【中小学资料】七年级数学上册 第四章 基本平面图形 4.3 角练习题 (新版)北师大版

合集下载

开鲁县第四中学七年级数学上册第4章图形的认识4.3角4.3.2.2角的度量与计算2课时作业新版湘教版

开鲁县第四中学七年级数学上册第4章图形的认识4.3角4.3.2.2角的度量与计算2课时作业新版湘教版

角的度量与计算(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·南宁模拟)如果∠1和∠2互为余角,∠1与∠3互为补角,∠2与∠3的和等于120°,那么∠1,∠2,∠3的度数分别是( )A.75°,15°,105°B.30°,60°,120°C.50°,40°,130°D.70°,20°,110°【解析】选A.设∠1=x°,则∠2=(90-x)°,∠3=(180-x)°,因为∠2与∠3的和等于120°,所以90-x+180-x=120,解得x=75,所以∠1=75°,∠2=15°,∠3=105°.2.(2014·庆阳实验质检)如图所示,∠1是锐角,则∠1的余角是( )A.∠2-∠1B.∠2-∠1C.(∠2-∠1)D.(∠2+∠1)【解析】选C.由题图可知,∠1+∠2=180°,(∠1+∠2)=90°,所以∠1的余角为90°-∠1=(∠1+∠2)-∠1=(∠2-∠1).3.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β).正确的有( )A.4个B.3个C.2个D.1个【解题指南】把①②③④中的角分别与∠β相加,若和等于90°,则为∠β的余角,否则不是∠β的余角.【解析】选B.①因为90°-∠β+∠β=90°,故90°-∠β为∠β的余角.②因为∠α-90°+∠β=∠α+∠β-90°,又∠α和∠β互补,所以∠α+∠β=180°,所以∠α+∠β-90°=90°,即∠α-90°为∠β的余角.③(∠α+∠β)+∠β=90°+∠β≠90°,故(∠α+∠β)不是∠β的余角.④(∠α-∠β)+∠β=∠α-∠β+∠β=∠α+∠β=(∠α+∠β)=×180°=90°,故(∠α-∠β)为∠β的余角.二、填空题(每小题4分,共12分)4.如图,若∠BOC=90°,∠AOD∶∠BOD=2∶7,则∠COD的度数等于.【解析】因为∠BOC=90°,所以∠AOC=180°-∠BOC=90°.因为∠AOD+∠BOD=180°,∠AOD∶∠BOD=2∶7,所以∠AOD=×180°=40°,所以∠COD=90°-40°=50°.答案:50°5.(2014·鞍山中学质检)已知∠α与∠β互余,且∠α=40°,则∠β的补角为度.【解析】因为∠α与∠β互余,且∠α=40°,所以∠β=50°,所以∠β的补角=180°-∠β=130°.答案:1306.已知∠1=2∠2,∠1的余角的3倍等于∠2的补角,则∠1= ,∠2= .【解析】设∠2=x°,根据题意,得3(90-2x)=180-x,解得x=18,所以∠2=18°,所以∠1=36°.答案:36°18°三、解答题(共26分)7.(8分)已知一个角的余角比这个角的补角的小12°,求这个角的余角和补角的度数. 【解析】设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°.根据题意,得90-x=(180-x)-12,解得x=24.所以90-x=66,180-x=156,即这个角的余角和补角的度数分别为66°,156°.8.(8分)如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠NOM=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【解析】(1)因为直线AB和CD相交于点O,所以∠BOD=∠AOC=50°.因为OM平分∠BOD,所以∠BOM=∠BOD=×50°=25°.因为∠NOM=90°,所以∠BON=∠BOM+∠MON=25°+90°=115°.所以∠AON=180°-∠BON=180°-115°=65°.(2)图中与∠DON互余的角是∠DOM和∠MOB.【培优训练】9.(10分)按图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?【解析】(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而这三个角加起来,正好是平角∠BEC,所以∠2=×180°=90°.(2)因为∠1与∠3的和与∠2相等,且三个角加起来恰好是一个平角,所以∠1+∠3=90°,所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.命题、定理、证明知识要点:1.定义:判断一件事情的语句,叫做命题,如:对顶角相等.2.组成:命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,通常写成:“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.3.真命题:如果题设成立,那么结论一定成立的命题.4.假命题:命题中题设成立时,不能保证结论一定成立的命题5.定理:经过推理证实的真命题叫做定理,定理也可以作为继续推理的依据.6.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.一、单选题1.1.下列判断正确的个数是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③锐角和钝角互补;④如果两个角是同一个角的补角,那么它们相等.A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.两条不相交的线段一定互相平行D.互为邻补角的两角的角平分线互相垂直3.下列说法:①若a为有理数,则﹣a表示负有理数;②a2=(﹣a)2;③若|a|>b,则a2>b2;④若a+b=0,则a3+b3=0.其中正确的个数有()A.1个 B.2个 C.3个 D.4个4.下列四个命题是真命题的是( )A .同位角相等B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.下列命题:①同旁内角互补;②若a b =,则a b =;③对顶角相等;④三角形的外角和360°;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补:其中真命题的个数有( )个A .4个B .3个C .2个D .1个6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个7.对于命题“若22a b >,则a b >”,下列四组关于a 、b 的值中,能说明这个命题是假命题的是( )A .3a =,1b =B .3a =-,2b =C .3a =,1b =-D .1a =-,3b =8.给出下列4个命题:①对顶角相等;②等角的补角相等;③同旁内角相等,两直线平行;④同位角的平分线平行.其中真命题为 ()A .①④B .①②C .①③④D .①②④二、填空题9.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.10.能说明命题“若a>b,则ac>bc”是假命题的一个c值是_____.11.命题“对顶角相等”的题设是________;结论是________.12.命题“如果a2=b2,那么a=b”是_____(填写“真命题”或“假命题”).13.破译密码:根据下面五个已知条件,推断正确密码是_________.14.下面有3个命题:①两个锐角的和还是锐角;②同位角相等;③平方后等于4的数一定是2.其中有____个假命题.三、解答题15.指出下命题的题设和结论,并判断其真假,如果是假命题,举出一个反例.(1)邻补角是互补的角;(2)同位角相等.16.指出下列命题的条件和结论.(1)同位角相等,两直线平行;(2)同角的余角相等;(3)平行于同一条直线的两直线平行;(4)同旁内角不互补,两直线不平行.17.阅读下列语句,完成后面的题目.①同类项的数字系数必相同;②若|a|=|b|,则a=b;③抗震救灾;④两直线平行,同旁内角互补;⑤两点之间的线段是这两点之间的距离;⑥今晚你去看电影吗?(1)其中属于命题的是________,不属于命题的是________(填序号);(2)其中属于真命题的是________(填序号);(3)对于每个假命题,你是怎样判断的?答案1.B2.D3.B4.C5.C6.D7.B8.B9.如果两个角是等角的补角,那么它们相等.10.0(答案不唯一).11.两个角是对顶角;这两个角相等12.假命题13.79814.315.(1)邻补角是互补的角的题设是两个角是邻补角,结论是这两个角互补,是真命题;(2)同位角相等的题设是两个角是同位角,结论是这两个角相等,为假命题,反例:如图,∠1和∠2是同位角,但∠1≠∠2..16.(1)该命题可以写成:如果同位角相等,那么两直线平行,所以命题的条件是同位角相等,结论是两直线平行;(2)该命题可以写成:如果两个角是同一个角的余角,那么这两个角相等,所以命题的条件是同角的余角,结论是相等;(3)该命题可以写成:如果两条件直线平行于同一条件直线,那么这两条直线平行,所以命题的条件是平行于同一条直线的两条直线,结论是平行;(4)该命题可以写成:如果同旁内角不互补,那么两直线不平行,所以命题的条件是同旁内角不互补,结论是两直线不平行.17.(1)①②④⑤③⑥;(2)④;(3)为说明命题是假命题,可采用举反例(举一个即可)的方法,如:①中a和-a是同类项,但它们的系数不同;②中|7|=|-7|,但7≠-7;⑤中两点之间的距离是指两点之间的线段的长度.第一章有理数1.2 有理数【知识与技能】(1)借助数轴,使学生了解相反数的概念;(2)会求一个有理数的相反数.【过程与方法】(1)从数和形两个不同的侧面来理解相反数的真正含义;(2)培养学生分析和解决问题的能力,逐步渗透数形结合思想.【情感态度与价值观】(1)逐步培养学生探索学习数学的方法;(2)培养学生归纳总结的能力.理解相反数的概念.会求一个有理数的相反数.多媒体课件1.数轴的三要素是什么?2.填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是 .一、思考探究,获取新知一、向前走和向后走.教师提问:如果向前为正、向后为负,向前走5步,向后走5步分别记作什么?学生思考回答.教师:这位同学两次行走的距离都是5步,但两次行走的方向相反,这就决定了这两个数的符号不同.二、动手操作并回答问题.在数轴上,画出表示6,-6,212,-212,413,-413的点.(1)上述中6和-6,212和-212,413和-413,每对数有什么特点?(2)数轴上表示每对数的点的位置有什么特点?学生动手画图,教师引导学生对数进行归类与分析,归纳出其外在的特征:只有符号不同,进而引出相反数的概念.教师归纳总结:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两个点关于原点对称,如图1-2.3-1.相反数的概念:只有符号不同的两个数叫作互为相反数.一般地,a和-a互为相反数.特别地,0的相反数是0.二、典例精析,掌握新知例1分别写出下列各数的相反数:5,-7,-312,+11.2,0.【分析】在正数前面添上“-”,就得到这个正数的相反数.在任意一个数的前面添上“-”,新的数就表示原数的相反数.【解】5的相反数是-5;-7的相反数是7;-312的相反数是312;+11.2的相反数是-11.2;0的相反数是0.例2化简下列各数:(1)-(+5);(2)+(-7);(3)+(+2);(4)-[-(-2)].【分析】化简符号有两种类型:(1)前面带“+”的,等于原数;(2)前面带“-”的,等于原数的相反数.一般地,式子中含有奇数个“-”时,结果为负;式子中含有偶数个“-”时,结果为正.【解】(1)-(+5)=-5.(2)+(-7)=-7.(3)+(+2)=2.(4)-[-(-2)]=-2.1.只有符号不同的两个数叫作互为相反数.2.化简多重符号时,“+”可省略,有奇数个“-”时保留1个,有偶数个“-”时全部省略.教材P10练习第1,2,3,4题。

北师大版七年级上册数学基本平面图形知识点典型例题练习

北师大版七年级上册数学基本平面图形知识点典型例题练习

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分。

2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

简称两点确定一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。

5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。

二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。

北师大版(2024)七年级上册《4.3_多边形和圆的初步认识》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《4.3_多边形和圆的初步认识》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《4.3多边形和圆的初步认识》2024年同步练习卷一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示的图形中,属于多边形的有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形,则这个多边形的边数为()A.6B.7C.8D.93.过多边形一个顶点的所有对角线,将这个多边形分成8个三角形,这个多边形的边数是()A.8B.9C.10D.114.下列说法正确的是()A.弧就是一条弯曲的线B.扇形就是一条弧和两条半径组成的图形C.若干个小扇形组成一个圆D.弧是圆周的一部分5.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3B.3,3C.3,4D.4,46.从多边形一条边上的一点不是顶点出发,连接各个顶点得到2023个三角形,则这个多边形的边数为()A.2021B.2025C.2024D.20267.已知从一个顶点出发有4条对角线的正多边形的周长为42cm,则这个正多边形的边长为()A.6cmB.7cmC.D.8.扇子最早称“翣”,在我国已有两千多年历史.“打开半个月亮,收起兜里可装,来时荷花初放,去时菊花正黄.”这则谜语说的就是扇子.如图,一竹扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为30cm,扇面BD的长为20cm,则扇面面积为A. B. C. D.9.在学习完多边形后,小华同学将一个五边形沿如图所示的直线1剪掉一个角后,得到一个多边形,下列说法正确的是()A.这个多边形是一个五边形B.从这个多边形的顶点A出发,最多可以画4条对角线C.从顶点A出发的所有对角线将这个多边形分成4个三角形D.以上说法都不正确二、填空题:本题共4小题,每小题3分,共12分。

10.如图所示,将一个圆分成4个扇形,已知扇形AOB,AOD,BOD的圆心角的度数之比为2:3:4,OC为的平分线,圆心角的度数为______.11.如图,甲、乙、丙、丁四个扇形的面积之比是1:2:3:4,则扇形“丁”的圆心角度数是______.12.如图所示,若扇形甲、乙的圆心角的度数之比为2:1,则扇形甲圆心角的度数为______;扇形丙圆心角的度数为______.13.已知扇形的面积为圆心角为,则它的半径为______.三、解答题:本题共4小题,共32分。

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)

一、选择题1.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .18 3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm4.如图,已知110AOB ∠=︒,60BOC ∠=︒,OD 平分COA ∠,则AOD ∠度数为( )A .25︒B .20︒C .85︒D .305.如图,90,50,AOB COD OE ∠=︒∠=平分,AOC OF ∠平分∠BOD ,则EOF ∠的大小为( )A .110B .105C .100D .95 6.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等 7.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .8.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( ) A .2 B .5C .7D .5或1 9.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 10.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒11.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是( )A .10°B .40°C .70°D .10°或70° 12.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较二、填空题13.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=38°.求∠2和∠3的度数.15.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系.②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O 旋转到如图2的位置.①∠AOD 和∠BOC 相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.16.(初步探究)(1)如图1,已知线段12cm AB =,点C 和点D 为线段AB 上的两个动点,且3cm CD =,点M 、N 分别是AC 和BD 的中点,求MN 的长是多少?(类比探究)如图2,已知,直角COD ∠与平角AOB ∠如图摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(知识迁移)(3)当AOB α∠=,COD β∠=时,如图3摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(α和β均为小于平角的角)17.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线.(1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.18.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .19.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.20.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ;(3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.三、解答题21.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.22.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数;(2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.23.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.24.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.25.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷526.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据CB =5cm ,AB =13cm 求出A C 的长,再根据D 是AC 的中点即可得出DC 的长,即可求出BD .解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.4.A解析:A【分析】先求出∠AOC=50°,再根据角平分线的定义求出∠AOD 即可.【详解】解:∵110AOB ∠=︒,60BOC ∠=︒,∴∠AOC=∠AOB-∠BOC=110°-60°=50°,∵OD 平分COA ∠,∴∠AOD=12∠AOC=12×50°=25° 故选:A .【点睛】主要考查了角平分线的定义和角的运算,要会结合图形找到其中的等量关系. 5.A解析:A【分析】由OE 平分AOC ∠,OF 平分BOD ∠可知12COE AOC ∠=∠,12DOF BOD ∠=∠.即可求出1122EOF AOC BOD COD ∠=∠+∠-∠,又由360AOC BOD AOB COD ∠+∠=︒-∠+∠,即可求出EOF ∠的大小.【详解】EOF EOD COD COF ∠=∠+∠+∠,()()COE COD COD DOF COD =∠-∠+∠+∠-∠,COE DOF COD =∠+∠-∠.∵OE 平分AOC ∠,OF 平分BOD ∠. ∴12COE AOC ∠=∠,12DOF BOD ∠=∠. ∴1122EOF AOC BOD COD ∠=∠+∠-∠, ∵360AOC BOD AOB COD ∠+∠=︒-∠+∠, ∴1(360)2EOF AOB COD COD ∠=︒-∠+∠-∠,即1(3609050)501102EOF ∠=︒-︒+︒-︒=︒. 故选:A .本题考查角平分线的性质.根据题意结合角平分线的性质找出角的等量关系是解答本题的关键.6.A解析:A【分析】根据基本平面图的性质判断即可;【详解】A两点之间线段最短,故错误;B两点确定一条直线,故正确;C一个锐角的补角一定比它的余角大90°,故正确;D等角的补角相等,故正确;故答案选A.【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.7.B解析:B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】解:A. 不能用∠O表示,选项A不符合题意;B. 能用∠1,∠AOB,∠O,选项B符合题意;C 不能用∠O表示,选项C不符合题意;D. 不能用∠O表示,选项D不符合题意.故选:B.【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键. 9.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】 本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 10.B解析:B【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值.【详解】解:如图,∵OB是北偏西50 方向的一条射线,∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80°故选:B.【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.11.D解析:D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB在OA的同侧时.12.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠1=∠2;故选B .【点睛】考查了角的大小比较,培养了学生的推理能力.二、填空题13.(1)8;(2)7或13【分析】(1)根据D 是BC 的中点得BC=2BD 再根据AC+BC=AB 求出CD 的长进而可求得AC 的长;(2)分①当点在线段上;②当点在线段的延长线上两种情况求解即可【详解】解:解析:(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 14.∠2=64°∠3=52°【分析】利用平角互补和角平分线的定义进行计算即可【详解】解:∵AB 为直线∴∠3+∠FOC+∠1=180°∵∠FOC=90°∠1=38°∴∠3=180°-90°-38°=52° 解析:∠2=64°,∠3=52°.【分析】利用平角、互补和角平分线的定义进行计算即可.【详解】解:∵AB 为直线,∴∠3+∠FOC +∠1=180°.∵∠FOC =90°,∠1=38°,∴∠3=180°-90°-38°=52°.∵∠3与∠AOD 互补,∴∠AOD =180°-∠3=128°.∵OE 平分∠AOD ,∴∠2=12∠AOD =64°. 【点睛】本题考查了角的计算,掌握平角、补角及角平分线的定义,并利用数形结合的思想是解答此题的关键.15.(1)①;②;(2)①相等理由见解析;②【分析】(1)①由再同时加上也相等即可证明;②由即可证明;(2)①由再同时减去也相等即可证明;②由即可证明【详解】解:(1)①∵∴即;②∵∴;(2)①理由:∵ 解析:(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.16.(1)(2)(3)【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案【详解】解:(1)点分别是和的中点 解析:(1)7.5cm (2)135︒ (3)2αβ+【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案.【详解】解:(1)点M 、N 分别是AC 和BD 的中点, 11,22AM AC BN BD ∴==, 12cm AB =,3cm CD =,1239AC BD ∴+=-=cm ,()1937.522MN CD MC DN CD AC BD cm ∴=++=++=+=; (2)OM 和ON 分别是AOC ∠,BOD ∠的角平分线,,AOM MOC BON NOD ∴∠=∠∠=∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, 90180COD AOB ∠=︒∠=︒,,AOC COD BOD AOB ∠+∠+∠=∠,90AOC BOD ∴∠+∠=︒,45MOC NOD ∴∠+∠=︒,9045135MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=︒;(3)∵OM 是AOC ∠的角平分线, ∴12MOC AOC ∠=∠, ∵ON 是BOD ∠的角平分线, ∴12NOD BOD ∠=∠, ∵AOB α∠=,COD β∠=,∴MON MOC COD NOD ∠=∠+∠-∠12AOC BOC BOD NOD =∠+∠+∠-∠ 1122AOC BOC BOD =∠+∠+∠ 11112222AOC BOC BOC BOD =∠+∠+∠+∠ 1()2AOB COD =∠+∠2αβ+=.【点睛】本题考查了线段的中点及线段的和与差以及角的平分线及角的和与差,根据图形找到线段与角的关系是解题的关键.17.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.18.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P 点P 即为所求解析:(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结AC 和BD 并把ACBD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长并把它们延长线的交点标记为P 即可;(3)以B 为端点作一条射线经过解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A 、C 和B 、D ,并把AC 、BD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长,并把它们延长线的交点标记为P 即可;(3)以B 为端点,作一条射线经过A ,然后以B 为圆心、BD 长为半径画弧交射线BA 于点E 即可.【详解】解:(1)如图,AC ,BD 相交于点O .(2)如图,CB ,DA 相交于点P .(3)如答图,BE 为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.三、解答题21.(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 22.(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.23.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 24.10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 25.(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.26.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.。

北师大版七年级数学上册第四章4.1---4.2同步练习题(含答案)

北师大版七年级数学上册第四章4.1---4.2同步练习题(含答案)

北师大版七年级数学上册第四章《基本平面图形》1 线段、射线、直线一、选择题(共36分)1.下列语句中:①画直线;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④在同一个图形中,线段AB与线段BA是同一条线段.正确的个数有()A.0B.1C.2D.32.下列说法:(1)线段BA和线段AB是同一条线段;(2)射线AC和射线AD是同一条射线;(3)把射线AB 反向延长可得到直线BA;(4)直线比射线长,射线比线段长.其中说法正确的个数是()A.1B.2C.3D.43.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C,其中正确的语句的个数有()A.0个B.1个C.2个D.3个4.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、,则数字“2019”在射线()A.OA上B.OC上C.OE上D.OF上5.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段6.如图所示给出的分别有射线、直线、线段,其中能相交的图形有()A.①B.①③C.②③④D.①②③④7.已知三点M、N、G,画直线MN、画射线MG、连结NG,按照上述语句画图正确的是()A. B. C. D.8.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9.在线段AB上选取3种点,第1种是将AB三等分的点;第2种是将AB四等分的点;第3种是将AB九等分的点,这些点连同线段AB的端点可组成线段的条数是()A.11B.13C.55D.7810.如图共有线段()条。

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘方 10 科学记数法11 有理数的混合运算 12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角 4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱 B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形 D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。

5.八棱柱有个面,个顶点,条棱。

6.一个漏斗可以看做是由一个________和一个________组成的。

7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。

(2)这个棱柱共有条棱,所有棱的长度是。

提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。

1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()(D)(B)(C)(A)2.下列几何体中表面都是平面的是()A.圆锥 B.圆柱 C.棱柱 D.球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。

人教版 七年级数学上册 第四章同步测试题(含答案)

人教版 七年级数学上册 第四章同步测试题(含答案)

人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。

北师大版七年级数学上册章节同步练习题(全册)

北师大版七年级数学上册章节同步练习题(全册)

北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘方 10 科学记数法11 有理数的混合运算 12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角 4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱 B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形 D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。

5.八棱柱有个面,个顶点,条棱。

6.一个漏斗可以看做是由一个________和一个________组成的。

7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。

(2)这个棱柱共有条棱,所有棱的长度是。

提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。

1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()2.下列几何体中表面都是平面的是()(D)(B)(C)(A)A .圆锥B .圆柱C .棱柱D .球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例) 5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。

最新精选数学七年级上册第四章 基本平面图形4.3 角北师大版知识点练习第六十四篇

最新精选数学七年级上册第四章  基本平面图形4.3 角北师大版知识点练习第六十四篇

最新精选数学七年级上册第四章基本平面图形4.3 角北师大版知识点练习第六十四篇第1题【单选题】如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是( )A、B、C、D、【答案】:【解析】:第2题【单选题】钟表上2时15分,时针与分针的夹角是( )A、B、C、D、【答案】:【解析】:第3题【单选题】如图,图中可以只用一个大写字母表示的角有( )A、1个B、2个C、3个D、4个【答案】:【解析】:第4题【单选题】一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC 等于( )A、75°B、105°C、45°D、135°【答案】:【解析】:第5题【单选题】下列说法正确的有( )句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A、0B、1C、2D、3【答案】:【解析】:第6题【单选题】如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是( )A、②④①③B、③①④②C、②④③①D、①③②④【答案】:【解析】:第7题【单选题】9时30分钟的时针与分针所成的角度是( )A、75°B、90°C、105°D、120°【答案】:【解析】:第8题【填空题】在3时45分时,时针和分针的夹角是______度.A、157.5【答案】:【解析】:第9题【填空题】时钟在2点30分时,其时针和分针所成的角的大小为______°.A、105【答案】:【解析】:第10题【填空题】某校下午第一节2:30 下课,这时钟面上时针与分针的夹角是______度.【答案】:【解析】:第11题【填空题】钟面上6点20分时,时针与分针所构成的角度是______度.【答案】:【解析】:第12题【解答题】(1)在∠AOB内部画1条射线OC,则图1中有? 个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有? 个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有? 个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有? 个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【答案】:【解析】:第13题【作图题】按照上北下南,左西右东的规定画出表示东南西北的十字线,然后在图上画出表示下列方向的射线:北偏西30°;南偏东60°;北偏东15°;西南方向.【答案】:【解析】:第14题【作图题】如图,货轮O在航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C,按下列要求画出.画出线段OB;画出射线OC;连接AB交OE于点D.【答案】:【解析】:第15题【综合题】如图:【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出什么结论.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=有误∠BAD,上述结论是否仍然成立,并说明理由.【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以30海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.【答案】:无【解析】:。

七年级数学上册 第四章 基本平面图形 4.3 角练习题 (新版)北师大版

七年级数学上册 第四章 基本平面图形 4.3 角练习题 (新版)北师大版

角班级:___________姓名:___________得分:__________一、选择题(每小题8分,共40分)1.下列对角的表示方法理解错误的是( )A.角可用三个大写字母表示,顶点字母写在中间 ,每边上的点写在两旁B.任何角都可以用一个字母表示C.记角时可靠近顶点处加上弧线,注上数字表示D.记角时可靠近顶点处加上弧线,注上希腊字母来表示2. 下列说法中正确的是( )A.两条射线组成的图形叫做角B.两边成一直线的角是平角C.一条射线是一个周角D.平角是一条直线3. 四点这一时刻,分针和时针的夹角是( )A.70° B.75° C.90° D.120°A、 B、 C、 D、4.下列说法中正确的有()①由两条射线组成的图形叫做角②角的大小与边的长短无关,只与两条边张开的角度有关③角的两边是两条射线④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍A、1个B、2个C、3个D、4个5. 下图中表示∠ABC的是()二、填空题(每小题8分,共40分)6. 如下图,用大写字母表示图中用小写希腊字母标注的角,则∠α=__________ ,∠β=___________ ,∠γ=________,∠θ=____________7. 图中以O为顶点的角有________ 个,它们是___________8. 如图,有一只蚂蚁从点A出发,按顺时针方向沿图所示的方向爬行,最后又爬回到A点,那么蚂蚁在此过程中共转_________°9. 下列说法错误的有________①有公共点的两条射线形成的图形是角②从一点引出的两条射线形成的图形是角③角的大小与两边所画的长度有关④线段绕着一个端点旋转也可以形成角10. 如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B 处的北偏东60°,求∠ACB是_________度?三、解答题(共20分)11. 计算如图,已知∠1=65°15′,∠2=78°30′,求∠3的度数。

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。

(完整版)北师版七年级上数学第四章基本平面图形知识点及练习题

(完整版)北师版七年级上数学第四章基本平面图形知识点及练习题

4.1 线段、射线、直线1、线段、射线、直线 线段:绷紧的琴弦,人行横道线都可以近似的看做线段。

线段有两个端点。

射线:将线段向一个方向无限延长就形成了射线。

射线有一个端点。

直线:将线段向两个方向无限延长就形成了直线。

直线没有端点。

2、名称 图形 表示方法 端点 长度直线 直线AB (或BA )直线l 无端点 无法度量 射线射线OM 1个 无法度量 线段线段AB (或BA ) 线段l2个可度量长度3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

(两点确定一条直线。

) (2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

4、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

※课时达标 1.填写下表:2.如图,共有 条线段.3.用两个钉子就可以把木条钉在墙上,其依据是_________ .4.平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.5.平面上两条直线的位置关系只有两种,即__________和_________________.6.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.※课后作业 ★基础巩固1.下列各直线的表示法中,正确的是( ).l BAMOlBA 名称 图例 端点数 延伸方向 有无长度 线段射线直线 A B C DA.直线AB.直线AB C直线ab D.直线Ab2.下列说法不正确的是( ) .A.直线AB与直线BA是同一条直线B.射线AB与射线BA是同一条射线C.线段AB与线段BA是同一条线段D.线段有两个端点,射线有一个端点,直线没有端点3.下列说法正确的是().A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两条射线的长度的和等于直线的长度4.下列说法正确的是( ).A.过一点P只能作一条直线B.射线AB和射线BA表示同一条射线C.直线AB和直线BA表示同一条直线D.射线a比直线b短5.下列说法正确的是().A.延长射线OAB.延长直线lC.延长线段CDD.反向延长直线l6.平面内的三点可确定直线的条数是().A.3B.1或3C.0或1D.07.已知C,D在直线AB上,那么直线AB上的射线共有().A.6条B.7条C.8条D.9条8.下列说法中,错误的有().①射线是直线的一部分;②画一条射线,使它的长度为5厘米;③线段AB和线段BA是同一条线段;④射线AB和射线BA是同一条射线;⑤直线AB和直线BA是同一条直线.A.1个B.2个C.3个D.4个9.在一条笔直的校园大道两旁种树时,先定下两棵树的位置,然后其它树的位置也就确定下来了,这说明了直线的基本性质:________________________. 10.已知平面内的四个点A,B,C,D,过其中的两个点画直线:(1)若A,B,C,D四个点在同一条直线上,可以画出______条直线;(2)若A,B,C,D四个点有三个在同一条直线上,可以画出______条直线;(3)若A,B,C,D四个点中的任意三个都不在同一条直线上,可以画出_______条直线.11.读下列语句,并画出相应图形.(1)经过点M,N画一条直线;(2)直线ba,相交于点P,点A在直线a上,但不在直线b上;(3)三条直线cb,两两相交于点A,B,C.a,☆能力提高12.读句画图:如图所示,已知平面上四个点(1)画直线AB;(2)画线段AC;(3)画射线AD、DC、CB;(4)如图,指出图中有_____条线段,有___ 条射线并写出其中能用图中字母表示的线段和射线 .13.已知直线l上有n个点,试问:(1)此图形上有多少条射线?(2)此图形上有多少条线段?14.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,……A C B3=2+1A C D B6=3+2+1A C D E B10=4+3+2+1(1)当线段AB上有6个点时,线段总数共有__________条.(2)当线段AB上有100个点时,线段总数共有多少条?●中考在线15.平面上不重合的两点确定一条直线,不同三点最多可确定3条,若平面上不同的n个点最多可确定21条直线,则n的值为().A.5B.6C.7D.816.同一平面内互不重合的三条直线的公共点的个数是( ).A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个或3个4.2 比较线段的长短1、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

七年级数学上册第四章基本平面图形3角典型例题素材(新

七年级数学上册第四章基本平面图形3角典型例题素材(新

《角》典型例题例1 指出下面角的表示方法是否正确,错误的改正过来。

(1)如图①中的角可以表示为ABC ∠;(2)如图②中的BAC ∠可以表示为A ∠。

例2 如图,用量角器度量三角形的三个角,并指出哪个角是钝角。

例3 计算:(1)0.12°=( )′ (2)24′36″=( )°例4 如图,在海岸上有A 、B 两个观测站,B 观测站与A 观测站的距离是2.5km ,某天,A 观测站观测到有一条船在南偏东50°方向,在同一时刻,B 观测站观测到该船在南偏东74°方向.(1)请根据以上情况画出船的位置.(2)计算船到B 观测站的距离(画图时用1cm 表示1km )例5 如图:(1)以B 为顶点的角有几个:把它们表示出来;(2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的角有几个?分别表示出来。

例6 填空题(1);______638128︒='''︒(2)=''0451 '''︒;(3)=︒26.78 '''︒;(4)︒120=________平角=_______周角。

例7 求时钟表面3点25分时,时针与分针所夹角的度数.参考答案例1 分析 (1)中角顶点的字母没有写在中间,(2)中用A ∠表示,就很难分清是表示三个角中的哪个角。

解 (1)错,应表示为BAC ∠;(2)错,它能用BAC ∠或α∠表示。

说明:(1)表示角时顶点字母必须写在中间;(2)用顶点一个字母去表示角时,必须分清楚表示的是哪个角。

例2 分析 度量时应注意把量角器中角的顶点和所要度量的角的顶点重合,把量角器的“0”点落在被量角的一边上,使被量角的另一边和量角器都在被量角这一边的同侧,这时被量角的另一边所对的刻度就是这个角的度数。

解 经度量︒=∠140A 是钝角;︒=∠︒=∠15,25C B 。

说明:学生所用的一般量角器只精确到度,有时要根据观察来确定角的近似值。

七年级数学上册 第四章 几何图形初步 4.3 角 4.3.1 角复习练习 (新版)新人教版

七年级数学上册 第四章 几何图形初步 4.3 角 4.3.1 角复习练习 (新版)新人教版

4.3.1 角1.如图4-3-3,下列表示角的方法错误的是( )图4-3-3A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示2.下列说法正确的是( )A.平角是一条直线B.角的边越长,角越大C.大于直角的角叫做钝角D.两个锐角的和不一定是钝角3.下列各式中,角度互化正确的是( )A.63.5°=63°50′B.23°12′36″=23.48°C.18°18′18″=3.33°D.22.25°=22°15′4.如图4-3-4,AE是一条直线,图中小于平角的角有( )A.4个B.8个C.9个D.10个图4-3-45.如图4-3-5,分别填出下列各角的另一种表示方法:∠α即,∠ABC 即,∠ACE即,∠1即,∠ACD即,∠3即 .图4-3-56.计算:(1)⎝ ⎛⎭⎪⎫278°= ° ′ ″; (2)1.45°= ′;(3)12°15′36″= . °;(4)4230″= . ′= . °. 7.35直角= °,22.5°= 18平角.8.下列说法中正确的是( )A .8时45分,时针与分针的夹角是30°B .6时30分,时针与分针重合C .3时30分,时针与分针的夹角是90°D .3时整,时针与分针的夹角是90°9.4时10分,时针和分针的夹角是 度.10.某人下午六点多钟外出买东西,看手表上的时针与分针的夹角是110°,下午近7点回到家时,发现时针与分针的夹角又是110°,求这个人外出了多长时间.参考答案4.3 角4.3.1 角【分层作业】1.D 2.D 3.D 4.C5.∠AEC ∠B ∠2 ∠BCE ∠β ∠A 或∠BAC 或∠EAC6.(1)3 22 30 (2)87 (3)12.26 (4)70.5 1.1751 88.D 9.65 10.40分钟7.54。

(好题)初中数学七年级数学上册第四单元《基本平面图形》检测题(有答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》检测题(有答案解析)

一、选择题1.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条2.如图甲,用边长为4的正方形做了一幅七巧板,拼成图乙所示的一座桥,则桥中阴影部分面积为( )A .16B .12C .8D .43.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( ) A .P 点一定在直线AB 上 B .P 点一定在直线AB 外 C .P 点一定在线段AB 上D .P 点一定在线段AB 外4.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2125.若线段AB =13cm ,MA +MB =17cm ,则下列说法正确的是( )A .点M 在线段AB 上B .点M 在直线AB 上,也有可能在直线AB 外C .点M 在直线AB 外D .点M 在直线AB 上6.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 7.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .318.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( )A .8点30分B .9点30分C .10点30分D .以上答案都不对9.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 10.钟表上12时15分时,时针和分针的夹角是( )A .120°B .90°C .82.5°D .60°11.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A .42°B .64°C .48°D .24°二、填空题13.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长. 14.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”);(2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.15.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数. 16.根据下列要求画图(不写作法,保留作图痕迹) (1)连接线段OB ; (2)画射线AO ,射线AB ;(3)用圆规在射线AB 上截取AC ,使得AC OB =,画直线OC .17.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程: 因为∠AOC 与∠AOD 互补, 所以∠AOC+∠AOD =180°. 又因为∠AOC+∠ =180°, 根据 ,所以∠ =∠ . (2)若∠MOC =72°,求∠AON 的度数.18.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.19.如图,已知点C 是线段AB 上一点,且2AC CB =,点D 是AB 的中点,且6AD =,(1)求DC 的长;(2)若点F 是线段AB 上一点,且12CF CD =,求AF 的长. 20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.22.如图,已知点A ,B ,C ,D .按要求画图:①连接AD ,画射线BC ;②画直线CD 和直线AB ,两条直线交于点E ;+++的值最小.③画点P,使PA PB PC PD23.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷524.如图,已知直线l和直线外三点A,B,C,按下列要求画图:(1)画射线AB;(2)连接BC;(3)反向延长BC至D,使得BD=BC;(4)在直线l上确定点E,使得AE+CE最小;(5)请你判断下列两个生活情景所蕴含的数学道理.情景一:如图从A地到B到地有4条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系所学知识,在图上画出最短中线.情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:.25.如图,已知直线AB,CD相交于点O,OE,OF为射线,∠AOE=90°,OF平分∠BOC,(1)若∠EOF=30°,求∠BOD的度数;(2)试问∠EOF与∠BOD有什么数量关系?请说明理由.AB=,M是线段AB的中点,P是线段AB上任意一点,N是线段26.已知,线段20PB的中点.(1)当P是线段AM的中点时,求线段NB的长;MP=时,求线段NB的长;(2)当线段1(3)若点P在线段BA的延长线上,猜想线段PA与线段MN的数量关系,并画图加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.2.C解析:C【分析】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半;【详解】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半,⨯÷=;则阴影部分的面积为4428故答案选C.【点睛】本题主要考查了七巧板求面积的知识点,准确分析计算是解题的关键.3.D解析:D【分析】根据P点在线段AB上时,AP+BP=AB,进行判断即可.【详解】解:A. P点在线段AB上时,AP+BP=AB,此时点P在直线AB上,故错误;B. P点在线段AB延长线上时,AP BP AB+>,故错误;C. P点在线段AB上时,AP+BP=AB,故错误;D. P点在线段AB上时,AP+BP=AB,P点一定在线段AB外时,AP BP AB+>,故正确;故选:D.【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P点在线段AB上时,AP+BP=AB这一结论,进行判断.4.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.5.B解析:B 【分析】此题要分多种可能情况讨论:当M 点在直线外时,根据两点之间线段最短,能出现MA+MB=17;当M 点在线段AB 延长线上,也可能出现MA+MB=17;由此解答即可. 【详解】(1)当M 点在直线外时,M ,A ,B 构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M 点在线段AB 延长线上,也可能出现MA+MB=17. 故选:B . 【点睛】此题考查比较线段的长短,正确认识直线、线段,注意对各个情况的分类,讨论可能出现的情况.6.A解析:A 【分析】先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =, ∴AB MN a b -=-, ∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点, ∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-. 故选:A . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.7.B解析:B 【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB ,然后根据CD=2,线段AB 的长度是一个正整数,依次对选项进行判断即可解答本题. 【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC+CD+DB+AD+CB+AB=(AC+CD+DB )+(AD+CB )+AB=AB+AB+CD+AB=3AB+CD , ∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.8.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】A选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒;C选项,分针指向6,时针指向10和11的中间,夹角是30415135︒⨯+︒=︒D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.9.D解析:D【分析】根据OA⊥OB,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90°∠1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键. 10.C解析:C【分析】求出时针和分针每分钟转的角度,由此即可得.【详解】因为时针每分钟转的角度为3600.51260︒=︒⨯,分针每分钟转的角度为360660︒=︒,所以当钟表上12时15分时,时针转过的角度为0.5157.5︒⨯=︒,分针转过的角度为61590︒⨯=︒,所以时针和分针的夹角为907.582.5︒-︒=︒,故选:C.【点睛】本题考查了钟面角,熟练掌握时钟表盘特征和时针、分针每分钟转的角度数是解题关键.11.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5线段AB的长为线段OA长的12倍即可得点B表示的数;(2)根据线段BM的长为45即可得线段AC的长【详解】解:(1)∵点A表示的数为5线段解析:(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.14.(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立理由如见解析【分析】(1)根据角的和差关系解答(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BO解析:(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BOC的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原关系仍然成立.【详解】解:(1)∠AOD和∠BOC相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,∴∠AOD=∠COB;(2)∠AOC和∠BOD互补.∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.15.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD 相交于点O (2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠= 2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.16.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AOAB 并延长;(3)先用圆规在射线上截取AC=OB 再画直线OC【详解】解:(1)如图所示线段即为所求;(2)如图所示射解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AO 、AB 并延长;(3)先用圆规在射线AB 上截取AC=OB ,再画直线OC .【详解】解:(1)如图所示,线段OB 即为所求;(2)如图所示,射线AO 、射线AB 即为所求;(3)如图所示,直线OC 即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.17.(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°∠AOC+∠COB =180°可以根据同角的补角相等得到∠AOD =∠COB ;(2解析:(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°,∠AOC+∠COB =180°,可以根据同角的补角相等得到∠AOD =∠COB ;(2)首先根据角平分线的性质可得∠AOC =2∠COM ,∠AON =12∠AOD ,然后计算出∠AOC =144°,进而得到∠AON =18°.【详解】解:(1)因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠BOC =180°,根据同角的补角相等,所以∠AOD =∠BOC ,故答案为:BOC ;同角的补角相等;AOD ;BOC ;(2)∵OM 是∠AOC 的平分线.∴∠AOC =2∠MOC =2×72°=144°,∵∠AOC 与∠AOD 互补,∴∠AOD =180°﹣144°=36°,∵ON 是∠AOD 的平分线.∴∠AON =12∠AOD =18°. 【点睛】本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系. 18.32【分析】本题需先设根据已知条件C 点将线段MB 分成的两段求出MB=4x 利用M 为AB 的中点列方程求出x 的长即可求出AB 的长;【详解】解:∵设则∴∴解得∵M 为AB 的中点∴【点睛】本题主要考查了两点间的 解析:32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;19.(1)2;(2)7或9【分析】(1)根据中点平分线段长度即可求得AB 的长再由可得AC 的长度即可求出CD 的长度;(2)分当点在线段上时和当点在延长线上时即可求出的长度【详解】(1)∵点是的中点且∴∵∴解析:(1)2;(2)7或9【分析】(1)根据中点平分线段长度即可求得AB 的长,再由2AC CB =,可得AC 的长度,即可求出CD 的长度;(2)分当F 点在线段DC 上时和当F 点在DC 延长线上时,即可求出AF 的长度.【详解】(1)∵点D 是AB 的中点,且6AD =,∴212AB AD ==,∵2AC CB =,∴8AC =,∴862CD AC AD =-=-=;(2)由(1)可得1CF =,当F 点在线段DC 上时,817AF AC CF =-=-=,当F 点在DC 延长线上时,819AF AC CF =+=+=,综上所述,7AF =或9【点睛】本题考查了线段的长度问题, 掌握中点平分线段长度是解题的关键.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:;解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠, ∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.22.①见解析;②见解析;③见解析【分析】①连接AD ,作射线BC 即可;②作直线CD 和AB ,交点为点E③画点P ,使PA+PB+PC+PD 的值最小即可;【详解】解:如图所示:【点睛】本题考查了作图——复杂作图、线段的性质:两点之间线段最短、两点间的距离,解决本题的关键是根据语句准确画图.23.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案;(2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.24.作图见详解;两点确定一条直线.【分析】根据射线,线段、两点之间线段最短,以及两点确定一条直线,即可解决问题;【详解】解:(1)射线AB,如图所示;(2)线段BC,如图所示,(3)线段BD如图所示(4)点E即为所求;(5)情景一:如图:由两点之间线段最短,即可得到线段AB;情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查作图——复杂作图、直线、射线、线段的定义、两点之间线段最短,两点确定一条直线等知识,解题的关键是掌握所学的基本知识,属于中考常考题型.25.(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.26.(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点,∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB = ∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.。

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(有答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(有答案解析)

一、选择题1.下列说法不正确的是()A.两点确定一条直线B.两点间线段最短C.两点间的线段叫做两点间的距离D.正多边形的各边相等,各角相等CD=,若线段AB的长度是一个正整数,则图中2.如图,线段CD在线段AB上,且3以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.不能确定3.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条4.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若=,则点C是线段AB的中点;③射线OB与射线OC是同一条射线;④连线段AC BC结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有()A.1个B.2个C.3个D.4个5.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到∠的度数是()点C,则BACA.85°B.135°C.105°D.150°CD=,若线段AB的长度是一个正整数,则图中6.如图,线段CD在线段AB上,且2以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.317.下列说法中,正确的是()A.射线是直线的一半B.线段AB是点A与点B的距离C.两点之间所有连线中,线段最短D.角的大小与角的两边所画的长短有关8.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95°9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .18 10.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°11.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定12.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个二、填空题13.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.14.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.15.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.16.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值. 17.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上; (1)画图:(只要求画图,不必写画法) (2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.18.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.19.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长; (2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 20.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.三、解答题21.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 22.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长. 23.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”); (2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.24.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.25.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.26.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质,正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.2.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD)=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.3.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.4.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC不共线时,点C不是线段AB的中点,故本说法错误;③射线OB与射线OC可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B.【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.5.B解析:B【分析】如图,先求出∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据BAC∠=∠BAD+∠EAD+∠CAE即可计算得出答案.【详解】如图,∵∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,∴BAC∠=∠BAD+∠EAD+∠CAE=135°,故选:B..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键.6.B解析:B【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,依次对选项进行判断即可解答本题.【详解】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.7.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A.射线的长度无法度量,故不是直线的一半,故本选项错误;B.线段AB的长度是点A与点B的距离,故本选项错误;C.两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误; 故选:C . 【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;8.C解析:C 【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解. 【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°, ∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°, ∴∠ACB =∠ECB−∠ACE =105°−50°=55°, ∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°. 【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.9.B解析:B 【分析】设CB x =,然后根据题目中的线段比例关系用x 表示出线段EF 的长,令它等于11,解出x 的值. 【详解】 解:设CB x =, ∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =.故选:B.【点睛】本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.11.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:+=,从图中我们可以发现AC BC AB所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.12.B解析:B根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.二、填空题13.(1)∠DOE=90°;(2)∠AOE=155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC∠COE=∠BOC然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数再利用∠AOE解析:(1)∠DOE=90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数,再利用∠AOE =∠AOD+∠DOE可得答案.【详解】解:(1)∵OD平分∠AOC,OE平分∠COB,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.14.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.15.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB =∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.16.(1)是;(2)15°或225°或30°;(3)或或或【分析】(1)若OC 为∠AOB 的角平分线则有则根据题意可求解;(2)根据幸运线的定义可得当时当时当时然后根据角的和差关系进行求解即可;(3)由题解析:(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒;③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去);综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键. 17.(1)见解析;(2)或;(3)45cm 【分析】(1)画线段AM=3aAN=b 点AMN 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时MN=3a-b 或当点N 在MA 的延长线上时MN=3a+b ;(解析:(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=, 又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.(1)30;(2)1;(3)【分析】(1)根据可推出即可求出结果(2)根据OMON 分别是和角平分线可得出通过化简计算从而得到进而求出比值结果(3)根据OMON 分别是和角平分线可得到进而求出比值结果【解析:(1)30;(2)1;(3)12 【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果. 【详解】 (1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD ∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC ∠=∠+∠BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠; 【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.19.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.20.【分析】根据平角的定义求∠BOC 后利用角的平分线垂直的定义计算即可【详解】解:∵∴∵平分∴∵∴∴【点睛】本题考查了平角的定义角的平分线垂直的定义熟练掌握互补的定义角的平分线的性质是解题的关键解析:70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.三、解答题21.(1)14(2)37823 【分析】 (1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M 是线段AC 的中点,可得CM =2.5x ,因为CN =13CD ,可求出CN= 43x ,根据MN=9,可解出x 的值,继而得出BD 的长;【详解】解:(1)如图,∵点M 是线段AC 的中点,点N 是线段CD 的中点,∴CM =12 AC ,CN =12CD , ∴MN =CM+CN =12 (AC+CD)=12AD =9, ∴AD =18,∵AB :BC :CD =2:3:4,∴AB =29×AD =4, ∴BD =AD ﹣AB =18﹣4=14;(2)∵当CN =13CD 时,如图,∵AB :BC :CD =2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.22.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.23.(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BOC的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原关系仍然成立.【详解】解:(1)∠AOD和∠BOC相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,∴∠AOD=∠COB;(2)∠AOC和∠BOD互补.∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.24.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 25.75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.26.(1)∠DOE =90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC ,∠COE=12∠BOC ,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数,再利用∠AOE =∠AOD +∠DOE 可得答案.【详解】解:(1)∵OD 平分∠AOC ,OE 平分∠COB ,∴∠DOC =12∠AOC ,∠COE =12∠COB ,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


班级:___________姓名:___________得分:__________
一、选择题(每小题8分,共40分)
1.下列对角的表示方法理解错误的是( )
A.角可用三个大写字母表示,顶点字母写在中间 ,每边上的点写在两旁
B.任何角都可以用一个字母表示
C.记角时可靠近顶点处加上弧线,注上数字表示
D.记角时可靠近顶点处加上弧线,注上希腊字母来表示
2. 下列说法中正确的是( )
A.两条射线组成的图形叫做角
B.两边成一直线的角是平角
C.一条射线是一个周角
D.平角是一条直线
3. 四点这一时刻,分针和时针的夹角是( )
A.70° B.75° C.90° D.120°
A、 B、 C、 D、
4.下列说法中正确的有()
①由两条射线组成的图形叫做角②角的大小与边的长短无关,只与两条边张开的角度有关③角的两边是两条射线④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍
A、1个
B、2个
C、3个
D、4个
5. 下图中表示∠ABC的是()
二、填空题(每小题8分,共40分)
6. 如下图,用大写字母表示图中用小写希腊字母标注的角,则∠α
=__________ ,∠β=___________ ,∠γ=________,∠θ=____________
7. 图中以O为顶点的角有________ 个,它们是___________
8. 如图,有一只蚂蚁从点A出发,按顺时针方向沿图所示的方向爬行,最后又爬回到A点,那么蚂蚁在此过程中共转_________°
9. 下列说法错误的有________
①有公共点的两条射线形成的图形是角②从一点引出的两条射线形成的图形是角③角的大小与两边所画的长度有关④线段绕着一个端点旋转也可以形成角
10. 如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B 处的北偏东60°,求∠ACB是_________度?
三、解答题(共20分)
11. 计算
如图,已知∠1=65°15′,∠2=78°30′,求∠3的度数。

12(1)在∠AOB内部画1条射线OC,则图1中有多少个不同的角;
(2)在∠AOB内部画2条射线OC,OD,则图2中有多少个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有多少个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有多少个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有多少个不同的角.
参考答案
一、选择题
1.B
【解析】A,C,D都符合角的表示方法的要求,B,当角的顶点处只有一个角时,才能用一个字母表示,B说法错误.
故选B
2.B
【解析】A选项,角由两条射线和这两条射线的公共顶点组成;B选项,是正确的,CD选项都混淆了角的概念,角是由两条射线和公共顶点组成。

故选B
3. D
【解析】钟表上,一周360°,四点是120°
故选
4.B
【解析】①错误,有公共端点的两条射线组成的图形才叫角②正确③正确④错误,放大镜下看角,角的度数没有发生变化,正确的有2个
故选B
5.C
【解析】A选项,是表示∠CAB,B选项不是角,C选项正确,D选项是∠ACD
故选C
二、填空题
6.∠A ,∠B,∠ADE ,∠ACF
【解析】考察角的表示方法。

7.5 ∠AOB ∠AOC ∠AOD ∠BOC ∠BOD ∠COD
【解析】数角的时候,先数一条边,再数另外的边,防止重复和漏掉。

8.1080°
【解析】观察图形,可知蚂蚁从出发到回到起点共旋转三个圆圈,
∴360°×3=1080°.
∴蚂蚁在此过程中共转了1080°的角.
9.①③④
【解析】①是有公共顶点的两条射线,②正确③角的大小与两边的长度无关④错误,角是射线
10.90
【解析】根据题意,得
∠BAE=45°,∠CAE=30°,∠DBC=60°,
∴∠BAC=∠BAE+∠CAE
=45°+30°
=75°.
∵AE∥DB,
∴∠DBA=∠BAE=45°,
∴∠ABC=∠DBC-∠DBA
=60°-45°
=15°,
∴∠ACB=180°-∠ABC-∠BAC
=180°-15°-75°
=90°.
故∠ACB为:90°.
三、解答题
11. 解:由图可知,∠1,∠2,∠3构成平角
即∠1+∠2+∠3=180°
所以∠3=180°-(∠1+∠2)
∠1+∠2=65°15′+78°30′
=143°45′
所以∠3=180°-143°45′=36°15′
12.解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.
(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.
(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.
(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=
(n+1)(n+2)/2个不同的角.故答案为:(n+1)(n+2)/2。

相关文档
最新文档