动态规划

合集下载

动态规划

动态规划
f1(A)=MIN r(A,B1)+ f2(B1) r(A,B2)+ f2(B2)
=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

第6章动态规划

第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。

它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。

在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。

动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。

因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。

动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。

在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。

许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。

特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。

动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。

本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。

6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。

任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。

动态规划.pdf

动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。

即决策过程可划分为明显的阶段。

二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。

广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。

三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。

四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。

•连续型动态决策问题。

2、按决策过程演变的性质分为:•确定型动态决策问题。

•随机型动态决策问题。

五1、阶段(stage)n :作出决策的若干轮次。

n = 1、2、3、4、5。

2、状态(state)S n :每一阶段的出发位置。

构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。

阶段的起点。

3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。

构成决策集,记为D n (S n )。

阶段的终点。

D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。

4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。

如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。

动态规划

动态规划

(3)决策(Decision)
(4)策略(Policy)各阶段的决策组成的一个决策序列称为
一个策略,记为: p x1, x2 ,, xn
从阶段i开始的过程,称为i子过程,它包含阶段i,阶 段i+1,…,阶段n。i子过程的决策序列称为i子策略,记
为 pi xi , xi1,, xn i 1, 2 ,, n 1
,
3 资源分配问题
设有数量为a的资源,计划分配给n 个项目。设xi (i=1, 2, …, n)为分配给第i 个项目的资源量,gi(xi)为第i个项目得到 数量为xi的资源后可提供的收益,问如 何分配资源a,可使总收益为最高?
►静态规划模型
n
max f gi (xi )
i 1
n xi a
1.3 动态规划的基本方程
(1) 动态规划的基本方程(逆序递推公式)
si1
g(si , xi )
,f
* n 1
(
x
n 1
)
0
fi* (si )
opt
v(si , xi )
f
i
* 1
(si
1
)
xi
i n, n 1,,1
(2) 动态规划的基本方程(正序递推公式)
si1 g(si , xi ) ,f1*(s1) opt{v(s1, x1)}
1
6
7
X
2
(
B2
,
C3
)
f
3
(C3
)
1 6
最短路线B2C3D。
C1
5
5
4
B1 5
3
A
C2
3
D
4
6

第6章-动态规划

第6章-动态规划
f*n(Sn)为从第n个阶段到终点的最短距离, f*n+1(Sn+1)为从第n+1个阶段到终点的最短距离, dn(Sn,Xn)为第n个阶段的距离,f*5(S5)为递推 的起点,通常为已知的。
求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*

动态规划(完整)

动态规划(完整)
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理
§7.3 动态规划应用举例
例 求解最短路问题
A1 2 Q 4 3 A3 A2 6 3 7 4 B1 1 4 2 4 4 1 5 6 B2 3 B3 3 3 C2 C1 3 4 T




分阶段的最短路径
• • • • • • • Ⅳ : C1—T Ⅲ --Ⅳ : B1—C1—T Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T Ⅰ--Ⅱ--Ⅲ --Ⅳ: Q—A2—B1—C1—T Q--A3—B1—C1—T Q--A3—B2—C2—T 3 4 7
决策为 xk 时的指标,则它就是第 k 段指标函
数,简记为vk 。 (2)过程指标函数(也称目标函数) 用f(sk , xk)表示第k子过程的指标函数。表
示处于第 k 段 sk 状态且所作决策为xk时,
从 sk 点到终点的距离。由此可见, f(sk , xk)
不仅跟当前状态 sk 有关,
还跟该子过程策略 pk(sk) 有关,严格说来,应
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
(1)阶段指标函数(也称阶段效应)
用vk(sk , xk)表示第 k 段处于状态 sk且所作
资规划, 排序问题和生产过程的最优控制
等问题;
§7.2 动态规划的基本概念和基本思想
一、基本概念
使用动态规划方法求解决策问题首先要将 问题改造成符合动态规划求解要求的形式, 要涉及以下概念: (1)阶段 (3)决策与策略 (2)状态 (4)状态转移方程

动态规划-动态规划-美国数学家贝尔曼-动态规划领域

动态规划-动态规划-美国数学家贝尔曼-动态规划领域

物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。

第9章-动态规划

第9章-动态规划

最小费用流问题来求解。通过建立一个网络图来代
表这个问题。首先根据四个季度建立四个产量节点
和四个需求节点。每个产量节点由一个流出弧连接
对应的需求节点。
产量节点
2
弧 的 流 量 代 表 了 600 1季度产量
需求节点 1季度需求 400
该季度所生产的
毛 毯 数 量 。 相 对 300 2季度产量
5
于每个需求节点
本问题是要确定该公司明年每个季度的生产 计划,所以设
公司每个季度生产xi(i=1,2,3,4)双皮鞋; 还有,设辅助决策变量:每个季度的期末库存 为si(i=1,2,3,4)双皮鞋。
RUC, Information School, Ye Xiang
9.2.1 生产与存贮问题 第9章 动态规划
(2) 目标函数
RUC, Information School, Ye Xiang
9.2.1 生产与存贮问题 第9章 动态规划
例9.3 某皮鞋公司根据对去年的市场需求
分析预测明年的需求:一季度3000双,二 季 度 4000 双 , 三 季 度 8000 双 、 四 季 度 7000双。企业现在每个季度最多可以生产 6000双皮鞋。为了满足所有的预测需求, 前两个季度必须有一定的库存才能满足后 两个季度的需求。已知每双皮鞋的利润为 20元,每个季度的库存成本8元。请确定 该公司明年每个季度的生产计划,使公司 的年利润最大。
9.2.1 生产与存贮问题
第9章 动态规划
例9.5 某厂根据订货合同在今后四个季度对某 产品的需求量如表9-4所示。如果该季度生产 ,需要生产准备费用为3千元,每件产品的生 产成本为1千元,由于生产能力的限制,每季 度最多不超过6件。又设每一件产品存贮一个 季度的费用为0.5千元,并且第一季度开始与 第四季度末均没有产品库存。

第10章 动态规划

第10章  动态规划
②某些情况下,用动态规划处理不仅能定性描 述分析,且可利用计算机给出求其数值解的 方法。
管理运筹学
7
缺点
①没有统一的处理方法,求解时要根据问题的 性质,结合多种数学技巧。因此实践经验及 创造性思维将起重要的引导作用;
②“维数障碍”,当变量个数太多时,由于计 算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使 问题只能用动态规划描述,而不能用动态规 划方法求解。
盈利 工厂 设备台数
0 1 2
3 4 5
甲厂
0 3 7 9 12 13
乙厂
0 5 10 11 11 11
管理运筹学
29
第一阶段:只有1个始点A,终点有B1,B2,B3,B4 。对始点和终 点进行分析和讨论分别求A到B1,B2,B3,B4的最短路径问题:
表10-4
本阶段始 点(状态)
A
阶段1 本阶段各终点(决策)
B1
B2
B3
B4
4+12=16 3+13=16 3+14=17 2+12=14
到E的最 本阶段最优终 短距离 点(最优决策)
第四阶段:两个始点D1和D2,终点只有一个;
表10-1
阶段4
本阶段始点 本阶段各终点(决策) 到E的最短距离
(状态)
E
D1
10
10
D2
6
6
分析得知:从D1和D2到E的最短路径唯一。
本阶段最优终点 (最优决策)
E E
管理运筹学
27
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点
和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路

第8章 动态规划《管理运筹学》PPT课件

第8章 动态规划《管理运筹学》PPT课件
Vk,n (sk , uk , , sn1) fk [sk , uk ,Vk 1,n (sk 1, uk 1, , 1)] ③函数 fk (sk , uk ,Vk 1,n ) 对于变量 Vk1,n 要严格单调。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。

动态规划-动态规划

动态规划-动态规划

过程指标函数是指过程所包含的各阶段的状 态和决策所产生的总效益值,记为
Vkn (sk , Pkn ) Vkn (sk , dk (sk ), sk1, dk1(sk1), , sn , dn (sn ), sn1) k 1, 2, , n
动态规划所要求的过程指标函数应具有可分 离性,即可表达为它所包含的各阶段指标函数的 函数形式。
能用动态规划方法求解的多阶段决策过程是一 类特殊的多阶段决策过程,即状态具有无后效性 的多阶段决策过程。
无后效性(马尔可夫性):是指如果某阶段状 态给定后,则在这个阶段以后过程的发展不受 这个阶段以前各段状态的影响;构造动态规划 模型时,要充分注意是否满足无后效性的要求; 状态变量要满足无后效性的要求;如果状态变 量不能满足无后效性的要求,应适当改变状态 的定义或规定方法。
3、决策(decision)
决策:在某一阶段,当状态给定后,往往可以 作出不同的决定,从而确定下一阶段的状态,这种 决定称为决策。
决策变量:描述决策的变量。dk(sk) :第k阶段 的决策变量(状态变量sk的函数)。
允许决策集合:决策变量的取值范围。常用 Dk(sk)表示。显然dk(sk)∈Dk(sk)。
3 3*
3
4
6 决策点为D1
第二阶段,由Bj到Ci分别均有三种选择
f2
B1
min
B1C1 B1C2
B1C3
f3 f3 f3
C1 C2
C3
min
7 6 4 7* 6 6
11决策点为C2
f2
B2
min
BB22CC21
f3 f3
C1 C2
min
3 6* 2 7*
min
4

什么是动态规划?

什么是动态规划?

什么是动态规划?⼀、基本思想态规划算法的基本思想与分治法类似,都是将问题⼤问题拆分为⼩问题,通过⼩问题的求解来得到最后的解。

与分治法不同的是,分治法是分⽽治之,分治法将⼤问题拆分为相同性质的⼦问题,最后合并⼦问题的解来构成最终解。

⽽动态规划是,将⼦问题拆解后,按顺序求解⼦问题,前⾯阶段的求解为后⼀阶段提供有⽤信息,通过动态的选择来到达最终解。

⽤图来表⽰就是如下所⽰:⼆、适⽤情况(1)最优化原理:如果问题的最优解所包含的⼦问题的解也是最优的,就称该问题具有最优⼦结构,即满⾜最优化原理。

(2)⽆后效性:即某阶段状态⼀旦确定,就不受这个状态以后决策的影响。

也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠⼦问题:即⼦问题之间是不独⽴的,⼀个⼦问题在下⼀阶段决策中可能被多次使⽤到。

(该性质并不是动态规划适⽤的必要条件,但是如果没有这条性质,动态规划算法同其他算法相⽐就不具备优势)----摘⾃百度百科三、求解步骤动态规划中有三个⾮常重要的概念:最优⼦结构、边界、状态转移公式。

最优⼦结构:最优⼦结构指的是,问题的最优解包含⼦问题的最优解。

反过来说就是,我们可以通过⼦问题的最优解,推导出问题的最优解。

边界:就是问题的出⼝。

状态转移公式:动态规划问题的这⼀阶段的最优解是可以通过前⾯阶段的解和上⼀阶段的决策推导出来的。

这个推导过程就是⼀个状态转移公式我们通常按照如下4个步骤设计⼀个动态规划算法:1.刻画⼀个最优解的结构特征2.递归地定义最优解的值3.计算最优解的值,通常采⽤⾃底向上的⽅法(采⽤⼀张表格记录之前的状态)4.利⽤计算出的信息构造⼀个最优解我们之前的和也是⼀样的求解步骤。

以硬币找零问题为例:⾸先,⾯对⼀枚新的硬币,我们有两个选择:使⽤和不使⽤。

构成当前阶段的最优解 = min{使⽤这枚硬币的解,不使⽤这枚硬币的解} ----(1.刻画⼀个最优解的结构特征)然后,我们就得到转移⽅程 Value(i) = min {Value(i-1), Value(s-c[i])) + 1} ---- (2.递归地定义最优解的值)之后我们从找零1⾓开始算起,⼀直到达我们想要找零的数⽬。

什么是动态规划

什么是动态规划

什么是动态规划动态规划( D ynamic P rogramming ,所以我们简称动态规划为 DP )是的⼀个分⽀,是求解决策过程(decision process) 最优化的数学⽅法。

20 世纪 50 年代初数学家R.E.Bellman 等⼈在研究多阶段决策过程 (multistep decision process) 的优化问题时,提出了著名的最优化原理 (principle of optimality),把多阶段过程转化为⼀系列单阶段问题,利⽤各阶段之间的关系,逐个求解,创⽴了解决这类过程优化问题的新⽅法 —— 动态规划。

1957 年出版了他的名著《 Dynamic Programming 》,这是该领域的第⼀本著作。

动态规划算法通常基于⼀个递推公式及⼀个或多个初始状态。

当前⼦问题的解将由上⼀次⼦问题的解推出。

使⽤动态规划来解题只需要多项式时间复杂度,因此它⽐回溯法、暴⼒法等要快许多。

说了这么多术语,想必⼤家都很头疼,现在让我们通过⼀个例⼦来了解⼀下DP 的基本原理。

⾸先,我们要找到某个状态的最优解,然后在它的帮助下,找到下⼀个状态的最优解。

这句话暂时理解不了没关系,请看下⾯的例⼦ :如果我们有⾯值为1 元、 3 元和 5 元的硬币若⼲枚,如何⽤最少的硬币凑够 11 元?我们凭直观感觉告诉⾃⼰,先选⾯值最⼤,因此最多选 2枚 5 元的硬币,现在是 10 元了,还差⼀元,接下来我们挑选第⼆⼤的 3 元硬币,发现不⾏( 10+3=13 超了),因此我们继续选第三⼤的硬币也就是 1元硬币,选⼀个就可以( 10+1=11 ),所以总共⽤了 3 枚硬币凑够了 11 元。

这就是贪⼼法,每次选最⼤的。

但是我们将⾯值改为 2 元, 3 元和 5 元的硬币,再⽤贪⼼法就不⾏了。

为什么呢?按照贪⼼思路,我们同样先取 2 枚最⼤ 5 元硬币,现在 10 元了,还差⼀元,接下来选第⼆⼤的,发现不⾏,再选第三⼤的,还是不⾏,这时⽤贪⼼⽅法永远凑不出 11 元,但是你仔细看看,其实我们可以凑出 11 元的, 2 枚 3元硬币和 1 枚五元硬币就⾏了,这是⼈经过思考判断出来了的,但是怎么让计算机算出来呢?这就要⽤动态规划的思想:⾸先我们思考⼀个问题,如何⽤最少的硬币凑够i 元 (i<11) ?为什么要这么问呢?两个原因: 1. 当我们遇到⼀个⼤问题时,总是习惯把问题的规模变⼩,这样便于分析讨论。

动态规划

动态规划
… P(A)为P[3][3],
11
分阶段递推求解过程 P[0][0] = 0;
对于阶段1: P[0][1] = P[0][0]+h[0][0] = 0+3 = 3; P[1][0] = P[0][0]+v[0][0] = 0+2 = 3; 对于阶段2
P[1][1] = min{ P[0][1]+v[0][1],P[1][0]+h[1][0]} = min{3+1, 2+2} = 4 P[0][2] = P[0][1]+h[1][0] = 3+2 = 5 P[2][0] = P[1][0]+v[1][0] = 2+4 = 6
23
递归算法
• Function Max(I,J : integer) : longint; {从当前位置开始的可得的最优值} • Var s1,s2 : Longint; {记录从左右斜线向下走的可达的最优值} • Begin • If (I>n) Or (J>I) Then Max:=0 {当前位置不存在,最优值为0} • Else • Begin • S1:=Max(I+1,j)+triangle[I,j]; {沿左斜线向下走} • S2:=Max(I+1,j+1)+triangle[I,j]; {沿右斜线向下走} • If s1>s2 then Max:=s1 Else max:=s2; {选取最优走法} • End; 24 • End;
让我们来换一个思路思考本题,因为本题是要求总和除以 4余数最小的一条路径,我们先撇开最小余数不去管它,而 是将本题改为从点1到点4的所有路径中,求出每条路上权值 和除以4的不同余数的状态。 我们设一个数组can[I,j]表示从点1至点I可不可以求 出一条路径是该路径的权值总和除以4的余数为J,那么又 可以得出一个方程:

运筹学第五章动态规划

运筹学第五章动态规划

和 dk 2 (sk ));
(4) 允许决策集: D k ( s k ) ( x k , y k ) 0 ≤ y k ≤ s k ; 0 ≤ x k ≤ 1 0 0 0 ( s k y k )
状态转移方程: s k 1 s k x k y k ,s 1 5 0 0k4,3,2,1
其中s 5 表示第四阶段末的状态; (5) 阶段指标: v k ( s k ,x k ,y k ) q k y k p k x k ,k4,3,2,1;
5.1 动态规划的基本概念和模型
5.1.1 动态规划的基本概念
下面结合实例来介绍动态规划的基本概念:
【例5.1】 如图5.1所示,在处有一水库,现需从点铺设一条 管道到点,弧上的数字表示与其相连的两个地点之间所需修建 的渠道长度,请找出一条由到的修建线路,使得所需修建的渠 道长度最短。
2
A4
3
B
7
(1) 按月份分段: k4,3,2,1;
(2) 状态变量: s k 表示第 k 个月月初的库存量;
(3) 决策变量: dk1(sk表) 示第 k 个月已有库存 s的k 情况下,要定
购的商品量, dk2表(sk示) 第 个月k 已有库存 的商品量(为方便,后面将分别依次用 ,
的 来x sk 情 代k y况 替k 下,要d销k1(售sk )
(6) 动态规划基本方程:
fk(s k) (x k,y m k) a D x k(s k)v k(s k,x k,y k) fk 1 (s k 1 )
f5 (s 5 ) 0 k 4 ,3 ,2 ,1
求解(要求板书) 辅图1
辅图2
辅图3
5.2.3 动态规划的顺序解法
【 例 5.3】 图 5.3 所 示 为 一 水 利 网 络 , A 为 水 库 , 分B 1 ,别B 2 为,B 3 不;C 同1 ,C 的2 ,供C 3 水;D 目1 ,D 的2地,试找出给各供水目的地供水的 最短路线。

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案一、引言1.1动态规划的基本概念1.1.1动态规划的定义:动态规划是一种数学方法,用于求解多阶段决策过程的最优化问题。

1.1.2动态规划的特点:将复杂问题分解为简单的子问题,通过求解子问题来得到原问题的最优解。

1.1.3动态规划的应用:广泛应用于资源分配、生产计划、库存控制等领域。

1.2动态规划的基本原理1.2.1最优性原理:一个最优策略的子策略也是最优的。

1.2.2无后效性:某阶段的状态一旦确定,就不受这个状态以后决策的影响。

1.2.3子问题的重叠性:动态规划将问题分解为子问题,子问题之间往往存在重叠。

1.3动态规划与静态规划的关系1.3.1静态规划:研究在某一特定时刻的最优决策。

1.3.2动态规划:研究在一系列时刻的最优决策。

1.3.3动态规划与静态规划的区别:动态规划考虑时间因素,将问题分解为多个阶段进行求解。

二、知识点讲解2.1动态规划的基本模型2.1.1阶段:将问题的求解过程划分为若干个相互联系的阶段。

2.1.2状态:描述某个阶段的问题情景。

2.1.3决策:在每个阶段,根据当前状态选择一个行动。

2.1.4状态转移方程:描述一个阶段的状态如何转移到下一个阶段的状态。

2.2动态规划的基本算法2.2.1递归算法:通过递归调用求解子问题。

2.2.2记忆化搜索:在递归算法的基础上,保存已经求解的子问题的结果,避免重复计算。

2.2.3动态规划算法:自底向上求解子问题,将子问题的解存储在表格中。

2.2.4动态规划算法的优化:通过状态压缩、滚动数组等技术,减少动态规划算法的空间复杂度。

2.3动态规划的经典问题2.3.1背包问题:给定一组物品,每种物品都有自己的重量和价值,求解在给定背包容量下,如何选择物品使得背包中物品的总价值最大。

2.3.2最长递增子序列问题:给定一个整数序列,求解序列的最长递增子序列的长度。

2.3.3最短路径问题:给定一个加权有向图,求解从源点到目标点的最短路径。

动态规划(完整)

动态规划(完整)

(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者
从给定阶段状态出发对下一阶段状态作出
的选择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
动态规划的分类:
• 离散确定型 • 离散随机型 • 连续确定型 • 连续随机型
动态规划的特点:
• 动态规划没有准确的数学表达式和定义 精确的算法, 它强调具体问题具体分析,
依赖分析者的经验和技巧。
• 与运筹学其他方法有很好的互补关系, 尤 其在处理非线性、离散性问题时有其独 到的特点。
通常多阶段决策过程的发展是通过状态的一系列变换来 实现的。一般情况下,系统在某个阶段的状态转移除与本阶 段的状态和决策有关外,还可能与系统过去经历的状态和决 策有关。因此,问题的求解就比较困难复杂。而适合于用动 态规划方法求解的只是一类特殊的多阶段决策问题,即具有 “无后效性”的多阶段决策过程。
4 6
C1
3
B2 3
4T
3 3
C2
阶段指标函数:
vk sk , xk cskxk
5
A3
B3
过程指标(阶段递推)函数:
fk(sk ) min
vk (sk , xk )
fk
1
(sk
1 )
k= 4
f4 (C1) = 3, f4 (C2) = 4
2
k=3
f3(B1)=min{1+f4(C1)=4*, 4+f4(C2)=8}=4
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。

运筹学动态规划的概念

运筹学动态规划的概念

运筹学动态规划的概念运筹学中的动态规划是一种解决多阶段决策问题的数学方法。

它适用于需要做出一系列决策才能获得最优解的情况。

在这种情况下,每个决策都会对接下来的决策产生影响,因此需要考虑整个过程的影响。

动态规划的实质是将多阶段决策过程拆解成一系列子问题,每个子问题都可以用一个状态来描述。

通过求解每个子问题的最优解,就可以逐步得到整个过程的最优解。

动态规划的基本思想是以最优子结构为基础,避免重复计算已经求解过的子问题的过程。

也就是说,如果我们已经知道了子问题的最优解,那么整个问题的最优解就可以通过这些子问题的最优解推导出来。

通常情况下,动态规划问题需要满足以下几个条件:1.具有最优子结构特征:问题的最优解是由子问题的最优解组合而成的。

2.无后效性:子问题的解一旦确定,就不会被改变。

3.子问题重复性:不同的子问题可能会对应相同的状态。

4.边界性:即为问题的较小的子问题需要单独处理。

通过以上条件,我们就可以将动态规划问题分解为一个个子问题,并求解每个子问题所对应的最优值。

动态规划的基本流程分为三个步骤:1.定义状态:构建状态转移方程需要定义状态,状态通常用一个或多个变量来表示,变量的取值代表状态。

2.写出状态转移方程:根据定义好的状态,写出各个状态之间的转移方程。

3.确定边界条件:对较小的子问题需要单独处理,因此当状态变量为边界值时,需要特殊处理。

动态规划的应用广泛,它可以用于解决大量的问题。

例如,求解最长公共子序列问题、背包问题、最短路问题、字符串编辑距离问题等等。

它在图像处理、自然语言处理、生物信息学等领域中也有广泛的应用,如图像去噪、序列比对、DNA 序列匹配等。

总之,动态规划是运筹学中一种解决多阶段决策问题的重要方法,它通过将问题分解成子问题,并求解每个子问题的最优解,得出整个问题的最优解。

在实际应用中,我们需要根据具体问题特点,定义好状态,写出好的状态转移方程,才能有效地解决问题。

数据结构之动态规划动态规划的基本思想和常见应用场景

数据结构之动态规划动态规划的基本思想和常见应用场景

数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。

它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。

动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。

动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。

2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。

3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。

动态规划的核心是状态转移方程。

状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。

在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。

动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。

这类问题中,动态规划可以帮助我们找到最优解。

2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。

这类问题中,动态规划可以帮助我们找到最佳的组合方案。

3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。

这类问题中,动态规划可以帮助我们计算复杂的概率。

举例来说,我们可以通过动态规划求解最长递增子序列问题。

给定一个序列,我们希望找到其中最长递增的子序列的长度。

首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。

然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。

最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划一、背包问题1、0/1背包[问题背景及描述]Bessie 正在减肥,所以她规定每天不能吃超过C (10 <= C <= 35,000)卡路里的食物。

农民John 在戏弄她,在她面前放了B (1 <= B <= 21) 捅食物。

每桶内都有某个单位卡路里(范围:1..35,000)的食物(不一定相同)。

Bessie 没有自控能力,一旦她开始吃一个桶中的食物,她就一定把这桶食物全部吃完。

Bessie 对于组合数学不大在行。

请确定一个最优组合,使得可以得到最多的卡路里,并且总量不超过C。

例如,总量上限是40卡路里,6 桶食物分别含有7, 13, 17, 19, 29, 和31卡路里的食物。

Bessie可以吃7 + 31 = 38卡路里,但是可以获取得更多:7 + 13 + 19 = 39卡路里。

没有更好的组合了。

[输入]共两行。

第一行,两个用空格分开的整数:C 和 B第二行,B个用空格分开的整数,分别表示每桶中食物所含的卡路里。

[输出]共一行,一个整数,表示Bessie能获得的最大卡路里,使她不违反减肥的规则。

[输入样例]40 67 13 17 19 29 31[样例输出]392、固定次数的0/1背包有N种物品和一个容量为V的背包。

第i种物品最多有n[i]件可用,每件体积是c[i],价值是w[i]。

求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

V〈30000,n〈100,n[i]〈50。

输入输出格式:第1行,两个用空格分开的整数:v 和n第2—n+1行,每件体积是c[i],价值是w[i],最多有n[i]件可用[输入样例]40 210 20 520 30 6[样例输出]803、重复背包货币系统money母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。

[In their ownrebellious way],,他们对货币的数值感到好奇。

传统地,一个货币系统是由1,5,10,20 或25,50, 和100的单位面值组成的。

母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值。

举例来说, 使用一个货币系统{1,2,5,10,...}产生18单位面值的一些可能的方法是:18x1, 9x2, 8x2+2x1, 3x5+2+1,等等其它。

写一个程序来计算有多少种方法用给定的货币系统来构造一定数量的面值。

保证总数将会适合long long (C/C++) 和Int64 (Free Pascal)。

输入格式:money.in货币系统中货币的种类数目是V 。

(1<= V<=25)要构造的数量钱是N 。

(1<= N<=10,000)第1 行:二整数,V 和N第2 ..V+1行:可用的货币V 个整数(每行一个每行没有其它的数)。

输入格式:money.out单独的一行包含那个可能的构造的方案数。

[输入样例]3 101 2 5输出:104、多个限定条件的背包NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安全技术问题一直大伤脑筋,因此在各方压力下终止了航天飞机的历史,但是此类事情会不会在以后发生,谁也无法保证,在遇到这类航天问题时,解决方法也许只能让航天员出仓维修,但是多次的维修会消耗航天员大量的能量,因此NASA便想设计一种食品方案,让体积和承重有限的条件下多装载一些高卡路里的食物.描述Description航天飞机的体积有限,当然如果载过重的物品,燃料会浪费很多钱,每件食品都有各自的体积、质量以及所含卡路里,在告诉你体积和质量的最大值的情况下,请输出能达到的食品方案所含卡路里的最大值,当然每个食品只能使用一次.输入格式Input Format第一行两个数体积最大值(<400)和质量最大值(<400)第二行一个数食品总数N(<50).第三行-第3+N行每行三个数体积(<400) 质量(<400) 所含卡路里(<500)输出格式Output Format一个数所能达到的最大卡路里(int范围内)样例输入Sample Input320 3504160 40 12080 110 240220 70 31040 400 220样例输出Sample Output550二、最长上升或下降序列1、拦截导弹某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。

但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。

某天,雷达捕捉到敌国的导弹来袭。

由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

样例输入:389 207 155 300 299 170 158 656{最多能拦截的导弹数}2{要拦截所有导弹最少要配备的系统数}2、某农场有一个由按编号次序排列的n根木桩构成的首尾不相连的围栏。

现要在这个围栏中选取一些木桩,按照原有的编号次序排列之后,这些木桩的高度成为一个升序序列。

所谓的升序序列就是序列中的任何一个数都不小于它之前的任何一个数。

试编写程序从这个围栏中选取合适的木桩使得选出的木桩个数t最大,并求出选出t根木桩的方案总数c。

例如:围栏由高度分别为10,1,9,8,7,6,3,4,6的木桩构成,则选出的高度为1,3,4,6的木桩是满足题意的选取方案。

输入格式:文件中的第1行只有一个数m,表明随后有m个问题的描述信息。

每个问题的描述信息格式为n h1 h2 h3,,,hn输出格式:依次输出每个问题中t和c的解。

每行输出一个问题的解。

例如输入:39 10 1 9 8 7 6 3 4 63 100 70 1026 40 37 23 89 91 12输出:4 12 2333、合唱队形(chorus.pas/dpr/c/cpp)【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。

你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

【输入文件】输入文件chorus.in的第一行是一个整数N(2<=N<=100),表示同学的总数。

第一行有n个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。

【输出文件】输出文件chorus.out包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

【样例输入】8186 186 150 200 160 130 197 220【样例输出】4【数据规模】对于50%的数据,保证有n<=20;对于全部的数据,保证有n<=100。

三、数列的连续最大和1、数列的连续最大和,顾名思义,就是在一个长度为n的数列{An}中,求i,j (1<=i<=j<=n),使得数列{An}中,第i个元素到第j个元素之间,所有元素的和最大。

分析:以第i个数结尾的最大连续和序列,可能存在两种选择:情形一:只包含Ai情形二:包含Ai和以Ai-1结尾的最大连续和序列设F(i)表示以第i个数结尾的最大连续和转移方程:F(i)=max{Ai , F(i-1)+Ai}边界:F(1)=A1要求的结果为max{F(i)|1<=i<=n}仔细思考题目后,符合动态规划条件。

用ans[i]表示包含数列第i项的前i个元素的最大和,数组no存放数列元素,则状态转移方程为:ans[0]=0;ans[i]=max{ans[i-1]+no[i],no[i]} 时间复杂度为O(n)核心程序代码:best:=-maxlongint;temp:=0;for i:=1 to n dobegininc(temp,no[i]);if temp>best then best:=temp;if temp<0 then temp:=0;end;2、最大子序和问题描述输入一个长度为n的整数序列(A1,A2,……,An),从中找出一段连续的长度不超过M 的子序列,使得这个序列的和最大。

例如:序列1,-3,5,1,-2, 3当M=2或3时S=5+1=6当M=4时S=5+1+(-2)+3=7数据范围:50%的数据N,M<=1000100%的数据N,M<=20000初步分析 枚举设F(i)为以Ai 结尾长度不超过M 的最大子序和对于每个F(i),从1到m 枚举k 的值,完成Aj 的累加和取最大值。

该算法的时间复杂度为O(n2)简化方程3、holiday.pas/c/cppDescription经过几个月辛勤的工作,FJ 决定让奶牛放假。

假期可以在1…N 天内任意选择一段(需要连续),每一天都有一个享受指数W 。

但是奶牛的要求非常苛刻,假期不能短于P 天,否则奶牛不能得到足够的休息;假期也不能超过Q 天,否则奶牛会玩的腻烦。

FJ 想知道奶牛们能获得的最大享受指数。

Input(holiday.in)第一行:N,P,Q.第二行:N 个数字,中间用一个空格隔开。

Output(holiday.out)一个整数,奶牛们能获得的最大享受指数。

Sample Input5 2 4-9 -4 -3 8 -6Sample Output5Limitationtime:1s ∑+-===i k i j jm k A i F 1}..1|max{)(∑==i 1j j A )i (S 令∑+-===i k i j j m k A i F 1}..1|max{)(}..1|)(min{)(}..1|)()(max{m k k i S i S m k k i S i S =--==--=memory:65536kb50% 1≤N≤10000100% 1≤N≤100000Hint选择第3-4天,享受指数为-3+8=5。

守望者的逃离(escape.pas/c/cpp)【问题描述】恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变。

守望者在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上。

为了杀死守望者,尤迪安开始对这个荒岛施咒,这座岛很快就会沉下去。

到那时,岛上的所有人都会遇难。

守望者的跑步速度为17m/s,以这样的速度是无法逃离荒岛的。

庆幸的是守望者拥有闪烁法术,可在1s 内移动60m,不过每次使用闪烁法术都会消耗魔法值10点。

相关文档
最新文档