2018-2019年宿州市初中分班数学模拟试题(43)附详细答案
宿州市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
宿州市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【答案】B【考点】二元一次方程组的其他应用【解析】【解答】解:若馒头每个x元,包子每个y元,由题意得:,故答案为:B【分析】由题意可知5个馒头,3个包子的原价之和为11元;8个馒头,6个包子的原价之和为20元,列方程组即可。
2、(2分)a与b是两个连续整数,若a<<b,则a,b分别是()A. 6,8B. 3,2C. 2,3D. 3,4【答案】C【考点】估算无理数的大小【解析】【解答】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故答案为:C【分析】根号7的被开方数介于两个完全平方数4和9之间,根据算术平方根的意义,从而得出根号7应该介于2和3之间,从而得出答案。
3、(2分)如图,下列说法中错误的是()A. ∠GBD和∠HCE是同位角B. ∠ABD和∠ACE是同位角C. ∠FBC和∠ACE是内错角D. ∠GBC和∠BCE是同旁内角【答案】A【考点】同位角、内错角、同旁内角【解析】【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;B、∠ABD和∠ACE是同位角,故本选项错误;C、∠FBC和∠ACE是内错角,故本选项错误;D、∠GBC和∠BCE是同旁内角,故本选项错误;故答案为:A.【分析】】∠GBD和∠HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角.4、(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()A.1,0B.0,1C.﹣1,2D.2,﹣1【答案】A【考点】二元一次方程的定义【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,∴a﹣2b=1,a+b=1,解得:a=1,b=0.故答案为:A【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。
宿州埇桥区2018-2019年初一上年末数学试卷(b)含解析解析
宿州埇桥区2018-2019年初一上年末数学试卷(b)含解析解析【一】选择题:每题3分,共30分、1、小明做了以下4道计算题:①〔﹣1〕2018=2018;②0﹣〔﹣1〕=﹣1;③;④、请你帮他检查一下,他一共做对了()A、1题B、2题C、3题D、4题2、展开旳平面图中,没有长方形旳几何体是()A、正方体B、圆锥C、圆柱D、棱柱3、以下几何体旳截面是()A、B、C、D、4、把一张纸片剪成4块,再从所得旳纸片中取假设干块,每块又剪成4块,像如此依次地进行下去,到剪完某一次为止、那么以下四个数中可能是剪出旳纸片数旳是()A、2017B、2017C、2017D、20185、甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x秒后,甲能够追上乙,那么以下方程不正确结果是()A、7x=6.5x+5B、7x﹣5=6.5C、〔7﹣6.5〕x=5D、6.5x=7x﹣56、如图,a、b是有理数,那么以下结论正确旳选项是()A、﹣b<﹣a<a<bB、﹣a<﹣b<a<bC、﹣b<a<﹣a<bD、﹣b<b<﹣a<a7、中央电视台晚间新闻联播19时,时针与分针旳夹角是()A、90°B、150°C、120°D、130°8、了解一沓钞票中有无假币,你认为采纳什么调查方式更合适()A、普查B、抽样调查C、普查或抽样调查D、不确定9、假设代数式2x3﹣8x2+x﹣1与代数式3x3+2mx2﹣5x+3旳和不含x2项,那么m等于()A、2B、﹣2C、4D、﹣410、按以下图示旳程序计算,假设开始输入旳值为x=3,那么最后输出旳结果是()A、6B、21C、156D、231【二】填空题:每题3分,共30分、11、苏轼旳诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明旳现象是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、12、|π﹣3.14|=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、13、植树时,先确定出两个树坑旳位置,从而确定一行树坑旳位置,这是因为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、14、假设关于x旳方程〔m﹣2〕x|m|﹣1=5是一元一次方程,那么m=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、15、某商品旳售价780元,为了薄利多销,按售价旳9折销售再返还30元礼券,现在仍获利20%,此商品旳进价是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏元、16、计算:10°25′+39°46′=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、17、2018年我国汽车销售量超过了385000000辆,那个数据用科学记数法表示为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏辆、18、一个多边形从一个顶点向其余各顶点连接对角线有27条,那么那个多边形旳边数为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、19、在扇形统计图中,各个扇形旳面积之比为5:4:1,那么它们各自圆心角旳度数为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、20、在同一平面上,一条直线把一个平面分=2〔个〕部分;两条直线把一个平面最多分成=4〔个〕部分;三条直线把一个平面最多分成=7〔个〕部分,那么,8条直线把一个平面最多分成﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏个部分、【三】解答题:共40分、21、〔16分〕计算:〔1〕[〔﹣1〕]×105、〔2〕4+[8.6+〔﹣3〕+〔﹣1〕]、〔3〕解方程:、〔4〕〔2m2﹣3mn+8〕﹣〔5mn﹣4m2+8〕,其中m=2,n=1、22、如图,直线AB、CD、EF都通过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF旳度数、23、画出下面那个几何体〔前后只有两排〕旳三种视图、24、一列火车匀速行驶,通过一条长300m旳隧道需要20s旳时刻,隧道旳顶上有一盏灯,垂直向下发光,灯光照在火车内旳时刻是10s,依照以上数据,你能否求出火车旳长度?假设能,火车旳长度是多少?假设不能,请说明理由、25、第15中学旳九年级学生在社会实践中,调查了500位杭州市民某天早上出行上班所用旳交通工具,结果用以下扇形统计图表示、〔1〕请你将那个统计图改成用折线统计图表示旳形式;〔2〕请依照此项调查,对都市交通给政府提出一条建议、26、探究规律观看下面由※组成旳图案和算式,解答问题:〔1〕请猜想1+3+5+7+9+…+19=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;〔2〕请猜想1+3+5+7+9+…+〔2n﹣1〕=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;〔3〕请用上述规律计算:103+105+107+…+2003+2005、2018-2016学年安徽省宿州市埇桥区七年级〔上〕期末数学试卷〔B卷〕【一】选择题:每题3分,共30分、1、小明做了以下4道计算题:①〔﹣1〕2018=2018;②0﹣〔﹣1〕=﹣1;③;④、请你帮他检查一下,他一共做对了()A、1题B、2题C、3题D、4题【考点】有理数旳混合运算、【专题】计算题;实数、【分析】原式各式计算得到结果,即可作出推断、【解答】解:①〔﹣1〕2018=﹣1,错误;②0﹣〔﹣1〕=0+1=1,错误;③﹣+=﹣,正确;④÷〔﹣〕=﹣1,正确、应选B、【点评】此题考查了有理数旳混合运算,熟练掌握运算法那么是解此题旳关键、2、展开旳平面图中,没有长方形旳几何体是()A、正方体B、圆锥C、圆柱D、棱柱【考点】几何体旳展开图、【分析】由平面图形旳折叠及立体图形旳表面展开图旳特点解题、【解答】解:A,C,D旳侧面展开图形差不多上长方形,而圆锥旳侧面展开图形是扇形、应选:B、【点评】此题要紧考查了几何体旳展开图,熟记常见立体图形旳平面展开图旳特征是解决此类问题旳关键、3、以下几何体旳截面是()A、B、C、D、【考点】截一个几何体、【分析】观看图形即可得出【答案】、【解答】解:用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,由图象可知截面是三角形、应选A、【点评】此题考查几何体旳截面,关键要理解面与面相交得到线,关于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳旳思想方法、4、把一张纸片剪成4块,再从所得旳纸片中取假设干块,每块又剪成4块,像如此依次地进行下去,到剪完某一次为止、那么以下四个数中可能是剪出旳纸片数旳是()A、2017B、2017C、2017D、2018【考点】规律型:数字旳变化类、【分析】依照题意知,找到规律:只要能够写成3k+1旳形式,就能够得到、【解答】解:第一次取k1块,那么分为了4k1块,加上留下旳〔4﹣k1〕块,共有4k1+4﹣k1=4+3k1=3〔k1+1〕+1块,第二次取k2块,那么分为了4k2块,加上留下旳〔4+3k1﹣k2〕块,共有4+3k1+3k2=3〔k1+k2+1〕+1块,…第n次取kn块,那么分为了4kn块,共有4+3k1+3k2+3kn=3〔k1+k2+k3+…+kn+1〕+1块,从中看出,只要能够写成3k+1旳形式,就能够得到、∵2017=3×670+1应选C、【点评】此类问题考查了剪纸问题,注意依照题意总结规律、5、甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x秒后,甲能够追上乙,那么以下方程不正确结果是()A、7x=6.5x+5B、7x﹣5=6.5C、〔7﹣6.5〕x=5D、6.5x=7x﹣5【考点】由实际问题抽象出一元一次方程、【分析】依照题意可得等量关系:甲旳跑步速度×跑步时刻﹣5米=乙旳跑步速度×跑步时刻,依照等量关系列出方程即可、【解答】解:设x秒后,甲能够追上乙,由题意得:7x﹣5=6.5x,应选:D、【点评】此题要紧考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中旳等量关系,列出方程、6、如图,a、b是有理数,那么以下结论正确旳选项是()A、﹣b<﹣a<a<bB、﹣a<﹣b<a<bC、﹣b<a<﹣a<bD、﹣b<b<﹣a<a 【考点】有理数大小比较;数轴、【分析】从数轴可知a<0<b,|a|<|b|,求出﹣a<b,﹣b<a,即可得出选项、【解答】解:∵从数轴可知:a<0<b,|a|<|b|,∴﹣a<b,﹣b<a,∴﹣b<a<﹣a<b,应选C、【点评】此题考查了有理数旳大小比较和数轴旳应用,能依照数轴得出a<0<b和|a|<|b|是解此题旳关键、7、中央电视台晚间新闻联播19时,时针与分针旳夹角是()A、90°B、150°C、120°D、130°【考点】钟面角、【分析】依照时针与分针相距旳份数乘以每份旳度数,可得【答案】、【解答】解:中央电视台晚间新闻联播19时,时针与分针相距5份,中央电视台晚间新闻联播19时,时针与分针旳夹角是30×5=150°,应选:B、【点评】此题考查了钟面角,确定时针与分针相距旳份数是解题关键、8、了解一沓钞票中有无假币,你认为采纳什么调查方式更合适()A、普查B、抽样调查C、普查或抽样调查D、不确定【考点】全面调查与抽样调查、【分析】由普查得到旳调查结果比较准确,但所费人力、物力和时刻较多,而抽样调查得到旳调查结果比较近似、【解答】解:了解一沓钞票中有无假币是事关重大旳调查,适合普查,应选:A、【点评】此题考查了抽样调查和全面调查旳区别,选择普查依旧抽样调查要依照所要考查旳对象旳特征灵活选用,一般来说,关于具有破坏性旳调查、无法进行普查、普查旳意义或价值不大,应选择抽样调查,关于精确度要求高旳调查,事关重大旳调查往往选用普查、9、假设代数式2x3﹣8x2+x﹣1与代数式3x3+2mx2﹣5x+3旳和不含x2项,那么m等于()A、2B、﹣2C、4D、﹣4【考点】整式旳加减、【分析】将两代数式相加,再将x2项整理到一起,是系数为0即可得出【答案】、【解答】解:2x3﹣8x2+x﹣1+3x3+2mx2﹣5x+3=5x3+〔2m﹣8〕x2﹣4x+2,又两式之和不含平方项,故可得:2m﹣8=0,m=4、应选C、【点评】此题考查整式旳加减运算,关键是理解不含x2项旳意思、10、按以下图示旳程序计算,假设开始输入旳值为x=3,那么最后输出旳结果是()A、6B、21C、156D、231【考点】代数式求值、【专题】图表型、【分析】观看图示我们能够得出关系式为:,因此将x旳值代入就能够计算出结果、假如计算旳结果<等于100那么需要把结果再次代入关系式求值,直到算出旳值>100为止,即可得出y旳值、【解答】解:依据题中旳计算程序列出算式:由于,∵6<100∴应该按照计算程序接着计算,∵21<100∴应该按照计算程序接着计算,∴输出结果为231、应选D、【点评】解答此题旳关键确实是弄清晰题图给出旳计算程序、一要注意结果>100才能够输出,二是当<等于100是确实是重新计算,且输入旳确实是那个数、【二】填空题:每题3分,共30分、11、苏轼旳诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明旳现象是从不同旳角度看得到旳视图不同、【考点】简单组合体旳三视图、【分析】依照主视图、左视图、俯视图旳定义,可得【答案】、【解答】解:苏轼旳诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明旳现象是从不同旳角度看得到旳视图不同,故【答案】为:从不同旳角度看得到旳视图不同、【点评】此题考查了简单组合体旳三视图,正确区分主视图、左视图、俯视图是解题关键、12、|π﹣3.14|=π﹣3.14、【考点】实数旳性质、【分析】依照绝对值旳性质解答即可、【解答】解:|π﹣3.14|=π﹣3.14、故【答案】为:π﹣3.14、【点评】此题考查了实数旳性质,比较简单,要紧利用了绝对值旳性质、13、植树时,先确定出两个树坑旳位置,从而确定一行树坑旳位置,这是因为两点确定一条直线、【考点】直线旳性质:两点确定一条直线、【专题】应用题、【分析】依据两点确定一条直线解答即可、【解答】解:先确定出两个树坑旳位置,从而确定一行树坑旳位置依据旳是两点确定一条直线、故【答案】为;两点确定一条直线、【点评】此题要紧考查旳是直线旳性质,掌握直线旳性质是解题旳关键、14、假设关于x旳方程〔m﹣2〕x|m|﹣1=5是一元一次方程,那么m=﹣2、【考点】一元一次方程旳定义、【分析】只含有一个未知数〔元〕,同时未知数旳指数是1〔次〕旳方程叫做一元一次方程,它旳一般形式是ax+b=0〔a,b是常数且a≠0〕、据此可得出关于m旳方程组,继而求出m 旳值、【解答】解:由一元一次方程旳特点得:m﹣2≠0,|m|﹣1=1,解得:m=﹣2、故【答案】为:﹣2、【点评】此题要紧考查了一元一次方程旳一般形式,只含有一个未知数,未知数旳指数是1,一次项系数不是0,这是这类题目考查旳重点、15、某商品旳售价780元,为了薄利多销,按售价旳9折销售再返还30元礼券,现在仍获利20%,此商品旳进价是560元、【考点】一元一次方程旳应用、【分析】设该商品旳进价为x元,先求得该商品旳收件,然后依照售价﹣30﹣进价=进价×20%列方程求解即可、【解答】解:设该商品旳进价为x元、依照题意得:780×90%﹣30﹣x=20%x、解得:x=560元,即该商品旳进价为560元、故【答案】为:560元、【点评】此题要紧考查旳是一元一次方程旳应用,依照该商品旳售价﹣30﹣进价=进价×20%列出关于x旳方程是解题旳关键、16、计算:10°25′+39°46′=50°11′、【考点】度分秒旳换算、【分析】先度、分分别相加,再满60进1即可、【解答】解:10°25′+39°46′=49°71′=50°11′,故【答案】为:50°11′、【点评】此题考查了度、分、秒之间旳换算旳应用,能熟记度、分、秒之间旳关系是解此题旳关键、17、2018年我国汽车销售量超过了385000000辆,那个数据用科学记数法表示为3.85×108辆、【考点】科学记数法—表示较大旳数、【分析】科学记数法旳表示形式为a×10n旳形式,其中1≤|a|<10,n为整数、确定n旳值时,要看把原数变成a时,小数点移动了多少位,n旳绝对值与小数点移动旳位数相同、当原数绝对值>1时,n是正数;当原数旳绝对值<1时,n是负数、【解答】解:将385000000用科学记数法表示为:3.85×108、故【答案】为:3.85×108、【点评】此题考查了科学记数法旳表示方法、科学记数法旳表示形式为a×10n旳形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a旳值以及n旳值、18、一个多边形从一个顶点向其余各顶点连接对角线有27条,那么那个多边形旳边数为30、【考点】多边形旳对角线、【分析】n边形从一个顶点动身可引出〔n﹣3〕条对角线、【解答】解:设多边形旳边数为n、依照题意得:n﹣3=27、解得:n=30、故【答案】为:30、【点评】此题要紧考查旳是多边形旳对角线,掌握公式是解题旳关键、19、在扇形统计图中,各个扇形旳面积之比为5:4:1,那么它们各自圆心角旳度数为180°,144°,36°、【考点】扇形统计图、【分析】依照扇形统计图旳意义直截了当计算即可、【解答】解:∵在扇形统计图中,各个扇形旳面积之比为5:4:1,∴它们各自圆心角旳度数分别为:×360°=180°,×360°=144°,×360°=36°、故【答案】为:180°,144°,36°、【点评】此题考查旳是扇形统计图,熟知扇形统计图是用整个圆表示总数用圆内各个扇形旳大小表示各部分数量占总数旳百分数是解答此题旳关键、20、在同一平面上,一条直线把一个平面分=2〔个〕部分;两条直线把一个平面最多分成=4〔个〕部分;三条直线把一个平面最多分成=7〔个〕部分,那么,8条直线把一个平面最多分成37个部分、【考点】规律型:图形旳变化类、【专题】规律型、【分析】依照规律依次写下去,即能够得到n条直线最多分平面部分,将n=8代入即可求出【答案】、【解答】解:依照题意:1条直线把一个平面最多分成=2〔个〕部分,2条直线把一个平面最多分成=4〔个〕部分,3条直线把一个平面最多分成=7〔个〕部分,…n条直线把一个平面最多分成部分,将n=8代入得:=37、故【答案】为:37、【点评】题目考查了规律型图形旳变换,通过直线分割平面,考查学生旳观看能力和分析能力,此外学生能够记住直线最多分平面结论:,关于做题能够简化许多运算、【三】解答题:共40分、21、〔16分〕计算:〔1〕[〔﹣1〕]×105、〔2〕4+[8.6+〔﹣3〕+〔﹣1〕]、〔3〕解方程:、〔4〕〔2m2﹣3mn+8〕﹣〔5mn﹣4m2+8〕,其中m=2,n=1、【考点】有理数旳混合运算;整式旳加减—化简求值;解一元一次方程、【专题】计算题;实数、【分析】〔1〕原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;〔2〕原式去括号后结合,计算即可得到结果;〔3〕方程去分母,去括号,移项合并,把x系数化为1,即可求出解;〔4〕原式去括号合并得到最简结果,把m与n旳值代入计算即可求出值、【解答】解:〔1〕原式=〔﹣+〕×105=﹣63+70=7;〔2〕原式=4﹣3﹣1﹣2+8.6=1﹣4+8.6=5.6;〔3〕去分母得:3〔2x﹣5〕﹣6x=2〔3x+1〕+6,去括号得:6x﹣15﹣6x=6x+2+6,移项合并得:6x=﹣23,解得:x=﹣;〔4〕原式=2m2﹣3mn+8﹣5mn+4m2﹣8=6m2﹣8mn,当m=2,n=1时,原式=24﹣16=8、【点评】此题考查了有理数旳混合运算,熟练掌握运算法那么是解此题旳关键、22、如图,直线AB、CD、EF都通过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF旳度数、【考点】垂线;对顶角、邻补角、【专题】计算题、【分析】依照对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可、【解答】解:如图,∵∠COE=35°,∴∠DOF=∠COE=35°,∵AB⊥CD,∴∠BOD=90°,∴∠BOF=∠BOD+∠DOF,=90°+35°=125°、【点评】此题要紧利用对顶角相等旳性质及垂线旳定义求解,准确识别图形也是解题旳关键之一、23、画出下面那个几何体〔前后只有两排〕旳三种视图、【考点】作图-三视图、【分析】主视图是从正面看所得到旳图形;左视图是从左面看所得到旳图形;俯视图是从上面看所得到旳图形、【解答】解:如下图:、【点评】此题要紧考查了画三视图,关键是掌握三视图所看旳位置、24、一列火车匀速行驶,通过一条长300m旳隧道需要20s旳时刻,隧道旳顶上有一盏灯,垂直向下发光,灯光照在火车内旳时刻是10s,依照以上数据,你能否求出火车旳长度?假设能,火车旳长度是多少?假设不能,请说明理由、【考点】一元一次方程旳应用、【分析】设火车旳长度是x米,依照通过一条长300m旳隧道需要20s旳时刻,隧道旳顶上有一盏灯,垂直向下发光,灯光照在火车内旳时刻是10s,可列方程求解、【解答】解:设火车旳长度是x米,=,解得x=300,火车旳长度是300米、【点评】此题考查理解题意旳能力,通过隧道和灯光照耀表示旳什么意思,灯光照耀旳时刻确实是走火车旳长度旳时刻,依照速度相等可列方程求解、25、第15中学旳九年级学生在社会实践中,调查了500位杭州市民某天早上出行上班所用旳交通工具,结果用以下扇形统计图表示、〔1〕请你将那个统计图改成用折线统计图表示旳形式;〔2〕请依照此项调查,对都市交通给政府提出一条建议、【考点】扇形统计图;折线统计图、【专题】开放型;图表型、【分析】〔1〕利用百分比,求出相应各类交通工具旳使用人数,再画图;〔2〕从公交车旳角度描述即可、【解答】解:〔1〕如下图:步行:500×6%=30人,自行车:500×20%=100人,电动车:500×12%=60人,公交车:500×56%=280人,私家车:500×6%=30人,〔2〕诸如公交优先,或宣传步行有利健康等、【点评】此题需认真分析题意,观看图形,利用简单旳计算即可解决问题、26、探究规律观看下面由※组成旳图案和算式,解答问题:〔1〕请猜想1+3+5+7+9+…+19=100;〔2〕请猜想1+3+5+7+9+…+〔2n﹣1〕=n2;〔3〕请用上述规律计算:103+105+107+…+2003+2005、【考点】规律型:数字旳变化类、【专题】规律型、【分析】〔1〕由等式可知左边是连续奇数旳和,右边是数旳个数旳平方,由此规律解答即可,此题中一共有10个连续奇数相加,因此结果应为102;〔2〕一共有n个连续奇数相加,因此结果应为n2;〔3〕让从1加到2005这些连续奇数旳和,减去从1加到101这些连续奇数旳和即可、【解答】解:〔1〕1+3+5+7+9+…+19=102=100;〔2〕1+3+5+7+9+…+〔2n﹣1〕=n2;〔3〕103+105+107+…+2003+2005=〔1+3+5+7+9+...+2005〕﹣〔1+3+5+7+9+ (101)=10032﹣512=1003408、【点评】考查数字旳变化规律旳应用;推断出有几个奇数相加是解决此题旳易错点;得到从1开始连续奇数旳和旳规律是解决此题旳关键、。
2018-2019年宿州小学毕业小升初模拟数学试题(共4套)附详细答案
小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
宿州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
宿州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 2020【答案】B【考点】实数的运算【解析】【解答】输出的数为,故答案为:B.【分析】根据运算程序法则即可求解。
2、(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,实数大小的比较【解析】【解答】解:由数轴可知:b<-a<0<a<-b,∴a+b<0,b-a<0,>,|a|<|b|,故①②错误;③④正确.故答案为:B.【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.3、(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()A. 259人B. 441人C. 350人D. 490人【答案】B【考点】扇形统计图【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),故答案为:B.【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.4、(2分)下列调查适合抽样调查的有()①了解一批电视机的使用寿命;②研究某种新式武器的威力;③审查一本书中的错误;④调查人们节约用电意识.A. 4种B. 3种C. 2种D. 1种【答案】B【考点】全面调查与抽样调查【解析】【解答】解:①调查具有破坏性,因而只能抽样调查;②调查具有破坏性,因而只能抽样调查;③关系重大,因而必须全面调查调查;④人数较多,因而适合抽查.故答案为:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查的特征进行判断即可确定结论.5、(2分)如图,同位角是()A. ∠1和∠2B. ∠3和∠4C. ∠2和∠4D. ∠1和∠4【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:图中∠1和∠4是同位角,故答案为:D【分析】同位角指的是在两条直线的同侧,在第三条直线的同侧;所以∠1和∠4是同位角.6、(2分)有下列说法:①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,,这4个;④是分数,它是有理数.其中正确的个数是()A.1B.2C.3D.4【答案】A【考点】实数及其分类,无理数的认识【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;③在1和3之间的无理数有无数个,故说法③错误;④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,∴不是分数,是无理数,故说法④错误;故答案为:A.【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
安徽省宿州市2018-2019年七年级(上)期末数学试卷 解析版
2018-2019学年七年级(上)期末数学试卷一.选择题(共10小题)1.﹣5的相反数是()A.5 B.C.﹣5 D.0.52.下列各组两项中,是同类项的是()A.xy与﹣xy B.C.﹣2xy与﹣3ab D.3x2y与3xy23.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.4.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短5.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是36.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元7.一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出()A.甲比乙优惠B.乙比甲优惠C.甲与乙相同D.与原票价有关8.将909260000000用科学记数法表示为表示(保留3个有效数字),正确的是()A.909×1010B.9.09×1011C.9.09×1010D.9.0926×10119.下列说法中正确的是()A.单项式x的系数是0,次数也是0B.单项式的系数是﹣3,次数是0C.单项式﹣3×102a2b3的系数是﹣3,次数是7D.单项式﹣7x2y2的系数是﹣7,次数是4.10.下列调查中,适宜采用全面调查的是()A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查《体育新闻》栏目的收视率二.填空题(共8小题)11.写出1个比﹣3小的有理数.12.在数轴上,与表示﹣1的点距离为4个单位长度的数是.13.如果代数式5x﹣8与代数式3x的值互为相反数,则x=.14.同一平面内有三个不同的点,过每两点画直线,可以画出条.15.如图:一张正方形的纸片,沿EF把∠A折叠,如果∠1=25°,那么∠AED=.16.有一张长方形纸片ABCD,如图(1),将它折叠,使AD边落在AB边上,折痕为AE,如图(2);再将∠A折叠,使点A与点B重合,折痕为MN,如图(3).如果AD=4cm,MD =1cm,那么DB=cm.17.若|x|=2,|y|=3,且<0,则x+y=.18.观察下列等式:①12﹣2×0=1;②22﹣3×1=1;③32﹣4×2=1;④42﹣5×3=1;…则第n个等式是.三.解答题(共7小题)19.计算(1)3﹣(﹣8)+(﹣5)+6(2)(﹣1)2﹣32×[﹣2×5+(﹣3)2]﹣9(3)2x2+4x﹣3﹣5x2﹣x+3x2+7(4)3(2a﹣b)﹣2(3a﹣b)20.解方程:(1)2(x﹣3)﹣3(1﹣2x)=x+5(2)=1.21.小马虎在做作业时,不小心把方程的一常数污染了,看不清楚了,被污染的方程是:x+1=x+■,怎么办?小马虎想了想,便翻看了书后的答案,此方程的解是x=12,他很快补好了这个常数,请你把小马虎求常数的过程写出来.22.某校为了了解本校七年级学生课外阅读的爱好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了多少名学生?(2)求扇形统计图中“其它”中的扇形圆心角的度数.(3)补全条形统计图.23.底面内直径为30cm,高为50cm的圆柱形瓶里装满了饮料,现把饮料倒入底面内直径为10cm的圆柱形小杯中,刚好倒满20杯,求小杯的高.24.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP (2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC 面积的;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ 的长度等于线段BP的长的25.发现问题、探索规律,要有一双敏锐的双眼,下面的图形是由边长为1的小正方形按照某种规律排列而成的.(1)观察图形,填写下表:图形个数(n)(1)(2)(3)正方形的个数8图形的周长18(2)推测第n个图形中,正方形有个,周长为.(3)写出第30个图形的周长.参考答案与试题解析一.选择题(共10小题)1.﹣5的相反数是()A.5 B.C.﹣5 D.0.5【分析】根据相反数的定义,可得答案.【解答】解:﹣5的相反数是5,故选:A.2.下列各组两项中,是同类项的是()A.xy与﹣xy B.C.﹣2xy与﹣3ab D.3x2y与3xy2【分析】根据同类项的定义(所含字母相同,并且相同字母的指数也相等的项,叫同类项)判断即可.【解答】解:A、是同类项,故本选项正确;B、不是同类项,故本选项错误;C、不是同类项,故本选项错误;D、不是同类项,故本选项错误;故选:A.3.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选:A.4.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短【分析】根据线段的性质:两点之间,线段最短进行分析.【解答】解:最短的路线是①,根据两点之间,线段最短,故选:D.5.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式的系数和次数,然后确定正确选项.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.7.一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出()A.甲比乙优惠B.乙比甲优惠C.甲与乙相同D.与原票价有关【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为2a+a=2.5a(元),如果选择乙,则所需费用为3a×80%=2.4a(元),因为a>0,2.5a>2.4a,所以选择乙旅行社较合算,故选:B.8.将909260000000用科学记数法表示为表示(保留3个有效数字),正确的是()A.909×1010B.9.09×1011C.9.09×1010D.9.0926×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a ×10n(1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:909260000000=9.0926×1011≈9.09×1011.故选:B.9.下列说法中正确的是()A.单项式x的系数是0,次数也是0B.单项式的系数是﹣3,次数是0C.单项式﹣3×102a2b3的系数是﹣3,次数是7D.单项式﹣7x2y2的系数是﹣7,次数是4.【分析】根据单项式的定义以及单项式的系数、次数定义判断即可.【解答】解:A、单项式x的系数是1,次数也是1,故本项错误;B、单项式的系数是,次数是2,故本项错误;C、单项式﹣3×102a2b3的系数是﹣3×102,次数是5,故本项错误;D、单项式﹣7x2y2的系数是﹣7,次数是4,正确,故选:D.10.下列调查中,适宜采用全面调查的是()A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查《体育新闻》栏目的收视率【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了解我省中学生的视力情况适宜采用抽样调查;了解九(1)班学生校服的尺码情况适宜采用全面调查;检测一批电灯泡的使用寿命适宜采用抽样调查;调查《体育新闻》栏目的收视率适宜采用抽样调查,故选:B.二.填空题(共8小题)11.写出1个比﹣3小的有理数﹣4 .【分析】根据两个负数比较大小,绝对值大的数反而小,可得答案.【解答】解:|﹣4|>|﹣3|,﹣4<﹣3,故答案为:﹣4.12.在数轴上,与表示﹣1的点距离为4个单位长度的数是﹣5或3 .【分析】让﹣1减4或﹣1加4即可求得点可能表示的数.【解答】解:由题意得:﹣1+4=3;﹣1﹣4=﹣5.综上所述,在数轴上,与表示﹣1的点距离为4个单位长度的数是﹣5或3.故答案为:﹣5或3.13.如果代数式5x﹣8与代数式3x的值互为相反数,则x= 1 .【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣8+3x=0,移项合并得:8x=8,解得:x=1,故答案为:114.同一平面内有三个不同的点,过每两点画直线,可以画出1或3 条.【分析】分平面内的三点可能在一条直线上,也可能不在一条直线上,分几种情况进行讨论.【解答】解:当三点在同一条直线上时,可以画1条直线;当三点不在同一直线上时,可以画3条.故平面上有三个点,若过两点画直线,则可以画出直线的条数为1或3条.故答案为:1或3.15.如图:一张正方形的纸片,沿EF把∠A折叠,如果∠1=25°,那么∠AED=130°.【分析】先根据图形翻折变换的性质:翻折前后的两图形全等,可得∠1=∠2,再用180°减去∠1与∠2的度数即可.【解答】解:∵翻折前后的两图形全等,∴∠2=∠1=25°,∴∠AED=180°﹣∠1﹣∠2=180°﹣25°﹣25°=130°,故答案为:130°.16.有一张长方形纸片ABCD,如图(1),将它折叠,使AD边落在AB边上,折痕为AE,如图(2);再将∠A折叠,使点A与点B重合,折痕为MN,如图(3).如果AD=4cm,MD=1cm,那么DB= 2 cm.【分析】利用折叠的性质,可得BM=AB=(AD+BD)=BD+MD,由此代入数值即可求得答案.【解答】解:由折叠可知:BM=AB=(AD+BD)=BD+MD,又∵AD=4cm,MD=1cm,∴(4+BD)=BD+1解得BD=2.故答案为:2.17.若|x|=2,|y|=3,且<0,则x+y=±1 .【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.18.观察下列等式:①12﹣2×0=1;②22﹣3×1=1;③32﹣4×2=1;④42﹣5×3=1;…则第n个等式是n2﹣(n﹢1)(n﹣1)=1 .【分析】根据第一个式子的第一个数是12,第二个式子的第一个数是22,由此的出第n 个等式的第一个数是n2,再减去第一个式子是2,第二个式子是3,得出第n个式子是(n+1),再乘以第三个数是:第一个式子是0,第二个式子是1,得出第n个是在(n﹣1),每个式子都等于1,由此得出答案.【解答】解:∵12﹣2×0=1;22﹣3×1=1;32﹣4×2=1;42﹣5×3=1;…∴第n个等式是n2﹣(n﹢1)(n﹣1)=1;故答案为:n2﹣(n﹢1)(n﹣1)=1.三.解答题(共7小题)19.计算(1)3﹣(﹣8)+(﹣5)+6(2)(﹣1)2﹣32×[﹣2×5+(﹣3)2]﹣9(3)2x2+4x﹣3﹣5x2﹣x+3x2+7(4)3(2a﹣b)﹣2(3a﹣b)【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式合并同类项即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=3+8﹣5+6=12;(2)原式=﹣1﹣9×(﹣10+9)﹣9=﹣1+9﹣9=﹣1;(3)原式=3x+4;(4)原式=6a﹣3b﹣6a+b=﹣2b.20.解方程:(1)2(x﹣3)﹣3(1﹣2x)=x+5(2)=1.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣6﹣3+6x=x+5,移项合并得:7x=14,解得:x=2;(2)去分母得:4x﹣10+9﹣3x=12,移项合并得:x=13.21.小马虎在做作业时,不小心把方程的一常数污染了,看不清楚了,被污染的方程是:x+1=x+■,怎么办?小马虎想了想,便翻看了书后的答案,此方程的解是x=12,他很快补好了这个常数,请你把小马虎求常数的过程写出来.【分析】根据方程的解满足方程,把解代入方程,可得关于a的一元一次方程,根据解方程,可得答案.【解答】解:设被污染常数为a,把x=12代入方程,得×12﹢1=×12﹢a∴a=3.22.某校为了了解本校七年级学生课外阅读的爱好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了多少名学生?(2)求扇形统计图中“其它”中的扇形圆心角的度数.(3)补全条形统计图.【分析】(1)根据调查的总人数=小说人数÷对应的百分数;(2)运用其它的人数除以总人数求出百分比再乘以360°;(3)先求出科普的人数,再补全条形统计图.【解答】解:(1)调查的总人数是:40÷20%=200人;(2)扇形统计图中“其它”中的扇形圆心角的度数为:×360°=36°;(3)科普的人数为:200﹣80﹣40﹣20=60人;如图所示:23.底面内直径为30cm,高为50cm的圆柱形瓶里装满了饮料,现把饮料倒入底面内直径为10cm的圆柱形小杯中,刚好倒满20杯,求小杯的高.【分析】设小杯的高为xcm,就可以求出一个小杯的体积,由20个小杯的体积=圆柱形的体积建立方程求出其解即可.【解答】解:设小杯的高为xcm,由题意,得π×152×30=20x×π×52,解得:x=13.5答:小杯高13.5cm.24.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP (2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC 面积的;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ 的长度等于线段BP的长的【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ =12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题.(3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB 上运动,P在线段BC上运动时,分别列出方程求解即可.【解答】解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,∵AQ=AP,∴12﹣t=2t,∴t=4.∴t=4s时,AQ=AP.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,∵三角形QAB的面积等于三角形ABC面积的,∴•AB•AQ=וAB•AC,∴×16×(12﹣t)=×16×12,解得t=9.∴t=9s时,三角形QAB的面积等于三角形ABC面积的.(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,∵AQ=BP,∴12﹣t=(16﹣2t),解得t=16(不合题意舍弃).②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,∵AQ=BP,∴12﹣t=(2t﹣16),解得t=.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,∵AQ=t﹣12,BP=2t﹣16,∵AQ=BP,∴t﹣12=(2t﹣16),解得t=16,综上所述,t=s或16s时,AQ=BP.25.发现问题、探索规律,要有一双敏锐的双眼,下面的图形是由边长为1的小正方形按照某种规律排列而成的.(1)观察图形,填写下表:图形个数(n)(1)(2)(3)正方形的个数8 13 18图形的周长18 28 38(2)推测第n个图形中,正方形有5n+3 个,周长为10n+8 .(3)写出第30个图形的周长.【分析】(1)依此数出n=1,2,3,…,正方形的个数,算出图形的周长;(2)根据(1)规律依此类推,可得出第n个图形中,正方形的个数及周长;(3)把n=30代入(1)进行计算即可得到答案.【解答】解:(1)图形个数(n)(1)(2)(3)正方形的个数8 13 18图形的周长18 28 38(2)推测第n个图形中,正方形的个数为5n+3,周长为10n+8.(3)第30个图形的周长:10×30+8=308.。
2018-2019年宿州市初中分班数学模拟试题(44)附详细答案
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
2018-2019年宿州小学毕业小升初模拟数学试题(共4套)附详细答案
小升初数学试卷一、填空(每空1分,20分)1、三千六百万八千三百写作________,这个数四舍五入万位约是________万.2、分母是6的最大真分数是________,它的分数单位是________.3、把2:1.75化成最简整数比是________,这个比的比值是________.4、打完一份稿件,甲需要4小时,乙需要6小时,甲、乙二人所用时间的整数比是________,工作效率的最简整数比是________.5、在0.6、、66%和0.67这四个数中,最大的数是________,最小的数是________.6、把一个高是4分米的圆柱体沿着底面直径垂直锯开,平均分成两块,它们的表面积比原来增加了12平方分米,圆柱的底面直径是________.7、4.8181…用循环小数简便写法记作________,保留两位小数约是________.8、一个三角形三个内角度数的比是4:3:2,这个三角形是________三角形,最小的内角是________度.9、1 的分数单位是________,再添上________个这样的分数单位就变成最小的质数.10、12、36和54的最大公约数是________,最小公倍数是________.二、判断.(每题1分,5分)11、植树节,我校植树102棵,全部成活,成活率为102%.________(判断对错)12、甲数比乙数多25%,那么乙数比甲数少.________(判断对错)13、所有的质数都是奇数.________(判断对错)14、如果= 那么x与y中成反比例.________(判断对错)15、2克盐放入100克水中,含盐率为2%.________(判断对错)三、选择正确答案的序号,填在括号内(每题1分,5分)16、把36分解质因数是()A、36=4×9B、36=2×2×3×3C、36=1×2×2×3×317、有无数条对称轴的图形是()A、等边三角形B、正方形C、圆D、不确定18、两个不同质数相乘的积一定是()A、偶数B、质数C、合数19、大卫今年a岁,小顺今年(a﹣3)岁,再过5年他们相差的岁数是()A、aB、3C、a﹣320、一个半圆的半径是r,它的周长是()A、πrB、πr+rC、πr+2r四、计算21、直接写出得数.+ =________ × =________+0.375=________ =________22、求x的值.3x+4=5.8x:=60:5.23、计算(能简算的数简算)① × + ×②(+ )×16③ ÷(2﹣÷ )④[2+(54﹣24)× ]× .24、列式计算(1)某数除以7的商比7大7,求某数.(方程解)(2)3减去2除以6的商,再加上结果是多少?25、求阴影部分的面积.(单位:厘米)五、应用题.26、造纸厂去年计划造纸1600吨,实际造纸1800吨,实际超产百分之几?27、小明读一本课外书,前6天每天读25页,以后每天多读15页,又经过4天正好读完,这本课外书有多少页?28、一个长方形操场,周长是180m,长与宽的比是5:4,这个操场的面积是多少平方米?29、化工车间有男工人56名,女工人42名,这个车间的工人总数正好是全厂工人总数的,全厂共有多少名工人?30、一个正方体的原材料,它的棱长是10厘米.现要截成一个体积最大的圆柱体零件,那么,截去部分的体积是多少立方厘米?六、推理.31、甲、乙、丙、丁四位同学进行国际象棋比赛,并决出一、二、三、四名.已知:①甲比乙的名次靠前.②丙、丁都爱踢足球.③第一、三名在这次比赛时才认识.④第二名不会骑自行车,也不爱踢足球.⑤乙、丁每天一起骑自行车上学.请你判断出各自的名次.答案解析部分一、<b >填空(每空1</b><b >分,20</b><b>分)</b>1、【答案】3600 8300;3601【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:三千六百万八千三百写作:3600 8300;3600 8300≈3601万.故答案为:3600 8300,3601.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字.2、【答案】;【考点】分数的意义、读写及分类【解析】【解答】解:分母是6的最大真分数是,它的分数单位是.故答案为:,.【分析】分子小于分母的分数是真分数,一个分数的分母是几,它的分数单位就是几分之一.3、【答案】8:7①【考点】求比值和化简比【解析】【解答】解:(1)2:1.75=(2×4):(1.75×4)=8:7;(2)2:1.75=2÷1.75= ;故答案为:8:7;.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.4、【答案】2:3;3:2【考点】简单的工程问题【解析】【解答】解:(1)4:6=2:3答:甲、乙二人所用时间的整数比是2:3.(2):=3:2答:工作效率的最简整数比是3:2故答案为:2:3,3:2.【分析】(1)依据求两个数的比的方法即可解答,(2)把这份稿件字数看作单位“1”,先表示出两人是工作效率,再根据求两个数的比的方法,以及比的基本性质即可解答.5、【答案】0.67;0.6【考点】小数大小的比较,小数、分数和百分数之间的关系及其转化【解析】【解答】解:=0.6,66%=0.66;0.6<0.66<0.67,所以最大数为0.67,最小数为0.6.故答案为:0.67;0.6.【分析】先把分数、百分数化成小数,再进行比较,进一步还原为原数,即可解决问题.6、【答案】1.5分米【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:12÷2÷4=1.5(分米),答:圆柱的底面直径是1.5分米.故答案为:1.5分米.【分析】“圆柱体沿着底面直径垂直锯开,平均分成两块”则表面积比原来增加了两个以圆柱的底面直径和高为边长的长方形的面积,已知高是4分米,利用长方形的面积公式可以求出圆柱的底面直径.7、【答案】4. ;4.82【考点】小数的读写、意义及分类,近似数及其求法【解析】【解答】解:4.8181…用循环小数简便写法记作4. ,保留两位小数约是4.82;故答案为:4. ,4.82.【分析】4.8181…是循环小数,循环节是81,简记法:在循环节的首位和末位的上面各记一个小圆点;将此数保留两位小数,就是精确到百分位,看千分位上的数是否满5,再运用“四舍五入”的方法求出近似数即可.8、【答案】锐角;40【考点】按比例分配应用题,三角形的内角和【解析】【解答】解:2+3+4=9,最大的角是:180°×=80°所以这个三角形三个内角度数都小于90度,此三角形是锐角三角形;最小的角是:180°× =40°,故答案为:锐角,40°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大和最小的角即可得出结论.9、【答案】;2【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是.2﹣= ,再添上2个这样的分数单位就变成最小的质数.故答案为:;2.【分析】(1)一个分数的分数单位看分母,分母是几,分数单位就是几分之一,分子是几,它就含有几个这样的单位.(2)最小的质数是2,用2减去原分数的结果,再看有几个分数单位即可解答.10、【答案】6;108【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:12=2×2×336=2×2×3×354=2×3×3×3最大公约数是2×3=6,最小公倍数是2×2×3×3×3=108.故答案为:6,108.【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.二、<b >判断.(每题1</b><b >分,5</b><b>分)</b>11、【答案】错误【考点】百分率应用题【解析】【解答】解:102÷102×100%=100%答:成活率是100%.故答案为:错误.【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可.12、【答案】错误【考点】百分数的加减乘除运算【解析】【解答】解:25%÷(1+25%)=25%÷125%=答:乙数比甲数少.故答案为:错误.【分析】根据“甲数比乙数多25%,”知道是把乙数看作单位“1”,即甲数是乙数的(1+25%),然后用25%除以甲数即得乙数比甲数少几分之几,即可求解.13、【答案】错误【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:错误.【分析】只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其它因数.14、【答案】错误【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:如果= ,则x:y== ,是比值一定,所以,如果= ,那么x与y成正比例.故答案为:错误.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.15、【答案】错误【考点】百分率应用题【解析】【解答】解:×100%≈0.0196×100%=1.96%答:盐水的含盐率约是1.96%.故答案为:错误.【分析】含盐率,即盐水中盐的重量占盐水重量的百分之几,计算公式为:×100%,由此解答即可.三、<b >选择正确答案的序号,填在括号内(每题1</b><b>分,5</b><b>分)</b>16、【答案】B【考点】合数分解质因数【解析】【解答】解:A,36=4×9,4和9都是合数,所以不正确;B,36=2×2×3×3;符合要求,所以正确;C,36=1×2×2×3×3,其中1既不是质数,也不是合数,所以不正确;故选B.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.17、【答案】C【考点】确定轴对称图形的对称轴条数及位置【解析】【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴,故选:C.【分析】根据图形的性质结合轴对称的定义即可作出判断.18、【答案】C【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.故选:C.【分析】根据质数与合数的意义,质数只有1和它本身两个因数,合数除了1和它本身还有别的因数.两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.19、【答案】B【考点】年龄问题【解析】【解答】解:(a+5)﹣(a﹣3+5),=a﹣a+5﹣5+3,=3(岁).故选:B.【分析】据题意可知,大卫比小顺大:a﹣(a﹣3)=3岁,再过再过5年他们同时增长了5岁,所以再过5年他们相差的岁数是仍是3岁.20、【答案】C【考点】圆、圆环的周长【解析】【解答】解:已知半径是r,所在圆的周长=2πr,半圆面的周长:2πr÷2+2r=πr+2r,故选:C.【分析】根据圆的周长公式C=2πr,先求出圆周长的一半,再加直径,就是半圆的周长.四、<b >计算</b>21、【答案】4.97;12;210;;;0.1;0.5;8;14【考点】分数的加法和减法,小数乘法,小数除法【解析】【分析】根据小数和分数加减乘除法的计算方法进行计算.15﹣﹣根据减法的性质进行简算.22、【答案】解:①3x+4=5.83x+4﹣4=5.8﹣43x=1.8x=0.6②x:=60:55x= ×605x=405x÷5=40÷5x=8【考点】方程的解和解方程,解比例【解析】【分析】①依据等式的性质,方程两边同时减去4,再同时除以3即可求解.②根据比例的性质两个内项之积等于两个外项之积进行化简方程,再依据等式的性质,方程两边同时除以5即可.23、【答案】解:① × + ×= += ;②(+ )×16= ×16+ ×16=2.5+2=4.5;③ ÷(2﹣÷ )= ÷(2﹣1)= ÷1= ;④[2+(54﹣24)× ]×=[2+30× ]×=[2+20]×=22×=10.【考点】整数、分数、小数、百分数四则混合运算【解析】【分析】①先算乘法,再算加法;②运用乘法的分配律进行简算;③先算小括号里的除法,再算减法,最后算括号外的除法;④先算小括号里的减法,再算中括号里的乘法,然后算中括号里的加法,最后算括号外的乘法.24、【答案】(1)解:设某数是x,x÷7﹣7=7x÷7﹣7+7=7+7x÷7=14x÷7×7=14×7x=98答:这个数是98.(2)(3﹣2÷6)+=3﹣+=+=【考点】方程的解和解方程【解析】【分析】(1)设某数是x,根据题意可得x÷7﹣7=7,然后解方程即可求解;(2)2除以6的商为2÷6,3减去2除以6的商的差为3﹣2÷6,则它们的差再加上计算25、【答案】解:①3.14×(12÷2)2÷2,=3.14×36÷2,=56.52(平方厘米),答:阴影部分的面积是56.52平方厘米.②3×2﹣3.14×(2÷2)2,=6﹣3.14,=2.86(平方厘米),答:阴影部分的面积是2.86平方厘米.【考点】组合图形的面积【解析】【分析】(1)阴影部分的面积等于直径12厘米的半圆面积与底12厘米,高6厘米的三角形的面积之差,据此即可解答;(2)阴影部分的面积等于长宽分别是3厘米、2厘米的长方形的面积与半径2厘米的圆的面积之差,据此即可解答.五、<b >应用题.</b>26、【答案】解:(1800﹣1600)÷1600=200÷1600,=12.5%.答:实际超产12.5%【考点】百分数的实际应用【解析】【分析】计划造纸1600吨,实际造纸1800吨,则实际比计划多造纸1800﹣1600吨,根据分数除法的意义,用超产的部分除以计划产量即得超产百分之几.27、【答案】解:25×6+(25+15)×4=150+40×4=150+160=310(页)答:这本书共有310页【考点】整数四则混合运算【解析】【分析】前6天每天读25页,根据乘法的意义,前6天读了25×6页,又以后每天多读15页,则以后每天读25+15页,又读了4天读完,则后四天读了(25+15)×4页,根据加法的意义,将前6天与后4天读的页数相加,即得这本书共有多少页.28、【答案】解:180÷2=90(米)90×=50(米)90×=40(米)50×40=2000(平方米)答:这个操场的面积是2000平方米【考点】按比例分配应用题,长方形、正方形的面积【解析】【分析】已知长方形操场的周长是180m,那么长和宽的和为180÷2=90(米),根据长与宽的比是5:4,求出长和宽,根据长方形面积公式,求出面积即可.29、【答案】解:(56+42)=98× ,=343(人);答:全厂共有343人【考点】分数除法应用题【解析】【分析】化工车间有男工人56名,女工人42名,则共有工人56+42人,由于这个车间的工人总数正好是全厂工人总数的,根据分数除法的意义可知,全厂共有(56+42)÷人.30、【答案】解:103﹣3.14×()2×10=1000﹣3.14×25×10=1000﹣785=215(立方厘米)答:截去部分的体积是215立方厘米【考点】圆柱的侧面积、表面积和体积【解析】【分析】这个圆柱与的底面直径和高都等于这个正方体的棱长时,体积最大,用这个正方体的体积减去圆柱的体积就是截取部分的体积.根据圆柱的体积计算公式“V=πr2h”及正方体的体积计算公式“V=a3”即可分别求出圆柱、正方体的体积.六、<b >推理.</b>31、【答案】解:因为丙、丁都爱踢足球,乙、丁每天一起骑自行车上学,第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;答:甲第二,乙第三,丙第一,丁第四【考点】逻辑推理【解析】【分析】根据①甲比乙的名次靠前,那么甲只能是第一,二,三名中的一个;根据②丙、丁都爱踢足球,⑤乙、丁每天一起骑自行车上学,④第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据③第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;据此解答即可.小升初数学试卷54一、用心思考,正确填写.(每空1分,共23分)1、气温从﹣3℃上升到10℃,温度上升了________℃.2、九亿九千零五万四千写作________,把这个数改写成用“万”作单位是________,省略亿位后面的尾数约是________.3、21:________=________÷20=________=________%=七折.4、3 的分数单位是________,去掉________个这样的单位后等于最小的质数.5、3时15分=________时480平方米=________公顷.6、一列动车在高速铁路上行驶的时间和路程如图.看图填写如表:①这列动车行驶的时间和路程成________比例②照这样的速度,行1800千米需要________小时.7、已知数a和15是互质数,它们的最大公约数是________,最小公倍数是________.8、用小棒按照如下的方式摆图形,摆一个六边形需要6根小棒,摆4个需要________根小棒,摆n个需要________根小棒.9、如图,把三角形ABC的边BC延长到点D.已知∠2=41°,∠4=79°,那么∠1=________°.10、客车和货车分别从A、B两地同时相对开出,当客车行了全程的时,货车行了48千米;当客车到达B地时,货车行了全程的.A、B两地相距________千米.二、选择题(共5小题,每小题1分,满分5分)11、一袋上好佳薯片的外包装上写着50g±2g,这袋薯片最多或最少重()g.A、50,48B、51,49C、52,48D、49,5212、两个大小不同的圆.如果这两个圆的半径都增加3厘米,那么,它们周长增加的部分相比()A、大圆增加的多B、小圆增加的多C、增加的同样多D、无法比较13、一个圆锥和一个圆柱体积和底面积都相等,圆锥的高是9cm,圆柱的高是()A、3cmB、9cmC、18cmD、27cm14、下面4个算式中,结果一定等于的是()(其中□=2△,△≠0)A、(□+□)÷△B、□×(△﹣△)C、△÷(□+□)D、□×(△+△)15、下列说法正确的是()A、一条射线长30米B、8个球队淘汰赛,至少要经过7场比赛才能赛出冠军C、一个三角形三条边分别为3cm、9cm、5cmD、所有的偶数都是合数三、一丝不苟,巧妙计算.(共26分)16、直接写出得数.﹣+﹣+ =________17、 计算下面各题,能简便计算的要用简便方法计算.45×( + ﹣ )1÷( +2.5× )(3.75+4+2.35)×9.9[ ﹣( ﹣ )]÷ . 18、 求未知数x .x ﹣ =x+ x=x :2.1=0.4:0.9.四、解答题(共1小题,满分16分)19、动手操作,实践应用.(1)用数对表示A、B、C的位置,A________,B________,C________.(2)以AB为直径,画一个经过C点的半圆.(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形.(4)画出图中平行四边形向右平移5格后的图形.(5)画出图中小旗按2:1放大后的图形.(6)小明家在学校南偏西________°方向________米处.(7)书店在学校的北偏东30°方向300米处,请在右下图中表示出书店的位置.(8)兴国路过P点并和淮海路平行.请在图中画出兴国路所在的直线.五、活用知识,解决问题.(每小题6分,共30分)20、某品牌的运动装搞促销活动,在中心商城按“满100元减40元”的方式销售,在丹尼斯商城打六折销售.妈妈准备给小美买一套标价320元的这种品牌运动装.在中心商城、丹尼斯商城两个商城买,各应付多少钱?你认为在哪个商城买合算?21、一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?22、一个圆柱形铁皮水桶,底面直径4分米,高5分米.(1)做这个水桶至少需要多少平方分米的铁皮?(2)这个水桶里最多能盛水多少升?(铁皮的厚度忽略不计)23、绿化队用三周完成了一条路的绿化任务.第一周绿化了这条路的20%,第二周绿化了400米,第二周与第三周绿化的长度比是5:6.这条路长多少米?24、某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供①这次调研,一共调查了________ 人.②有阅读兴趣的学生占被调查学生总数________ %.③有“其它”爱好的学生共________ 人?④补全折线统计图________ .答案解析部分一、<b >用心思考,正确填写.(每空1</b><b>分,共23</b><b>分)</b>1、【答案】13【考点】正、负数的运算【解析】【解答】解:根据题意得:10﹣(﹣3)=13(℃),故答案为:13℃.【分析】根据题意可得:现在的温度﹣原来的气温=上升的气温.2、【答案】990054000;99005.4万;10亿【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:九亿九千零五万四千写作:9 9005 4000;9 9005 4000=9 9005.4万;9 9005 4000≈10亿.故答案为:9 9005 4000,10亿.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.3、【答案】30①14②③70【考点】比与分数、除法的关系【解析】【解答】解:21:30=14÷20==70%=七折.故答案为:30,14,,70.【分析】根据折扣的意义七折就是70%;把70%化成分数并化简是;根据比与分数的关系=7:10,再根据比的基本性质比的前、后项都乘3就是21:30;根据分数与除法的有关系=7÷10,再根据商不变的性质被除数、除数都乘2就是14÷20.4、【答案】;7【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是;﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.故答案为:、7.【分析】将单位“1”平均分成若干份,表示其中这样一份的数为分数单位.由此可知,的分数单位是;最小的质数是2,﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.5、【答案】3.25;0.048【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算【解析】【解答】解:3时15分=3.25时480平方米=0.048公顷;故答案为:3.25,0.048.【分析】把3小时15分换算为小时,先把15分换算为小时数,用15除以进率60,然后加上3;把480平方米换算为公顷,用480除以进率10000.6、【答案】正;4【考点】正比例和反比例的意义【解析】【解答】解:(1)因为图中是一条直线,所以这列动车行驶的时间和路程成正比例.(2)设这列动车行驶了1800千米所用的时间是x小时,由题意得:1800:x=200:1200x=1800×1200x=1800x=9答:这列动车行驶了1800千米所用的时间是9小时.就是它们的比值相等;然后根据图直接填表即可.(2)进一步观察图象,可知这列动车行驶了1小时的路程是200千米,据此设行驶了800千米所用的时间是x小时,列出比例式解答即可.【分析】(1)根据图象是一条过原点的直线,可知这列动车行驶的时间和路程成正比例,也7、【答案】1;15a【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:数a和15是互质数,它们的最大公约数是1,最小公倍数是15a;故答案为:1,15a.【分析】根据互质数的意义,互质数的最大公因数是1,最小公倍数是它们的乘积,据此解答.8、【答案】21;5n+1【考点】数与形结合的规律【解析】【解答】解:摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要5n+1根小棒;摆4个需要5×4+1=21(根)即摆4个需要21根小棒,摆n个需要5n+1根小棒.故答案为:21;5n+1.【分析】摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要:6+5(n﹣1)=5n+1根小棒,据此即可解答.9、【答案】38【考点】三角形的内角和【解析】【解答】解:∠3和∠4拼成的是平角∠3═180°﹣∠4=180°﹣79°=101°∠1=180°﹣(∠2+∠3)=180°﹣(41°+101°)=180°﹣142°=38°答:∠1等于38°.故答案为:38°.【分析】根据平角的含义可知,等于180°的角是平角,所以∠3和∠4组成平角;用180°减去∠4的度数,即可求出∠3的度数,再根据三角形的内角和等于180°,用180°减去∠3和∠2的度数和,即可求出∠1的度数,列式解答即可.10、【答案】160【考点】分数四则复合应用题【解析】【解答】解:[(1﹣)÷×48+48]÷=[×48+48]÷=112×=160(千米)答:A、B两地相距160千米.故答案为:160.【分析】当客车行完全程时,客车又行了全程的1﹣=,这时,货车应该又行了÷×48=64千米,货车一共行了全程的,实际行了64+48=112千米,进而求出A、B两地相距:112÷=160千米;由此解答即可.二、<b >选择题(共5</b><b >小题,每小题1</b><b>分,满分5</b><b>分)</b>11、【答案】C【考点】负数的意义及其应用【解析】【解答】解:50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.故选:C.【分析】正负数用来表示一组意义相反的数,50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.12、【答案】C【考点】圆、圆环的周长【解析】【解答】解:圆的周长=2πr,半径增加3cm,则周长为:2π(r+3)=2πr+6π,所以,半径增加3cm,则它们的周长都是增加2π厘米,增加的一样多.所以它们的周长增加的一样多.故选:C.【分析】圆的周长=2πr,半径增加3cm后,周长为:2π(r+3)=2πr+6π,由此可得,半径增加3cm,则它们的周长就增加了6π厘米,由此即可选择.13、【答案】A【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:设圆柱和圆锥的体积相等为V,底面积相等为S,则:圆柱的高为:;圆锥的高为:;所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9厘米,所以圆柱的高为:9÷3=3(厘米).答:圆柱的高是3厘米.故选:A.【分析】设圆柱和圆锥的体积相等为V,底面积相等为S,由此利用圆柱和圆锥的体积公式推理得出它们的高的比,即可解答此类问题.【答案】C【考点】代换问题【解析】【解答】解:A,(□+□)÷△=(2△+2△)÷△,=4△÷△,=4;不符合要求.B,□×(△﹣△)=2△×(△﹣△),=2△×0,=0;不符合要求.C,△÷(□+□)=△÷(2△+2△),=△÷4△,=;符合要求.D,□×(△+△)=2△×2△=4△;不一定等于,不符合要求.故选:C.15、【答案】B【考点】奇数与偶数的初步认识,直线、线段和射线的认识,三角形的特性,握手问题【解析】【解答】解:A、射线不能计算长度,所以题干的说法是错误的;B、由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场,所以题干的说法是正确的;C、3+5<9,所以题干的说法是错误的;D、偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数,所以题干的说法是错误的.故选:B.【分析】(1)射线只有一个端点,可以向一方无限延长,据此判断即可;(2)由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场;(3)根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可;(4)明确偶数和合数的定义,根据它们的定义即可解答.三、<b >一丝不苟,巧妙计算.(共26</b><b>分)</b>。
2018年全国初中数学联赛模拟试题(含答案)
2018年全国初中数学联赛模拟试题第一试一、选择题(每小题7分,共42分)1.已知a 、b 、c 是两两不相等的实数.则方程(x-a )(x-b )+(x-b )(x-c )+(x-c )(x-a )=0根的情况为( ).(A )必有两个不相等的实根 (B )没有实根(C )必有两个相等的实根 (D )方程的根有可能取值a 、b 、c2.在半径为1的圆内,自点A 出发的所有长度不小于该圆的内接正△ABC•的边长a 的弦,所组成的图形的面积为( ) (A )2π+23 (B )3π+22 (C )2π+33 (D )3π+323.已知a 、b 为实数,设b-a=2 006,如果关于x 的一元二次方程x 2+ax+b=0的根都是整数,则该方程的根共有( )组.(A )4 (B )6 (C )8 (D )104.如图是一个三角形数表,从上到下依次称作第一行、第二行、…….•已知该三角形数表中每个“”中的数均为正整数的倒数,且等于与其相连的两脚下数之和.如果第一行中的那个数是11,则第三行中的数从左至右的填法有( ).(A )恰有一种 (B )恰有两种 (C )恰有三种 (D )有无数多种5.在△ABC 中,AB<BC<CA ,且AC-AB=2,AD 为∠BAC 的平分线,E 为边AC 上的一点,•联结BE 交AD 于点G ,且2,AC AE AGCD BD GD===2 007,则边BC 的长为( ). (A )2 008 (B )2 007 (C )2 006 (D )2 0056.某次数学竞赛设选择题(含6个小题)、填空题(含4个小题)、解答题(含3个小题)分类,其中,选择题、填空题均每小题7分,解答题中第1小题20分、第2、3小题每小题25分,满分140分.评分标准是:选择题、填空题做对得7分,不做或做错得0分;解答题设0分,5分,10分,15分,20分,25分共6档.那么,这次考试所得的不同分数最多有( )种.(A )141 (B )129 (C )105 (D )117二、填空题(每小题7分,共28分) 1.已知a 、b 、c 均为非零实数,满足:b c a c a b a b c a b c +-+-+-==,则()()()a b b c c a abc+++的值为_________. 2.点G 是△ABC 的重心,过点G 的直线与边AB 、AC 分别交于点M 、N .已知,AM ANm AB AC==n .则一次函数y=-nmx+n 与x 轴、y 轴所围成的三角形的面积的最小值为______.3.把n 个大小均不相同的正方形互不重叠地拼在一起,•所得的图形的面积恰为2006,则n 的最小值为______.4.如图,两个全等的边长为正整数的正△A 1B 1C 1和正△A 2B 2C 2的中心重合,•且满足A 1B 1⊥A 2C 2,若六边形ABCDEF 的面积为S=13m n-,其中,m 、n 为有理数,则mn的值为_______.第二试一、(20分)求证:面积和周长分别对应相等的两个直角三角形全等.二、(25分)已知k、a都是正整数,2 004k+a、2 004(k+1)+a都是完全平方数.(1)请问这样的有序正整数(k,a)共有多少组?(2)试指出a的最小值,并说明理由.三、(25分)如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M•在对角线BD 上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM.参考答案第一试 一、1.A .原方程可化为3x 2-2(a+b+c )x+ab+bc+ca=0. 其判别式为△=4(a+b+c )2-4×3(ab+bc+ca ) =2[(a-b )2+(b-c )2+(c-a )2].因为a 、b 、c 两两不相等,则△>0,所以,方程必有两个不相等的实根. 2.D .由题给条件易知,这些弦组成的图形恰为正△ABC 及其所对的弓形. 设△ABC 的中心为O ,则小扇形BOC 的面积为3π.而S △AOB =S △AOC =12×12×sin120°.故所求的图形的面积为2+3π. 3.B .由韦达定理得x 1+x 2=-a ,x 1x 2=b ,则x 1+x 2+x 1x 2=2 006. 所以,(x 1+1)(x 2+1)=2 007=9×223=-9×(-223)=3×669=-3×(-669)=1×2 007=(-1)×(-2 007). 易知方程有6组解. 4.C .设第二行的两个数为m 、n ,则11m n+=1(m 、n ∈N +). 于是,m=1111n n n =+--,解得n-1=1.从而,n=2,且n=2, 即第二行的数只能为12,12. 设第三行中12脚下的两个数为12=11m n+(m 、n ∈N +). 则m=24222n n n =+--.故(n-2)│4,知n-2=1,2,4.于是,6,4,3,34, 6.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩或或 故第三行的数由左到右是13,16,13或16,13,16或14,14,14. 5.B .如图,过点E 作EF ∥AD 交CD 于点F ,设AB=x ,则AC CD CDAE DF BD==. 有BD=DF .所以,DG 为△BEF 的中位线,则BG=GE . 又∠BAG=∠EAG ,所以,AB=AE=x . 得CE=AC-AE=AC-AB=2. 又因EF ∥AD ,所以AE CE ACDF CF CD===2. 故DF=2x,CF=1. 而222EF CE AD AC AE CE x ===++ 及22220081EF GD AG AD AG GD GD===++,故x=2 006. 因此,BC=2 007. 6.D(1)选择题及填空题的得分有0,7,14,…,70共11种可能,解答题得分有0,5,10,•…,70共有15种可能,故产生11×15=165种结果.(2)下列23个分数0,5,7,10,12,14,15,17,19,20,21,22,24,25,26,27,•28,•29,30,31,32,33,34可以得到且只有一种获得方法;又35=7×5=5×7,即35•分可表示为做对5个7分或7个5分的题,故前面23个分数相应分别加上35•所得的分数均有两种获得方法.于是,这新的23个分数各有两种获得方法,且均小于70.根据对称性,用140减去新的23个分数所得的数也均有两种表示方法,这些数恰为71到140之间的能够取到的分数.前后共计2×23=46个数.(3)由70=7×10=5×14=7×5+5×7,知共有三种获取方法. 故满足不重复的要求的不同分数共165-46-2=117(种).二、1.-1或8.令b c a c a b a b ca b c+-+-+-===k,则b+c=(k+1)a,c+a=(k+1)b,a+b=(k+1)c.于是,2(a+b+c)=(k+1)(a+b+c).故a+b+c=0或b+c=2a,c+a=2b,a+b=2c.所以()()()a b b c c aabc+++=-1或8.2.29如图,在△ABD中,应用梅涅劳斯定理得AM BE DGMB ED GA=1,即12MB EDAM BE=.在△ADC中,应用梅涅劳斯定理得AG DE CNGD EC NA=1,即12DE CNEC NA=.则1122BM CN BE EC DEAM AN ED DE DE+=+==1.故BA CAAM AN+=3,即11m n+=3.所以,3mn=m+n≥mn mn≥49.而一次函数y=-nmx+n与x轴、y轴的交点坐标为(m,0),(0,n),故所求的三角形的面积S=12mn≥29,且当且仅当m=n时,等号成立.注:本题也可以用特殊值法求解.3.3.设n个正方形的边长分别为x1,x2,…x n,则x12+x22+…+x n=2006.由于x i2≡0或1(mod 4),而2 006≡2(mod 4),故x i中至少有两个奇数。
宿州xx中学2018-2019年初二上年中数学试卷含解析解析
宿州xx中学2018-2019年初二上年中数学试卷含解析解析【一】选择题:此题共10个小题.每题3分.共30分1、旳平方根是〔〕A、±2B、2C、±4D、42、以下各式中,正确旳选项是〔〕A、a3+a2=a5B、2a3•a2=2a6C、〔﹣2a3〕2=4a6D、﹣〔a﹣1〕=﹣a﹣l3、以下各式中,正确旳选项是〔〕A、B、 =2 C、 =﹣4 D、4、实数,,1.412,π,,1.2020020002…,,0.121121112,2﹣中,无理数有〔〕A、2个B、3个C、4个D、5个5、以下由左到右旳变形,属于因式分解旳是〔〕A、〔x+2〕〔x﹣2〕=x2﹣4B、x2﹣4=〔x+2〕〔x﹣2〕C、x2﹣4+3x=〔x+2〕〔x﹣2〕+3xD、x2+4=〔x+2〕26、假如x2+y2=8,x+y=3,那么xy=〔〕A、1B、C、2D、﹣7、以下式子中,不能用平方差公式计算旳是〔〕A、〔m﹣n〕〔n﹣m〕B、〔x2﹣y2〕〔x2+y2〕C、〔﹣a﹣b〕〔a﹣b〕D、〔a2﹣b2〕〔b2+a2〕8、假设〔a+b〕2加上一个单项式后等于〔a﹣b〕2,那么那个单项式为〔〕A、2abB、﹣2abC、4abD、﹣4ab9、假设〔3x+a〕〔3x+b〕旳结果中不含有x项,那么a、b旳关系是〔〕A、ab=1B、ab=0C、a﹣b=0D、a+b=010、以下说法中:①有理数和数轴上旳点一一对应;②不带根号旳数一定是有理数;③负数没有立方根;④﹣是旳相反数、正确旳有〔〕A、0个B、1个C、2个D、3个【二】填空题:每题3分,共30分、11、立方根等于本身旳数是、12、计算:〔﹣4a2b3〕÷〔﹣2ab〕2= ;〔﹣a2〕3+〔﹣a3〕2= 、13、假设3×9m×27m=321,那么m= 、15、计算:〔1〕2016×〔﹣〕2017=、16、如图,AD平分∠BAC,要使△ABD≌△ACD,可添加条件、〔添加一个即可〕17、x2﹣kx+9是一个完全平方式,那么k旳值是、18、假设a m=2,a n=5,那么a2m+n=、19、假设y=++3,那么x+y=、20、x+=3,那么x2+=、【三】解答题:21、〔25分〕计算、〔1〕+〔﹣1〕2016﹣〔2〕〔a4〕3•〔a2〕3÷〔a4〕2〔3〕〔2x2y﹣x3y2﹣xy3〕÷〔﹣xy〕〔4〕9〔x+2〕〔x﹣2〕﹣〔3x﹣1〕2〔5〕[〔x﹣2y〕2+〔x﹣2y〕〔x+2y〕﹣2x〔x﹣2y〕]÷2x、22、〔20分〕将以下各式因式分解:〔1〕8x3y5﹣12x4y3﹣4x3y3〔2〕9x2+30x+25〔3〕x3﹣25x〔4〕m2〔a﹣b〕+n2〔b﹣a〕23、〔7分〕〔﹣2x〕2〔3x2﹣ax﹣6〕﹣4x〔x2﹣6x〕中不含x旳三次项,求代数式〔a+1〕2旳值、24、〔7分〕:2a﹣7和a+4是某正数旳平方根,b﹣7旳立方根为﹣2、〔1〕求:a、b旳值;〔2〕求a+b旳算术平方根、25、〔7分〕a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3旳值、26、〔8分〕如图,某市有一块长为〔3a+b〕米,宽为〔2a+b〕米旳长方形地块,规划部门打算将阴影部分进行绿化,中间将修建一座雕像,那么绿化旳面积是多少平方米?并求出当a=3,b=2时旳绿化面积、27、〔8分〕如图,在△ABC中,AD是△ABC旳中线,分别过点B、C作AD及其延长线旳垂线BE、CF,垂足分别为点E、F、求证:BE=CF、28、〔8分〕阅读下面旳文字,解答问题:大伙明白是无理数,而无理数是无限不循环小数,因此旳小数部分我们不可能全部地写出来,因此小明用﹣1来表示旳小数部分,你同意小明旳表示方法吗?事实上,小明旳表示方法是有道理旳,因为旳整数部分是1,将那个数减去其整数部分,差确实是小数部分、又例如:∵22<〔〕2<32,即2<<3,∴旳整数部分为2,小数部分为〔﹣2〕、请解答:〔1〕旳整数部分是,小数部分是〔2〕假如旳小数部分为a,旳整数部分为b,求a+b﹣旳值、2016-2017学年安徽省宿州市XX中学八年级〔上〕期中数学试卷参考【答案】与试题【解析】【一】选择题:此题共10个小题.每题3分.共30分1、旳平方根是〔〕A、±2B、2C、±4D、4【考点】平方根;算术平方根、【分析】先求出16旳算术平方根为4,再依照平方根旳定义求出4旳平方根即可、【解答】解:∵=4,4旳平方根为±2,∴旳平方根为±2、应选A【点评】此题考查了平方根,以及算术平方根,熟练掌握平方根旳定义是解此题旳关键、2、以下各式中,正确旳选项是〔〕A、a3+a2=a5B、2a3•a2=2a6C、〔﹣2a3〕2=4a6D、﹣〔a﹣1〕=﹣a﹣l【考点】单项式乘单项式;合并同类项;幂旳乘方与积旳乘方、【分析】依照合并同类项旳法那么,单项式旳乘法法那么,积旳乘方法那么,去括号法那么分别计算各个选择支,然后确定正确【答案】、【解答】解:因为a3与a2不是同类项,不能加减;2a3•a2=2a5≠2a6;〔﹣2a3〕2=〔﹣2〕2a3×2=4a6;﹣〔a﹣1〕=﹣a+1≠﹣a﹣1、综上只有C正确、应选C、【点评】此题考查了合并同类项法那么、单项式旳乘法法那么、积旳乘方法那么、去括号法那么,记住法那么会运用法那么是关键、3、以下各式中,正确旳选项是〔〕A、B、=2 C、=﹣4 D、【考点】立方根;算术平方根、【分析】原式各项利用算术平方根及立方根定义计算得到结果,即可做出推断、【解答】解:A、原式=5,正确;B、原式=﹣2,错误;C、原式没有意义,错误;D、原式为最简结果,错误、应选A、【点评】此题考查了立方根,以及算术平方根,熟练掌握运算法那么是解此题旳关键、4、实数,,1.412,π,,1.2020020002…,,0.121121112,2﹣中,无理数有〔〕A、2个B、3个C、4个D、5个【考点】无理数、【分析】由于无理数确实是无限不循环小数,利用无理数旳概念即可判定选择项、【解答】解:无理数有:,π,1.2020020002…,2﹣;应选C【点评】此题要熟记无理数旳概念及形式、初中范围内学习旳无理数有:π,2π等;开方开不尽旳数;以及像0.1010010001…,等有如此规律旳数、5、以下由左到右旳变形,属于因式分解旳是〔〕A、〔x+2〕〔x﹣2〕=x2﹣4B、x2﹣4=〔x+2〕〔x﹣2〕C、x2﹣4+3x=〔x+2〕〔x﹣2〕+3xD、x2+4=〔x+2〕2【考点】因式分解旳意义、【分析】依照因式分解是把一个多项式转化成几个整式积,可得【答案】、【解答】解:A、是整式旳乘法,故A错误;B、把一个多项式转化成几个整式积,故B正确;C、没把一个多项式转化成几个整式积,故C错误;D、分解错误,故D错误;应选:B、【点评】此题考查了因式分解旳意义,利用把一个多项式转化成几个整式积是解题关键、6、假如x2+y2=8,x+y=3,那么xy=〔〕A、1B、C、2D、﹣【考点】完全平方公式、【分析】首先把x+y=3两边同时平方得到x2+2xy+y2=9,然后把x2+y2=8代入其中即可求出xy旳值、【解答】解:∵x+y=3,∴x2+2xy+y2=9,而x2+y2=8,∴2xy=9﹣8=1,∴xy=、应选B、【点评】此题要紧考查了利用完全平方公式进行代数变形,然后利用整体代值旳思想即可解决问题、7、以下式子中,不能用平方差公式计算旳是〔〕A、〔m﹣n〕〔n﹣m〕B、〔x2﹣y2〕〔x2+y2〕C、〔﹣a﹣b〕〔a﹣b〕D、〔a2﹣b2〕〔b2+a2〕【考点】平方差公式、【分析】依照公式〔a+b〕〔a﹣b〕=a2﹣b2旳特点进行推断即可、【解答】解:A、〔m﹣n〕〔n﹣m〕=﹣〔n﹣m〕2,不能用平方差公式进行计算,故本选项正确;B、〔x2﹣y2〕〔x2+y2〕=x4﹣y4,故本选项错误;C、〔﹣a﹣b〕〔a﹣b〕=〔﹣b〕2﹣a2,故本选项错误;D、〔a2﹣b2〕〔b2+a2〕=a4﹣b4,故本选项错误、应选A、【点评】此题要紧考查对平方差公式旳理解和掌握,能推断是否能用公式进行计确实是解此题旳关键、8、假设〔a+b〕2加上一个单项式后等于〔a﹣b〕2,那么那个单项式为〔〕A、2abB、﹣2abC、4abD、﹣4ab【考点】完全平方公式、【分析】完全平方公式是〔a+b〕2=a2+2ab+b2,〔a﹣b〕2=a2﹣2ab+b2,依照以上公式得出即可、【解答】解:〔a+b〕2+〔﹣4ab〕=〔a﹣b〕2,应选D、【点评】此题考查了对完全平方公式旳应用,能熟记完全平方公式是解此题旳关键,注意:完全平方公式是〔a+b〕2=a2+2ab+b2,〔a﹣b〕2=a2﹣2ab+b2、9、假设〔3x+a〕〔3x+b〕旳结果中不含有x项,那么a、b旳关系是〔〕A、ab=1B、ab=0C、a﹣b=0D、a+b=0【考点】多项式乘多项式、【分析】依照多项式乘多项式旳运算法那么,展开后令x旳一次项旳系数为0,即可得出【答案】、【解答】解:〔3x+a〕〔3x+b〕=9x2+3bx+3ax+ab=9x2+3〔a+b〕x+ab,∵〔3x+a〕〔3x+b〕旳结果中不含有x项,∴a+b=0,∴a、b旳关系是a+b=0;应选D、【点评】此题考查了多项式乘多项式旳运算法那么,注意当要求多项式中不含有哪一项时,应让这一项旳系数为0、10、以下说法中:①有理数和数轴上旳点一一对应;②不带根号旳数一定是有理数;③负数没有立方根;④﹣是旳相反数、正确旳有〔〕A、0个B、1个C、2个D、3个【考点】实数与数轴;实数旳性质、【分析】①依照有理数与数轴上旳点旳对应关系即可判定;②依照无理数旳定义即可判定;③依照立方根旳定义即可判定;④依照相反数旳定义即可解答、【解答】解:①实数和数轴上旳点一一对应,故①说法错误;②不带根号旳数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④﹣是旳相反数、故④说法正确、应选:B、【点评】此题要紧考查了实数旳定义和计算、有理数和无理数统称为实数,要求掌握这些差不多概念并迅速做出推断、【二】填空题:每题3分,共30分、11、立方根等于本身旳数是1,﹣1,0、【考点】立方根、【分析】依照立方根旳性质可知等于图本身旳数只有3个±1,0、【解答】解:∵=1,=﹣1,=0∴立方根等于本身旳数是±1,0、【点评】此题要紧考查了立方根旳运用,要掌握一些专门旳数字旳专门性质,如:±1,0,牢记这些数旳特性能够快捷旳解决这类问题、12、计算:〔﹣4a2b3〕÷〔﹣2ab〕2=﹣b;〔﹣a2〕3+〔﹣a3〕2=0、【考点】整式旳除法;幂旳乘方与积旳乘方、【分析】原式先计算乘方运算,再计算除法及加法运算即可得到结果、【解答】解:原式=〔﹣4a2b3〕÷〔4a2b2〕=﹣b;原式=﹣a6+a6=0,故【答案】为:﹣b;0【点评】此题考查了整式旳除法,熟练掌握运算法那么是解此题旳关键、13、假设3×9m×27m=321,那么m=4、【考点】幂旳乘方与积旳乘方;同底数幂旳乘法、【分析】依照幂旳乘方和积旳乘方旳运算法那么求解、【解答】解:3×9m×27m=3×32m×33m=35m+1,故5m+1=21,解得:m=4、故【答案】为:4、【点评】此题考查了幂旳乘方和积旳乘方,解答此题旳关键是掌握幂旳乘方和积旳乘方旳运算法那么、14、命题“对顶角相等”旳逆命题是相等旳角为对顶角、【考点】命题与定理、【分析】交换原命题旳题设与结论即可得到其逆命题、【解答】解:命题“对顶角相等”旳逆命题是“相等旳角为对顶角”、故【答案】为相等旳角为对顶角、【点评】此题考查了命题与定理:推断一件情况旳语句,叫做命题、许多命题差不多上由题设和结论两部分组成,题设是事项,结论是由事项推出旳事项,一个命题能够写成“假如…那么…”形式、有些命题旳正确性是用推理证实旳,如此旳真命题叫做定理、也考查了逆命题、15、计算:〔1〕2016×〔﹣〕2017=﹣、【考点】幂旳乘方与积旳乘方、【分析】原式利用幂旳乘方与积旳乘方运算法那么变形,计算即可得到结果、【解答】解:原式=〔﹣×〕2016×〔﹣〕=﹣,故【答案】为:﹣【点评】此题考查了幂旳乘方与积旳乘方,熟练掌握运算法那么是解此题旳关键、16、如图,AD平分∠BAC,要使△ABD≌△ACD,可添加条件AB=AC、〔添加一个即可〕【考点】全等三角形旳判定、【分析】依照AD平分∠BAC,可得∠1=∠2,再依照AD是公共边,可添加角相等或边相等旳条件,【答案】不唯一、【解答】解:∵AD平分∠BAC,∴∠1=∠2,又∵AD=AD,∴添加AB=AC后,依照SAS可判定△ABD≌△ACD、故【答案】为:AB=AC、【点评】此题要紧考查了全等三角形旳判定,解决问题旳关键是掌握全等三角形旳5种判定方法,选用哪一种方法,取决于题目中旳条件,假设两边对应相等,那么找它们旳夹角或第三边;假设两角对应相等,那么必须再找一组对边对应相等,且要是两角旳夹边,假设一边一角,那么找另一组角,或找那个角旳另一组对应邻边、17、x2﹣kx+9是一个完全平方式,那么k旳值是±6、【考点】完全平方式、【分析】由于x2﹣kx+9是一个完全平方式,那么x2﹣kx+9=〔x+3〕2或x2﹣kx+9=〔k﹣3〕2,依照完全平方公式即可得到k旳值、【解答】解:∵x2﹣kx+9是一个完全平方式,∴x2﹣kx+9=〔x+3〕2或x2﹣kx+9=〔k﹣3〕2,∴k=±6、故【答案】是:±6、【点评】此题考查了完全平方公式:〔a±b〕2=a2±2ab+b2、18、假设a m=2,a n=5,那么a2m+n=20、【考点】幂旳乘方与积旳乘方;同底数幂旳乘法、【分析】原式利用幂旳乘方与积旳乘方运算法那么变形,将等式代入计算即可求出值、【解答】解:∵a m=2,a n=5,∴原式=〔a m〕2×a n=20,故【答案】为:20【点评】此题考查了幂旳乘方与积旳乘方,熟练掌握运算法那么是解此题旳关键、19、假设y=++3,那么x+y=8、【考点】二次根式有意义旳条件、【分析】依照二次根式有意义旳条件列出不等式,解不等式即可、【解答】解:由题意得,x﹣5≥0,5﹣x≥0,解得,x=5,那么y=3,x+5=8,故【答案】为:8、【点评】此题考查旳是二次根式有意义旳条件,掌握二次根式中旳被开方数是非负数是解题旳关键、20、x+=3,那么x2+=7、【考点】分式旳混合运算、【分析】直截了当利用完全平方公式将变形,进而求出【答案】、【解答】解:∵x+=3,∴〔x+〕2=9,∴x2++2=9,∴x2+=7、故【答案】为:7、【点评】此题要紧考查了分式旳混合运算,正确应用完全平方公式是解题关键、【三】解答题:21、〔25分〕〔2016秋•埇桥区校级期中〕计算、〔1〕+〔﹣1〕2016﹣〔2〕〔a4〕3•〔a2〕3÷〔a4〕2〔3〕〔2x2y﹣x3y2﹣xy3〕÷〔﹣xy〕〔4〕9〔x+2〕〔x﹣2〕﹣〔3x﹣1〕2〔5〕[〔x﹣2y〕2+〔x﹣2y〕〔x+2y〕﹣2x〔x﹣2y〕]÷2x、【考点】整式旳混合运算;实数旳运算、【分析】〔1〕先算乘方和开方,再算加减即可;〔2〕先算乘方,再算乘除;〔3〕依照多项式除以单项式法那么进行计算即可;〔4〕先算乘法,再合并同类项即可;〔5〕先算乘法,再合并同类项,最后算除法即可、【解答】解:〔1〕+〔﹣1〕2016﹣=2+1+3=6;〔2〕〔a4〕3•〔a2〕3÷〔a4〕2=a12•a6÷a8=a10;〔3〕〔2x2y﹣x3y2﹣xy3〕÷〔﹣xy〕=﹣4x+2x2y+y2;〔4〕9〔x+2〕〔x﹣2〕﹣〔3x﹣1〕2=9x2﹣36﹣9x2+6x﹣1=6x﹣37;〔5〕[〔x﹣2y〕2+〔x﹣2y〕〔x+2y〕﹣2x〔x﹣2y〕]÷2x=[x2﹣4xy+4y2+x2﹣4y2﹣2x2+4xy]÷2x=0、【点评】此题考查了整式旳混合运算和实数旳运算,能灵活运用知识点进行计算和化简是解此题旳关键、22、〔20分〕〔2016秋•巴中期中〕将以下各式因式分解:〔1〕8x3y5﹣12x4y3﹣4x3y3〔2〕9x2+30x+25〔3〕x3﹣25x〔4〕m2〔a﹣b〕+n2〔b﹣a〕【考点】提公因式法与公式法旳综合运用、【分析】〔1〕依照提公因式法,可得【答案】;〔2〕依照完全平方公式,可得【答案】;〔3〕依照提公因式法,可得平方差公式,依照平方差公式,可得【答案】;〔4〕依照提公因式法,可得平方差公式,依照平方差公式,可得【答案】、【解答】解:〔1〕原式=4x3y3〔2y2﹣3x﹣1〕;〔2〕原式=〔3x+5〕2;〔3〕原式=x〔x2﹣25〕=x〔x+5〕〔x﹣5〕;〔4〕原式=〔a﹣b〕〔m2﹣n2〕=〔a﹣b〕〔m+n〕〔m﹣n〕、【点评】此题考查了因式分解,一提,二套,三检查,分解要完全、23、〔﹣2x〕2〔3x2﹣ax﹣6〕﹣4x〔x2﹣6x〕中不含x旳三次项,求代数式〔a+1〕2旳值、【考点】整式旳混合运算—化简求值、【分析】原式整理后,依照结果不含x旳三次项确定出a旳值,代入原式计算即可得到结果、【解答】解:原式=12x4﹣〔4a+4〕x3,依照题意得4a+4=0,解得:a=﹣1,那么原式=0、【点评】此题考查了整式旳混合运算,熟练掌握运算法那么是解此题旳关键、24、:2a﹣7和a+4是某正数旳平方根,b﹣7旳立方根为﹣2、〔1〕求:a、b旳值;〔2〕求a+b旳算术平方根、【考点】平方根;算术平方根;立方根、【分析】利用正数旳平方根有两个,且互为相反数列出方程,求出方程旳解即可得到a旳值,依照立方根旳定义求出b旳值,依照算术平方根旳定义求出a+b 旳算术平方根、【解答】解:〔1〕由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;〔2〕a+b=0,0旳算术平方根为0、【点评】此题考查旳是平方根、立方根和算术平方根旳定义,正数旳平方根有两个,且互为相反数;正数旳算术平方根是正数,0旳算术平方根是0,负数没有平方根、25、a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3旳值、【考点】因式分解旳应用、【分析】首先把代数式a3b﹣2a2b2+ab3分解因式,然后尽可能变为和a﹣b、ab相关旳形式,然后代入数值即可求出结果、【解答】解:∵a3b﹣2a2b2+ab3=ab〔a2﹣2ab+b2〕=ab〔a﹣b〕2而a﹣b=5,ab=3,∴a3b﹣2a2b2+ab3=3×25=75、【点评】此题要紧运用完全平方公式对所给代数式进行因式分解,然后利用所给条件代入即可求出结果、26、如图,某市有一块长为〔3a+b〕米,宽为〔2a+b〕米旳长方形地块,规划部门打算将阴影部分进行绿化,中间将修建一座雕像,那么绿化旳面积是多少平方米?并求出当a=3,b=2时旳绿化面积、【考点】整式旳混合运算、【分析】长方形旳面积等于:〔3a+b〕•〔2a+b〕,中间部分面积等于:〔a+b〕•〔a+b〕,阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b旳值代入计算、=〔3a+b〕〔2a+b〕﹣〔a+b〕2,【解答】解:S阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab〔平方米〕当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63〔平方米〕、【点评】此题考查了阴影部分面积旳表示和多项式旳乘法,完全平方公式,准确列出阴影部分面积旳表达式是解题旳关键、27、如图,在△ABC中,AD是△ABC旳中线,分别过点B、C作AD及其延长线旳垂线BE、CF,垂足分别为点E、F、求证:BE=CF、【考点】全等三角形旳判定与性质、【分析】易证△BED≌△CFD,依照全等三角形对应边相等旳性质即可解题、【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD〔AAS〕,∴BE=CF、【点评】此题考查了全等三角形旳判定,考查了全等三角形对应边相等旳性质,此题中找出全等三角形并证明是解题旳关键、28、阅读下面旳文字,解答问题:大伙明白是无理数,而无理数是无限不循环小数,因此旳小数部分我们不可能全部地写出来,因此小明用﹣1来表示旳小数部分,你同意小明旳表示方法吗?事实上,小明旳表示方法是有道理旳,因为旳整数部分是1,将那个数减去其整数部分,差确实是小数部分、又例如:∵22<〔〕2<32,即2<<3,∴旳整数部分为2,小数部分为〔﹣2〕、请解答:〔1〕旳整数部分是3,小数部分是﹣3〔2〕假如旳小数部分为a,旳整数部分为b,求a+b﹣旳值、【考点】估算无理数旳大小、【分析】〔1〕利用得出旳取值范围,进而得出【答案】;〔2〕首先得出,旳取值范围,进而得出【答案】、【解答】解:〔1〕∵<<,∴3<<4,∴旳整数部分是3,小数部分是:﹣3;故【答案】为:3,﹣3;〔2〕∵<<,∴旳小数部分为:a=﹣2,∵<<,∴旳整数部分为b=6,∴a+b﹣=﹣2+6﹣=4、【点评】此题要紧考查了可能无理数,得出无理数旳取值范围是解题关键、。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018-2019年六安市初中分班数学模拟试题(共10套)附详细答案
小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
2018-2019年安徽省宿州市十三所重点中学八年级(下)期中数学试卷(含答案解析)
2018-2019学年安徽省宿州市十三所重点中学八年级(下)期中数学试卷姓名: 得分: 日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°2、(3分) 如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A.1B.2C.3D.43、(3分) 不等式1+x <0的解集在数轴上表示正确的是( )A. B. C. D.4、(3分) 不等式3x+2≥5的解集是( )A.x≥1B.x≥73C.x≤1D.x≤-15、(3分) 下列说法中,错误的是( )A.不等式x <5的整数解有无数多个B.不等式x >-5的负整数解集有限个C.不等式-2x <8的解集是x <-4D.-40是不等式2x <-8的一个解6、(3分) 将点A (-2,-3)向右平移3个单位长度得到点B ,则点B 所处的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7、(3分) 在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)8、(3分) 若把不等式组{2−x≥−3x−1≥−2的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线9、(3分) 如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,则下列四个结论中,①AB上一点与AC上一点到D的距离相等;②AD上任意一点到AB、AC的距离相等;③∠BDE=∠CDF;④BD=CD,AD⊥BC.其中正确的个数是()A.1个B.2个C.3个D.4个10、(3分) 把两个全等的等腰直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分,已知AC=4.在旋转过程中,下列结论:①BH=CK;②四边形CHGK的面积等于4;③GK长度的最大值为2√2;④线段KH的长度最小值为2√2.其中正确的有()个A.1B.2C.3D.4二、填空题(本大题共 6 小题,共 18 分)11、(3分) 一个等腰三角形的两边长分别为2和5,则它的周长为______.12、(3分) 一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛成绩要超过74分,则小明至多答错______道题.13、(3分) 如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=______.14、(3分) 如果x=2是不等式2x−a2>3的一个解,则a的取值范围______.15、(3分) 已知点P(x,-3)和点Q(4,y)关于原点对称,则x+y等于______.16、(3分) 已知,如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,OC,以下四个结论:①AD=BE;②三角形CPQ是等边三角形;③AD⊥BC;④OC平分∠AOE其中正确的结论有______(把你认为正确的序号都填上).三、解答题(本大题共 9 小题,共 72 分)17、(6分) 解不等式组:{3x−5≤1①13−x3<4x②,并在数轴上表示其解集.18、(6分) 如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.19、(6分) 数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)20、(8分) 如图,在数轴上,点A、B分别表示数1、-2x+3.(1)求x的取值范围;(2)数轴上表示数-x+2的点应落在______.A.点A的左边 B.线段AB上 C.点B的右边21、(8分) 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.符合公司要求的购买方案有哪几种?请说明理由.22、(8分) 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)23、(9分) 如图,AD是△ABC的BC边上的中线,且AD平分∠BAC.求证:△ABC是等腰三角形.24、(9分) 如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?25、(12分) 联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB ,则点P 为△ABC 的准外心.应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD=12AB ,求∠APB 的度数.探究:已知△ABC 为直角三角形,斜边BC=5,AB=3,准外心P 在AC 边上,试探究PA 的长.2018-2019学年安徽省宿州市十三所重点中学八年级(下)期中数学试卷【 第 1 题 】【 答 案 】D【 解析 】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为180−402=70°.故选:D .根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.【 第 2 题 】【 答 案 】D【 解析 】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;②如图,∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD 是∠BAC 的平分线, ∴∠1=∠2=12∠CAB=30°, ∴∠3=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°, ∴CD=12AD ,∴BC=CD+BD=12AD+AD=32AD ,S △DAC =12AC•CD=14AC•AD .∴S △ABC =12AC•BC=12AC•32AD=34AC•AD ,∴S △DAC :S △ABC =14AC•AD :34AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选:D.①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.【第 3 题】【答案】A【解析】解:移项,得:x<-1,故选:A.移项即可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【第 4 题】【答案】A【解析】解:3x≥3x≥1故选:A.根据一元一次不等式的解法即可求出答案.本题考查一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.【第 5 题】【答案】C【解析】解:A、正确;B、不等式x>-5的负整数解集有-4,-3,-2,-1.C、不等式-2x<8的解集是x>-4D、不等式2x<-8的解集是x<-4包括-40,故正确;故选:C.正确解出不等式的解集,就可以进行判断.解答此题的关键是要会解不等式,明白不等式解集的意义.注意解不等式时,不等式两边同时除以同一个负数时,不等号的方向改变.【第 6 题】【答案】D【解析】解:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为(1,-3),故点在第四象限.故选:D.先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【第 7 题】【答案】C【解析】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(-3,4).故选:C.如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.本题考查了坐标与图形变化-旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.【第 8 题】【答案】B【解析】解:不等式组的解集为:-1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选:B.先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.【第 9 题】【答案】C【解析】解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴AB上一点与AC上一点到D的距离相等错误;AD上任意一点到AB、AC的距离相等正确,故①错误,②正确;又∵∠BDE=90°-∠B,∠CDF=90°-∠C,∴BDE=∠CDF,故③正确;根据等腰三角形三线合一的性质,BD=CD,AD⊥BC,故④正确,综上所述,正确的结论有②③④共3个.故选:C.根据等边对等角的性质可得∠B=∠C,根据角平分线上的点到角的两边的距离相等可得AD上的点到AB、AC两边的距离相等,再根据等腰三角形三线合一的性质可得BD=CD,AD⊥BC,然后对各小题分析判断解答即可.本题考查了等腰三角形的性质,角平分线上的点到角的两边的距离相等的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.【 第 10 题 】【 答 案 】D【 解析 】解:连接CG ,∵AC=BC=4,∠ACB=90°,G 是AB 中点,∴∠ACG=∠B=45°,AB=4√2,CG=BG=2√2,CG⊥AB ,∴当点K 与点C 重合时,GK 有最大值为2√2,故③正确,∵∠KGH=∠CGB=90°,∴∠KGC=∠BGH ,且CG=BG ,∠B=∠GCA ,∴△BGH≌△CGK (ASA ),∴CK=BH ,S △CKG =S △BHG , ∴S 四边形CKGH =S △BGC =12S △BCA =4,故①②正确,∵BH=CK∴CH=4-CK∵KH 2=(4-CK )2+CK 2=2(CK-2)2+8∴当CK=2时,KH 有最小值2√2故④正确故选:D .由等腰直角三角形的性质可判断③,”ASA“可证△BGH≌△CGK ,可得CK=BH ,S △CKG =S △BHG ,可判断①②,由勾股定理和二次函数性质可判断④.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△BGH≌△CGK 是本题的关键.【 第 11 题 】【 答 案 】12【解析】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.【第 12 题】【答案】2【解析】解:设小明答错x题,则答对(25-2-x)题,根据题意,得:4(25-2-x)-2x>74,解得:x<3,∴小明至多答错2题,故答案为:2.设小明答错x题,则答对(25-2-x)题,根据“竞赛成绩要超过74分”列不等式求解可得.本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.【第 13 题】【答案】3【解析】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=3.故答案为:3.根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=3即可.本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.【 第 14 题 】【 答 案 】a <-2.【 解析 】解:∵2x−a 2>3,∴2x -a >6,2x >a+6, 则x >a+62,∵x=2是不等式的一个解, ∴a+62<2,解得a <-2,故答案为:a <-2.根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【 第 15 题 】【 答 案 】-1【 解析 】解:∵点P (x ,-3)和点Q (4,y )关于原点对称,∴x=-4,y=3,∴x+y=-4+3=-1,故答案为-1.本题比较容易,考查平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.根据点P 和点Q 关于原点对称就可以求出x ,y 的值,即可得出x+y .本题主要考查了关于原点对称的点的特点,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆,比较简单.【 第 16 题 】【 答 案 】①②④【解析】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°-∠ECD=180°-∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,{∠CAD=∠CBEAC=BC∠ACB=∠BCQ=60∘,∴△ACP≌△BCQ(ASA),∴CP=CQ,∵∠PCQ=180°-60°-60°=60°,∴△PCQ是等边三角形,故②小题正确;∵△ACD≌△BCE,∴∠ADC=∠BEC,∴∠AOB=∠DAC+∠CEB=∠DAC+∠ADC=∠DCE=60°,∵○CBE+∠CEB=∠ACB=60°,而BC≠CE,∴∠CPB≠30°,∴∠BPD≠90°,∴③错误;过C作CM⊥BE于M,CN⊥AD于N,∵△BCE≌△ACD,∴S△BCE=S△ACD,BE=AD,∴1 2×BE×CM=12×AD×CN,∴CM=CN,∴OC平分∠AOE,故④正确.故答案为:①②④.根据等边三角形的三边都相等,三个角都是60°,可以证明△ACD与△BCE全等,根据全等三角形对应边相等可得AD=BE,所以①正确;对应角相等可得∠CAD=∠CBE,然后证明△ACP与△BCQ全等,根据全等三角形对应角相等可得PC=PQ,从而得到△CPQ是等边三角形,所以②正确;再根据等腰三角形的性质可以找出相等的角,求出∠BOA=60°,根据三角形的内角和定理求出∠BPO不是90°,即可判断③;根据三角形面积公式求出CN=CM,根据角平分线性质即可判断④.本题考查了全等三角形的性质和判定,等边三角形的性质,角平分线性质,平行线的判定的应用,需要多次证明三角形全等,仔细分析图形是解此题的关键.【第 17 题】【答案】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.【解析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.【第 18 题】【答案】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.【解析】(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积.本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.【第 19 题】解:【解析】先画角的平分线,再画出线段AB的垂直平分线,两线的交点就是P.本题考查了角的平分线、线段垂直平分线的性质.【第 20 题】【答案】B【解析】解:(1)由数轴上的点表示的数右边的总比左边的大,得-2x+3>1,解得x<1;(2)由x<1,得-x>-1.-x+2>-1+2,解得-x+2>1.数轴上表示数-x+2的点在A点的右边;作差,得-2x+3-(-x+2)=-x+1,由x<1,得-x>-1,-x+1>0,-2x+3-(-x+2)>0,∴-2x+3>-x+2,数轴上表示数-x+2的点在B点的左边.故选:B.(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.本题考查了一元一次不等式,解(1)的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式;解(2)的关键是利用不等式的性质【第 21 题】解:设要购买轿车x辆,则要购买面包车(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x=3,4,5.因此有三种购买方案:①购买轿车3辆,面包车7辆;②购买轿车4辆,面包车6辆;③购买轿车5辆,面包车5辆.【解析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.【第 22 题】【答案】解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=OA1=√16+1=√17,A1B=√25+9=√34,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.【第 23 题】【答案】证明:作DE⊥AB于E,DF⊥AC于F,∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵AD是BC边的中线,∴BD=CD,在Rt△BDE和Rt△CDF中,{BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C.∴AB=AC,∴△ABC是等腰三角形.【解析】作DE⊥AB于E,DF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“HL”证明Rt△BDE和Rt△CDF全等,然后根据全等三角形对应边相等即可证明.本题考查了等腰三角形的判定,角平分线的性质,直角三角形的全等判定与性质,要证边相等,想办法证明边所在的三角形全等,是常用的方法之一,要熟练掌握并灵活运用.【第 24 题】【答案】解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.【解析】(1)根据图象中的数据可以得到出发时,乙在甲前面多少米处;(2)根据函数图象中的数据可以求而甲的速度,从而可以求得甲乙相遇的时间,然后根据图象即可写出在什么时间范围内甲走在乙的后面,在什么时间他们相遇,在什么时间内甲走在乙的前面.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 25 题 】【 答 案 】应用:解:①若PB=PC ,连接PB ,则∠PCB=∠PBC ,∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°, ∴PD=√33DB=√36AB ,与已知PD=12AB 矛盾,∴PB≠PC ,②若PA=PC ,连接PA ,同理可得PA≠PC , ③若PA=PB ,由PD=12AB ,得PD=BD , ∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC=√BC 2−AB 2=√52−32=4,①若PB=PC ,设PA=x ,则x 2+32=(4-x )2,∴x=78,即PA=78, ②若PA=PC ,则PA=2,③若PA=PB ,由图知,在Rt△PAB 中,不可能. 故PA=2或78.【 解析 】应用:连接PA 、PB ,根据准外心的定义,分①PB=PC ,②PA=PC ,③PA=PB 三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB 的度数;探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB=PC ,②PA=PC ,③PA=PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。
宿州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
宿州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 2020【答案】B【考点】实数的运算【解析】【解答】输出的数为,故答案为:B.【分析】根据运算程序法则即可求解。
2、(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,实数大小的比较【解析】【解答】解:由数轴可知:b<-a<0<a<-b,∴a+b<0,b-a<0,>,|a|<|b|,故①②错误;③④正确.故答案为:B.【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.3、(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()A. 259人B. 441人C. 350人D. 490人【答案】B【考点】扇形统计图【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),故答案为:B.【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.4、(2分)下列调查适合抽样调查的有()①了解一批电视机的使用寿命;②研究某种新式武器的威力;③审查一本书中的错误;④调查人们节约用电意识.A. 4种B. 3种C. 2种D. 1种【答案】B【考点】全面调查与抽样调查【解析】【解答】解:①调查具有破坏性,因而只能抽样调查;②调查具有破坏性,因而只能抽样调查;③关系重大,因而必须全面调查调查;④人数较多,因而适合抽查.故答案为:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查的特征进行判断即可确定结论.5、(2分)如图,同位角是()A. ∠1和∠2B. ∠3和∠4C. ∠2和∠4D. ∠1和∠4【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:图中∠1和∠4是同位角,故答案为:D【分析】同位角指的是在两条直线的同侧,在第三条直线的同侧;所以∠1和∠4是同位角.6、(2分)有下列说法:①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,,这4个;④是分数,它是有理数.其中正确的个数是()A.1B.2C.3D.4【答案】A【考点】实数及其分类,无理数的认识【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;③在1和3之间的无理数有无数个,故说法③错误;④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,∴不是分数,是无理数,故说法④错误;故答案为:A.【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷43
一、填空题:
1.(18976+18973+18979+18971+18981+18975+18977)÷7=_______.
3.将图中的硬纸片沿虚线折起来,便可以做成一个正方体,则这个正方体的A面对面是字母______.
4.某次测验,甲班的平均分数是97.6分,乙班的平均分数是95分,而这两个班的总平均分数是96.17分.那么,甲班人数与乙班人数的比是______.
5.1~1001所有自然数的所有数字之和等于_______.
7.有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过30分后两人第一次相遇,36分小李第一次超过小王,那么,当小王到达乙村时,小李追上小王的次数是______.
则阴影部分与三角形ABC面积的比是_______.
页,则已读的页数与未读的页数比是1∶3,那么这本书共有______页,小亚再读______页就能读完这本书.
10.某公园,早晨5∶30开门,晚上7∶30关门,有一游客问一个游
二、解答题:
1.某进修学习班有学员30多人,班主任已经50多岁,其中男学员比女学员多,如果将班主任的年龄、男学员人数、女学员人数相乘,等于15606,问:共有多少学员?班主任年龄是多大?
2.有一个蓄水池,池中有一条进水管和一条排水管,灌满一池水需打开进水管5小时,排光一池水需打开排水管2小时.现池内有满满一池水,如果按排水、进水、排水、进水……的顺序轮流各开1小时,那么,多长时间后水池的水刚好排完?
3.把1,2,3,…,121分成11组,每组11个数字,使各组中的数之和都相等,能否办到?说明理由.
4.早晨5点多,先后有两辆公共汽车从动物园总站发出,两辆车的平均速度都是每小时50千米,5点20分时,第一辆车离开总站的距离是第二辆车的4倍,到了5:26分的时候,第一辆车离开总站的距离是第二辆车的2倍,问第一辆车究竟是5点几分离开总站的?
答案,仅供参考。
一、填空题:
1.18976
原式=(18970×7+6+3+9+1+11+5+7)÷7
=(18970×7+42)÷7
=18970+6
=18976
2.7
4,故小数点后面880位上的数字是7.
3.D
4.9∶11
甲班平均分比总平均分多:97.6-96.17=1.43(分),总共多了:1.43×甲班人数.
乙班平均分比总平均分少:96.17-95=1.17(分),总共少了:1.17×乙班人数.
一多一少,两者抵消,因此:
1.43×甲班人数=1.17×乙班人数
即:甲班人数∶乙班人数=1.17∶1.43=9∶11
5.13503
0与999数字和同于999;同理,1与998,2与997,……499与500数字和都同于999,所以总和为:9×3×500+3=13503.
6.6
所以:(2000-1)÷4=499 (3)
7.5
小王从甲到丙村用了30分,到丁村用了36分,小李从丙到甲又到了村用了6分,可见小李6分走了小王需走66分的路,即小李的速度是小王的11倍.在小王从甲到乙期间,小李则走了5个来回,并最后到乙村,所以共追及5次.
8.7∶16
连结DC、BG,如图所示:
9.60页,45页
10.6点54分
二、解答题:
1.学员35人,班主任年龄51岁
因为15606=2×33×172=51×18×17或54×17×17,后解不合题意.
2.4小时48分.
3.能
121个数,每组11个数时,共可分为11组,先把34,35,…,121这88个数按一行顺排,一行逆排的规律排列出来,如下表:
从排列结果可以看出,在这11组数中,每组的8个数之和都相等,事实上,各组中每相邻两行的数之和都相等.
再将1,2,…,33这些数按下列方式排列:
这样,每组的3个数之和均等于51,把每组中的3个数并入前面已分成的11个组中,则每个组就有11个数,且各组数之和都相等。
4.5时08分
从5∶20到5∶26这段时间里,两辆公共汽车都行驶了:50×[(26-20)÷60]=5(千米).
5∶20,第一辆车离开总站的距离是第二辆车的4倍,这时,两车之间的距离是第二辆车与总站距离的3倍;5∶26,第一辆车离总站的距离是第二辆车的2倍,两车之间的距离是第二辆车此时离总站的距离,即5∶20第二辆车距总站的距离加上在6分内汽车所开出的距离5千米.由于行驶中两车距离保持不变,所以,5千米为5∶20时第二辆车离总站距离的2倍,即此距离为:5÷2=2.5(千米),因此5∶20时第一辆车离总站距离为
故第一辆车从总站出发时刻为5时20分减去12分,即为5时08分.。