2013年江苏省淮安市中考数学试题(word版,含答案)
【精校】2013年江苏省淮安市中考数学(无答案)
2013年淮安数学中考试题16、选择题1、在-1、0、-2、1四个数中,最小的数是( ) A 、-1 B 、0 C 、-2 D 、1 2、计算()32a 的结果是( )A 、6aB 、8aC 、2a 3D 、8a 3 3、不等式组1≥<x x 的解集是( ) A 、0≥xB 、1<xC 、10<<xD 、10<≤x 4、若反比例函数xky =的图象过点(5、-1),则实数k的值是( ) A 、-5 B 、51-C 、D 、5 5、若扇形的半径为6,圆心角为1200,则此扇形的弧长是( ) A 、π3 B 、π4 C 、π5 D 、π66、如图,数轴上A 、B 两点表示的数分别为2和5.1,则AB 间表示整数的点共有( )A 、6个B 、5个C 、4个D 、3个7、若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( ) A 、5 B 、7 C 、5或7 D 、68、如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=500,则∠A 的度数是( ) A 、400B 、500C 、800D 、1000二、填空题 9、sin300= 10、方程012=+x的解是 11、点A (-3,0)关于y 轴的对称点的坐标是 12、一组数据3、9、4、9、6的众数是 13、若n 边形的每一个外角等于600,则n =14、如图,三角板的直角顶点在直线l 上,若∠1=400,则∠2=l1215、如图,在ABC 中点D 、E 分别是AB 、AC 的中点,若DE =3,则BC = 16、二次函数12+=x y 的图象的顶点是17、若菱形的两条对角线长分别为2和3,则此菱形的面积是18、观察一列单项式:、23x 、35x 、x 7、29x 、311x 、……,则第2013个单项式是 三、解答题 19、计算(1)、()3450--+-π (2)、1221132--•⎪⎭⎫ ⎝⎛-++a a a a a 20、解不等式221+≥+xx ,并把解集在数轴上表示出来。
2013年江苏省十三市中考数学试题(1)
第4题l O 2O 12013年南京中考数学试题一、选择题(本大题共有6小题,共12分,每小题2分.) 1.计算12-7×(-4)+8÷(-2)的结果是A .-24B .-20C .6D .362.计算23)1·a a (的结果是A .aB .5aC .6aD .9a3.设边长为3的正方形的对角线长为a.下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根。
其中,所有正确说法的序号是 A .①④ B .②③ C .①②④ D .①③④ 4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线l 上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm 。
⊙O 1以1cm/s 的速度沿直线l 向右运动,7s 后停止运动。
再此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含函数y=k 1x 的图像与反比例函数xk y 2=的图像没有公5.在同一直角坐标系中,若正比例共点,则A .k 1+ k 2<0B .k 1+ k 2>0C .k 1k 2<0D .k 1k 2>06. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是二、填空题(本大题共有10小题,共20分,每小题2分.)7.-3的相反数是 ;-3的倒数是 . 8.计算2123-的结果是 . 第6题A .B .C .D .F E O D B A 1D'B'C'D CB A 第12题第11题N PMAB9.使式子111-+x 有意义的x 的取值范围是 . 10.第二节亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学计数法表示为 .11.如图将矩形ABCD 绕点A 顺时针旋转到AB ’C ’D ’的位置,旋转角α(0°<α<90°).若 ∠1=110°,则∠α= °.12. 如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.△OAB 是以正多边形相邻的两个顶点A 、B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 .14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程 . 15. 如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点P ,已知A (2,3),B (1,1), D (4,3),则点P 的坐标为( , ).16.计算⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211的结果是.三、解答题(本大题共有11小题,共88分.)17.(6分)化简b a a b a b b a +÷⎪⎭⎫ ⎝⎛---221. 18.(6分)解方程x x x --=-2112219.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N.(1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.x第14题第15题20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机的选择一个,那么他6道选择题全部选正确的概率是( )A .41B .641⎪⎭⎫ ⎝⎛ C .6411⎪⎭⎫ ⎝⎛- D .6431⎪⎭⎫ ⎝⎛-21.(9分)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查,整理样本数据,得到下列图表:问题:如果名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;步行10%其它6%乘私家车 20%乘公共交通工具 30%骑车34% 某校150名学生上学方式 频数分布表 某校150名学生上学方式 扇形统计图(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学生合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议: .22.(8分)已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α、β的式子表示)23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内700~900某校2000名学生上学方式条形统计图 步行 骑车 乘公共 乘私 其它 上学方式 交通工具 家车 人数 H ① H ②注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元) (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?24.(8分)小丽驾车从甲地到乙地,设她出发第x min 时的速度为y km/h ,图中折线表示她在整个驾车过程中第y 与 x 之间的函数关系.(1)小丽驾车的最高速度是 km/h;(2)当20≤x ≤30时,求y 与 x 之间的函数关系式,并求出小丽出发第22min 时的速度; (3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?25.(8分)如图,AD 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AD ,交⊙O 于点C ,连接AC ,过点C 作CD ∥AB ,交AD 于点D ,连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP =∠ACD . (1)判断直线PC 与⊙O (2)若AB =9,BC =6,求PC 的长.O y 方法指导 如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
江苏省淮安市中考数学试卷含答案解析(word版)
2018年江苏省淮安市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.﹣3 B.﹣C.D.32.(3分)地球与太阳的平均距离大约为150000000km.将150000000用科学记数法表示应为()A.15×107 B.1.5×108C.1.5×109D.0.15×1093.(3分)若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.74.(3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.65.(3分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°6.(3分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.487.(3分)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k 的值是()A.﹣1 B.0 C.1 D.28.(3分)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把正确答案直接写在答题卡相应位置上)9.(3分)(a2)3=.10.(3分)一元二次方程x2﹣x=0的根是.11.(3分)某射手在相同条件下进行射击训练,结果如下:射击次数n102040501002005001000 919374589181449901击中靶心的频数m0.9000.9500.9250.9000.8900.9050.8980.901击中靶心的频率该射手击中靶心的概率的估计值是(精确到0.01).12.(3分)若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=.13.(3分)若一个等腰三角形的顶角等于50°,则它的底角等于°.14.(3分)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B 为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.16.(3分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n 的面积是.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣3.19.(8分)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF.20.(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(8分)如图,在平面直角坐标系中,一次函数y=kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =S △BOC ,求点D 的坐标.23.(8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(12分)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC 的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E (异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.27.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t 的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.2018年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:﹣3的相反数是3.故选:D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)地球与太阳的平均距离大约为150000000km.将150000000用科学记数法表示应为()A.15×107 B.1.5×108C.1.5×109D.0.15×109【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:150000000=1.5×108,故选:B.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.7【分析】根据平均数的定义计算即可;【解答】解:由题意(3+4+5+x+6+7)=5,解得x=5,故选:B.【点评】本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题,属于中考基础题.4.(3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,利用函数图象上点的坐标满足函数解析式是解题关键.5.(3分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】求出∠3即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.【点评】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.6.(3分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.48【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=20.故选:A.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.7.(3分)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k 的值是()A.﹣1 B.0 C.1 D.2【分析】根据判别式的意义得到△=(﹣2)2﹣4(﹣k+1)=0,然后解一次方程即可.【解答】解:根据题意得△=(﹣2)2﹣4(﹣k+1)=0,解得k=0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°【分析】作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.【解答】解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把正确答案直接写在答题卡相应位置上)9.(3分)(a2)3=a6.【分析】直接根据幂的乘方法则运算即可.【解答】解:原式=a6.故答案为a6.【点评】本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).10.(3分)一元二次方程x2﹣x=0的根是x1=0,x2=1.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.11.(3分)某射手在相同条件下进行射击训练,结果如下:射击次数n102040501002005001000 919374589181449901击中靶心的频数m0.9000.9500.9250.9000.8900.9050.8980.901击中靶心的频率该射手击中靶心的概率的估计值是0.90(精确到0.01).【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.90上下波动,所以该射手击中靶心的概率的估计值是0.90,故答案为:0.90.【点评】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.12.(3分)若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=4.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.(3分)若一个等腰三角形的顶角等于50°,则它的底角等于65°.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.【点评】本题考查了三角形内角和定理和等腰三角形的性质,熟记等腰三角形的性质是解题的关键.14.(3分)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是y=x2+2.【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B 为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(3分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n 的面积是()n﹣1.【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n C n D n的面积=()n﹣1,故答案为:()n﹣1.【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:【分析】(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.【解答】解:(1)原式=2×+1﹣3+2=+1﹣=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥,得:x≥1,则不等式组的解集为1≤x<3.【点评】本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣3.【分析】原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=﹣3时,原式==﹣2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(8分)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.20.(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了50名学生;(2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.【分析】(1)根据乘车的人数及其所占百分比可得总人数;(2)根据各种交通方式的人数之和等于总人数求得步行人数,据此可得;(3)用总人数乘以样本中步行人数所占比例可得.【解答】解:(1)本次调查中,该学校调查的学生人数为20÷40%=50人,故答案为:50;(2)步行的人数为50﹣(20+10+5)=15人,补全图形如下:(3)估计该学校学生中选择“步行”方式的人数为1500×=450人.【点评】此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.【分析】(1)首先根据题意列出表格,然后根据表格即可求得点A 的坐标的所有可能的结果;(2)从表格中找到点A 落在第四象限的结果数,利用概率公式计算可得. 【解答】解:(1)列表得:1﹣2 3 1(1,﹣2)(1,3) 2 (﹣2,1)(﹣2,3)3(3,1)(3,﹣2)(2)由表可知,共有6种等可能结果,其中点A 落在第四象限的有2种结果, 所以点A 落在第四象限的概率为=.【点评】此题考查了列表法或树状图法求概率的知识.此题难度不大,注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(8分)如图,在平面直角坐标系中,一次函数y=kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =S △BOC ,求点D 的坐标.【分析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m )(m <0),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标. 【解答】解:(1)当x=1时,y=3x=3, ∴点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y=kx +b , 得:, 解得:.(2)当y=0时,有﹣x +4=0, 解得:x=4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m )(m <0), ∵S △COD =S △BOC ,即﹣m=××4×3, 解得:m=4,∴点D 的坐标为(0,4).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程.23.(8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)【分析】作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【解答】解:作PD⊥AB于D.设BD=x,则AD=x+200.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴CD=tan30°•AD,即DB=CD=tan30°•AD=x=(200+x),解得:x≈273.2,∴CD=273.2.答:凉亭P到公路l的距离为273.2m.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.【分析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.【解答】解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.25.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为180件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.【点评】此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.26.(12分)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC 的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E (异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.27.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是(4,0);(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t 的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【解答】解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);故答案为(4,0);(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt △AOB 中,tan ∠OAB==,由运动知,AP=3t ,∴P (6﹣3t ,0),∴Q (6﹣6t ,0),∴PQ=AP=3t ,∵四边形PQMN 是正方形,∴MN ∥OA ,PN=PQ=3t ,在Rt △APD 中,tan ∠OAB===, ∴PD=2t ,∴DN=t ,∵MN ∥OA∴∠DCN=∠OAB ,∴tan ∠DCN===, ∴CN=t ,∴S=S 正方形PQMN ﹣S △CDN =(3t )2﹣t ×t=t 2; ②当1<t ≤时,如图2,同①的方法得,DN=t ,CN=t ,∴S=S 矩形OENP ﹣S △CDN =3t ×(6﹣3t )﹣t ×t=﹣t 2+18t ; ③当<t ≤2时,如图3,S=S 梯形OBDP =(2t +4)(6﹣3t )=﹣3t 2+12;(3)如图4,由运动知,P (6﹣3t ,0),Q (6﹣6t ,0),∴M (6﹣6t ,3t ),∵T 是正方形PQMN 的对角线交点,∴T (6﹣t ,t )∴点T 是直线y=﹣x +2上的一段线段,(﹣3≤x <6),作出点O 关于直线y=﹣x +2的对称点O'交此直线于G ,过点O'作O'F ⊥x 轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,易知,OH=2,∵OA=6,AH==2,∴S=OH×OA=AH×OG,△AOH∴OG=,∴OO'=在Rt△AOH中,sin∠OHA===,∵∠HOG+∠AOG=90°,∠HOG+∠OHA=90°,∴∠AOG=∠OHA,在Rt△OFO'中,O'F=OO'sin∠O'OF=×=,即:OT+PT的最小值为.【点评】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点.前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。
江苏省淮安市淮海中学2013年中考数学三模试卷(解析版)
2013年某某省某某市淮海中学中考数学三模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2013•六盘水)﹣2013相反数()A.﹣2013 B.C.2013 D.﹣考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数解答即可.解答:解:﹣2013的相反数为2013,故选C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:D.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2012•某某)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20考点:等腰三角形的性质;三角形三边关系.专题:压轴题;探究型.分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.解答:解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.点评:本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4.(3分)(2011•某某)下列计算正确的是()A.x2•x=x3B.x+x=x2C.(x2)3=x5D.x6÷x3=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、正确;B、x+x=2x,选项错误;C、(x2)3=x6,选项错误;D、x6÷x3=x3,选项错误.故选A.点评:本题考查了同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法等多个运算性质,需同学们熟练掌握.5.(3分)(2011•某某)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:主视图是从正面看,圆柱从正面看是长方形,两个圆柱,看到两个长方形.故选A.点评:此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)(2011•某某)如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°考点:平行线的性质.专题:压轴题.分析:由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案.解答:解:∵DF∥AB,∴∠BED=∠D=70°,∵∠BED+∠BEC=180°,∴∠CEB=180°﹣70°=110°.故选D.点评:此题考查了平行线的性质.注意两直线平行,内错角相等,注意数形结合思想的应用.7.(3分)(2013•某某)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠AC B=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2010•北仑区二模)如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是()A.40°B.50°C.60°D.80°考点:圆的认识;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:利用等边对等角即可证得∠C=∠DOC=20°,然后根据三角形的外角等于不相邻的两个内角的和即可求解.解答:解:∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故选C.点评:本题主要考查了三角形的外角的性质和等腰三角形的性质,正确理解圆的半径都相等是解题的关键.二、填空题(本大题共10题,每小题3分,共30分)9.(3分)(2012•某某)计算:23= 8 .考点:有理数的乘方.分析:正确理解有理数乘方的意义,a n表示n个a相乘的积.解答:解:23表示3个2相乘的积,2×2×2=8,因此23=8.点评:要准确理解有理数乘方的含义.10.(3分)(2012•某某)使有意义的x的取值X围是x≤1.考点:二次根式有意义的条件.专题:计算题.分析:根据二次根式的被开方数为非负数,即可得出x的X围.解答:解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.点评:此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.11.(3分)(2013•达州)分解因式:x3﹣9x= x(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再利用平方差公式进行分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.12.(3分)(2012•某某)方程﹣=0的解是x=6 .考点:解分式方程.专题:计算题.分析:先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.解答:解:去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.点评:此题考查了解分式方程的知识,注意分式方程要化为整式方程求解,求得结果后一定要检验.13.(3分)(2012•某某)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=300°.考点:多边形内角与外角.专题:数形结合.分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解答:解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .14.考点:平移的性质.分析:根据平移的基本性质解答即可.解答:解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.15.(3分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D,若AC:BC=4:3,AB=10cm,则OD的长为4 cm.考点:圆周角定理;勾股定理;三角形中位线定理;垂径定理.分析:根据AB是直径可以得到△ABC是直角三角形,依据勾股定理即可求得AC的长,然后根据垂径定理证得D是BC的中点,则OD是△ABC的中位线,依据三角形的中位线定理即可求解.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AC:BC=4:3,∴设AC=4x,则BC=3x,(4x)2+(3x)2=102,解得:x=2,则AC=8cm,BC=6cm.∵OD⊥BC于D,∴BD=CD,又∵OA=OB∴OD=AC=×8=4cm.故答案是:4.点评:本题考查了圆周角定理、勾股定理以及三角形的中位线定理,正确根据垂径定理证明OD是△ABC的中位线是关键.16.(3分)(2012•某某)在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是20 元.考点:中位数;条形统计图.分析:根据捐款100元的人数占全班总人数的25%求得总人数,然后确定捐款20元的人数,然后确定中位数即可.解答:解:∵捐100元的15人占全班总人数的25%,∴全班总人数为15÷25%=60人,∴捐款20元的有60﹣20﹣15﹣10=15人,∴中位数是第30和第31人的平均数,均为20元∴中位数为20元.故答案为20.点评:本题考查了中位数的求法,解题的关键是首先求得总人数和捐款20元的人数.17.(3分)如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为.考点:圆周角定理;坐标与图形性质;含30度角的直角三角形;特殊角的三角函数值.分析:首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC=∠ODC,继而可求得答案.解答:解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.点评:此题考查了圆周角定理、勾股定理以及三角函数的定义.注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.18.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(6,0),D,E 分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x 轴上若△OA′D与△OAB相似,则OA′的长为或3 .考点:相似三角形的判定与性质;坐标与图形性质;轴对称的性质.专题:压轴题.分析:由点A的坐标为(3,4),点B的坐标为(6,0),可得OA=5,OB=6,AB=5,然后分别从△OA′D∽△OAB与△OA′D∽△OBA去分析,根据相似三角形的对应边成比例,即可取得答案.解答:解:∵点A的坐标为(3,4),点B的坐标为(6,0),∴OA=5,OB=6,AB=5,若△OA′D∽△OAB,则==,设AD=x,则OD=5﹣x,A′D=OA′=x,即=,解得:x=,∴OA′=;若△OA′D∽△OBA,则==,设AD=AD′=y,则OD=5﹣y,则y=5﹣y,解得:y=2.5,可得:OA′=3.故答案为:或3.点评:此题考查了相似三角形的性质与折叠的知识.此题综合性较强,难度较大,注意数形结合与方程思想的应用,小心别漏解.三、解答题(本大题共9小题,共96分.解答时需写出必要的文字说明、过程或步骤)19.(16分)(1)计算:(π﹣2013)0﹣(﹣)﹣2+tan45°(2)先化简,再求值:﹣,其中x=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)根据零指数幂、负整数指数幂、特殊角的三角函数值分别进行计算,再把所得的结果合并即可;(2)先把除法转化成乘法,再把分母因式分解,然后约分,最后把x的值代入即可.解答:解:(1)(π﹣2013)0﹣(﹣)﹣2+tan45°=1﹣9+1=﹣7;(2)﹣=×=,当x=﹣3代入上式得:原式==﹣6.点评:此题考查了分式的化简求值和实数的运算,用到的知识点是零指数幂、负整数指数幂、特殊角的三角函数值以及分式的化简的步骤,注意把分式化到最简,再代值.20.(8分)(2010•某某)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.考点:菱形的判定;全等三角形的判定.专题:证明题;压轴题.分析:(1)由CE、BF的内错角相等,可得出△CED和△BFD的两组对应角相等;已知D是BC的中点,即BD=DC,由AAS即可证得两三角形全等;(2)若AB=AC,则△ABC是等腰三角形,而D是底边BC的中点,根据等腰三角形三线合一的性质可证得AD⊥BC;由(1)的全等三角形,易证得四边形BFCE的对角线互相平分;根据对角线互相垂直平分的四边形是菱形即可判定四边形BFCE是菱形.解答:证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△EDC;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△EDC,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).点评:此题主要考查的是全等三角形的判定和性质、等腰三角形的性质及菱形的判定方法.21.(8分)(2012•某某)在6X卡片上分别写有1~6的正数,随机的抽取一X后放回,再随机的抽取一X.(1)用列表法或树形图表示所有可能出现的结果;(2)记第一次取出的数字为a,第二次取出的数字为b,求是整数的概率.考点:列表法与树状图法.分析:(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)中的表格,即可求得是整数的情况,然后利用概率公式求解即可求得答案.解答:解:(1)列表得:6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)1 2 3 4 5 6则可得共有36种等可能的结果;(2)∵是整数的有(1,1),(1,2),(1,3)(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3)(3,6),(4,4),(5,5),(6,6)共14种情况,∴是整数的概率为:.…8分点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(10分)(2012•某某)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).考点:二元一次方程组的应用.专题:压轴题.分析:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据小明的爸爸和妈妈的对话找到等量关系列出方程组求解即可.解答:解:解法一:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3,这天排骨的单价是(1+20%)y=(1+20%)×15=18,答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤;解法二:这天萝卜的单价是x元/斤,排骨的单价是y元/斤,根据题意得:解得:.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.点评:本题考查了二元一次方程组的应用,解题的关键是根据题目找到等量关系并列出方程组.23.(10分)(2011•某某)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有300 人,在扇形图中,表示“其他球类”的扇形的圆心角为36 度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有800 人.考点:条形统计图;用样本估计总体;扇形统计图.专题:压轴题.分析:(1)本题需根据喜欢乒乓球的人数和所占的百分比即可求出参加调查的学生总数,用360°乘以喜欢“其他球类”的学生所占的百分比即可得出圆心角的度数.(2)本题需先求出喜欢足球的学生人数即可将条形图补充完整.(3)本题需先求出喜欢“篮球”的学生所占的百分比即可得出该校喜欢“篮球”的学生人数.解答:解:(1)参加调查的学生共有60÷20%=300人表示“其他球类”的扇形的圆心角为:360×=36°(2)如图.(3)喜欢“篮球”的学生共有:2000×=800(人)故答案为:300,36°,800点评:本题主要考查了条形图和扇形图,在解题时要注意灵活应用条形图和扇形图之间的关系是本题的关键.24.(10分)为保卫祖国的南疆,我人民解放军海军在中业岛(P地)处设立观测站,按国际惯例,中业岛12海里X围内均为我国领海,外国船只除特许外,不得私自进入我国领海.某日,观测员发现某国船只行驶至P地南偏西30°的A处,欲向正东方向航行至P地南偏东60°的B处,已知A、B两地相距10海里问此时是否需要向此未经特许的船只发出警告,命令其不得进入我国领海?考点:解直角三角形的应用-方向角问题.分析:首先作PH⊥AB于H,设PH=x海里,由已知得:∠APH=30°,∠BPH=60°,即可得AH=PH•tan30°=x(海里),BH=PH•tan60°=x(海里),继而可得方程:x=10,解此方程即可求得PH的长,继而可求得答案.解答:解:需要向此未经特许的船只发出警告,命令其不得进入我国领海.作PH⊥AB于H,设PH=x海里,由已知得:∠APH=30°,∠BPH=60°,∴AH=PH•tan30°=x(海里),BH=PH•tan60°=x(海里),∴AB=AH+BH=x,∵AB=10海里,∴x=10,解得:x=7.5<12.∴需要向此未经特许的船只发出警告,命令其不得进入我国领海.点评:此题考查了方向角问题.此题难度适中,注意构造直角三角形,并能借助于解直角三角形的知识求解是关键.25.(10分)(2012•建瓯市一模)如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C 点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)考点:二次函数综合题.专题:应用题;压轴题.分析:(1)把点D(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4解方程即可解答;(2)利用(1)中求得的抛物线,求得点A、B、C、D四点坐标,再利用矩形的判定与性质解得即可;(3)利用梯形的面积计算方法解决问题;(4)只考虑PQ=PB,其他不符合实际情况,即可找到问题的答案.解答:解:(1)把点(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4得,a2﹣4a﹣4=8,解得:a1=6,a2=﹣2(不合题意,舍去),因此a的值为6;(2)由(1)可得抛物线的解析式为y=x2﹣6x+8,当y=0时,x2﹣6x+8=0,解得:x1=2,x2=4,∴A点坐标为(2,0),B点坐标为(4,0),当y=8时,x2﹣6x+8=8,解得:x=0或x=6,∴D点的坐标为(0,8),C点坐标为(6,8),DP=6﹣2t,OQ=2+t,当四边形OQPD为矩形时,DP=OQ,2+t=6﹣2t,t=,OQ=2+=,S=8×=,即矩形OQPD的面积为;(3)四边形PQBC的面积为(BQ+PC)×8,当此四边形的面积为14时,(2﹣t+2t)×8=14,解得t=(秒),当t=时,四边形PQBC的面积为14;(4)过点P作PE⊥AB于E,连接PB,当QE=BE时,△PBQ是等腰三角形,∵CP=2t,∴DP=6﹣2t,∴BE=OB﹣PD=4﹣(6﹣2t)=2t﹣2,∵OQ=2+t,∴QE=PD﹣OQ=6﹣2t﹣(2+t)=4﹣3t,∴4﹣3t=2t﹣2,解得:t=,∴当t=时,△PBQ是等腰三角形.点评:此题考查待定系数法求函数解析式、矩形的判定与性质、矩形的面积、梯形的面积以及等腰三角形的判定等知识.26.(12分)(2012•某某)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了8000 米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600 米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.考点:一次函数的应用.分析:(1)根据函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气;(2)根据图象上点的坐标得出函数解析式即可;(3)根据每车20米3的加气量,则可求出20辆车加完气后的储气量,进而得出所用时间.解答:解:(1)根据图象可得出:燃气公司向储气罐注入了10000﹣2000=8000(米3)的天然气;故答案为:8000;(2)当x≥8.5时由图象可设y与x的函数关系式为y=kx+b,由已知得:,解得,故当x≥8.5时,储气罐中的储气量y(米3)与时间x(小时)的函数关系式为:y=﹣1000x+18500,(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:10000﹣20×20=9600(米3),故答案为:9600,根据题意得出:9600=﹣1000x+18500,x=8.9<9,答:这第20辆车在当天9:00之前能加完气.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.27.(12分)(2012•某某)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.解答:解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.。
2013-2018年江苏省淮安市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2018年江苏省淮安市中考数学试题汇编(含参考答案与解析)1、2013年江苏省淮安市中考数学试题及参考答案与解析 (2)2、2014年江苏省淮安市中考数学试题及参考答案与解析 (19)3、2015年江苏省淮安市中考数学试题及参考答案与解析 (40)4、2016年江苏省淮安市中考数学试题及参考答案与解析 (63)5、2017年江苏省淮安市中考数学试题及参考答案与解析 (85)6、2018年江苏省淮安市中考数学试题及参考答案与解析 (105)2013年江苏省淮安市中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.12.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a33.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<14.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.55.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.68.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.10.方程210x+=的解集是.11.点A(﹣3,0)关于y轴的对称点的坐标是.12.一组数据3,9,4,9,5的众数是.13.若n 边形的每一个外角都等于60°,则n= .14.如图,三角板的直角顶点在直线l 上,看∠1=40°,则∠2的度数是 .15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点.若DE=3,则BC= .16.二次函数y=x 2+1的图象的顶点坐标是 .17.若菱形的两条对角线分别为2和3,则此菱形的面积是 .18.观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 . 三、解答题(本大题有10小题,共96分.) 19.(10分)计算:(1)(π﹣5)0﹣|﹣3|(2)2123121a a a a a -⎛⎫++⋅⎪--⎝⎭. 20.(6分)解不等式:x+1≥2x+2,并把解集在数轴上表示出来.21.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点. (1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(8分)如图,在平行四边形ABCD 中,过AC 中点0作直线,分别交AD 、BC 于点E 、F . 求证:△AOE ≌△COF .23.(10分)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:解答下列问题:(1)本次调查中的样本容量是;(2)a=,b=;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.24.(10分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)25.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=35,求⊙0的半径.27.(12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.28.(12分)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.1【知识考点】有理数大小比较.【思路分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答过程】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.【解答过程】解:(2a)3=8a3;故选D.【总结归纳】此题考查了幂的乘方与积的乘方,同底数幂的乘法与幂的乘方很容易混淆,一定要记准法则是解题的关键.3.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<1 【知识考点】不等式的解集.【思路分析】根据口诀:大小小大中间找即可求解.【解答过程】解:不等式组1xx⎧⎨⎩<≥的解集是0≤x<1.故选D.【总结归纳】本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.5【知识考点】反比例函数图象上点的坐标特征.【思路分析】把点(5,﹣1)代入已知函数解析式,借助于方程可以求得k的值.【解答过程】解:∵反比例函数kyx=的图象经过点(5,﹣1),∴k=xy=5×(﹣1)=﹣5,即k的值是﹣5.故选A.【总结归纳】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π【知识考点】弧长的计算.【思路分析】根据弧长的公式进行计算即可.【解答过程】解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长12064180ππ⨯==.故选B.【总结归纳】本题考查了弧长的计算.此题属于基础题,只需熟记弧长公式即可.6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个【知识考点】实数与数轴;估算无理数的大小.1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答过程】解:∵12,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【总结归纳】本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.6【知识考点】等腰三角形的性质;三角形三边关系.【思路分析】因为已知长度为3和1两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答过程】解:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选B.【总结归纳】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°【知识考点】圆周角定理.【思路分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【解答过程】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°.故选A.【总结归纳】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.【知识考点】特殊角的三角函数值.【思路分析】根据特殊角的三角函数值计算即可.【解答过程】解:sin30°=12,故答案为12.【总结归纳】本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.10.方程210x+=的解集是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:2+x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.点A(﹣3,0)关于y轴的对称点的坐标是.【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.【解答过程】解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).【总结归纳】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.一组数据3,9,4,9,5的众数是.【知识考点】众数.【思路分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答过程】解:这组数据中出现次数最多的数据为:9.故众数为9.故答案为:9.【总结归纳】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.13.若n边形的每一个外角都等于60°,则n=.【知识考点】多边形内角与外角.【思路分析】利用多边形的外角和360°除以60°即可.【解答过程】解:n=360°÷60°=6,故答案为:6.【总结归纳】此题主要考查了多边形的外角和定理,关键是掌握多边形的外角和等于360度.14.如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是.【知识考点】余角和补角.【思路分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=40°,即可求得∠2的度数.【解答过程】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.【总结归纳】本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.15.如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=.【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【解答过程】解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×3=6.故答案为:6.【总结归纳】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.16.二次函数y=x2+1的图象的顶点坐标是.【知识考点】二次函数的性质.【思路分析】根据顶点式解析式写出顶点坐标即可.【解答过程】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【总结归纳】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.17.若菱形的两条对角线分别为2和3,则此菱形的面积是.【知识考点】菱形的性质.【思路分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答过程】解:由题意,知:S菱形=12×2×3=3,故答案为:3.【总结归纳】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=12×两条对角线的乘积;具体用哪种方法要看已知条件来选择.18.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.【知识考点】单项式.【思路分析】先看系数的变化规律,然后看x的指数的变化规律,从而确定第2013个单项式.【解答过程】解:系数依次为1,3,5,7,9,11,…2n﹣1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为2,。
江苏省淮安市淮阴区2012-2013学年八年级下学期期中考试数学试卷(版)
八年级数学练习参考答案2013.04一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共7小题,每小题3分,共21分)9、2N M +> 10、4x < 11、6y x=- 12、4 13、3 14、1m >- 15、116三、解答题(本大题共7小题,共75分.解答时需写出文字说明、证明过程或演算步骤) 16. 解:(1) 解:移项,得3232x x --<- ………………… 2分 合并同类项,得51x -< …………… 4分系数化为1,得15x >-…………… 6分 (2)解:2401(8)202x x +<⎧⎪⎨+->⎪⎩①②解不等式①,得 2x <- ………………………… 2分 解不等式②,得 4x >- ………………………… 4分 ∴不等式组的解集为42x -<<- ………………………… 6分17. 解:(1) 解:原式(2)(23)1a a a ---=+………………………… 2分2231a a a --+=+ ………………………… 4分11aa -=+ ………………………… 6分 (2)解:原式2211211x x x x ---=÷--………………………… 2分 222211x x -=÷-- ………………………… 4分1=- ………………………… 6分18. (1)解:方程两边同乘()()11-+x x ,得3(1)(1)0x x --+=………………………… 2分解这个方程,得2x = ………………………… 3分检验:把2x =代入(1)(1)0x x +-≠ ………… 4分 所以2x =是原方程的解…………………… 5分(2)解:方程两边同乘()23-x ,得()()()23104453--+=-x x x …………… 2分解这个方程,得2x = ………………………… 3分 检验:把2x =代入3(2)0x -= ………… 4分 所以2x =是增根,原方程无解…………………… 5分19. 解:原式1333x x =+--………………………… 4分 43x =-………………………… 6分 当1x =-时,原式1=-………………………… 10分20. 解:(1)设反比例函数的关系式为ky x=, 将(25,6)代入解析式得,256150k =⨯=,则函数的关系式为150y x=(x ≥15),…………………… 2分 将y =10代入解析式得,15010x=∴15x = 故A (15,10)… 4分 设正比例函数解析式为y nx =, 将A (15,10)代入上式得23n =则正比例函数解析式为23y x =(0≤x ≤15).…………………… 6分 (2)∵1502x=, 解之得 75x =(分钟),…………………… 9分 答:从药物释放开始,师生至少在75分钟内不能进入教室.…………… 10分21. 解:(1)510(1200)y x x =+- ………………… 2分512000x =-+ ………………… 3分(2)∵120065%780⨯=此时停车场收费金额为7805(1200780)108100⨯+-⨯= ……… 4分 当120085%1020⨯=此时停车场收费金额为10205(12001020)106900⨯+-⨯= ………… 5分 ∴停车场收费金额的范围是6900元至8100元 ………………… 6分 (3)由题意,得512000x -+≥10000 ………………… 8分解得x ≤400 ………………… 9分 ∴最多停放400辆小车 ………………… 10分 22. 解:(1)3a =、1k =-、3m = ………………… 3分(各1分)(2)0x <或13x << ………………… 7分(各2分)(3)△PMN 的面积是2 ……… 11分◆ 说明:如有其它正确解法,可参照评分标准步骤酌情给分;。
江苏省2013年中考数学试卷及答案
江苏省2013年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图①商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转A CB DF E (第7题)盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,A D EB CF (第16题) (第17题) (第18题) 各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)AD C B26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动A C D 图① A C D 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.。
2013江苏省淮安市中考数学试题答案(仅答案)
江苏省淮安市2013年初中毕业升学考试数学试卷答案二、填空题(本大题有10小题,每小题3分,共30分)9. 1/2 10. x=﹣211. (3,0)12. 913. 614. 50°15.616. (0,1)17. 318. 4025x2二、解答题(本大题有10小题,共96分.)19.解:(1)原式=1+2﹣3=0;(2)原式=3a+•=3a+a=4a.20.解:2(x+1)≥x+4,2x+2≥x+4,x≥2.在数轴上表示为:21.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.22.证明:∵AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,OA=OC,在△AOE和△COF中,,∴△AOE≌△COF.23.解:(1)∵喜欢排球的有12人,占10%,∴样本容量为12÷10%=120;(2)a=120×25%=30人,b=120﹣30﹣12﹣36﹣18=24人;(3)喜欢羽毛球的人数为:1000×=300人.24.解:(1)任意摸一只球,所标数字是奇数的概率是:;(2)如图所示:共有6种情况,其中是5的倍数的有25,35两种情况,概率为:=.25.解:设购买了x件这种服装,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去;答:她购买了30件这种服装.26.解:(1)直线MN与⊙0的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠CAB=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥MN,∴OC⊥MN,∵OC为半径,∴MN是⊙O切线;(2)∵CD=6,cos∠ACD==,∴AC=10,由勾股定理得:AD=8,∵AB是⊙O直径,AD⊥MN,∴∠ACB=∠ADC=90°,∵∠DAC=∠BAC,∴△ADC∽△ACB,∴=,∴=,∴AB=12.5,∴⊙O半径是×12.5=6.25.27.解:(1)设小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式为y1=k1x+b,由图象,得,解得:,∴y1=﹣200x+2000;(2)由题意,得小明的速度为:2000÷40=50米/分,小亮的速度为:2000÷10=200米/分,∴小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,∴24分钟时两人的距离为:S=24×50=1200,32分钟时S=0,设S与x之间的函数关系式为:S=kx+b,由题意,得,解得:,∴S=﹣150x+4800;(3)由题意,得a=2000÷(200+50)=8分钟,当x=24时,S=1200当x=32时,S=0.故描出相应的点就可以补全图象.如图:28.解:(1)在直角△ABC中,AC==4,则Q从C到B经过的路程是9,需要的时间是4.5秒.此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5.根据题意得:(t﹣4.5)+2(t﹣4.5)=7.5,解得:t=7.(2)Q从C到A的时间是3秒,P从A到C的时间是3秒.则当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,即3﹣t=2t,解得:t=1.当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC(如图1).则Q在PC的中垂线上,作QH⊥AC,则QH=PC.△AQH∽△ABC,在直角△AQH中,AQ=2t﹣4,则QH=AQ=.∵PC=BC﹣BP=3﹣t,∴×(2t﹣4)=3﹣t,解得:t=;(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC=t﹣3,BQ=2t﹣9,即AQ=5﹣(2t ﹣9)=14﹣2t.同(2)可得:△PCQ中,PC边上的高是:(14﹣2t),故s=(2t﹣9)×(14﹣2t)=(﹣t2+10t﹣2).故当t=5时,s有最大值,此时,P在AC的中点.(如图2).∵沿直线PD折叠,使点A落在直线PC上,∴PD一定是AC的中垂线.则AP=AC=2,PD=BC=,则S△APD=AP•PD=×2×=.AQ=14﹣2t=14﹣2×5=4.则PC边上的高是:AQ=×4=.则S△PCQ=PC•=×2×=.故答案是:7.。
2013年江苏省淮安市中考数学试卷及答案(Word解析版)
江苏省淮安市2013年中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个人选项中,有一项是符合题目要求的.33.(3分)(2013•淮安)不等式组的解集是()的解集是4.(3分)(2013•淮安)若反比例函数的图象经过点(5,﹣1).则实数k的值是()解:∵反比例函数l=进行计算即可.=6.(3分)(2013•淮安)如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()比17.(3分)(2013•淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为8.(3分)(2013•淮安)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A=∠二、填空题(本大题有10小题,每小题3分,共30分)9.(3分)(2013•淮安)sin30°的值为.,故答案为10.(3分)(2013•淮安)方程的解集是x=﹣2.11.(3分)(2013•淮安)点A(﹣3,0)关于y轴的对称点的坐标是(3,0).12.(3分)(2013•淮安)一组数据3,9,4,9,5的众数是9.13.(3分)(2013•淮安)若n边形的每一个外角都等于60°,则n=6.14.(3分)(2013•淮安)如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是50°.15.(3分)(2013•淮安)如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=6.16.(3分)(2013•淮安)二次函数y=x2+1的图象的顶点坐标是(0,1).17.(3分)(2013•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是3.×=18.(3分)(2013•淮安)观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是4025x2.=671三、解答题(本大题有10小题,共96分.)19.(10分)(2013•淮安)计算:(1)(π﹣5)0+﹣|﹣3|(2)3a+(1+)•.•20.(6分)(2013•淮安)解不等式:x+1≥+2,并把解集在数轴上表示出来.21.(8分)(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.22.(8分)(2013•淮安)如图,在平行四边形ABCD中,过AC中点0作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.23.(10分)(2013•淮安)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了调查结果统计如下:(1)本次调查中的样本容量是120;(2)a=30,b=24;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.×24.(10分)(2013•淮安)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程))任意摸一只球,所标数字是奇数的概率是:;概率为:=.25.(10分)(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)(2013•淮安)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=,求⊙0的半径.ACD==,==半径是27.(12分)(2013•淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.,,28.(12分)(2013•淮安)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=7时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.=4QH=QH=AQ=×t=;边上的高是:s=(×((﹣AP=AC=2PD=BC=,=PD=××=.AQ=×.PC•××=.。
2013年江苏省淮安市中考数学试卷-(word整理版)
2013年江苏省淮安市中考数学试卷-(word 整理版)一、选择题(本大题共有8小题,每小题3分,共24分) 1.在-1、0、-2、1四个数中,最小的是 ( )A .-1B .0C . -2D .1 2.计算3)2(a 的结果是( )A .a 6B .a 8C .32aD .38a3.不等式组⎩⎨⎧≥<01x x 的解集是( )A .0≥xB .1<xC .10<<xD .10<≤x4.若反比例函数x ky = 的图象经过点(5,-1),则实数k 的值是( )A .-5B . 51-C .51D .55若扇形的半径为6,圆心角为1200 ,则此扇形的弧长是( ) A .π3 B .π4 C .π5 D .π66.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间的整数的点共有( ) A .6个 B .5个 C . 4个 D .3个7.若等腰三角形有两条边的长度是3和1,则此三角形的周长是( ) A .5 B .7 C .5或7 D .68.如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=50°,则∠A 的度数是( ) A .40° B .50° C .80° D .100° 二、填空题(本大题共有10小题,每小题3分,共30分) 9.sin30°的值是__________. 10.方程012=+x的解是__________. 11.点A (-3,0)关于y 轴的对称点的坐标是__________. 12.一组数据3,9,4,9,6的众数是__________.13.若n 边形的每一个外角都等于60°,则n =__________.14.若三角板的直角顶点在直线l 上,若∠1=40°,则∠2的度数是__________.15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若DE=3,则BC=__________. 16.二次函数12+=x y 的图象的顶点坐标是__________.17.若菱形的两条对角线长分别为2和3,则此菱形的面积是__________. 18.观察一列单项式:,,11,9,7,5,3,3232 x x x x x x 则第2013个单项式是__________. 三、解答题(本大题共有10小题,共96分) 19.(10分) 计算:(1)34)5(0--+-π (2)12)211(32--∙-++a a a a a20.(6分)解不等式:221+≥+xx ,并把解集在数轴上表示出来。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年江苏省淮安市中考真题 江苏13市数学真题专项练:无理数和实数数解析版
□
已掌握
考察内容:
第 1 页 /共 11 页
考点
科学记数法 2013年江苏省泰州市中考真题 【难易度】1
□
已掌握
考察内容:
考点
无理数与实数 2013年江苏省泰州市中考一模卷 【难易度】2
□
已掌握
考察内容:
考点
无理数与实数 2013年江苏省淮安市中考真题 【难易度】0
□
已掌握
考察内容: 实数的运算
考点
考察内容:
第 8 页 /共 11 页
考点
平方、立方和开方 2013年江苏省镇江市中考真题 【难易度】1
□
已掌握
考察内容:
考点
科学记数法 2013年江苏省南通市中考二模卷 【难易度】1
□
已掌握
考察内容:
考点
无理数与实数 2013年江苏省苏州市昆山区中考一模卷 【难易度】1
□
已掌握
考察内容:
考点
科学记数法
□
已掌握
考察内容:
第 7 页 /共 11 页
考点
无理数与实数 2013年江苏省无锡市中考真题 【难易度】0
□
已掌握
考察内容: 实数的运算
考点
无理数与实数 2013年江苏省苏州市中考真题卷 【难易度】1
□
已掌握
考察内容: 实数的运算
考点
科学记数法 2013年江苏省苏州市中考真题卷 【难易度】1
□
已掌握
考点
无理数与实数 2013年江苏省南通市中考二模卷 【难易度】1
□
已掌握
考察内容:
考点
平方、立方和开方 2013年江苏省泰州市中考真题 【难易度】1
(完整word版)2013年淮安市中考数学试题及答案
2013年江苏省淮安市中招考试数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上........) 1.在-1、0、-2、1四个数中,最小的是A .-1B .0C . -2D .1 2.计算3)2(a 的结果是A .a 6B .a 8C .32a D .38a3.不等式组⎩⎨⎧≥<01x x 的解集是A .0≥xB .1<xC .10<<xD .10<≤x 4.若反比例函数xky =的图象经过点(5,-1),则实数k 的值是 A .-5 B . 51-C .51D .5 5若扇形的半径为6,圆心角为1200 ,则此扇形的弧长是A .π3B .π4C .π5D .π66.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间的整数的点共有 A .6个 B .5个 C . 4个 D .3个7.若等腰三角形有两条边的长度是3和1,则此三角形的周长是 A .5B .7C .5或7D .68.如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=50°, 则∠A 的度数是A .40°B .50°C .80°D .100°第Ⅱ卷 (非选择题 共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡...相应位置上.....) 9.sin30°的值是__________.10.方程012=+x的解是__________. 11.点A (-3,0)关于y 轴的对称点的坐标是__________. 12.一组数据3,9,4,9,6的众数是__________.13.若n 边形的每一个外角都等于60°,则n =__________.14.若三角板的直角顶点在直线l 上,若∠1=40°,则∠2的度数是__________.15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若DE=3,则BC=__________. 16.二次函数12+=x y 的图象的顶点坐标是__________.17.若菱形的两条对角线长分别为2和3,则此菱形的面积是__________.18.观察一列单项式:,,11,9,7,5,3,3232x x x x x x 则第2013个单项式是__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分10分) 计算:(1)34)5(0--+-π (2)12)211(32--∙-++a aa a a20.(本小题满分6分)解不等式:221+≥+xx ,并把解集在数轴上表示出来。
【中考真题精编】2013-2019年淮安市中考数学试题汇编(含参考答案与解析)
【中考数学真题精编】2013—2019年淮安市中考数学试题汇编(含参考答案与解析)1、2013年淮安市中考数学试题及参考答案与解析 (2)2、2014年淮安市中考数学试题及参考答案与解析 (19)3、2015年淮安市中考数学试题及参考答案与解析 (40)4、2016年淮安市中考数学试题及参考答案与解析 (63)5、2017年淮安市中考数学试题及参考答案与解析 (85)6、2018年淮安市中考数学试题及参考答案与解析 (105)7、2019年淮安市中考数学试题及参考答案与解析 (126)2013年淮安市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.12.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a33.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<14.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.55.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π6.如图,数轴上A、B和5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.68.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.10.方程210x+=的解集是.11.点A(﹣3,0)关于y轴的对称点的坐标是.12.一组数据3,9,4,9,5的众数是.13.若n 边形的每一个外角都等于60°,则n= .14.如图,三角板的直角顶点在直线l 上,看∠1=40°,则∠2的度数是 .15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点.若DE=3,则BC= .16.二次函数y=x 2+1的图象的顶点坐标是 .17.若菱形的两条对角线分别为2和3,则此菱形的面积是 .18.观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 . 三、解答题(本大题有10小题,共96分.) 19.(10分)计算:(1)(π﹣5)0﹣|﹣3|(2)2123121a a a a a -⎛⎫++⋅⎪--⎝⎭. 20.(6分)解不等式:x+1≥2x+2,并把解集在数轴上表示出来.21.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点. (1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(8分)如图,在平行四边形ABCD 中,过AC 中点0作直线,分别交AD 、BC 于点E 、F . 求证:△AOE ≌△COF .23.(10分)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:解答下列问题:(1)本次调查中的样本容量是;(2)a=,b=;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.24.(10分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)25.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙O的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=35,求⊙O的半径.27.(12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.28.(12分)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.1【知识考点】有理数大小比较.【思路分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答过程】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.【解答过程】解:(2a)3=8a3;故选D.【总结归纳】此题考查了幂的乘方与积的乘方,同底数幂的乘法与幂的乘方很容易混淆,一定要记准法则是解题的关键.3.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<1 【知识考点】不等式的解集.【思路分析】根据口诀:大小小大中间找即可求解.【解答过程】解:不等式组1xx⎧⎨⎩<≥的解集是0≤x<1.故选D.【总结归纳】本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.5【知识考点】反比例函数图象上点的坐标特征.【思路分析】把点(5,﹣1)代入已知函数解析式,借助于方程可以求得k的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答下列问题: (1)、本次调查中的样本容量是 (2)、a= 、b= (3)、试估计上述1000名学生中最喜欢羽毛球运动的人数。
24、一个不透明的袋子中装有大小,质地完全相同的3只球,球上分别 标有2、3、5三个数字。 (1)从这个袋子中任意摸一只球,所标数字是奇数的概率为 (2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从袋子 中任意摸一只球,记下所标数字,将第一次记下的数字作为十位数字, 第二次记下的数字作为个位数字,组成一个两数,求所组成的两位数是
3718684 3718684
分 根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变 析: 可以直接写出答案. 解 解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0), 答: 故答案为:(3,0). 点 此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标 评: 的变化规律. 12.(3分)(2013•淮安)一组数据3,9,4,9,5的众数是 9 . 考 众数.
13、若n边形的每一个外角等于600,则n= 14、如图,三角板的直角顶点在直线l上,若∠1=400,则∠2= 15、如图,在ABC中点D、E分别是AB、AC的中点,若DE=3,则BC = 16、二次函数的图象的顶点是 17、若菱形的两条对角线长分别为2和3,则此菱形的面积是 18、观察一列单项式:、、、、、、……,则第2013个单项式是 三、解答题 19、计算 (1)、 (2)、 20、解不等式,并把解集在数轴上表示出来。 2 1 -2 -1 0
江苏省淮安市2013年中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出 的四个人选项中,有一项是符合题目要求的. 1.(3分)(2013•淮安)在﹣1,0.﹣2,1四个数中,最小的数是
( ) A.﹣1
B. 0
C.﹣2
D. 1
考 有理数大小比较. 点: 分 根据在有理数中:负数<0<正数;两个负数,绝对值大的反而 析: 小;据此可求得最小的数. 解 解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2; 答: 故选C. 点 本题考查了有理数的大小比较,其方法如下:(1)负数<0<正 评: 数;(2)两个负数,绝对值大的反而小. 2.(3分)(2013•淮安)计算(2a)3的结果是( ) A. 6a B. 8a C. 2a3 D. 8a3 考 幂的乘方与积的乘方. 点: 分 利用积的乘方以及幂的乘方法则进行计算即可求出答案. 析: 解 解:(2a)3=8a3; 答: 故选D. 点 此题考查了幂的乘方与积的乘方,同底数幂的乘法与幂的乘方很 评: 容易混淆,一定要记准法则是解题的关键. 3.(3分)(2013•淮安)不等式组 的解集是( ) A. x≥0 B. x<1 考 不等式的解集.
(2)在点P从点B到点C的运动过程中,当t为何值时,△PCQ为等腰三 角形, (3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位 ①、求s与t之间的函数关系式,
②、当s最大时,过点P作直线交AB于点D,将△ABC沿直线PD折叠, 使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积
21、如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、 C都是格点。
(1)、将△ABC向左平移6个单位长度得到△A1B1C1,请画出 △A1B1C1. (2)、将△ABC绕点O按逆时针方向旋转1800得到△A2B2C2,请画出 △A2B2C2
22、如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、 BC于点E、F 求证:△AOE≌△COF
图1 图2
28、如图,在△ABC中,∠C=900,BC=3,AB=5,点P从点B出发,以 每秒1个单位长度沿B→C→A→B的方向运动,点Q从点C出发,以每秒2个 单位长度沿C→A→B的方向运动,到达点B后立即原速返回,若P、Q两点 同时运动,相遇后同时停止,设运动时间为t秒。 (1)当t= 时,点P与点Q相遇,
A. 40°
B. 50°
C. 80°
D. 100°
考 圆周角定理. 点:
3718684
分 在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A 析: 的度数. 解 解:∵OC=OB, 答: ∴∠OCB=∠OBC=50°, ∴∠BOC=180°﹣50°﹣50°=80°, ∴∠A= ∠BOC=40°. 故选A. 点 此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧 评: 所对的圆周角等于这条弧所对的圆心角的一半. 二、填空题(本大题有10小题,每小题3分,共30分) 9.(3分)(2013•淮安)sin30°的值为 . 考 特殊角的三角函数值. 点:
3718684
D. 3个
考 实数与数轴;估算无理数的大小. 点:
分 根据 析: 比1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的 点的个数. 解 解:∵1 答: <2,5<5.1<6, ∴A、B两点之间表示整数的点有2,3,4,5,共有4个; 故选C. 点 本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把
2013年淮安数学中考试题
1、 选择题 1、在-1、0、-2、1四个数中,最小的数是( ) A、-1 B、0 C、-2 D、1 2、计算的结果是( ) A、6a B、8a C、2a3 D、8a3 3、不等式组 的解集是( ) A、 B、 C、 D、 4、若反比例函数的图象过点(5、-1),则实数k的值是( ) A、-5 B、 C、 D、5 5、若扇形的半径为6,圆心角为1200,则此扇形的弧长是( ) A、 B、 C、 D、 6、如图,数轴上A、B两点表示的数分别为和5.1,则AB两点之 B A 0 0 5.1 间表示整数的点共有( ) A、6个 B、5个 C、4个 D、3个 7、若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是 ( ) A、5 B、7 C、5或7 D、6 8、如图,点A、B、C是⊙O上的三点,若∠OBC=500,则∠A的度数是( ) A、400 B、500 C、800 D、1000 二、填空题 9、sin300= 10、方程的解是 11、点A(-3,0)关于y轴的对称点的坐标是 12、一组数据3、9、4、9、6的众数是
23、某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、 足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行 调查,了解学生最喜爱的的一种球类运动,每人只能在这五球类运动中 选择一种,调查结果统计如下: 球类名称 乒乓球 排球 羽毛球 足球 篮球 人数 a 12 36 18 b
3718684
点: 分 根据众数的定义:一组数据中出现次数最多的数据即可得出答 析: 案. 解 解:这组数据中出现次数最多的数据为:9. 答: 故众数为9. 故答案为:9. 点 本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌 评: 握一组数据中出现次数最多的数据叫做众数. 13.(3分)(2013•淮安)若n边形的每一个外角都等于60°,则n= 6 . 考 多边形内角与外角. 点:
26、如图,AB是⊙O的直经,C是上的一点,直线MN经过点C,过点A 作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)、猜想直线MN与⊙O的位置关系,并说明理由, (2)若CD=6,cos∠ACD=,求⊙O的半经。
27、甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步 行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到 达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙 地,设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小 亮之间的距离为s米,小明行走的时间为x分钟,y1 、y2与x之间的函数 图象如图1所示,s与x之间的函数图象(部分)如图2所示。 (1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系 式; (2)求小亮从甲地返回到与小明相遇的过程中s (米)与x(分钟)之 间的函数关系式; (3)在图2中,补全整个过程中s (米)与x(分钟)之间的函数图象, 并确定的值。
D. 5
考 反比例函数图象上点的坐标特征. 点: 分 把点(5,﹣1)代入已知函数解析式,借助于方程可以求得k的 析: 值. 解 解:∵反比例函数 答: 的图象经过点(5,﹣1), ∴k=xy=5×(﹣1)=﹣5,即k的值是﹣5. 故选A. 点 本题主要考查反比例函数图象上点的坐标特征,所有在反比例函 评: 数上的点的横纵坐标的积应等于比例系数. 5.(3分)(2013•淮安)若扇形的半径为6,圆心角为120°,则此扇形 的弧长是( ) A. 3π B. 4π C. 5π D. 6π
5的倍数的概率(请用“画树状图”或“列表”的方法写出过程)
25、小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件, 如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件, 那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50 元,按此优惠条件,小丽一次性购买这种服装付了1200元,请问她购买 了多少件这种服装?
3718684
分 根据特殊角的三角函数值计算即可. 析: 解 解:sin30°= 答: ,故答案为 . 点 本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函 评: 数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减 小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去 记.
10.(3分)(2013•淮安)方程 的解集是 x=﹣2 . 考 解分式方程. 点: 专 计算题. 题: 分 分式方程去分母转化为整式方程,求出整式方程的解得到x的值, 析: 经检验即可得到分式方程的解. 解 解:去分母得:2+x=0, 答: 解得:x=﹣2, 经检验x=﹣2是分式方程的解. 故答案为:x=﹣2 点 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把 评: 分式方程转化为整式方程求解.解分式方程一定注意要验根. 11.(3分)(2013•淮安)点A(﹣3,0)关于y轴的对称点的坐标是 (3,0) . 考 关于x轴、y轴对称的点的坐标. 点: