小球落回地面时,其速度大小为34v 0.设小球在运动过程中所受空气阻力的大小不变,则空气阻力的大小等于( )A. 34mg B. 316mg C. 716mg D. 725mg 5. 如图所示,质量为m 的小球,从离地面H 高处由静止释放,落到地面后继续陷入泥中h 深度而停止,设小球受到空气阻力为f ,则下列说法正确的是( )A. 小球落地时动能等于mgHB. 小球陷入泥中的过程中克服泥土阻力所做的功小于刚落到地面时的动能C. 整个过程中小球克服阻力做的功等于mg (H +h )D. 小球在泥土中受到的平均阻力为mg (1+H /h )6. [2013·河北石家庄质检]如图所示为汽车在水平路面上启动过程中的速度图象,Oa 为过原点的倾斜直线,ab 段表示以额定功率行驶时的加速阶段,bc 段是与ab 段相切的水平直线,则下述说法正确的是( )A. 0~t 1时间内汽车做匀加速运动且功率恒定B. t 1~t 2时间内汽车牵引力做功为12mv 22-12mv 21 C. t 1~t 2时间内的平均速度为12(v 1+v 2) D. 在全过程中t 1时刻的牵引力及其功率都是最大值,t 2~t 3时间内牵引力最小7. 质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )A. 14mgR B. 13mgR C. 12mgR D. mgR8. (多选)在海滨游乐场里有一种滑沙的游乐活动,某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为v 0,设人下滑时所受摩擦阻力不变,沙坡长度为l ,斜面倾角为α,人和滑沙板的总质量为m ,重力加速度为g ,则下列说法正确的是( )A. 人沿沙坡下滑时所受摩擦阻力为mg sin α-mv 202lB. 人在下滑过程中重力功率的最大值为mgv 0C. 若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为2v 0D. 若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为2v 0题组二 提能练9. 光滑水平面上,一质量为m 的物块受到水平向右的随位移变化的力F 的作用,F 随位移变化的图象如图,下列说法正确的是( )A. 物块的位移为x 0时,物块的速度最大B. 物块先加速运动,后减速运动C. 物块的最大速度为 6F 0x 0mD. 由于物块受变力作用,无法求合外力做的功,因此无法求物块的速度 10. [2013·扬州模拟](多选)一个小物块从斜面底端冲上足够长的斜面后又返回到斜面底端.已知小物块的初动能为E ,它返回到斜面底端的动能为E2,小物块上滑到最大路程的中点时速度为v ;若小物块以2E 的初动能冲上斜面,则有( ) A. 返回斜面底端时的动能为EB. 返回斜面底端时的动能为3E 2C. 小物块上滑到最大路程的中点时速度为2vD. 小物块上滑到最大路程的中点时速度为2v11. 如图所示,竖直平面内有四分之一圆弧轨道固定在水平桌面上,圆心为O 点.一小滑块自圆弧轨道A 处由静止开始自由滑下,在B 点沿水平方向飞出,落到水平地面上的C 点.已知小滑块的质量为m =1.0 kg ,C 点与B 点的水平距离为x =1 m ,B 点高度为h =1.25 m ,圆弧轨道半径R =1 m ,g 取10 m/s 2.求小滑块:(1)从B 点飞出时的速度大小;(2)在B 点时对圆弧轨道的压力大小;(3)沿圆弧轨道下滑过程中克服摩擦力所做的功.答案:(1)2 m/s (2) 14 N (3)8 J12. 如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件. 答案:(1)R μ (2)(3-2cos θ)mg ,方向竖直向下(3)L ′=3+2cos θ2sin θ-μcos θ·R动能定理在曲线运动中的应用1.(单选)如图1所示,水平传送带AB长21 m,以6 m/s顺时针匀速转动,台面与传送带平滑连接于B点,半圆形光滑轨道半径R=1.25 m,与水平台面相切于C点,BC长s=5.5 m,P点是圆弧轨道上与圆心O等高的一点.一质量为m=1 kg的物块(可视为质点),从A点无初速度释放,物块与传送带及台面间的动摩擦因数均为0.1,则关于物块的运动情况,下列说法正确的是( ).图1A.物块不能到达P点B.物块能越过P点做斜抛运动C.物块能越过P点做平抛运动D.物块能到达P点,但不会出现选项B、C所描述的运动情况2.如图2所示,光滑半圆形轨道的半径为R,水平面粗糙,弹簧自由端D与轨道最低点C之间的距离为4R,一质量为m可视为质点的小物块自圆轨道中点B由静止释放,压缩弹簧后被弹回到D点恰好静止.已知小物块与水平面间的动摩擦因数为0.2,重力加速度为g,弹簧始终处在弹性限度内.图2(1)求弹簧的最大压缩量和最大弹性势能;(2)现把D点右侧水平面打磨光滑,且已知弹簧压缩时弹性势能与压缩量的二次方成正比.现使小物块压缩弹簧,释放后能通过半圆形轨道最高点A,求压缩量至少是多少?3.如图3甲所示,长为4 m的水平轨道AB与半径为R=0.6 m的竖直半圆弧轨道BC在B处相连接,有一质量为1 kg的滑块(大小不计),从A处由静止开始受水平向右的力F作用,F的大小随位移变化的关系如图乙所示,滑块与AB间的动摩擦因数为μ=0.25,与BC间的动摩擦因数未知,取g=10 m/s2.求:图3(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2 m 过程所用的时间;(3)若到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?4.如图4所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:图4(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 应用动力学和能量观点解决多过程问题1.如图1所示,粗糙水平面与半径R =1.5 m 的光滑14圆弧轨道相切于B 点,静止于A 处m =1 kg 的物体在大小为10 N 、方向与水平面成37°角的拉力F 作用下沿水平面运动,到达B 点时立刻撤去F ,物体沿光滑圆弧向上冲并越过C 点,然后返回经过B 处的速度v B =15 m/s.已知s AB =15 m ,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1图2(1)物体到达C点时对轨道的压力;(2)物体与水平面间的动摩擦因数μ.2.如图2所示半径分别为2R和R的甲、乙两光滑圆形轨道固定放置在同一竖直平面内,两轨道之间由一条水平轨道CD相连,曲面轨道与水平面轨道在B处光滑连接(物块经过B点时没有机械能损失),现有一小物块从斜面上高h处的A点由静止释放,曲面轨道以及水平轨道BC段是光滑的,小物块与CD段以及D右侧的水平轨道间的动摩擦因数均为μ.已知小物块通过甲轨道最高点时与轨道间压力为物块重力的3倍,而后经过有摩擦的CD段后又进入乙轨道运动.(1)求初始释放物块的高度h;(2)为避免出现小物块脱离圆形轨道乙而发生撞轨现象,则CD段的长度应满足什么条件?3.如图3所示,斜面倾角为θ,在斜面底端垂直斜面固定一挡板,轻质弹簧一端固定在挡板上,质量为M=1.0 kg的木板与轻弹簧接触、但不拴接,弹簧与斜面平行、且为原长,在木板右上端放一质量为m=2.0 kg的小金属块,金属块与木板间的动摩擦因数为μ1=0.75,木板与斜面粗糙部分间的动摩擦因数为μ2=0.25,系统处于静止状态.小金属块突然获得一个大小为v1=5.3 m/s、平行斜面向下的速度,沿木板向下运动.当弹簧被压缩x=0.5 m 到P点时,金属块与木板刚好达到相对静止,且此后运动过程中,两者一直没有发生相对运动.设金属块从开始运动到木块达到共速共用时间t=0.75 s,之后木板压缩弹簧至最短,然后木板向上运动,弹簧弹开木板,弹簧始终处于弹性限度内,已知sin θ=0.28、cos θ=0.96,g取10 m/s2,结果保留二位有效数字.图3(1)求木板开始运动瞬间的加速度;(2)假设木板由P点压缩弹簧到弹回P点过程中不受斜面摩擦力作用,求木板离开弹簧后沿斜面向上滑行的距离.2014高考物理最新名校试题汇编大题冲关专题03 功和能综合题1.(14分)(2014洛阳市二模)如图所示,半径为R的光滑圆形轨道竖直放置,在B点与水平轨道AB相切,【考点定位】:此题考查动能定理、牛顿运动定律及其相关知识。
高考物理动能定理在曲线中的应用
动能定理在曲线运动中的应用1【例题解析】如图,光滑圆轨道固定在竖直面内,一质量为m 的小球沿轨道做完整的圆周运动。
已知小球在最低点时对轨道的压力大小为N 1,在高点时对轨道的压力大小为N 2。
重力加速度大小为g ,则N 1–N 2的值为: 6mg【解析】设小球在最低点时速度为v 1,在最高点时速度为v 2,根据牛顿第二定律有,在最低点:N 1–mg =21mv R,在最高点:N 2+mg =22mv R ;从最高点到最低点,根据动能定理有mg ·2R =212mv –222mv ,联立可得:N 1–N 2=6mg 。
【例题解析】如图所示,竖直平面内有一个半径为R 的半圆形轨道OQP ,其中Q 是半圆形轨道的中点,半面形轨道与水平轨道OE 在O 点相切,质量为m 的小球沿水平轨道运动,通过O 点进入半圆形轨道,恰好能够通过最高点P ,然后落到水平轨道上,不计一切摩擦阻力,下列说法正确的是A .小球落地时的动能为2.5mgRB .小球落地点离O 点的距离为2RC .小球运动到半圆形轨道最高点P 时,向心力恰好为零D .小球到达Q 点的速度大小为3gR1、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点静止。
若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ。
求: (1)物块滑到b 点时的速度; (2)物块滑到b 点时对b 点的压力; (3)b 点与c 点间的距离。
【答案】(1)gR v b 2=;(2)mg F N 3=;(3)μRx =2、如图所示,左侧光滑轨道上端竖直且足够高,质量为m =1kg 的小球由高度为h =1.07m 的A 点以某一初速度沿轨道下滑,进入相切的粗糙水平轨道BC ,BC 段长L =1.00米,与小球间动摩擦因数为μ=0.02。
小球然后又进入与BC 相切于C 点的光滑半圆轨道CD ,CD 的半径为r =0.50m ,另一半径R =L =1.00米的光滑圆弧轨道EF 与CD 靠近,E 点略低于D 点,使可以当成质点的小球能在通过端点后,无碰撞地进入另一轨道,EF 轨道长度是3R, E 端切线水平,所有轨道均固定在同一竖直平面内,g =10m/s 2,求:(1)为了使小球能到达D 点,小球在A 点的初速度至少多大? (2)为了使小球不越过F 点,小球经过D 点的速度不能超过多少? (3)小球最多能通过D 点多少次?【答案】(1)2m/s (2)10/m s (3)14次3、轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l 。
动能定理 的应用
v0
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
2、研究非匀变速运动、曲线运动
可以解决牛顿定律与匀变速运动学不能解决的问题。 标量式,研究曲线运动时不用也不能分解。 注意变力功的计算。 3、研究多过程运动(往复运动)
《三维设计》86页,例1 《三维设计》88页,例1、例2
动能定理的应用
以10m/s的速度滑上一个 倾斜角为370的粗糙固定斜面,它们之间的动摩 擦因数为0.5,斜面足够长,求: (1)木块上升的最大高度为多少? (2)木块能否再滑下来?如果可以,再滑到底 端时速度为多少?
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
2、研究非匀变速运动、曲线运动
可以解决牛顿定律与匀变速运动学不能解决的问题。 标量式,研究曲线运动时不用也不能分解。 注意变力功的计算。 3、研究多过程运动(往复运动) 可以对全过程应用动能定理 注意分析不同阶段的合外力做功 注意滑动摩擦力做功的往复性
2、研究非匀变速运动、曲线运动
例:一个质量为1kg的小球在距水平地面高3.2m处 以6m/s的速度水平抛出,求它落地时速度大小。
例:一质量为1t的汽车,以100kw的恒定功率从静止 开始加速启动,运动125m后达到最大速度50m/s, 求汽车加速运动的时间。
例:竖直平面内有一个半径为R的粗糙圆周轨道,一个质 量为m的小球以一定的初速度进入轨道的最低点,第 一次通过轨道最高点时对轨道的压力为4mg。求从最 低点到第一次通过最高点的过程中摩擦力做的功。已 知 v0 11gR 。并分析小球能否再次通过最高点。
高考物理一轮复习热点题型归纳与变式演练-- 动能定理的理解与应用(原题版及解析版)
2020年高考物理一轮复习热点题型归纳与变式演练专题12 动能定理的理解与应用【专题导航】目录热点题型一 动能定理的理解 (1)热点题型二 动能定理在直线运动中的应用 (2)热点题型三 动能定理在曲线运动中的应用 (3)热点题型四 动能定理与图象的结合问题 (3)图像 (4)图像 (4)图像 (5)图像 (6)热点题型五 动能定理在多阶段、多过程综合问题中的应用 (6)运用动能定理巧解往复运动问题 (7)动能定理解决平抛、圆周运动相结合的问题 (7)【题型演练】 (8)【题型归纳】热点题型一 动能定理的理解1.定理中“外力”的两点理解(1)重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用.(2)既可以是恒力,也可以是变力.2.公式中“=”体现的三个关系x F -t v -t a -x E k-【例1】(2019·广东六校联考)北京获得2022年冬奥会举办权,冰壶是冬奥会的比赛项目.将一个冰壶以一定初速度推出后将运动一段距离停下来.换一个材料相同、质量更大的冰壶,以相同的初速度推出后,冰壶运动的距离将()A.不变B.变小C.变大D.无法判断【变式1】(2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【变式2】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是() A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体合外力一定为零热点题型二动能定理在直线运动中的应用1.若在直线运动中知道初、末状态,而不需要考虑中间过程时,一般用动能定理处理位移与速度的关系2.一般用分段法来处理问题,找准直线运动中转折处其动能有无损失【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A点由静止释放滑下,最终停在水平轨道上的B点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A、B两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为()A.tan θB.tan α C.tan(θ+α) D.tan(θ-α)【变式1】如图所示,质量为m的小球,从离地面H高处从静止开始释放,落到地面后继续陷入泥中h深度而停止,设小球受到空气阻力为f,重力加速度为g,则下列说法正确()A .小球落地时动能等于mgHB .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能C .整个过程中小球克服阻力做的功等于mg (H +h )D .小球在泥土中受到的平均阻力为mg (1+H h) 【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面一段平面后,最高冲至右侧斜面上的B 点.实验中测量出了三个角度,左、右斜面的倾角α和β及AB 连线与水平面的夹角为θ.物块与各接触面间动摩擦因数相同且为μ,忽略物块在拐角处的能量损失,以下结论正确的是 ( )A .μ=tan αB .μ=tan βC .μ=tan θD .μ=tanα-β2热点题型三 动能定理在曲线运动中的应用【例3】.如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 【变式】如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P . 它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低 点时,向心加速度的大小为a ,容器对它的支持力大小为( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R热点题型四动能定理与图象的结合问题1.解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下方的面积所对应的物理意义,根据对应关系列式解答问题.2.四类图象所围“面积”的含义F 图像x【例4】如图甲所示,一质量为4 kg的物体静止在水平地面上,让物体在随位移均匀减小的水平推力F作用下开始运动,推力F随位移x变化的关系图象如图乙所示,已知物体与面间的动摩擦因数μ=0.5,g取10 m/s2,则下列说法正确的是()A.物体先做加速运动,推力为零时开始做减速运动B.物体在水平地面上运动的最大位移是10 m C.物体运动的最大速度为215 m/s D.物体在运动中的加速度先变小后不变【变式】(2019·大连五校联考)在某一粗糙的水平面上,一质量为2 kg的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有()A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体做匀速运动时的速度D.物体运动的时间v-图像t【例5】(2019·安徽合肥一模)A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是()A.F1、F2大小之比为1∶2 B.F1、F2对A、B做功之比为1∶2C.A、B质量之比为2∶1 D.全过程中A、B克服摩擦力做功之比为2∶1【变式】(2018·高考全国卷Ⅱ) 地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程()A.矿车上升所用的时间之比为4∶5 B.电机的最大牵引力之比为2∶1C.电机输出的最大功率之比为2∶1 D.电机所做的功之比为4∶5a-图像t【例6】(2019·山西模拟)用传感器研究质量为2 kg的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s内物体的加速度随时间变化的关系如图所示.下列说法正确的是()A.0~6 s内物体先向正方向运动,后向负方向运动B.0~6 s内物体在4 s时的速度最大C .物体在2~4 s 内速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功【变式】质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空 气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动, 经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为 ( )A.14mgRB.310mgRC.12mgR D .mgRx E k 图像【例7】(2017·高考江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k 与位移x 关系的图线是( )【变式】(2018·高考江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是 ( )热点题型五 动能定理在多阶段、多过程综合问题中的应用 1.由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析多过程问题往往比较复杂,但是,用动能定理分析问题,是从总体上把握其运动状态的变化,并不需要从细节上了解.因此,动能定理的优越性就明显地表现出来了,分析力的作用是看力做的功,也只需把所有的力做的功累加起来即可.2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式.3.全过程列式涉及重力、弹簧弹力,大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点:(1)重力做的功取决于物体的初、末位置,与路径无关;(2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积;(3)弹簧弹力做功与路径无关.4.应用动能定理解题的基本步骤运用动能定理巧解往复运动问题【例8】.如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30 m、h2=1.35 m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块最终停止的位置距B点的距离.【变式】如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC 是水平的,其距离d=0.50 m.盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其从静止开始下滑(图中小物块未画出).已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停止的地点到B的距离为()A.0.50 m B.0.25 m C.0.10 m D.0动能定理解决平抛、圆周运动相结合的问题【例9】.(2019·桂林质检)如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高,质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.【变式1】(2019·河北衡水中学模拟)如图所示,质量为0.1 kg的小物块在粗糙水平桌面上滑行4 m后以3.0 m/s的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m,若不计空气阻力,取g=10 m/s2,则下列说法错误的是()A.小物块的初速度是5 m/s B.小物块的水平射程为1.2 mC.小物块在桌面上克服摩擦力做8 J的功D.小物块落地时的动能为0.9 J【变式2】如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4 m,l=2.5 m,v0=6 m/s,物块质量m=1 kg,与PQ段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g取10 m/s2.求:(1) 物块第一次经过圆轨道最高点B时对轨道的压力;(2) 物块仍以v0从右侧冲上轨道,调节PQ段的长度L,当L长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.【题型演练】1.如图所示,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,小物块从倾角为θ1的轨道上高度为h 的A点由静止释放,运动至B点时速度为v1.现将倾斜轨道的倾角调至为θ2,仍将物块从轨道上高度为h的A点静止释放,运动至B点时速度为v2.已知θ2<θ1,不计物块在轨道接触处的机械能损失.则()A.v1<v2 B.v1>v2 C.v1=v2 D.由于不知道θ1、θ2的具体数值,v1、v2关系无法判定2.如图甲所示,一质量为4 kg的物体静止在水平地面上,让物体在随位移均匀减小的水平推力F作用下开始运动,推力F随位移x变化的关系图象如图乙所示,已知物体与地面间的动摩擦因数μ=0.5,g取10 m/s2,则下列说法正确的是()A.物体先做加速运动,推力为零时开始做减速运动B.物体在水平地面上运动的最大位移是10 m C.物体运动的最大速度为215 m/s D.物体在运动中的加速度先变小后不变3.(2018·高考全国卷Ⅰ)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为()A.2mgR B.4mgR C.5mgR D.6mgR4.(2019·襄阳模拟)用竖直向上大小为30 N的力F,将2 kg的物体从沙坑表面由静止提升1 m时撤去力F,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g取10 m/s2.则物体克服沙坑的阻力所做的功为()A.20 J B.24 J C.34 J D.54 J5.(2019·宁波模拟)如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A .不变B .变小C .变大D .变大变小均可能6.(2019·北京101中学检测)如图所示,质量为m 的物体静置在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮,由地面上的人以速度v 0向右匀速拉动,设人从地面上平台的边缘开始向右行至绳与水平方向夹角为45°处,在此过程中人所做的功为( )A .mv 202B .2mv 202C .mv 204D .mv 20 7. 光滑水平面上静止的物体,受到一个水平拉力F 作用开始运动,拉力随时间变化如图所示,用E k 、v 、x 、P 分别表示物体的动能、速度、位移和水平拉力的功率,下列四个图象中分别定性描述了这些物理量随时间变化的情况,正确的是 ( )8.一圆弧形的槽,槽底放在水平地面上,槽的两侧与光滑斜坡aa ′、bb ′相切,相切处a 、b 位于同一水平面内,槽与斜坡在竖直平面内的截面如图所示.一小物块从斜坡aa ′上距水平面ab 的高度为2h 处沿斜坡自由滑下, 并自a 处进入槽内,到达b 后沿斜坡bb ′向上滑行,已知到达的最高处距水平面ab 的高度为h ;接着小物块、沿斜坡bb ′滑下并从b 处进入槽内反向运动,若不考虑空气阻力,则 ( )A .小物块再运动到a 处时速度变为零B .小物块每次经过圆弧槽最低点时对槽的压力不同C .小物块不仅能再运动到a 处,还能沿斜坡aa ′向上滑行,上升的最大高度为hD .小物块不仅能再运动到a 处,还能沿斜坡aa ′向上滑行,上升的最大高度小于h9 如图所示,水平桌面上的轻质弹簧左端固定,右端与静止在O 点质量为m =1 kg 的小物块接触而不连接,此时弹簧无形变.现对小物块施加F =10 N 水平向左的恒力,使其由静止开始向左运动.小物块在向左运动到A 点前某处速度最大时,弹簧的弹力为6 N ,运动到A 点时撤去推力F ,小物块最终运动到B 点静止.图中OA =0.8 m ,OB =0.2 m ,重力加速度g 取10 m/s 2.求小物块:(1)与桌面间的动摩擦因数μ;(2)向右运动过程中经过O 点的速度;(3)向左运动的过程中弹簧的最大压缩量.10.(2018·高考全国卷 Ⅰ )如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A 点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.2020年高考物理一轮复习热点题型归纳与变式演练专题12 动能定理的理解与应用【专题导航】目录热点题型一 动能定理的理解 (1)热点题型二 动能定理在直线运动中的应用 (2)热点题型三 动能定理在曲线运动中的应用 (4)热点题型四 动能定理与图象的结合问题 (5)图像 (5)图像 (6)图像 (8)图像 (9)热点题型五 动能定理在多阶段、多过程综合问题中的应用 (10)运用动能定理巧解往复运动问题 (10)动能定理解决平抛、圆周运动相结合的问题 (11)【题型演练】 (14)【题型归纳】热点题型一 动能定理的理解1.定理中“外力”的两点理解(1)重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用.(2)既可以是恒力,也可以是变力.2.公式中“=”体现的三个关系x F -t v -t a -x E k-【例1】(2019·广东六校联考)北京获得2022年冬奥会举办权,冰壶是冬奥会的比赛项目.将一个冰壶以一定初速度推出后将运动一段距离停下来.换一个材料相同、质量更大的冰壶,以相同的初速度推出后,冰壶运动的距离将( )A .不变B .变小C .变大D .无法判断【答案】 A【解析】 冰壶在冰面上以一定初速度被推出后,在滑动摩擦力作用下做匀减速运动,根据动能定理有-μmgs =0-12mv 2,得s =v 22μg,两种冰壶的初速度相等,材料相同,故运动的距离相等.故选项A 正确. 【变式1】(2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功【答案】 A【解析】 由动能定理W F -W f =E k -0,可知木箱获得的动能一定小于拉力所做的功,A 正确.【变式2】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是( )A .合外力为零,则合外力做功一定为零B .合外力做功为零,则合外力一定为零C .合外力做功越多,则动能一定越大D .动能不变,则物体合外力一定为零【答案】A.【解析】由W =Fl cos α可知,物体所受合外力为零,合外力做功一定为零,但合外力做功为零,可能是α=90°,故A 正确,B 错误;由动能定理W =ΔE k 可知,合外力做功越多,动能变化量越大,但动能不一定越大,动能不变,合外力做功为零,但合外力不一定为零,C 、D 均错误.热点题型二 动能定理在直线运动中的应用1. 若在直线运动中知道初、末状态,而不需要考虑中间过程时,一般用动能定理处理位移与速度的关系2. 一般用分段法来处理问题,找准直线运动中转折处其动能有无损失【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A 点由静止释放滑下,最终停在水平轨道上的B 点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A 、B 两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为( )A .tan θB .tan αC .tan(θ+α)D .tan(θ-α)【答案】B【解析】.如图所示,设B 、O 间距离为s 1,A 点离水平面的高度为h ,A 、O 间的水平距离为s 2,物块的质量为m ,在物块下滑的全过程中,应用动能定理可得mgh -μmg cos θ·s 2cos θ-μmg ·s 1=0,解得μ=h s 1+s 2=tan α,故选项B 正确.【变式1】如图所示,质量为m 的小球,从离地面H 高处从静止开始释放,落到地面后继续陷入泥中h 深 度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确( )A .小球落地时动能等于mgHB .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能C .整个过程中小球克服阻力做的功等于mg (H +h )D .小球在泥土中受到的平均阻力为mg (1+H h) 【答案】C【解析】小球从静止开始释放到落到地面的过程,由动能定理得mgH -fH =12mv 20,选项A 错误;设泥的平均阻力为f 0,小球陷入泥中的过程,由动能定理得mgh -f 0h =0-12mv 20,解得f 0h =mgh +12mv 20=mgh +mgH -fH ,f 0=mg (1+H h )-fH h,选项B 、D 错误;全过程应用动能定理可知,整个过程中小球克服阻力做的功等于mg (H +h ),选项C 正确.【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面一段平面后,最高冲至右侧斜面上的B 点.实验中测量出了三个角度,左、右斜面的倾角α和β及AB 连线与水平面的夹角为θ.物块与各接触面间动摩擦因数相同且为μ,忽略物块在拐角处的能量损失,以下结论正确的是 ( )A .μ=tan αB .μ=tan βC .μ=tan θD .μ=tanα-β2【答案】C【解析】对全过程运用动能定理,结合摩擦力做功的大小,求出动摩擦因数大小.设A 、B 间的水平长度为x ,竖直高度差为h ,对A 到B 的过程运用动能定理得mgh -μmg cos α·AC -μmg ·CE -μmg cos β·EB =0,因为AC ·cos α+CE +EB ·cos β=x ,则有mgh -μmgx =0,解得μ=h x=tan θ,故C 正确.热点题型三 动能定理在曲线运动中的应用【例3】.如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 【答案】C【解析】.设质点到达N 点的速度为v N ,在N 点质点受到轨道的弹力为F N ,则F N -mg =mv 2N R,已知F N =F ′N =4mg ,则质点到达N 点的动能为E k N =12mv 2N =32mgR .质点由开始至N 点的过程,由动能定理得mg ·2R +W f =E k N -0,解得摩擦力做的功为W f =-12mgR ,即克服摩擦力做的功为W =-W f =12mgR .设从N 到Q 的过程中克服摩擦力做功为W ′,则W ′<W .从N 到Q 的过程,由动能定理得-mgR -W ′=12mv 2Q -12mv 2N ,即12mgR -W ′=12mv 2Q,故质点到达Q 点后速度不为0,质点继续上升一段距离.选项C 正确. 【变式】如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低 点时,向心加速度的大小为a ,容器对它的支持力大小为( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R【答案】 AC【解析】质点由半球面最高点到最低点的过程中,由动能定理有:mgR -W =12mv 2,又在最低点时,向心加速度大小a =v 2R ,两式联立可得a =2(mgR -W )mR ,A 项正确,B 项错误;在最低点时有N -mg =m v 2R,解得N =3mgR -2W R,C 项正确,D 项错误.热点题型四 动能定理与图象的结合问题1.解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下方的面积所对应的物理意义,根据对应关系列式解答问题.2.四类图象所围“面积”的含义x F 图像【例4】如图甲所示,一质量为4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力F 作 用下开始运动,推力F 随位移x 变化的关系图象如图乙所示,已知物体与面间的动摩擦因数μ=0.5,g 取10 m/s 2,则下列说法正确的是 ( )A .物体先做加速运动,推力为零时开始做减速运动B .物体在水平地面上运动的最大位移是10 mC .物体运动的最大速度为215 m/sD .物体在运动中的加速度先变小后不变【答案】 B【解析】 当推力小于摩擦力时物体就开始做减速运动,选项A 错误;图乙中图线与坐标轴所围成的三角形面积表示推力对物体做的功,由此可得推力做的功为W =12×4×100 J =200 J ,根据动能定理有W -μmgx max =0,得x max =10 m ,选项B 正确;当推力与摩擦力平衡时,加速度为零,速度最大,由题图乙得F =100-25x (N),当F =μmg =20 N 时,x =3.2 m ,由动能定理得12(100+20)·x -μmgx =12mv 2max,解得物体运动的最大速度v max =8 m/s ,选项C 错误;当推力由100 N 减小到20 N 的过程中,物体的加速度逐渐减小,当推力由20 N 减小到0的过程中,物体的加速度又反向增大,此后物体的加速度不变,直至物体静止,故D 项错误.【变式】(2019·大连五校联考)在某一粗糙的水平面上,一质量为2 kg 的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度g =10 m/s 2.根据以上信息能精确得出或估算得出的物理量有( )A .物体与水平面间的动摩擦因数B .合外力对物体所做的功C .物体做匀速运动时的速度D .物体运动的时间【答案】ABC【解析】.物体做匀速直线运动时,拉力F 与滑动摩擦力f 大小相等,物体与水平面间的动摩擦因数为μ=F mg =0.35,A 正确;减速过程由动能定理得W F +W f =0-12mv 2,根据F -x 图象中图线与坐标轴围成的面积可以估算力F 做的功W F ,而W f =-μmgx ,由此可求得合外力对物体所做的功,及物体做匀速运动时的速度v ,B 、C 正确;因为物体做变加速运动,所以运动时间无法求出,D 错误. t v 图像。
变力曲线运动推导动能定理
变力曲线运动推导动能定理动能定理是物理学中的一个重要定理,它描述了物体的动能与物体所受的力之间的关系。
在运动学中,我们学习了变力曲线运动,这种运动中物体所受的力是随着时间变化的,因此我们可以通过变力曲线运动来推导动能定理。
我们需要了解动能的定义。
动能是物体由于运动而具有的能量,它的大小与物体的质量和速度有关。
动能的公式为K=1/2mv^2,其中m是物体的质量,v是物体的速度。
接下来,我们来看一下变力曲线运动。
在这种运动中,物体所受的力是随着时间变化的,因此我们需要将力与时间的关系表示为一个函数f(t)。
根据牛顿第二定律,物体所受的力等于物体的质量乘以加速度,即F=ma。
因此,我们可以将f(t)表示为物体的加速度a与时间t的函数,即f(t)=ma(t)。
现在,我们来推导动能定理。
根据牛顿第二定律,物体所受的力等于物体的质量乘以加速度,即F=ma。
将这个公式代入动能公式K=1/2mv^2中,得到K=1/2m(v^2/a)F。
由于f(t)=ma(t),因此可以将F表示为f(t)的积分,即F=∫f(t)dt。
将这个公式代入K=1/2m(v^2/a)F中,得到K=1/2m(v^2/a)∫f(t)dt。
现在,我们需要将f(t)表示为物体的速度v与时间t的函数。
根据牛顿第二定律,物体所受的力等于物体的质量乘以加速度,即F=ma。
将这个公式代入速度公式v=at中,得到v=∫a(t)dt。
将这个公式代入K=1/2m(v^2/a)∫f(t)dt中,得到K=1/2mv^2-1/2m∫f(t)v(t)dt。
我们可以将K=1/2mv^2-1/2m∫f(t)v(t)d t表示为动能定理的形式,即K1+∫f(t)v(t)dt=K2。
这个公式描述了物体在变力曲线运动中的动能变化,它告诉我们物体的动能变化等于物体所受的力与速度的积分。
通过变力曲线运动推导动能定理可以帮助我们更好地理解物体的动能与物体所受的力之间的关系。
在实际应用中,我们可以利用动能定理来计算物体的动能变化,从而更好地控制物体的运动。
第2讲 动能定理及应用
第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能。
2.公式:E k =12m v 2。
3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。
4.动能是标量,是状态量。
5.动能的变化:ΔE k =12m v 22-12m v 21。
二、动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
2.表达式:W =E k2-E k1=12m v 22-12m v 21。
3.物理意义:合力做的功是物体动能变化的量度。
4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)动能定理既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用。
【自测 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变,则物体所受合力一定为零答案 A命题点一 动能定理的理解1.两个关系(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。
(2)因果关系:合力做功是引起物体动能变化的原因。
2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
【例1 随着高铁时代的到来,人们出行也越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。
在启动阶段,列车的动能( )图1A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的加速度成正比答案 B解析 列车在启动阶段做v 0=0的匀加速直线运动,列车的动能E k =12m v 2=12m (at )2=12m ·(2ax ),可见B 正确,A 、C 、D 错误。
【针对训练1】 (多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( )A .物体的重力势能增加了3 JB .物体的重力势能减少了3 JC .物体的动能增加了4.5 JD .物体的动能增加了8 J答案 AC解析 因为重力做负功时重力势能增加,所以重力势能增加了3 J ,A 正确,B 错误;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 正确,D 错误。
2020高中物理必修二同步第七章 习题课2 动能定理的应用
习题课2 动能定理的应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小. (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球下落到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d ,得:F N =5mg ,根据牛顿第三定律:F N ′= F N =5mg .(2)在C 点,mg =m v C2d 2.小球从B 运动到C 的过程:12m v C 2-12m v 2=-mgd +W f ,得W f =-34mgd . 针对训练 如图2所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m.若此人缓慢地将绳从A 点拉到B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)图2答案 100 J解析 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m. 物体升高的高度Δh =h sin 30°-h sin 37°.①对全过程应用动能定理W -mg Δh =0.② 由①②两式联立并代入数据解得W =100 J. 则人拉绳的力所做的功W 人=W =100 J. 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和. 例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升的最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图4所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图4(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 0 2②由①②得:v 0=3 m/s.(2)在最高点C 处有mg =m v C2R ,小球从桌面到C 点,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.1.(用动能定理求变力的功) 如图5所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图5A.0B.2μmgRC.2πμmgRD.μmgR2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .2.(利用动能定理分析多过程问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图6是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O点,圆心角为60°,半径OC 与水平轨道CD 垂直,水平轨道CD 段粗糙且长8 m.某运动员从轨道上的A 点以3 m /s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧形轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为60 kg ,B 、E 两点到水平轨道CD 的竖直高度分别为h 和H ,且h =2 m ,H =2.8 m ,g 取10 m/s 2.求:图6(1)运动员从A 点运动到达B 点时的速度大小v B ; (2)轨道CD 段的动摩擦因数μ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,则最后停在何处?答案 (1)6 m/s (2)0.125 (3)不能回到B 处,最后停在D 点左侧6.4 m 处(或C 点右侧1.6 m 处) 解析 (1)由题意可知:v B =v 0cos 60°解得:v B =6 m/s.(2)从B 点到E 点,由动能定理可得: mgh -μmgx CD -mgH =0-12m v B 2代入数据可得:μ=0.125.(3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处,根据动能定理得: mgh -mgh ′-μmg ·2x CD =0-12m v B 2解得h ′=1.8 m<h =2 m所以第一次返回时,运动员不能回到B 点设运动员从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得: mgh -μmgs =0-12m v B 2④解得:s =30.4 m因为s =3x CD +6.4 m ,所以运动员最后停在D 点左侧6.4 m 处或C 点右侧1.6 m 处. 3.(动能定理在平抛、圆周运动中的应用) 如图7所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m /s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图7(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ① 由运动学规律有v y 2=2gH ② 联立①②解得H =0.6 m (3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.课时作业一、选择题(1~7为单项选择题,8~9为多项选择题)1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 0 2B.12m v 2-12m v 0 2-mghC.mgh +12m v 0 2-12m v 2D.mgh +12m v 2-12m v 0 2答案 C解析 选取物块从刚抛出到正好落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 0 2解得:W f 克=mgh +12m v 0 2-12m v 2.2.如图1所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.-mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 运动到C 的全过程,根据动能定理,有mgR -W AB -μmgR =0.所以有W AB =mgR -μmgR =(1-μ)mgR .3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2所示,则拉力F 所做的功为( )图2A.mgl cos θB.mgl (1-cos θ)D.Fl sin θ 答案 B解析 小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F =mg tan θ,随着θ的增大,F 也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl (1-cos θ)+W =0,所以W =mgl (1-cos θ).4.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧最右端O 相距s ,如图3所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(不计空气阻力)( )图3A.12m v 0 2-μmg (s +x )B.12m v 0 2-μmgxC.μmgsD.μmgx答案 A解析 设物体克服弹簧弹力所做的功为W ,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-W ,摩擦力对物体做功为-μmg (s +x ),根据动能定理有-W -μmg (s +x )=0-12m v 0 2,所以W =12m v 0 2-μmg (s +x ).5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 1 2R ,6mg =m v 1 2R①小球恰好过最高点,绳子拉力为零,这时mg =m v 2 2R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 2 2-12m v 1 2③由①②③式联立解得W f =12mgR ,选C.6.如图5所示,假设在某次比赛中运动员从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当作质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )图5A.5 mB.3 mC.7 mD.1 m答案 A解析 设水深为h ,对运动全程运用动能定理可得: mg (H +h )-F f h =0,mg (H +h )=3mgh .所以h =5 m.7.如图6所示,小球以初速度v 0从A 点沿粗糙的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为( )图6A.v 0 2-4ghB.4gh -v 0 2C.v 0 2-2ghD.2gh -v 0 2答案 B解析 从A 到B 运动过程中,重力和摩擦力都做负功,根据动能定理可得mgh +W f =12m v 0 2,从B 到A 过程中,重力做正功,摩擦力做负功(因为是沿原路返回,所以两种情况摩擦力做功大小相等),根据动能定理可得mgh -W f =12m v 2,两式联立得再次经过A 点的速度为4gh -v 0 2,故B 正确.8.在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图7所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图7A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,选项D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,选项C 正确.9.如图8所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )图8答案 AB解析 对小环由动能定理得mgh =12m v 2-12m v 02,则v 2=2gh +v 0 2.当v 0=0时,B 正确.当v 0≠0时,A 正确.二、非选择题10.如图9所示,光滑水平面AB 与一半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图9(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR 解析 (1)由动能定理得W =12m v B 2 在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得12m v C 2-12m v B2=-2mgR +W ′ 物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR . (3)物块从C 点平抛到水平面的过程中,由动能定理得2mgR =E k -12m v C 2,解得E k =52mgR . 11.如图10所示,绷紧的传送带在电动机带动下,始终保持v 0=2 m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =10 kg 的工件轻轻地放在传送带底端,由传送带传送至h =2 m 的高处.已知工件与传送带间的动摩擦因数μ=32,g 取10 m/s 2.图10(1)通过计算分析工件在传送带上做怎样的运动?(2)工件从传送带底端运动至h =2 m 高处的过程中摩擦力对工件做了多少功?答案 (1)工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动 (2)220 J解析 (1)工件刚放上传送带时受滑动摩擦力:F f =μmg cos θ,工件开始做匀加速直线运动,由牛顿运动定律:F f -mg sin θ=ma 可得:a =F f m-g sin θ =g (μcos θ-sin θ)=10×⎝⎛⎭⎫32cos 30°-sin 30° m/s 2 =2.5 m/s 2.设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得:x =v 0 22a =222×2.5 m =0.8 m <h sin θ=4 m 故工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动.(2)在工件从传送带底端运动至h =2 m 高处的过程中,设摩擦力对工件做功为W f ,由动能定理得W f -mgh =12m v 0 2, 可得:W f =mgh +12m v 0 2=10×10×2 J +12×10×22 J =220 J. 12.如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点光滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.sin 53°=0.8,cos 53°=0.6.g取10 m/s2.求:图11(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s(2)1.02 m(3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-122m v C代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:12-0=mgH-μmgl BC2m v C代入数据解得:H=1.02 m(3)从物体开始下滑到停下,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以,物体最终停止的位置到C点的距离为:s=0.4 m.。
曲线运动第12讲 功能关系(动能定理及其应用篇)
功能关系(动能定理及其应用)知识点梳理1.动能:物体由于运动而具有的能量。
影响因素:<1>质量 <2>速度 表达式:E k =221mv 单位:J 2、动能定理<1>定义:物体动能的变化量等于合外力做功。
<2>表达式:△E k =W F 合3、W 的求法动能定理中的W 表示的是合外力的功,可以应用W =F 合·lc os α(仅适用于恒定的合外力)计算,还可以先求各个力的功再求其代数和,W =W 1+W 2+…(多适用于分段运动过程)。
4.适用范围动能定理应用广泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功等各种情况均适用。
5.动能定理的应用(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的始末状态的动能E k 1和E k 2;母本身含有负号。
方法突破之典型例题题型一对动能定理的理解1.一个人用手把一个质量为m=1kg的物体由静止向上提起2m,这时物体的速度为2m/s,则下列说法中正确的是()A.合外力对物体所做的功为12JB.合外力对物体所做的功为2JC.手对物体所做的功为22JD.物体克服重力所做的功为20J2.关于对动能的理解,下列说法不正确的是()A.凡是运动的物体都具有动能B.动能总是正值C.一定质量的物体,动能变化时,速度一定变化D.一定质量的物体,速度变化时,动能一定变化光说不练,等于白干1、若物体在运动过程中所受的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化2、物体在合外力作用下,做直线运动的v﹣t图象如图所示,下列表述正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功3、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则()A.从第1秒末到第3秒末合外力做功为4WB.从第3秒末到第5秒末合外力做功为-2WC.从第5秒末到第7秒末合外力做功为WD.从第3秒末到第4秒末合外力做功为-0.75W4、美国的NBA篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能表达正确的是()A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh15、轻质弹簧竖直放在地面上,物块P 的质量为m ,与弹簧连在一起保持静止。
《动能定理的应用》 讲义
《动能定理的应用》讲义一、动能定理的基本概念在物理学中,动能定理是一个非常重要的概念。
它描述了力对物体做功与物体动能变化之间的关系。
动能,简单来说,就是物体由于运动而具有的能量。
其表达式为:$E_k =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
而动能定理指出:合外力对物体所做的功等于物体动能的变化量。
数学表达式为:$W =\Delta E_k$,其中$W$是合外力做的功,$\Delta E_k$是动能的变化量。
理解动能定理的关键在于明白做功会导致能量的转化。
当力对物体做功时,物体的动能可能增加,也可能减少,具体取决于力做功的正负。
二、动能定理的推导为了更好地理解动能定理,我们来进行简单的推导。
假设一个质量为$m$的物体,在恒力$F$的作用下,沿着直线运动,位移为$s$,力与位移的夹角为$\theta$。
根据功的定义,力$F$做的功$W$为:$W = Fs\cos\theta$根据牛顿第二定律,$F = ma$物体的加速度为$a$,初速度为$v_0$,末速度为$v$,根据运动学公式:$v^2 v_0^2 = 2as$将$F = ma$和$v^2 v_0^2 = 2as$代入$W = Fs\cos\theta$中,得到:\\begin{align}W&=mas\cos\theta\\&=m\frac{v^2 v_0^2}{2}\cos\theta\\&=\frac{1}{2}mv^2 \frac{1}{2}mv_0^2\end{align}\这就证明了合外力对物体所做的功等于物体动能的变化量,即动能定理。
三、动能定理的应用场景动能定理在解决物理问题时有广泛的应用,以下是一些常见的场景:1、单物体直线运动对于一个在直线上运动的物体,已知其受力情况和初末速度,我们可以利用动能定理来求位移或者力的大小。
例如,一个质量为$2kg$的物体在水平拉力作用下,从静止开始运动,经过$5m$后速度达到$4m/s$,已知摩擦力为$5N$,求拉力的大小。
高考第动能定理及其应用
详细描述
根据动能定理,物体所受合外力做的功等于 物体动能的变化。当力的作用点发生变化时 ,力的大小和方向都会发生变化,导致物体 的运动状态发生变化。例如,一个物体在拉 力作用下沿水平面运动,如果拉力的作用点 向右移动,则物体的运动状态也会向右移动
。
动能定理与相对速度
要点一
总结词
动能定理可以用来描述物体相对于参考系的速度变化, 当物体的相对速度发生变化时,其动能也会发生变化。
详细描述
根据动能定理,物体所受合外力做的功等于物体动能的 变化。摩擦力是一种耗散力,它会消耗物体的动能并产 生热量。例如,一个物体在粗糙水平面上滑动时,摩擦 力会消耗物体的动能并产生热量,使物体的速度逐渐减 小直至停止。
05
动能定理的实例分析
球体弹跳的动能定理分析
总结词
弹跳球运动过程中,动能定理可以用来分析球体反弹时的速 度和高度变化。
投篮过程中的动能定理分析
总结词
在投篮过程中,动能定理可以用来分析篮球投篮入筐时 的速度和投篮力度之间的关系。
详细描述
根据动能定理,篮球投篮入筐时的动能等于投篮力度做 的功。通过已知篮球的初速度、质量、投篮角度和重力 加速度,可以计算出投篮力度的大小。同时,根据篮球 的初速度和投篮角度,可以计算出篮球入筐时的速度。
详细描述
在碰撞问题中,动能定理可以用来求出碰 撞前后物体的速度和能量变化。例如,在 完全弹性碰撞中,动能定理可以证明碰撞 前后物体的总动能不变。此外,在涉及多 个物体碰撞的问题中,动能定理可以用来 求解物体的速度和运动状态。
04
动能定理的扩展
动能定理与力的作用点变化
总结词
动能定理可以用来描述物体运动过程中力的 作用效果,当力的作用点发生变化时,物体 的运动状态也会发生相应的变化。
动能定理及其应用
动能定理及其应用
学习目标 1、理解做功的过程就是能量转化或 转移的过程,会用动能定理处理单个 物体的有关问题。 2、知道动能定理也可用于变力做功 与曲线运动的情景,能用动能定理计 算变力做功。
1.定义:物体由于 运动 而具有的 能. 2.公式:Ek= 焦耳 . 标量 ,1 J=1 N·m=1 3.单位: kg·m2/s2.
4.动能定理公式中等号的意义
(1)数量相等(2)单位相同(3)因果关系
应用动能定理解题的基本步骤
(1)选取研究对象,明确它的运动过程. (2)分析研究对象的受力情况和各力的做 功情况.
(3)明确物体在过程的始末状态的动能Ek1 和Ek2. (4)列出动能定理的方程W总=Ek2-Ek1及 其他必要的解题方程,进行求解.
对动能定理的进一步理解 1.动能定理中所说的“外力”,是指物体 受到的所有力. 包括 (包括或不包括) 重力. 2.位移和速度:必须是相对于同一个参考 系的,一般以 地面 为参考系. 3.动能定理适用范围: 直线运动、曲线运动、恒力做功、变力做功、同时做功、
分段做功,一个持续的过程,几个分段过程的全过程.
【答案】
160 s 64 ( )m 3
题型四:应用动能定理解决分段运动问 题
例5. 总质量为M的机车,沿水平直线轨 道匀速前进,其末节车厢质量为m,途 中脱节,司机发觉时,机车已行驶L的 距离,于是立即关闭油门,除去牵引力, 设运动的阻力与质量成正比,机车的牵 引力是恒定的,当机车的两部分都停止 时,它们的距离是多少? ML 【答案】 s M-m
题型一:应用动能定理解决恒力下的直线 运动问题 例1:如图所示,用拉力F使一个质量为m 的木箱由静止开始在水平地面上移动了L, 拉力F跟木箱前进的方向的夹角为θ,木箱 与地面间的动摩擦因数为μ,求木箱获得 的速度? F
动能定理及其应用
例6:质量为m的物体以速度V0竖直向上 抛出,物体落回地面时,速度大小为3V0/4, (设物体在运动中所受空气阻力大小不变)如图 所示。求: (1)物体运动过程中所受的空气阻力的大小。 (2)物体以速度2V0竖直向上抛出时的最大高度? 若假设物体落地碰撞过程中无能量损失,求物 体运动的总路程。
例7:一个物块从底端冲上足够长的斜面 后,又返回斜面底端。已知小物块的初动能 为E,它返回斜面底端的速度大小为v,克服 摩擦阻力做功为E/2。若小物块冲上斜面的动 能为2E,则物块( ) A.返回斜面底端时的动能为E B.返回斜面底端时的动能为3E/2 C.返回斜面底端时的速度大小为2v D.返回斜面底端时的速度大小为v
例7:如图所示,质量为m的小车在水平恒 力F推动下,从山坡(粗糙)底部A处由静止起运 动至高为h的坡顶B,获得速度为v,AB之间的 水平距离为x,重力加速度为g。下列说法正确 的是( ) A.小车克服重力所做的功是mgh
B.合外力对小车做的功是 C.推力对小车做的功是 D.阻力对小车做的功是
1 2 mv mgh 2 1 2 mv mgh Fx 2
Q端的拉力对物体做的功。
1 2 W mv B mg ( 2 1) H 4
题型2
对物体运动的全过程用动能定理
例4:如图所示,质量m=1 kg的木块静 止在高h=1.2 m的平台上,木块与平台间的动 摩擦因数μ=0.2,用水平推力F=20 N,使木块 产生位移l1=3 m时撤去,木块又滑行l2=1 m时 飞出平台,求木块落地时速度的大小?
V0 S0
P
α 图11
例10:如图所示,一根劲度系数为k的弹 簧,上端系在天花板上,下端系一质量为mA的 物体A,A通过一段细线吊一质量为mB的物体B, 整个装置静止。试求: (1)系统静止时弹簧的伸长量 (2)若用剪刀将细线剪断,则刚剪断细线的瞬间 物体A的加速度 (3)设剪断细线后,A物体上升 至弹簧原长时的速度为v,则 此过程中弹力对物体A做的功
浅谈动能定理的应用
浅谈动能定理的应用作者:潘晟来源:《中学课程辅导·教师教育(中)》2018年第03期【摘要】动能定理是高中物理的重点、难点,也是高考命题的热点,考试大纲中明确要求考生理解动能定理并能在实际问题的分析、综合、推理和判断等过程中运用。
本文将对高中物理中动能定理的理解、应用以及应用范围做简要分析。
【关键词】高中物理动能定理应用【中图分类号】 G633.7 【文献标识码】 A 【文章编号】 1992-7711(2018)03-168-01动能定理在高中物理课程中占有的分量很重,很多物理知识都需要动能定理来求解,因此很多命题老师都很看重这方面,是学生学习物理的重要板块。
动能定理掌握的好与坏,涉及到学生解决物理问题的技能。
掌握动能定理的解题方法,是学好高中物理的基础。
它能有效地拓展学生的解题方法,对学生思维的能动性的提高起着举足轻重的作用。
一、对动能定理的理解动能定理就是对物体所做的功等于物体动能的变化,即W=1/2mv02-1/2mv12,从以下几点进行理解。
首先是外力做功的理解,在外力对物体进行做功时,力既可以促进物体运动也可以阻碍物体运动,用正负之分来作为区别,方便我们更好的理解,所谓的总功,用公式表示即为W总=W1+W2+……=F1S+F2S+……=F总S,因此,总功也可以理解为所有外力做功的总和;其次对标量的理解,标量即是单纯的改变速度或者改变方向都不会改变动能的大小,例如一个物体绕圆周方向进行匀速运动,外力的方向指向中心点,与位移方向是保持垂直的,因此物体的方向即使随意改变,也不会影响做功总和;第三对动能定理中正、负功的理解,因为外力做的功有正、负之分,所以物体在运动中能量有可能多或者少。
而动能定理的正负之分与增减无关,它是表示初始状态与结束状态的一个动能差,数值可用正、负表示;第四对动能与动能定理之间的关系的理解,做功一个过程量,而动能是一个状态量,动能定理表示的是一个量变差,是能量转化的一个过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题训练13 动能定理在曲线运动中的应用
1.(单选)如图1所示,水平传送带AB 长21 m ,以6 m/s 顺时针匀速转动,台面与传送带平滑连接于B 点,半圆形光滑轨道半径R =1.25 m ,与水平台面相切于C 点,BC 长s =5.5 m ,P 点是圆弧轨道上与圆心O 等高的一点.一质量为m =1 kg 的物块(可视为质点),从A 点无初速度释放,物块与传送带及台面间的动摩擦因数均为0.1,则关于物块的运动情况,下列说法正确的是
( ).
图1
A .物块不能到达P 点
B .物块能越过P 点做斜抛运动
C .物块能越过P 点做平抛运动
D .物块能到达P 点,但不会出现选项B 、C 所描述的运动情况
解析 物块从A 点释放后在传送带上做加速运动,假设到达台面之前能够达到传送带的速度v ,则由动能定理得,μmgs 1=1
2m v 2,得s 1=18 m<21 m ,假设成立.物块以6 m/s 冲上
台面,假设物块能到达P 点,则到达P 点时的动能E k P 可由动能定理求得,-μmgs -mgR =E k P -1
2m v 2,得E k P =0,可见,物块能到达P 点,速度恰为零,之后从P 点沿圆弧轨道
滑回,不会出现选项B 、C 所描述的运动情况,D 正确. 答案 D
2.如图2所示,光滑半圆形轨道的半径为R ,水平面粗糙,弹簧自由端D 与轨道最低点C 之间的距离为4R ,一质量为m 可视为质点的小物块自圆轨道中点B 由静止释放,压缩弹簧后被弹回到D 点恰好静止.已知小物块与水平面间的动摩擦因数为0.2,重力加速度为g ,弹簧始终处在弹性限度内.
图2
(1)求弹簧的最大压缩量和最大弹性势能;
(2)现把D 点右侧水平面打磨光滑,且已知弹簧压缩时弹性势能与压缩量的二次方成正
比.现使小物块压缩弹簧,释放后能通过半圆形轨道最高点A ,求压缩量至少是多少? 解析 (1)设弹簧的最大压缩量为x ,最大弹性势能为E p ,对小物块,从B 到D 再压缩弹簧又被弹回到D 的过程由动能定理有mgR -μmg (4R +2x )=0 解得x =0.5R
小物块从压缩弹簧最短到返回至D ,由动能定理有 E p -μmgx =0 解得E p =0.1mgR .
(2)设压缩量至少为x ′,对应的弹性势能为E p ′,则 E p ′E p =x ′2
x
2 小物块恰能通过半圆形轨道最高点A ,则mg =m v 2A R
小物块从压缩弹簧到运动至半圆形轨道最高点A ,由动能定理有E p ′-μmg ·4R -2mgR =
1
2m v 2A
联立解得x ′=
33
2
R . 答案 (1)0.5R 0.1mgR (2)
332
R 3.如图3甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化的关系如图乙所示,滑块与AB 间的动摩擦因数为μ=0.25,与BC 间的动摩擦因数未知,取g =10 m/s 2.求:
图3
(1)滑块到达B 处时的速度大小;
(2)滑块在水平轨道AB 上运动前2 m 过程所用的时间;
(3)若到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,则滑块在半圆弧轨道上克服摩擦力所做的功是多少? 解析 (1)对滑块从A 到B 的过程,由动能定理得 F 1x 1-F 3x 3-μmgx =1
2m v 2B
即20×2 J -10×1 J -0.25×1×10×4 J =1
2×1×v 2B ,得v B =210 m/s. (2)在前2 m 内,有F 1-μmg =ma ,且x 1=12at 21,
解得t 1=
835
s. (3)当滑块恰好能到达最高点C 时,应用:mg =m v 2C
R
对滑块从B 到C 的过程,由动能定理得:W -mg ·2R =12m v 2C -12m v 2
B
代入数值得W =-5 J ,即克服摩擦力做的功为5 J. 答案 (1)210 m/s (2)
8
35
s (3)5 J 4.如图4所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0
=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:
图4
(1)A 、C 两点的高度差;
(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;
(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为 v C =v 0cos 53°
=5 m/s ,竖直分量为v Cy =4 m/s
下落高度h =v 2Cy
2g
=0.8 m
(2)小物块由C 到D 的过程中,由动能定理得 mgR (1-cos 53°)=12m v 2D -12m v 2
C
解得v D =29 m/s
小球在D 点时由牛顿第二定律得
F N -mg =m v 2D
R
代入数据解得F N =68 N
由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下
(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M
=1 m/s 2
速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得 μmgL =12m v 2D -12
(m +M )v 2
解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N 方向竖直向下 (3)3.625 m。