风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨
法兰板验收中平整度与平面度的质量控制
法兰板验收中平整度与平面度的质量控制一、前言风电项目中法兰板的应用较多,常见的有钢塔筒法兰、混凝土转换段顶法兰、钢转换段法兰、锚栓式基础上下分片式法兰、基础环的上下法兰等。
所有的法兰在焊接完成前或完成后均需对法兰受力面按设计要求进行加工,这就面临着一个质量检验术语:平面度、平整度。
很多工程师对这个两个概念容易混淆,认为是一个概念在工程中的不同叫法,这是一个错误理解。
我将从以下几个维度对平面度和平整度进行阐述,以期加深大家的理解,以便在后期的质量检查过程中进行合理检测及质量控制。
二、平面度、平整度定义平面度测量是指被测实际表面对其理想平面的变动量。
平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。
打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。
然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。
这样说大家可能还是一头雾水,我再举个例子:假设桌面上有个一米见方的镜子,镜子表面是完全光滑水平的,把它视为一个标准的平面,然后我们用一把刀在镜子表面划上几道横七竖八的刻痕。
这些刻痕的顶部还是在一个平面上,底部沟槽处会有高低不平,沟槽最低处与最高处(标准平面处)的线值距离就是平面度误差值。
测量仪器:常用的测量仪器是百分表法兰面最高点假设平面百分表测量平面度平整度测量在土建工程中较多,主要有路面平整度、墙面平整度、基础平整度测量等。
平整度测量如测量平面以测量点的绝对水平高差为标准;如测量竖向平面则依靠靠尺和塞尺配合读取相应的塞尺数据为标准。
测量路面平整度的方法主要采用定长度直尺法,即采用规定长度的平直尺搁置在路面表面,直接测量直尺与路面之间的间隙作为平整度指标; 测量竖向平面时,检测尺侧面靠紧被测面,其缝隙大小用契形塞尺检测,其数值即平整度偏差。
风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨
风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨摘要:针对大唐三门峡清源风电场许继单机2000KW/8On风电塔筒顶法兰装焊后平面度要求较高、难于保证这一生产难题,作者分别采用二种不同的加工方法认真进行对比、分析,并设计出的专用定位工装。
最终采用顶部法兰与相邻三节筒节装配焊接后,用专用定位工装,在数控落地铣镗床上焊后加工顶法兰端面,再将加工过的组件与塔架上段塔筒其余各段总装,较好地解决了这一制约生产的技术难题。
关键词:顶法兰;平面度;焊接变形:TG113.26+3:A1 问题的提出1.1 前言由于风电塔筒上段顶部法兰总装时与风机机舱推力轴承相连接,所以对其装焊形位公差控制要求相当严格。
我公司承制的许继2000KW/80n风电塔筒顶部法兰总装后图纸要求法兰平面度不大于0.35mm表面光洁度为5级。
远高于东汽风电塔筒对法兰焊后平面度0.6mm的要求。
1.2 保证顶部法兰要求平面度0.6m m以内的上段塔筒传统的加工工艺为保证风电塔架上段塔筒顶部法兰的焊后平面度,对于顶部法兰要求平面度0.6mm以内的上段塔筒,我们通常采用如下的加工工艺。
我们在塔架上段塔筒上、下法兰整体辗制成型后机加工时预留适当的法兰内倾反变形量。
塔架上段塔筒厂内装焊时,采用先将上、下法兰与与之相邻的筒节在平台上竖装,将焊缝间隙调整均匀,点焊定位加固成组件;再将上段其余筒节按排板图也装配成组件,定位加固;最后将二法兰组件与筒节组件总装。
检验合格后,制定严密、科学的焊接方法、焊接规范及合理的焊接顺序,然后认真施焊,从而尽可能地减小焊接变形。
如果采用我们传统的加工方法,将难以保证许继塔筒顶部法兰焊后平面度要求,生产将不能正常进行,进而影响产品的正常交货周期。
2 改进方法探讨图1 上段组成示意图顶部法兰机加工时在法兰端面予留5mm厚度余量作为焊后加工余量。
结合我公司设备现状,我们制订了二种加工方案:2.1 方案一顶部法兰与筒节T1 装焊后,用6.5m 立车加工法兰端面。
风电塔筒法兰平面度与焊缝质量控制的研究
风电塔筒法兰平面度与焊缝质量控制的研究风电塔架是风力发电机的一个关键支撑部位,塔架有衍架式与圆锥筒体式。
目前最多的就是后面一种,就是由数段锥形筒体,依靠法兰连接成一个高度60米到90米之间的锥形圆筒状结构。
每段的筒体又是由不同厚度的钢板,卷制成筒节,通过焊缝对接组成。
由于塔筒是几段筒体通过焊接的法兰无缝结合的。
且风电塔筒所承受的主要作用力有:风力作用在叶片上的推力、扭矩、弯矩,舵机的压力、弯矩,内部电机的振动摆力,以及自身的重力。
这些力通过焊缝与法兰上的高压连接螺栓承受传递。
如果法兰平面度差,高强度的螺栓就无法拧紧。
这就不单是质量问题也会带来安全隐患。
这说明如何控制法兰平面度是风电塔筒制作重点要解决的。
1、法兰平面的质量要求在制作风电塔筒中,法兰的平面度要求对不同位置的法兰它是不同的。
根据设计的图纸,每段塔筒焊接后,法兰平面度的值要小于等于2mm。
但是对于上段的与风机舵机座相连的顶法兰面它的平面度值要小于等于0.35mm。
而且对于所有的焊后的法兰不允许有外翻现象的出现,只允许内倾值在0~1.5mm。
2、法兰焊后变形的原因分析风电塔筒是由每块钢板卷筒,组对焊接而成。
每个筒节就类似一个圆台,它是由开好坡口后的钢板卷制而成。
塔筒就是通过内外环焊接,从大圆台到小圆台这样焊接而成。
每段开头结尾与法兰焊接,分为内环焊接与外环焊接。
当焊接内环时,热变形就产生法兰内环往下的拉力,这样就产生内倾现象(本身采购的法兰有一定内倾)。
焊接外环时同样的原理就会把法兰外环往下拉出现外翻情况。
因此内环焊与外环焊的焊道数与顺序影响到法兰的外翻与内倾及其大小。
筒节与法兰对接端面不平整,气刨焊焊缝不平齐,法兰焊接过程中就会有“波浪变形”,造成焊后法兰平面度差。
3、控制法兰变形的方法3.1法兰焊接顺序焊缝的焊接坡口是V型的,要防止法兰焊后内侧外翻,就需要有合理的焊接顺序。
即内外焊缝交替进行,首先内环焊焊2道,然后外部用二氧化碳气刨焊清根,,再埋弧焊焊接外部完毕,最后再焊接内部环焊。
浅谈风力发电塔筒法兰平面度控制工艺
浅谈风力发电塔筒法兰平面度控制工艺摘要:风力发电塔架是风力发电机的一个关键支撑部件,它是由数段圆锥筒体依靠连接法兰组成一个锥形圆筒状结构。
由于每段塔架是由滚制筒体和连接法兰焊接而成,如何控制塔架两端连接法兰焊接后的平面度是塔架制作的关键。
本文分析了风力发电塔筒法兰平面度控制工艺。
关键词:风力发电塔筒;法兰平面度;控制工艺;塔筒作为风力发电机组的重要设备之一,其制作精度要求比较严格。
制造厂家在生产时认为其制造技术较为简单,未能引起足够的重视。
一、概述风能作为一种不产生任何污染的可再生能源,在自然界蕴量巨大。
开发风能占地少,投资期短,近年来在世界各地得到了迅猛发展。
塔架是风力发电机组的主要支撑部件,承受载荷包括风载荷、机组自重及由机组重心偏移引起的偏心力矩等。
其结构多为圆锥台形的钢制焊接圆筒,高度一般在50~100m之间,底部直径3~5米,顶部直径2~3米,筒体板厚不等,多在10~40mm变化,材质均为Q345级,多建在偏远风多的丘陵及沿海地带。
受运输和吊装的限制通常分段制作,段与段之间通过法兰采用高强螺栓连接。
由于塔架受力复杂,法兰的平面度直接影响法兰的结合程度和预紧状态,良好的结合才能更好的传递上部的力到基础,因而对法兰的平面度作出比较严格的要求。
二、风力发电塔筒法兰平面度控制工艺1.在下料过程中控制塔筒节扇形钢板的弦长、弦高、对角线偏差。
全部料坯下料前应对外形尺寸进行检查,完全合格后,进行批量下料。
每段塔筒中间节应预留焊接收缩余量,一般预留2-3毫米,与法兰连接的筒节在钢板下料时应预留修正余量,一般预留5-10毫米。
筒节卷制、组对、焊接过程控制其圆度。
一是在筒节卷制过程中,按照滚压线进行卷制,在这个过程中要注意对板面及卷板机上下辊进行清理,以防氧化铁等杂物对板材造成压伤;对接完成后,要用角缘磨光机对焊道及坡口两侧30mm内进行打磨处理,要求去除铁锈及氧化皮,露出金属光泽,然后实施打底焊,焊缝应均匀、规整,焊后对焊接飞溅等及时进行清理。
风电塔筒法兰焊接方法探究
风电塔筒法兰焊接方法探究摘要:作为风力发电重要的基础设施,塔筒在实际的应用中发挥着至关重要的作用,对相关生产活动的持续进行带来了可靠的保障作用。
运用法兰焊接工艺完成相关的焊接操作时,由于不确定因素的存在,很容易造成风电筒法兰变形现象的出现,影响塔架组装的效果。
因此,为了增强风电塔筒的焊接质量,减少法兰变形造成的影响,需要对相关的措施进行深入地分析。
关键词:风电塔筒;法兰焊接措施;法兰变形;焊接质量;发电机1.风电塔筒制造工程中法兰焊接的相关操作方式为了完成塔筒组装的任务,需要对法兰及筒体进行必要的焊接操作。
由于风电塔筒焊接过程中主要采用焊接工艺,焊接操作中可能会出现法兰变形问题,需要技术人员对于相关的行业参考标准有着深入地了解,增强焊接技术的适用性。
塔筒法兰焊接操作的过程中,技术人员主要遵循的原则是由零到整,增强不同结构部件之间的粘结性。
由零到整的顺序主要是指先将塔筒简单的法兰结构及对应塔架上的焊接流程完成,然后再进行复杂的内部结构焊接。
这样的焊接顺序不仅增强了焊缝质量,也减少了相关资源的消耗量,增强了法兰焊接技术的适用性。
常用的法兰焊接工序主要包括:(1)确定具体的焊接位置,对塔筒内部的部分先进行焊接,进而对塔筒外部结构进行清根处理,留下一定的坡口。
一般情况下,这种坡口是V型坡口,使用火焰切割进行坡口的制作;(2)当完成塔筒内部结构的焊接后,需要对塔筒外部结构进行合理地焊接。
相对而言,塔筒法兰焊接工艺外部的焊接对于塔架的安全性能要求较多,主要是因为整个结构的体积较大,塔架的抗压能力必须保持在合理的范围内,可以承担超重的结构负荷。
同时,焊接缝的质量应该符合设计方案的具体要求,主要是指它的强度和韧性方面;(3)当所有的焊接工序完成后,需要对有关基础焊接工序相关的消氢工序温度进行有效地控制,最大的温度不应超过350摄氏度,平均温度控制在280摄氏度左右。
同时,为了确保相关技术实际使用的作用效果,消氢的时间也需要保持在合理的范围内:大约为120分钟左右。
风电塔架法兰平面度及平行度的控制
风电塔架法兰平面度及平行度的控制摘要:通过分析风电塔架制作过程中法兰平面度及平行度的影响因素,研究法兰平面度及平行度的控制方法和造成两项参数超差后的补救措施,为公司风电塔架制造过程关键参数控制提出了一些建议。
关键词:风电塔架;垂直度;同轴度;法兰平面度及平行度;控制1.影响法兰平面度及平行度的因素分析1.1筒节钢板的下料平截空心圆锥形筒节钢板下料需保证下弦长B±2;上弦长b±2;板宽(H1~H5)之差≤2;扇形板对角线差|M1-M2|≤3mm,见图1。
法兰平面度一次性合格率下降的制约因素之一就是钢板的下料尺寸达不到工艺要求,首要原因是数控火焰切割机本身精度的下降引起下料尺寸误差偏大,其次是数控火焰切割机的切割速度超出了板材厚度适用的切割速度,产生切割变形。
图1筒节钢板下料后尺寸测量位置示意图钢板下料精度未得到保证时,钢板在卷制后不能得到标准的平截空心圆锥体,从而影响整个塔段的同轴度及上下口的平行度。
1.2筒节的卷制筒节在卷制过程中,要求环向错口量最大不超出2mm(见图2)。
而在实际操作过程中,若钢板未按要求放正就进行卷制,就会引起环向错口量过大,会直接影响整个塔段的同轴度和上下口的平行度。
图2环向错口量1.3筒节的校圆筒节任意截面的圆度公差要求为:(Dmax-Dmin)/Dnom≤0.005式中:Dmax为测量出的最大内径;Dmin为测量出的最小内径;Dnom为所测量截面的公称内径。
筒节的圆度偏差可用内径弧长为D/6的矫正样板检查,间隙不应大于1.5mm。
与法兰对接的筒节,其在圆度偏差过大时进行组对,会在应力作用下使法兰产生扭曲变形,影响法兰的平面度。
1.4筒节的组对筒节在组对前要检查环缝对口错边量(见图3),其值d x≤0.1t+1mm,且最大不超过2.5mm,在测量对口错边量dx时,不应计入两板厚度差值,t为钢板公称厚度,mm。
环缝对口错边量过大等情况下若对相邻筒节强行进行组对,塔段会因焊接应力产生变形,从而影响塔段法兰平面度及平行度。
风力发电机组塔筒法兰焊接方法研究
风力发电机组塔筒法兰焊接方法研究摘要风力发电塔筒法兰的外形尺寸较大,传统的整体法兰制作方法存在制作周期长、材料利用率低、锻造和加工成本高的特点。
现指出拼焊法兰的分析研究,收到了很好地效果。
关键词:拼焊法兰焊接工艺变形前言风电作为一种可再生能源,具有占地少、投资少、周期短、经济效益好等特点,根据累计市场份额和国家能源分析,风电是今后电力发展的主导方向,随着今年日本地震核泄露,三峡节流生态破坏,风电作为清洁能源从新被提上了一个高度,从整个行业角度,风电行业的发展,空间巨大。
从整体情况上看,风电在中国一直在以超乎业内人士预料的速度发展,在经济快速增长和电力需求增加的大背景下,风电在中国的迅猛发展是必然结果。
风电产业的迅速崛起在中国应对能源结构多样化、环境保护和节能减排挑战等问题上都能发挥极大作用。
因此,我们认为中国仍将是未来全球风电市场的生力军。
认为风电作为目前最为成熟的新能源产业,未来的发展会保持高速增长。
目前国内外已安装的风力发电机组大多采用的是钢制塔筒。
总高60米左右,一般分3-4节,每节之间用法兰进行连接,重量普通的在100T 左右,一现有风电发展模式一直在向大机型方向发展,塔筒的厚度、重量也在不断的增大,为保证塔筒节与节之间能够稳定连接,对连接法兰提出了较高的要求,除了在加工过程中对法兰进行尺寸控制外,还需要确保法兰的各项力学性能达到相关的标准要求。
本文就法兰焊接技术的应用作一介绍。
塔筒法兰焊接工艺为了保证法兰与筒体焊接后的角变形符合要求,采用单个法兰、筒体对接电焊后组成一体的焊接方法,下图为对接示意图。
焊缝结构示意图采用埋弧自动焊,直流反接,焊丝牌号为H10Mn2,焊丝直径为Φ4,焊剂为SJ101,焊机采用MZ9 -1250自动弧焊机配以ZD5 - 1250型弧焊整流器. 第一层先焊开坡口侧即外侧,背面即内侧用碳弧气刨清根,挑成U型坡口,清根完成后用砂轮和角向磨光机打磨坡口及两侧20mm宽范围至见金属光泽,以清除氧化物和碳化物,防止出现夹渣、裂纹等缺陷,在内侧焊第二层和第三层. 因为塔筒承受的载荷部分为疲劳载荷,要求焊缝具有较高冲击韧性,故焊后需立即进行消氢处理,加热温度为200℃~350℃,保温2h左右. 焊接工艺参数见表1. 利用焊接顺序、坡口大小和焊接线能量三者来控制焊接应力,从而控制法兰焊后的角变形. 法兰焊接完成后对焊缝进行外观检测,合格后进行100%超声检测. 最后检查法兰角变形量,不符合要求时,采用火焰加热的方法整形,以保证法兰内倾0~1. 5mm的角变形要求.3 存在问题(1)由于先焊法兰外侧,而内侧又用碳弧气刨清根,使得清根和清根后的坡口打磨极不方便,增加了焊工的劳动强度,影响工期。
风电塔筒法兰焊接变形控制的工艺措施
风力发电塔架是风力发电设备的关键支撑部件,是连接风机的重要部件,它承受了风力作用在叶片上的推力、扭矩、弯矩、陀螺力矩、电机的震动及受力变化时的摆动。
它由3、4段直筒或圆锥筒通过高强螺栓将两端的法兰连接在一起组成一台塔架。
因此法兰的平面度、角变形和椭圆度的好坏将直接影响到风机的运行,影响风机设备的寿命。
法兰是成品锻件,从法兰厂出厂时已经做好正火和回火处理,因此如何控制好该三个指标,避免通过火焰矫形来控制平面度、内倾、椭圆度显得很有实际意义。
1塔筒焊接后法兰的质量要求塔筒成段后法兰平面度要求顶法兰0.8mm,其余法兰1.5 ̄2.0mm(根据风机厂要求有所不同);法兰椭圆度为3mm;法兰内翻顶法兰0 ̄-0.5mm;其余法兰0 ̄-1.5mm。
2法兰与筒体焊接变形分析目前各风机厂采用的主体材料基本上为Q345系列的低合金钢,法兰为Q345E-Z25材料,要求碳当量小于0.45%。
其焊接性较好。
法兰与筒节相焊后,圆筒环焊缝所引起的纵向残余应力σx取决于圆筒直径、厚度和焊接压缩塑性变形区的宽度,应力峰值随着圆筒直径的增大和板厚的减小而增大;而横向应力σy直接原因来自焊缝冷却的横向收缩;对厚板焊接接头中除有纵向和横向残余应力外,在厚度方向上还有较大的残余应力σz。
在上层或接近上层的多层焊缝中,存在较大的拉应力,见图1。
焊接变形分为加热阶段的变形和冷却阶段的变形。
在加热阶段,焊缝及近缝区温度很高,材料的自由热变形量为α1T,其值较大;而远离焊缝区域温度低,其α1T较小,焊缝区的自由热膨胀变形将受邻近低温区所约束而被压缩,使焊缝两侧较远区产生拉应力。
在冷却阶段,当焊缝冷却到室温时,由于焊缝附近残留一个压缩塑性变形区,产生回弹,成为剩余焊接变形,产生剩余应力,焊缝区被限制收缩而成为剩余拉力,焊缝两侧以远则为压应力。
3控制变形采取的工艺措施3.1采用反变形法根据风机厂的要求及图纸,在法兰加工时,将法兰加工成内倾。
内倾量要根据与法兰相连接的板厚而确定。
风力发电塔筒法兰焊后平面度控制技术
5 660±50 34±2 17±1.2
8 680±50 34±2 20±1.2
9 680±50 34±2 19±2 4 720±50 33±1 16±2 5 720±50 34±2 16±2 6 720±50 34±2 20±1.2 7 720±50 34±2 19±2 11 720±50 34±2 20±1.2 12 720±50 34±2 19±2 13 720±50 34±2 19±2 5 720±50 33±1 16±2 6 720±50 34±2 16±2 7 720±50 34±2 20±1.2 8 720±50 34±2 19±2 9 720±50 34±2 17±1.2 13 720±50 34±2 20±1.2 14 720±50 34±2 19±2 15 720±50 34±2 19±2
法兰焊后平面度的好坏与相邻的筒节质量息息
相关。相邻筒节的圆度、端口平整度等都会影响法 兰最终的焊后平面度。为保证筒节的质量,我们从 以下几个方面进行控制。
(1)下料 钢板下料前,应根据筒节的外形尺 寸,放样出标准的下料图。然后根据数控切割机的 工艺参数(割嘴大小、切割补偿量、切割速度及板 厚等)编制下料程序。下料后的尺寸控制为:长宽 数据与理论相比-2~2mm,对角线之差≤3mm。下 料前,采用数控切割机的喷粉功能,提前在钢板表 面喷出切割线;测量切割喷粉线并合格后再开始切 割。切割完毕实测相关的数据,并做好数据记录。
风电塔筒制作法兰平面度控制
风电塔筒制作法兰平面度控制摘要:本文笔者结合多年的风电塔筒制作经验,对风电塔筒法兰与筒体的组焊工艺进行了优化改进,特别是采用法兰加工预留内倾量方法,有效地控制了法兰平面度,使得一次性合格率达到了90%以上,提高了生产效率,降低了成本,同时有效地消除了反复刨焊造成焊缝外观质量差,焊缝成型不好的现象,提高了产品外观质量和内在质量。
关键词:焊接;平面度;法兰内倾;法兰外翻;焊接变形1、塔筒制作法兰平面度控制1.1 在下料过程中控制筒节扇形钢板的弦长、弦高、对角线偏差(1)所有料坯下料前检查外形尺寸,经质量检查合格确认后,方可批量下料。
(2)每段塔筒中间节预留2~3mm 焊接收缩余量,与法兰连接的筒节在钢板下料时预留5~10mm 修正余量。
(3)δ≤14mm 壁厚的钢板可以不开坡口外,其他壁厚的钢板开23°坡口,预留5.0~7.0mm 钝边;与法兰连接的筒节开23°坡口,留5.0~7.0mm 钝边。
保证所有切割面切割后光滑,避免出现缺肉情况,清理切割飞溅及氧化皮等。
1.2 筒节卷制、组对、焊接过程控制其圆度(1)筒节卷制时,按滚压线进行卷制,卷制过程中注意清理板面及卷板机上下辊,防止因氧化铁等杂物压伤板材;对接后进行打底焊,打底焊采用CO2气体保护焊,其焊缝应规整、均匀,焊后及时清理焊接飞溅等;开坡口管节在管内壁打底焊,不开坡口的管节在管外壁打底焊。
(2)在筒节卷制中严格控制压延次数,筒节的周长误差控制到最低值。
(3)相邻筒节的组对,纵缝错位180°,环缝对接前应进行管口平面度修整,满足技术要求后方能对接,对接时控制环缝间隙均匀,并检查管节对接的素线长度、对角线偏差值满足要求,以保证上下管口的平面度、同轴度。
(4)单节筒节卷制不允许出现死弯,卷形过程中用弧形样板多次检查其圆度,不允许卷过量,直径尺寸偏差控制在±3mm 以内,卷形后筒节两头用十字拉筋支撑,才能进入下道焊接工序。
风电塔筒制造技术及质量控制探讨
风电塔筒制造技术及质量控制探讨发布时间:2023-02-24T05:10:34.924Z 来源:《中国电业与能源》2022年第19期作者:王明强[导读] 概述风电塔筒制造技术,提出风电塔筒制作过程中应该重视的质量控制关键点及要求。
王明强中车兰州机车有限公司甘肃兰州 730050摘要:概述风电塔筒制造技术,提出风电塔筒制作过程中应该重视的质量控制关键点及要求。
本文将结合笔者的实际经验对塔筒制作技术及质量控制要求进行深刻的研究,并将研究结果进行论述。
关键词:塔筒;制造;质量;检测1.塔筒制造流程钢板下料→卷板校圆→纵缝焊接→法兰拼装及焊接→环缝焊接→大节拼装及焊接→附件拼装及焊接→塔筒防腐→内饰件安装→包装→装车运输。
所有涉及到焊接的地方均为质量控制点,均需要对焊缝进行探伤检测,塔筒制作方案将介绍塔筒制作时的主要流程步骤。
2.塔筒制造方案2.1材料准备及检验钢板、法兰进厂后进行表面外观尺寸及厚度的验收。
钢板外形尺寸验收合格后按照每次到货总数量的10%进行100%UT复验,质量达到JB/T4730.3-2005Ⅱ级要求。
环锻法兰外形尺寸验收合格后,按照总数量的10%进行UT和MT的抽检,其中UT要满足JB/T4730.3标准I级要求;MT要满足JB/T4730.4标准I级要求。
2.2钢板下料采用数控切割机下料。
下料前根据工艺进行数控编程,经校核检验无误后再下料操作。
下料完成后必须对钢板瓦片的编号、方向、方位线等进行标识,并按要求标识出瓦片钢板的炉批号或钢板号、瓦片的编号等。
筒体板材切割尺寸偏差长度方向误差要求±2mm,板宽之差要求≤2mm(至少测5个位置),对角线之差≤3mm。
按照零件工艺卡的要求,切割各瓦片的环缝及纵缝的坡口,坡口角度应符合工艺要求,同时必须将坡口及周围30mm范围打磨平整、光滑。
2.3卷板及校园卷板时用弦长1.2m的样板进行控制,样板与筒体间隙不大于2mm。
卷板合格后在筒体坡口外部用气保焊进行点焊加固。
施工工艺知识:风力发电塔筒施工工艺探究
施工工艺知识:风力发电塔筒施工工艺探究随着能源的消耗和环境保护意识的提高,风力发电已经成为了一种常见的可再生能源。
而在风力机组中,风力发电塔筒则是其中的重要组成部分。
本文就将从风力发电塔筒的设计、施工和检验三个方面,探究其施工工艺知识。
一、设计风力发电塔筒的设计起点是考虑结构强度和系统安全,以及成本和施工可行性。
这要求设计者要综合考虑不同材料的优缺点和成本,并对每一部分进行特别处理。
(1)材料:风力发电塔筒通常由竖向钢管、横向环杆和斜向铁链等不同的零部件组成。
顶部容纳风力机组,底部则连接基础。
在材料选择上,不仅仅要考虑其强度,还要考虑耐久性和可维修性。
(2)结构:设计者还需要考虑风力发电塔筒的结构。
采用较厚的钢管,设计超额结构强度和疲劳剩余寿命,以保证系统的安全性。
同时,要保证结构的良好防护,以延长使用寿命并减少维护和修护成本。
二、施工风力发电塔筒的施工要求高度技术化和专业化。
正确的安装工艺和操作规程是保证工程品质和生产效率的关键。
施工中的安全措施也是必不可少的。
(1)钢板切割:钢板是风力发电塔筒的主要组成部分,因此在施工过程中需要对钢板进行切割。
切割需要采用化学气相沉积技术,并使用合适的切割工具。
(2)钢板焊接:钢板焊接是风力发电塔筒施工的核心。
采用电弧焊要求焊工具有高度的焊接技术及经验。
在焊接过程中,焊工应确保焊缝的密实和各部分的精度和安全性。
(3)安全措施:在塔筒组装期间,必须严格执行安全防范措施,以确保工人的安全。
这包括严格的机械安全措施、安全带和工人培训和教育等。
三、检验风力发电塔筒的检验关键在于确保其结构强度和耐用性满足设计要求。
检测工作主要涉及以下几个方面。
(1)毁坏性检验:采用图像分析和材料破坏分析等现代技术,对风力发电塔筒的组装质量及材料性能进行了全面的检测。
(2)无损检测:采用X光检测、超声波检验、地面雷达和激光扫描等无损检测技术,对风力发电塔筒进行了检验。
(3)现场验收:施工后,要进行现场质量验收,以确保其工作顺利,长期稳定地发挥作用。
风力发电机组塔筒的焊接工艺和质量控制探讨
风力发电机组塔筒的焊接工艺和质量控制探讨摘要:探讨风力发电机塔筒的制作工艺过程、法兰焊接工艺,研究塔筒在制作过程中板材的下料,筒节卷制,纵缝、环缝、法兰焊接以及筒体法兰组对等关键工序的加工,对风电塔筒法兰焊接的质量控制措施进行探讨。
关键词:风力发电机组;塔筒;焊接;制作工艺;法兰引言随着风力发电产业的快速发展,现风力发电机组单台设计容量越来越大,塔架高度也越来越高,这就对塔架的制造提出了严格的要求。
风力发电具有很多优点,比如可以清洁环境、可再生、基建周期短、占用空问小、投资少、技术相对熟悉等,它是我国重要的能源,同时也是可再生、永不枯竭的资源。
本文主要介绍风力发电机组塔筒制作的工艺过程以及塔筒与法兰焊接工艺,对风电塔筒法兰焊接的质量控制措施进行简要分析,仅供相关人员参考。
1塔筒概述风电塔筒就是风力发电的塔杆,它主要起着支撑的作用,并且吸收机组产生的震动。
例如:某风力发电场二期工程,预期制作10台风力发电机塔筒。
风力发电机的塔筒主要分为上、中、下3段,各段塔筒示意图如图1所示。
每台塔筒的上、中2段各有10节,下段有8节,共有28节,每段之间采用法兰连接,各段规格见表1。
单台塔筒总高67400mm,自身质量116.936t,筒节钢板材质均为Q345E。
塔架法兰为整体锻造法兰,材质为Q345E,为采购件。
组装后,锻造法兰内外表面要求热喷锌处理,塔筒附件要求热浸锌处理。
2关键工序塔筒的生产工艺流程一般是数控切割机下料,厚板需要开坡口,卷板机卷板成型后。
点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次较圆,单节筒体焊接完成后。
采用液压组对滚轮架进行组对点焊后,焊接内外环缝,直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处理后,完成内件安装和成品检验后,运输至安装现场。
塔架用板材为热轧低合金高强度结构钢,钢板表面不允许有麻点、裂纹、皱褶等缺陷。
2.1筒节卷制成形筒节卷制过程:压头→卷制→尺寸检验→点焊固定。
2000KW风力发电机安装工法
4)使用钢丝刷、砂纸清除法兰连接面的铁锈或杂物。
图5-1基础环检测
5.2电气箱的放置(图5-2)
将电气箱放置在基础环内混凝土上,以便能够穿过塔筒底段的下部平台,门左手边(从外看)的两个网纹板已经被拆除。
图5-2 电器柜在基础环内的放置
6)分别在塔筒内侧和外侧将垫圈和螺母装到基础螺栓上,用冲击扳手将一圈螺栓预拧紧。
7)拆除塔筒顶部法兰上的吊具和吊装连接板。
8)按照紧固力矩表中规定的紧固力矩设置液压扭力扳手,并按对角方式全部紧固螺母,然后画上标记。
5.3.3顶段塔筒安装
1)清理中段塔筒上法兰和顶段下法兰,并在法兰面上呈S状涂抹密封胶。
3)塔顶安装人员指挥吊机将机舱吊至塔筒上方,指挥吊机将底部法兰与塔筒顶部法兰进行对接并用螺栓固定。
4)用专用液压扳手对称地进行螺栓预紧,松下吊机,解除吊具。
5)用专用液压扳手对称地进行螺栓的第二次力矩紧固,达到最终的力矩要求。
图5-5机舱的安装
5.5轮毂安装(轮毂组装与机舱安装同时进行)(图5-6)
5
5.1基础环整理(图5-1)
1)基础环法兰与塔筒底法兰对接标记:基础环法兰内侧面有一个明显标记,表明与塔筒底法兰的对接位置,一般这个标记对应塔筒门的方向。
2)基础环水平度检查:用水平仪和标尺检查相隔120°的三个方向上(其中之一对应法兰对接标记)基础法兰面是否水平。测量点位于法兰中环,每个方向最少测量两次,最大水平误差平均不超过安装手册的要求数据。
5)主吊机慢慢将顶段塔筒爬梯与中段塔筒爬梯对正后落下,用螺栓将两法兰连接固定,先用用冲击扳手将一圈螺栓预拧紧,松下吊机和卸下专用吊耳。随即用专用液压扳手对称进行第二次力矩紧固使其达到设计力矩要求。
风力发电塔架法兰平面度控制技术
术 措施 为 : 可能 降低 焊缝 中扩 散 氢含量 ; 尽 降低 焊接 应 力 和 冷 却 速 度 ; 前 预 热 , 制 层 间 温 度 。 后 焊 控 焊
S e lC n tu t n 0 9 ( 2 ,Vo. 4,No 1 7 te o sr ci .2 0 1 ) o 12 . 2
S e l n t u t .2 0 ( 2 。V0 . 4,No 1 7 t e Co s r c i n 0 9 1 ) o 12 . 2
收 稿 日期 :0 9— 5一 5 2 0 0 O
6 5
杨 少军 , : 力 发 电塔 架 法 兰平 面度 控 制 技 术 等 风
4 h MT检 测 ( 粉 探 伤 ) 缝 表 面 , 要 检 查 有 用 8 磁 焊 主
6 2 控 制 变 形 效 果 .
按 图纸 设 计 要 求 , 兰 焊 后 平 面 度 小 于 等 于 法
2 0mm, . 内倾 度小 于等 于 1 5mm 为 合格 。施 工 现 . 场 用激 光测 平 仪检 测 , 源川 井 五 期 塔架 法 兰 平 面 龙
图 6 法 兰 与筒 体 组对 示 意
杨 少军 , : 力 发 电塔 架 法 兰平 面度 控 制 技 术 等 风
风 力 发 电 塔 架 法 兰平 面 度 控 制 技 术
杨 少军 王延斌 特 古斯 张 宝平
041) 10 0 ( 国二冶钢结构公 司, 蒙古包头 中 内
摘 要 : 力发 电塔 架 法 兰与 筒 体 环 缝 焊 接 时 , 兰 平 面 易产 生 “ 变 形 ” 故 在 焊 接 过 程 中采 用 刚 性 固定 法控 制 角 风 法 角 ; 变形 ; 并在 组 对 工序 中严 格 控 制 组 对 间 隙 。采 用 技 术 措 施 控 制后 可 满 足 法 兰 平 面度 要 求 , 此 控 制 方 法 已在 多 个 且
风电塔筒制作技术及质量控制分析
风电塔筒制作技术及质量控制分析本文主要针对风电塔筒制作技术展开探讨,分析了风电塔筒制作技术的要点,以及在制作的过程中应该采取哪一些质量控制的方法,明确了质量控制的措施,希望能够为今后的风电塔筒制作工作提供参考。
标签:风电塔筒,制作技术,质量控制前言风电塔筒制作有很多工程也有非常多的工序在制作的过程中要采取更加科学合理的制作技术,才能够提升制作的质量,与此同时在制作的过程中必须要做好质量控制,才能够确保制作的效果。
1、塔筒制造流程进入二十一世纪以来,能源和环境问题日益突出,成为当前国际政治经济领域的热点问题,也是国内社会经济发展的基础性重大问题。
我国能源结构中煤电比例过高的问题十分严重,燃煤发电对环境、气候、水资源、交通运输等造成了很大压力。
国家“十一五”规划制定了2010年单位GDP能耗降低20%、主要污染物排放总量减少10%的目标。
可是,2006年与2007年,我国已经连续两年没有实现预期的节能降耗和污染减排目标。
因此,能源结构的调整势在必行,大力发展可再生能源迫在眉睫。
风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的发电方式。
我国是风能资源大国,据初步估算,就50米高度而言,陆地可利用的风能资源约为60-100GW,海上风能资源约为10-20GW,位居世界第三。
到去年年底,全国风电机组累计装机容量达到1215.28万千瓦,位列全球第四,标志着我国风电产业进入高速发展时期。
按照中国工程院对我国可再生能源发展策略的研究结果,在2010年到2020年期间,可再生能源将占总能源需求的10%(不包括水能),其中并网的风能预期达到3%,即到2020年风电装机总容量将达到80GW。
由此可见,以风力发电为龙头的清洁电源形式对于改善我国电源结构,实现能源开发对环境友好、可持续发展以及二氧化碳减排具有重要的战略地位。
首先选择优质钢板下料,接着采用专业机械将钢板卷筒并检验其圆柱度,检验合格后焊接卷筒纵缝,然后安装法兰并且进行环缝焊接,确保连接强度,再就是将每一个卷筒拼装焊接起来,整体焊接完成后要进行防腐处理,防腐处理后安装内饰,最后就是进行包装运输。
风力发电塔架法兰平面度控制技术
风力发电塔架法兰平面度控制技术摘要:本文首先阐述了法兰焊接平面度的质量要求,接着分析了法兰平面度影响因素及控制方法,论述了控制法兰角变形的原因及措施,最后对控制法兰平面度在组对时及焊接时应注意的问题进行了探讨。
关键词:风力发电塔架;法兰;平面度;焊接变形控制引言:风力发电塔架是风力发电机的一个关键支撑部件,行业内较为常用的塔架型式是钢制锥塔,它是由数段圆锥筒体依靠连接法兰组成一个锥形圆筒状结构。
由于每段塔架是由滚制筒体和连接法兰焊接而成,如何控制塔架两端连接法兰焊接后的平面度是塔架制作的关键。
1法兰焊接平面度的质量要求在风力发电装备中,风力发电塔架具有十分重要的,不可缺少的作用。
它在整个发电过程中起着连接风机各个关键装置的作用,要担负起叶片转动过程中产生的各种压力,冲击,以及电机的震动还要调整受力过程中的摇摆。
发电塔架经过3、4段直筒或锥筒联合在一起构成的。
因为每一节塔架是将滚制筒与法兰通过焊接的方式连在一起的,所以。
最重要的是在焊接之后要调控好平面度。
要是在制作过程中操作不当,将不利于风力发电机的正常运作,造成机械破损.降低机械设备的工作效率,缩短机械设备的寿命。
法兰焊接后的平面度均需符合图纸设计要求,每段塔架焊接后法兰面的平度小于等于2 mm,连接风机机舱座的顶法兰平面度小于等于0.35mm,所有法兰面(沿直径方向)焊后只允许内倾不允许外翻,内倾量为0~1.5 mm(顶法兰0~0.5mm)。
2法兰平面度影响因素及控制方法2.1 法兰自身的平面度法兰一般整体锻造机加而成,其自身的平面度基本都能得到保证。
由于法兰截面相对于其直径相差很大,所以法兰整体刚度差,复测平面度时必须有一定数量的支撑点支撑法兰,并且各支撑点亦必须满足一定的平面度才能作为复测法兰时的基准面。
2.2 筒节下料尺寸控制筒节展开后呈扇形,其两条弧形边分别形成筒节的两个端口,理想的筒节端口一定在一个平面上,因此弧形边的下料精度决定着筒节端口的平面度。
风电塔筒法兰焊接变形控制的工艺分析
风电塔筒法兰焊接变形控制的工艺分析发布时间:2022-07-11T03:03:28.348Z 来源:《工程管理前沿》2022年5期3月作者:王品[导读] 风力发电高塔中,塔筒是风力发电的基础部件,因为塔筒的体积过大,在制造时需要进行分段制造,王品中车兰州机车有限公司甘肃兰州730050摘要:风力发电高塔中,塔筒是风力发电的基础部件,因为塔筒的体积过大,在制造时需要进行分段制造,然后用法兰将塔筒的分段进行连接,进行发电机组的组装。
若在利用法兰焊接过程中出现了细节失误或手段错误,就会导致法兰变形,从而影响塔筒焊接质量。
因此,针对风电塔筒法兰焊接变形控制的工艺进行分析,提出了控制变形的技术手段,以保障风电塔安全平稳的运行,提高风电塔筒法兰焊接的工艺要求。
关键词:风电塔筒;法兰焊接;变形控制;工艺分析现阶段,全国正在大力发展清洁能源,积极推广风力发电,以缓解能源紧张现状。
塔筒作为风电机组重要支撑部件,其高度较高,而且直径较大,通常采取分段生产的方式,进行制作、运输、安装,段与段之间的连接,依靠的是锻造法兰。
由于焊后需要进行精确装配,对于锻造法兰尺寸的要求较高,因此加强此课题的研究,有着必要性。
1.风电塔筒塔架的制造工艺(1)板材切割口的大小与焊接坡口都应在满足设计需求的前提下进行板材下料工序。
另外需要注意以下几点:①尽量进行成套下料,保障后续小拼装工序的进行。
②切割前后选用一致的记号做好标记。
③焊接坡口的大小与类型需要满足焊接工艺。
(2)确定好圆筒的圆度满足设计需求。
卷筒施工时需要注意以下4点:①处理压头时,需要按照设计要求进行压头与弧度的预留。
②样板卡弧的操作符合要求。
③卷板前需要清理卷板与操作环境。
④在筒体出现凹凸时,需要立即对其测量,若超过规定范围,立即舍弃。
(3)进行组拼单元与拼装法兰时,要保证法兰平面度与角变形量。
需要注意的是:①拼接过程中遇到纵缝拼接时,靠近筒节的纵焊接缝需要错开,且角度不得小于90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨摘要:针对大唐三门峡清源风电场许继单机2000KW/8On风电塔筒顶法兰装焊后平面度要求较高、难于保证这一生产难题,作者分别采用二种不同的加工方法认真进行对比、分析,并设计出的专用定位工装。
最终采用顶部法兰与相邻三节筒节装配焊接后,用专用定位工装,在数控落地铣镗床上焊后加工顶法兰端面,再将加工过的组件与塔架上段塔筒其余各段总装,较好地解决了这一制约生产的技术难题。
关键词:顶法兰;平面度;焊接变形
:TG113.26+3:A
1 问题的提出
1.1 前言
由于风电塔筒上段顶部法兰总装时与风机机舱推力轴承相连接,所以对其装焊形位公差控制要求相当严格。
我公司承制的许继2000KW/80n风电塔筒顶部法兰总装后图纸要求法兰平面度不大于0.35mm表面光洁度为5级。
远高于东汽风电塔筒对法兰焊后平面度0.6mm的要求。
1.2 保证顶部法兰要求平面度0.6m m以内的上段塔筒传统的加
工工艺
为保证风电塔架上段塔筒顶部法兰的焊后平面度,对于顶部法兰要求平面度0.6mm以内的上段塔筒,我们通常采用如下的加工工艺。
我们在塔架上段塔筒上、下法兰整体辗制成型后机加工时预留适当的法兰内倾反变形量。
塔架上段塔筒厂内装焊时,采用先将上、下法兰与与之相邻的筒节在平台上竖装,将焊缝间隙调整均匀,点焊定位加固成组件;再将上段其余筒节按排板图也装配成组件,定位加固;最后将二法兰组件与筒节组件总装。
检验合格后,制定严密、科学的焊接方法、焊接规范及合理的焊接顺序,然后认真施焊,从而尽可能地减小焊接变形。
如果采用我们传统的加工方法,将难以保证许继塔筒顶部法兰焊后平面度要求,生产将不能正常进行,进而影响产品的正常交货周期。
2 改进方法探讨
图1 上段组成示意图
顶部法兰机加工时在法兰端面予留5mm厚度余量作为焊后加工
余量。
结合我公司设备现状,我们制订了二种加工方案:
2.1 方案一
顶部法兰与筒节T1 装焊后,用6.5m 立车加工法兰端面。
6.5m
立车加工范围© 3.2m~© 3.3m,加工最大咼度3.5m。
由于加工部件刚性不足,立车加工时振动较大,表面光洁度不
能达到图纸要求。
6.5m立车的加工精度虽可保证0.3mn~0.5mm但由于后续环缝焊接时,焊接变形还会加大顶部法兰的平度变形。
故采用此方案,最终不一定能满足图纸要求。
2.2 方案二
顶部法兰与筒节T1、T2、T3装焊后,先用TJK6916数控落地铣镗床加工法兰端面。
设备加工范围:行程3X 8m工作台2.5 x 3m 工作台承重40000K®加工部件总重13245Kg长度7.41m,经现场实测加工设备及其周围空间环境完全能够满足机械加工要求。
由于该设备本身加工能力强、精度咼;况且三节筒节与顶部法兰成组件后加工,减小了总装时焊接变形对顶部法兰平面度的影响。
经综合评估,我们认为该方法能够较好地保证加工质量。
3 方案实施
3.1 提高被加工组件刚性
顶部法兰机加工时在法兰端面予留5mm厚度余量作为焊后加工余量,将顶部法兰与筒节T1、T2、T3装焊好后,用TJK6916数控落地铣镗床加工法兰端面。
同时为提高被加工组件加工时的刚性,减小加工后法兰表面可能产生的弹性变形,我们在筒节T3外口处如图点焊一3 16环形加强筋。
3.2 设计铣镗床定位夹紧专用工装
由于铣镗床工作台面较小,且风电塔架上段塔筒为锥筒,我们必须设计一套专用工装,既要保证塔筒定位后锥筒中心线平行于铣镗床工作台面,又要能保证工件与铣镗床工作台紧固在联接在一起。
为此,我们设计了许继上塔筒顶部法兰端面加工夹具定位支撑I、H。
图2 定位支撑(前后支撑要各自设计计算)
图3抱箍(前后抱箍R分别计算)
图4 加工安装示意图
使用时,需先将夹具支撑I、H,分别用M24螺栓压紧在数控铣镗床工作台上;将待加工组件轻轻放置在定位支撑上,并分别用拉杆将抱箍与支撑件联接牢靠;在被加工组件尾部用千斤顶将工件支撑平稳,以防加工
时振动。
装夹好后,在机床主轴用百分表对顶部法兰端面四个象限分别测量,调整工件直至塔架上段塔筒顶部法兰端面加工余量分布均匀后,方可开始加工。
加工完毕后,用EASY-Laser 激光找正仪测量顶法兰平面度为
0.07mm粗糙度远高于图纸要求。
4 结论
加工后,将风电塔架上段塔筒顶法兰组件与上段塔筒下法兰筒节组件及上段塔筒其余筒节组件按拼板图装配、定位焊。
按图示测量上段塔筒,A、B、C、D 四个象限斜边长(在45°C 方向上测量),对角线长差值在3mn以内为合格;否则返修。
用EASY-Laser激光找正测量仪测量上段塔筒上、下法兰平行度。
合格后,焊接终结环缝。
最后用EASY-Laser 激光找正仪测量上段塔筒顶法兰最终平面度,实测为0.18mm远高于图纸及规范要求。
实践证明该方案科学、合理、经济、适用、高效,完全能够满
足生产要求,适合在风电塔筒顶法兰平面度要求较高时推广使用
图5 测量示意图
A1B4=A A2B3=B A3B2=C A4B1=D
[1] 徐灏.机械设计手册第四卷[M].北京:机械工业出版社,1995.
[2] 塔筒(含基础环)制造技术规范[S] .许继风电科技有限公司,xx .
本文为全文原貌未安装PDF浏览器用户请先下载安装原版全文
内容仅供参考。