2014人教A版数学必修一1-1-1《集合的含义与表示》(2)导学案
高中数学人教A版必修1《1.1.1集合的含义与表示》教案2
必修一《1.1.1集合的含义与表示》教学案教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从2001~2013的13年内所发射的所有人造卫星;⑶金星汽车厂2013年生产的所有汽车;⑷2014年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹2014年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4⑵ (2,3),(3,4) ⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:∈(1)如果a是集合A和元素,就说a属于A,记作a A∉(2)如果a不是集合A和元素,就说a不属于A,记作a A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A直角三角形B锐角三角形C钝角三角形D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成.例2、试分别用列举法和描述法表示下列集合:(1)由大于10小于20的的所有整数组成的集合;(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略七、小结集合的概念、表示;集合元素与集合间的关系;常用数集的记法.。
人教课标A版数学必修一1.1.1集合的含义与表示教案
1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
高中数学人教版必修1(教案与导学案)1_1_1-2集合的含义及其表示[来源:学优高考网148480]
1. 1.1 集合的含义及其表示方法(2)教案【教学目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。
【教学重难点】集合的两种表示法:列举法和描述法。
【教学过程】一、导入新课复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示 (板书课题)我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲授(1)、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“maths 中的字母” 构成的集合,写成{m,a,t,h,s}由“book 中的字母” 构成的集合,写成{b,o,k}注:(1) 有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2) a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素。
(3) 集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
学生自主完成P4 例题1(2)、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合。
例:不等式12x +<-的解集可以表示为:{|12}x R x ∈+<-或{|3,}x x x R <-∈“中国的直辖市”构成的集合,写成{x x 为中国的直辖市}; “方程x 2+5x-6=0的实数解” {x ∈R| x 2+5x-6=0}={-6,1}学生自主完成P5例题2三、例题讲解例题1.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x36∈Z ,x ∈Z }. 分析:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素,明确各个集合中的元素,写在大括号内即可提示学生注意:(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x 是6的约数,6的约数有±1, ±2, ±3, ±6.解: (1)满足题设条件小于5的正奇数有1,3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6,9,12,故用列举法表示为{6,9,12};(3)方程x 2-9=0的解为-3,3,故用列举法表示为{-3,3};(4)15以内的质数有2,3,5,7,11,13,故该集合用列举法表示为{2,3,5,7,11,13}(5)满足的x 有3-x=±1, ±2, ±3, ±6.解之,得x=2,4,1,5,0,6,-3,9,故用列举法表示为{2,4,1,5,0,6,-3,9}变式训练1用列举法表示下列集合:(1)x 2-4的一次因式组成的集合;(2){y|y=-x 2-2x+3,x ∈R ,y ∈N };(3)方程x 2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x 2+y 2=1,x ∈Z ,y ∈Z };(6){大于0小于3的整数};(7){x ∈R |x 2+5x-14=0};(8){(x,y)|x ∈N 且1≤x<4,y -2x=0};(9){(x,y)|x+y=6,x ∈N ,y ∈N }.分析:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x 2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x 来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x 来表示,把不等式化为x<a 的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x 2上的点(x,y)的坐标满足y=x 2,则二次函数y=x 2图象上的点组成的集合表示为{(x,y)|y=x 2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则 数轴上离原点的距离大于6的点组成的集合表示为{x ∈R ||x|>6};(3)不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.变式训练2用描述法表示下列集合:(1)方程2x+y=5的解集;(2)小于10的所有非负整数的集合;(3)方程ax+by=0(ab≠0)的解;(4)数轴上离开原点的距离大于3的点的集合;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)方程组⎩⎨⎧==+1y -x 1,y x 的解的集合; (7){1,3,5,7,…};(8)x 轴上所有点的集合;(9)非负偶数;(10)能被3整除的整数.答案:(1)、{(x,y)|2x+y=5};(2)、{x|0≤x<10,x ∈Z };(3)、{(x,y)|ax+by=0(ab≠0)};(4)、{x||x|>3};(5)、{(x,y)|xy<0};(6)、{(x,y)|⎩⎨⎧==+1y -x 1y x }; (7)、{x|x=2k-1,k ∈N *};(8)、{(x,y)|x ∈R ,y=0};(9)、{x|x=2k,k ∈N };(10)、{x|x=3k,k ∈Z }.四、课堂小结1.描述法表示集合应注意集合的代表元素{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。
人教A版高一数学必修一 1-1-1集合的含义与表示2课时
1.1.1.1 集合的含义与表示(学案)一、学习目标1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)二、自主学习教材整理1 阅读教材P 3“列举法”至P 4“思考”以上部分,回答下列问题.列举法;把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.微体验1.大于4并且小于10的奇数组成的集合用列举法可表示为________.教材整理2 阅读教材P 4“思考”至P 5“思考”之间的部分,回答下列问题.1.定义: 用集合所含元素的共同特征表示集合的方法称为描述法.2.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.微体验2. 判断(正确的打“√”,错误的打“×”)(1)集合0∈{x |x >1}.( )(2)集合{x |x <5,x ∈N}中有5个元素.( )(3)集合{(1,2)}和{x |x 2-3x +2=0}表示同一个集合.( )二、合作探究例1. 用列举法表示下列集合:(1)36与60的公约数组成的集合;(2)方程(x -4)2(x -2)=0的根组成的集合;(3)一次函数y =x -1与y =-23x +43的图象的交点组成的集合. 【分析】 (1)(2)可直接先求相应元素,然后用列举法表示. (3)联立⎩⎪⎨⎪⎧ y =x -1,y =-23x +43→求方程组的解→写出交点坐标→用集合表示.【自主解答】 (1)36与60的公约数有1,2,3,4,6,12,故所求集合为{1,2,3,4,6,12}.(2)方程(x -4)2(x -2)=0的根是4,2,故所求集合为{4,2}.(3)方程组⎩⎪⎨⎪⎧ x -y =1,2x +3y =4的解是⎩⎨⎧ x =75,y =25,故所求集合为⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫75,25. 归纳总结;使用列举法表示集合时,需要注意以下几点1.用列举法书写集合时,应先明确集合中的元素是什么.如本题(3)是点集{(x,y)},而非数集{x,y}.集合的所有元素用“{}”括起来,元素间用分隔号“,”.2.元素不重复,元素无顺序,所以本题(2)中,{4,4,2}为错误表示.3.对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.[练一练]1.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合;(4)由所有正整数构成的集合.例2.用描述法表示下列集合:(1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合.(3)被3除余数等于1的正整数组成的集合;【点拨】先分析集合中元素的特征,再分析元素满足的条件,最后根据要求写出集合.【自主解答】(1){x∈R|1<x<10}.(2)集合的代表元素是点,用描述法可表示为{(x,y)|x<0,且y>0}.(3){x|x=3n+1,n∈N}.归纳总结利用描述法表示集合应注意以下两点:1.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.2.若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围。
《必修一》1.1.1集合的含义与表示导学案
高一数学A 1.1集合导学案(一)1.1.1集合的含义与表示编者:刘玉明审核人:王建美使用时间:2014. 10.13学习目标:(1)学生初步理解集合的概念,知道常用数集的概念及其记法。
(2)学生初步了解元素与集合间“属于”、“不属于”关系的意义。
学习重点:集合的基本概念学习过程(一)新知预习(阅读课本21、集合的概念(1)一般地,我们把统称为元素,把一些叫做集合。
练习1 下列各组对象能否构成一个集合并说明理由(1)著名的数学家;(2)某校高一(2)班所有高个子的同学;(3)不超过10的非负数(4) 5 的近似值的全体练习2集合中元素的特征(1);(2);(3)。
2、集合的表示集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……3、元素与集合的关系(1)属于:如果a是集合A的元素,就说,记作。
(2)不属于:如果a不是集合A的元素,就说,记作。
要注意“∈”的方向,不能把a∈A颠倒过来写.练习3(1)给出下面四个关系:2∈R, 0.7∉Q, 0 ∈{0}, 0∉N,其中正确的个数有( )个A.4 B.3 C.2 D.1(2)下面有四个命题:①若-a ∈Ν,则a ∉Ν②若a∈Ν,b ∈Ν,则a+b的最小值是2③集合N中最小元素是1④x2+4=4x的解集可表示为{2,2}.其中正确命题的个数是( ) A.0 B.1 C.2 D.4、常用数集及其表示方法(1)非负整数集(自然数集):记作;(2)正整数集:记作;(3)整数集:记作;(4)有理数集:记作;(5)实数集:记作;(二)课堂小结本节课学习了以下内容:1.集合的有关概念;2.集合元素的性质;3.集合的表示4集合与元素的关系及记法5常用数集的定义及记法;。
人教版高中数学必修1-1.1《集合的含义与表示》导学案
1.1.1 集合的含义与表示【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性,互异性,无序性;(4)会用集合语言表示有关数学对象.【预习指导】对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.阅读教材,并思考下列问题:(1)有哪些概念?(2)有哪些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?【课堂探究】一、问题1:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?(分组讨论,得出集合的概念)问题2:你还能给出一些集合的例子吗?(学生自己举例子,得出集合元素的特性)二、1、任意给定一个对象和一个集合,它们之间有什么关系?用符合如何表示?2、常用的数集(自然数集、整数集、正整数集、有理数集、实数集)的专用符号你记住了吗?3、要表示一个集合共有几种方式?4、试比较自然语言、列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?5、如何根据问题选择适当的集合表示法?【课堂练习】1.下列说法正确的是( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是( )A.{}3,2,1,0,1,2,3---B.{}2,1,0,1,2--C.{}0,1,2,3D.{}1,2,33.给出下列4{},0.3,0,00R Q N +∉∈∈其中正确的个数是( )A.1个B.2个C.3个D.4个4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为_______________.5.已知集合A ={}20,1,x x -,则x 在实数范围内不能取哪些值_____________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【尝试总结】1.本节课我们学习过哪些知识内容?2.选择集合的表示法时应注意些什么?。
新人教版高中数学必修一《集合的含义与表示》导学案
1.1.1集合的含义与表示一.学习目标:l.知识与技能(1)通过三张图片,了解集合的含义,理解元素与集合之间的属于关系;(2)掌握集合中元素的三要素:确定性.互异性.无序性;(3)熟练应用常用数集及其专用记号;会用集合语言表示有关数学对象.二. 学习重点、难点:重点:集合的含义与表示方法.难点:集合的三要素:确定性、互异性、无序性.三.自学指导:(一)创设情景,揭示课题1.教师首先提出问题:通过PPT 图片,启发引导学生找到三张图片的共同特征,并引导学生举出一些集合的例子。
通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.2.用6分钟时间预习教材P2~P5,完成下列内容:(1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。
(2)、集合元素的三要素(三特征): 、 、 ;若两个集合相等,那么必须有: 。
(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ;若a 不是集合A 的元素,则记作:a A 。
(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ;实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。
四.教学过程:(一)、问题导学:检查自学指导内容,并分组探讨一下问题:a.如何判断所给对象是否组成集合?b.集合中元素的特征性质有哪些?如何判断两个集合是相等的? 判断集合A={-2,2}与集合2{|40}B x R x =∈-=一样吗?c.试着总结集合的表示方法有哪些?并试比较各自的特点和适用的对象。
(二).自学检测:完成以下练习:1.下面给出的四类对象中,能组成集合的是( )A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体2.用符号∈或∉填空:(1)0 *N ;(2;(3)23 Q ;(4)π Q 。
人教版数学高一A版必修一学案 1.1.1.1集合的含义
§1.1 集 合1.1.1 集合的含义与表示 第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念 元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母a ,b ,c ,…表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A ,B ,C ,…表示. 知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数?答案 1是整数;12不是整数.没有.梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考 某班所有的“帅哥”能否构成一个界限清楚的群体?某班身高高于175厘米的男生呢?答案 某班所有的“帅哥”不能构成界限清楚的群体,因“帅哥”无明确的标准,难以判定该班某男生是否属于“帅哥”这一群体.高于175厘米的男生能构成一个界限清楚的群体,因为标准确定.梳理 元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R1.y=x+1上所有点构成集合A,则点(1,2)∈A.(√)2.0∈N但0∉N*.(√)3.由形如2k-1,其中k∈Z的数组成集合A,则4k-1∉A.(×)类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.考点集合的概念题点集合的概念解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C .平面直角坐标系内第一象限的一些点D .所有小的正数 考点 集合的概念 题点 集合的概念 答案 B解析 A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“平面直角坐标系内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N , 其中正确的个数为( ) A .1 B .2 C .3 D .4 考点 常用的数集及表示 题点 常用的数集及表示 答案 B解析 12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3是无理数,④错; 0是自然数,⑤错.故选B.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z . 考点 常用的数集及表示 题点 常用的数集及表示 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.考点 元素与集合的关系 题点 伴随元素问题 答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素为0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( ) A .a >-4 B .a ≤-2 C .-4<a <-2 D .-4<a ≤-2考点 元素与集合的关系题点 由元素与集合的关系求参数的值 答案 D解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4,∴-4<a ≤-2. 类型三 元素的三个特性的应用例4 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x .(1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3, A ={a -3,2a -1,a 2+1} ={0,5,10}≠B .若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1} =⎩⎨⎧⎭⎬⎫0,-52,54≠B .故不存在这样的实数a ,x ,使A =B .反思与感悟 元素的无序性主要体现在:①给出元素属于某集合,则它可能等于集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等. 跟踪训练4 已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 方法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧ a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b (b -1)=0, ①ab ·(2b -1)=0, ②∵集合中的元素互异, ∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.1.下列给出的对象中,能组成集合的是( )A .一切很大的数B .好心人C .漂亮的小女孩D .清华大学2018年入学的全体学生 考点 集合的概念 题点 集合的概念 答案 D2.下面说法正确的是( ) A .所有在N 中的元素都在N *中 B .所有不在N *中的数都在Z 中 C .所有不在Q 中的实数都在R 中 D .方程4x =-8的解既在N 中又在Z 中 考点 常用的数集及表示 题点 常用的数集及表示 答案 C3.由“book ”中的字母构成的集合中元素个数为________. 考点 集合中元素的特征 题点 集合中元素的个数 答案 34.下列结论不正确的是________.(填序号) ①0∈N; ②13∈Q; ③0∉Q; ④-1∈Z .考点 元素与集合的关系 题点 判断元素与集合的关系 答案 ③5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值解 由元素互异性知m ≠0,m 2-3m +2≠0.由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3, 当m =0时,与m ≠0相矛盾,当m=3时,此时集合A中的元素为0,3,2,符合题意.故实数m=2.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.。
人教版数学高一必修1导学案 1.1.1集合的含义与表示第2课时集合的表示教师版
1.1.1集合的含义与表示第2课时集合的表示教学目标1.掌握用列举法表示有限集;2.理解描述法格式及其适用情形;3.学会在集合不同的表示法中作出选择和转换.教学过程一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《1.1.1集合的含义与表示第2课时集合的表示》课件“情景引入”部分,让学生与大家分享自己的了解.通过举例说明和互相交流,做好教师对学生的活动的梳理引导,并给予积极评价.二、自主学习1.一般地,把集合中的元素__________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.适用于元素较少的集合.提示:一一列举2.描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写______________,竖线后写______________________________.提示:元素的一般符号及取值(或变化)范围元素所具有的共同特征三、合作探究探究点1:列举法问题:要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?提示:把它们一一列举出来.例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.提示:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.名师点评:1.花括号“{}”表示“所有”、“整体”的含义,如实数集R可以写为{实数},但如果写成{实数集}、{全体实数}、{R}都是不确切的.2.列举法表示的集合的种类(1)元素个数少且有限时,全部列举,如{1,2,3,4};(2)元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1000的所有自然数”可以表示为{1,2,3,…,1000};(3)元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.探究点2:描述法问题:能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?提示:不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x >1}.例2试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.提示:(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.方程x2-2=0有两个实数根2,-2,因此,用列举法表示为A={2,-2}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.名师点评:集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开;用描述法表示集合时,要注意代表元素是什么,从而理解集合的含义,区分两集合是不是相等的集合.例3用适当的方法表示下列集合:(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.提示:(1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.名师点评:用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.四、当堂检测1.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}2.一次函数y=x-3与y=-2x的图象的交点组成的集合是()A.{1,-2}B.{x=1,y=-2}C.{(-2,1)}D.{(1,-2)}3.设A={x∈N|1≤x<6},则下列正确的是()A.6∈A B.0∈AC.3∉A D.3.5∉A4.第一象限的点组成的集合可以表示为()A.{(x,y)|xy>0}B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0}D.{(x,y)|x>0或y>0}5.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}提示:1.B 2.D 3.D 4.C 5.A五、课堂小结本节课我们学习过哪些知识内容?提示:1.在用列举法表示集合时应注意:(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)(元素具有怎样的属性)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.六、课例点评高中数学课程应具有多样性和选择性,使不同的学生在数学上得到不同的发展,高中数学课程应为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考这是新课程理念中对学生成才的立体轨道所作的具体要求.按照这样的观点来看数学教学,必须体现因材施教的教学原则,教学内容应有较大的弹性,为各种学生提供发展空间.在此导学案中,例题和练习的选择和教学也突出了这一点,题目的设置由浅入深,层层递进,不断拓展,并根据学生实际情况对书上的例题进行了改编.。
人教A版数学必修一教案:§1.1.1集合的含义与表示
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教版高中数学必修一《集合》导学案(含答案)
第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。
高中数学必修1全册导学案及答案(76页)
1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象: ① 1~20以内所有的质数;② 到定点的距离等于定长的所有点; ③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +; ⑤ 东升高中高一级全体学生; ⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车; ⑧ 2008年8月,广东所有出生婴儿. 试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素. 无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,能否构成集合,并指出元素:① 不等式30x ->的解; ② 3的倍数;③ 方程2210x x -+=的解; ④ a ,b ,c ,x ,y ,z ; ⑤ 最小的整数;⑥ 周长为10 cm 的三角形; ⑦ 中国古代四大发明; ⑧ 全班每个学生的年龄; ⑨ 地球上的四大洋; ⑩ 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ;如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a ∉A .试试3: 设B 表示“5以内的自然数”组成的集合,则5 B ,0.5 B , 0 B , -1 B .探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示 非负整数集(自然数集):全体非负整数组成的集合,记作N ;正整数集:所有正整数的集合,记作N *或N +; 整数集:全体整数的集合,记作Z ;有理数集:全体有理数的集合,记作Q ; 实数集:全体实数的集合,记作R .试试4:填∈或∉:0 N ,0R ,3.7 N ,3.7Z , .探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:①15以内质数的集合;②方程2(1)0x x-=的所有实数根组成的集合;③一次函数y x=与21y x=-的图象的交点组成的集合.变式:用列举法表示“一次函数y x=的图象与二次函数2y x=的图象的交点”组成的集合.三、总结提升※学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A.某个村子里的高个子组成一个集合B.所有小正数组成一个集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D.1361,0.5,,,2242. 给出下列关系:①12R=;②Q;③3N+-∉;④.Q 其中正确的个数为().A.1个B.2个C.3个D.4个3. 直线21y x=+与y轴的交点所组成的集合为().A. {0,1}B. {(0,1)}C.1{,0}2- D.1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230x x-=的所有实数根”组成的集合用列举法表示为____________.1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100x x-=的所有实数根组成的集合. 2. 设x∈R,集合2{3,,2}A x x x=-.(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为 .其中的每个对象叫作 .集合中的元素具备 、 、 特征. 集合与元素的关系有 、 .复习2:集合2{21}A x x =++的元素是 ,若1∈A ,则x = .复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究 思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法 ① {方程210x -=的根}; ② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 .※ 典型例题例1 试分别用列举法和描述法表示下列集合: (1)方程2(1)0x x -=的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合; (2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如 {|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合: (1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别. (1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x=-.反思与小结:①描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x=-与2{|1}y y x=-不同.②只要不引起误解,集合的代表元素也可省略,例如{|1}x x>,{|3,}x x k k Z=∈.③集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.④列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※动手试试练1. 用适当的方法表示集合:大于0的所有奇数. 练 2. 已知集合{|33,}A x x x Z=-<<∈,集合2{(,)|1,}B x y y x x A==+∈. 试用列举法分别表示集合A、B.三、总结提升※学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x=+与集合2{|1}y y x=+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn图.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设{|16}A x N x=∈≤<,则下列正确的是().A. 6A∈ B. 0A∈C. 3A∉ D. 3.5A∉2. 下列说法正确的是().A.不等式253x-<的解集表示为{4}x<B.所有偶数的集合表示为{|2}x x k=C.全体自然数的集合可表示为{自然数}D. 方程240x-=实数根的集合表示为{(2,2)}-3. 一次函数3y x=-与2y x=-的图象的交点组成的集合是().A. {1,2}- B. {1,2}x y==-C. {(2,1)}- D.3{(,)|}2y xx yy x=-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x=∈≤<为.5.集合A={x|x=2n且n∈N},2{|650}B x x x=-+=,用∈或∉填空:4 A,4 B,5 A,5 B.1. (1)设集合{(,)|6,,}A x y x y x N y N=+=∈∈,试用列举法表示集合A.(2)设A={x|x=2n,n∈N,且n<10},B={3的倍数},求属于A且属于B的元素所组成的集合.2. 若集合{1,3}A=-,集合2{|0}B x x ax b=++=,且A B=,求实数a、b.§1.1.2 集合间的基本关系学习目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用V enn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.学习过程一、课前准备(预习教材P 6~ P 7,找出疑惑之处)复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合. (1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ;2 Q ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且; {}C =东升高中学生与{}D =东升高中高一学生; {|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A . 当集合A 不包含于集合B 时,记作A B Ø.② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为: ()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且,则A B =中的元素是一样的,因此A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ; (2)∅ 2{|30}x x +=,∅ R ; (3)N {0,1},Q N ;(4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.B A※典型例题例 1 写出集合{,,}a b c的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x=->与{|250}B x x=-≥;(2)设集合A={0,1},集合{|}B x x A=⊆,则A 与B的关系如何?变式:若集合{|}A x x a=>,{|250}B x x=-≥,且满足A B⊆,求实数a的取值范围.※动手试试练1. 已知集合2{|320}A x x x=-+=,B={1,2},{|8,}C x x x N=<∈,用适当符号填空:A B ,A C,{2} C,2 C.练 2. 已知集合{|5}A x a x=<<,{|2}B x x=≥,且满足A B⊆,则实数a的取值范围为.三、总结提升※学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※知识拓展如果一个集合含有n个元素,那么它的子集有2n21n-个.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列结论正确的是().A. ∅AB. {0}∅∈C. {1,2}Z⊆ D. {0}{0,1}∈2. 设{}{}1,A x xB x x a=>=>,且A B⊆,则实数a的取值范围为().A. 1a< B. 1a≤C. 1a> D. 1a≥3. 若2{1,2}{|0}x x bx c=++=,则().A. 3,2b c=-= B. 3,2b c==-C. 2,3b c=-= D. 2,3b c==-4. 满足},,,{},{dcbaAba⊂⊆的集合A有个.5. 设集合{},{},{}A B C===四边形平行四边形矩形,{}D=正方形,则它们之间的关系是,并用V enn图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A⊆⊆⊆⊆试用V enn图表示这三个集合的关系.2. 已知2{|0}A x x px q=++=,2{|320}B x x x=-+=且A B⊆,求实数p、q所满足的条件.§1.1.3 集合的基本运算(1)1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用V enn图表达集合的运算,体会直观图示对理解抽象概念的作用.89复习1:用适当符号填空.0 {0};0 ∅;∅{x|x2+1=0,x∈R};{0} {x|x<3且x>5};{x|x>-3} {x|x>2};{x|x>6} {x|x<-2或x>5}.复习2:已知A={1,2,3}, S={1,2,3,4,5},则A S,{x|x∈S且x∉A}= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※学习探究探究:设集合{4,5,6,8}A=,{3,5,7,8}B=.(1)试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.①一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集(intersection set),记作A∩B,读“A交B”,即:{|,}.A B x x A x B=∈∈I且Venn图如右表示. ②类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(union set),记作:A BU,读作:A并B,用描述法表示是:{|,}A B x x A x B=∈∈U或.Venn图如右表示.试试:(1)A={3,5,6,8},B={4,5,7,8},则A∪B=;(2)设A={等腰三角形},B={直角三角形},则A∩B=;(3)A={x|x>3},B={x|x<6},则A∪B=,A∩B=.(4)分别指出A、B两个集合下列五种情况的交集部分、并集部分.反思:(1)A∩B与A、B、B∩A有什么关系?(2)A∪B与集合A、B、B∪A有什么关系?(3)A∩A=;A∪A=.A∩∅=;A∪∅=.※典型例题例1 设{|18}A x x=-<<,{|45}B x x x=><-或,求A∩B、A∪B.变式:若A={x|-5≤x≤8},{|45}B x x x=><-或,则A∩B= ;A∪B= . 小结:有关不等式解集的运算可以借助数轴来研究.A例2 设{(,)|46}A x y x y=+=,{(,)|327}B x y x y=+=,求A∩B.变式:(1)若{(,)|46}A x y x y=+=,{(,)|43}B x y x y=+=,则A B=I ;(2)若{(,)|46}A x y x y=+=,{(,)|8212}B x y x y=+=,则A B=I.反思:例2及变式的结论说明了什么几何意义?※动手试试练 1. 设集合{|23},{|12}A x xB x x=-<<=<<.求A∩B、A∪B.练2. 学校里开运动会,设A={x|x是参加跳高的同学},B={x|x是参加跳远的同学},C={x|x是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A BI与B CI的含义.三、总结提升※学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn图.※知识拓展A B C A B A C=I U I U I()()(),A B C A B A C=U I U I U()()(),A B C A B C=I I I I()(),A B C A B C=U U U U()(),A AB A A A B A==I U U I(),().你能结合Venn图,分析出上述集合运算的性质吗?学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设{}{}5,1,A x Z xB x Z x=∈≤=∈>那么A BI等于().A.{1,2,3,4,5}B.{2,3,4,5} C.{2,3,4}D.{}15x x<≤2. 已知集合M={(x, y)|x+y=2},N={(x, y)|x-y=4},那么集合M∩N为().A. x=3, y=-1B. (3,-1)C.{3,-1}D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C===,则()A B CI U等于().A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a=>,{|03}B x x=<<,若A B=∅I,求实数a的取值范围是.5. 设{}{}22230,560A x x xB x x x=--==-+=,则A BU= .课后作业1. 设平面内直线1l上点的集合为1L,直线2l上点的集合为2L,试分别说明下面三种情况时直线1l与直线2l的位置关系?(1)12{}L L P=I点;(2)12L L=∅I;(3)1212L L L L==I.2. 若关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,且A∩B={13-},求A BU.§1.1.3 集合的基本运算(2)学习目标1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用V enn 图表达集合的运算,体会直观图示对理解抽象概念的作用.学习过程一、课前准备1011复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 .若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为:A B =I ; A B =U . 复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学※ 学习探究 探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集. ① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且.补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ; (2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ;(3)设集合{|38}A x x =≤<,则R A ð= ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集?(2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求UC A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B U 、()()U U C A C B I .※ 动手试试练1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =I ,(){4,6,8}I C A B =I ,{2}A B =I . 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合V enn 图分析,如何得到性质:(1)()U A C A =I ,()U A C A =U ; (2)()U U C C A = .三、总结提升※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =U I ; (2)()()()U U U C A B C A C B =I U .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ).A. {|02}x x x ≤≥或B. {|02}x x x <>或C. {|2}x x ≥D. {|2}x x > 3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--, {}0,3,4N =--,则()I M N =I ð( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .课后作业1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =I ,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?A B =I ; A B =U ; U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A =I ;()U A C A =U ; ()U U C C A = . 你还能写出一些吗?二、新课导学※ 典型例题 例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =U ,A B ≠I ∅,(){1,2}U A C B =I ,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法.例3 若{}{}22430,10A x x x B x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==U I 且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。
数学知识点人教A版数学必修一1-1-1《集合的含义与表示》(2)导学案-总结
河南省栾川县第一高级中学高中数学人教版必修一导学案:1-1-1 集合的含义与表示(2 )一、复习回顾1.集合中元素的特征: .2.元素与集合的关系(1)如果a 是集合A 的元素,就说 ,记作 ;(2)如果a 不是集合A 的元素,就说 ,记作 ;3. 集合的表示方法列举法二、认知探究 集合的表示方法描述法描述法: 表示集合的方法.三、合作探究例1:试用列举法或描述法表示下列集合:(1)15的正约数;(2)不大于10的非负偶数;(3)函数21y x =+的图象上所有点的集合;(4)21y x =+函数值的集合;(5)函数21y x =+的图象上所有整数点的集合;例2 :用列举法表示下列集合:(1)6{|}2A x Z Z x=∈∈- (2)2{|8,,}B y y x x N y N ==-+∈∈ (3)2{(,)|8,,}C x y y x x N y N ==-+∈∈(4)已知集合{2,1,0,1}A =--,集合{|||,}B y y x x A ==∈,求集合B例3:已知{}{}22,,,2,2,,M a b N a b ==且,M N =试求a 与b 的值.四、巩固练习: 1. 试用列举法或描述法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=自变量的值组成的集合; (3)不等式342x x ≥-的解集;(420y -=的解集.2. 用列举法表示下列集合: (1){(,)|4,,}A x y x y x Ny N **=+=∈∈ (2)31(,)|x y x y B x y +=-=-⎧⎫⎧=⎨⎨⎬⎩⎩⎭(3)6{|}1C Z x N x=∈∈+ 3.定义集合运算:{|,,}A B z z xy x A y B *==∈∈,设{1,2},{0,2},A B ==则集合A B *的所有元素之和为 ( ).A 0 .B 2 .C 3 .D 64.已知{(,)|20},{(,)|0},A x y x y m B x y x y n =-+>=+-≤若点(2,3),(2,3).P A P B ∈∉试求,m n 的取值范围.5.已知集合2{(,)|210}.A x y ax x =++=(1)若A 中没有任何元素,求a 的取值范围;(2)若A 中只有一个元素,求a 的取值范围.。
人教A版高中数学必修一全册导学案集合的含义与表示(2)
课题:1.1.1集合的含义与表示(1)三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。
过程与方法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学生的应用意识。
二、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。
知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)学习过程:阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。
2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。
问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?问题6:常用数集及其记法: B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。
人教版高中数学必修1学案:1.1.1集合的含义与表示(2)
1.1.1集合的含义与表示(2)一、三维目标:知识与技能:掌握表示集合的两种表示方法,能够运用集合的两种表示方法表示一些简单集合。
过程与方法:通过集合表示方法的学习,体会集合的表示方法的区别与联系。
情感态度与价值观:提高学生分析问题和解决问题的能力。
二、学习重、难点:重点:集合的两种表示方法。
难点:对描述法的理解。
三、学法指导:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
四、知识链接:1.集合中元素的特征是:2.常用数集及其记法:五、学习过程:1、阅读教材P3页,回答问题:问题1.列举法的定义:问题2. {1,2,3}与{3,2,1}表示的集合的关系?例1.请用列举法表示下列集合:(1)小于5的正奇数。
(2)能被3整除且大于4小于15的自然数。
x-=的解的集合。
(3)方程290问题3.用列举法能表示元素个数无限个的集合吗?举例说明?问题4. 什么样的集合适合用列举法表示?2、阅读教材P4页,回答问题:问题5.描述法的定义:B例2.试分别用列举法和描述法表示下列集合:(1)方程x2-3=0的所有实数根组成的集合。
(2)由大于10小于30的所有整数组成的集合。
问题6.什么样的集合适合用描述法表示?一个集合是否既能用列举法表示,又能用描述法表示?并举例说明。
问题7.集合x x |{>3}与集合t t |{>3}是否表示同一个集合?六、达标检测:A 1.教材12页A 组3,4题B 2.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为________;用描述法表示为 。
B 3.{(,)|6,,}x y x y x N y N +=∈∈用列举法表示为 。
B 4.已知},,13|{Z k k x x A ∈-==用∈或∉符号填空:(1)5 A (2)—7 A B 5.集合M={(x,y )|xy>0,x ∈R,y ∈R}是指A 第一象限内的点集B 第三象限内的点集C 第一、三象限内的点集D 第二、四象限内的点集B 6.用列举法将集合{(x,y )|x ∈{1,2},y ∈{1,2}}可以表示为A.{{1,1},{1,2},{2,1},{2,2}}B.{1,2}C.{(1,1),(1,2),(2,1),(2,2)}D.{(1,2)}B 7.已知集合A={-2,-1,0,1},集合B={y|y=|x|, x ∈A},则B=B 8.已知集合A={(x,y )|y=2x+1},B={(x,y )|y=x+3},a ∈A 且a ∈B 则a 为C 9.试选择适当的方法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)不等式x-3>2的解的集合;(3)二次函数y=x 2-10图像上的所有的点组成的集合;七、学习小结: 本节课介绍了集合的常用表示方法,包括列举法、描述法。
人教A版必修一数学第一章1.1.1《集合的含义与表示》【教案+课件】(2份打包)
表示集合的方法叫做列举法。
如:{1,2,3,4,5},
{x2,3x+2,5y3-x,x2+y2}
注:集合中的元素具有无序性,所以用列举法表示集合时 不必考虑元素的顺序。
研探新知
集合的表示方法
2.描述法:
用集合所含元素的共同特征表示集合的方法称为描述法。
具体方法:在大括号内先写上表示这个集合元素的一般符 号及取值(或变化)范围,再画一条竖线,在 竖线后写出这个集合中元素所具有的共同特征。
研探新知
常用个数集及其记法
非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R
研探新知问题:下面这有个限集集合、:集无合限的集分类
{ x |x2+x+1=0},它有什么特征?
显然这个集合没有元素。 我们把这样的集合叫做空集,记作。
练习:⑴ 0 ⑵{ 0 }
集合常用大写字母A、B、C......表示,元素常 用小写字母a、b、c......表示。
思考:上述5个实例能否构成集合?如果是集合, 那么它的元素分别是什么?
研探新知
集合的含义
练习:下列指定的对象,是否能构成集合? ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体
(填∈或) (填=或≠)
集合的分类: (1)按元素多少分类:有限集、无限集; (2)按元素种类分类:数集、点集等
例题讲授
例1.用集合表示: ①x2-3=0的解集; ②所有大于0小于10的奇数; ③不等式2x-1>3的解.
例题讲授
人教版高中数学必修1第1章1.1.1 集合的含义与表示(二)教案
第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示(二)教学目标分析:知识目标:1、了解集合的含义,体会元素与集合的“属于”关系。
2、掌握集合中元素的特性。
3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
过程与方法:通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。
情感目标:在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。
重难点分析:重点:集合的表示方法。
难点:集合表示方法的恰当选择及应用。
互动探究:一、课堂探究:1、复习巩固:(1)集合的定义;(2)元素与集合的表示及关系;(3)常用数集的符号表示;思考、(1)你能用自然语言描述集合{2,4,6,8}吗?x-<的解集吗?(2)你能用列举法表示不等式732、描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
例1、试分别用列举法和描述法表示下列集合x-=的所有实数根组成的集合(1)方程220(2)由大于10小于20的所有整数组成的集合注意:①写清楚该集合中元素满足性质;②不能出现未被说明的字母;③多层描述时,应当准确使用“或”,“且”;④所有描述的内容都要写在集合的括号内;⑤用于描述的语句力求简明,准确.例2、(1)试用列举法表示下列集合:6{|,}3A a N a Z a =∈∈-;3{(,)|}1x y B x y x y +=⎧=⎨-=⎩答案:{3,0,1,2}A =-,{(2,1)}B =(2)试用描述法表示下列集合:(1)正奇数集;(2)被3除余1的正整数的集合;(3)坐标平面内坐标轴上的点的集合。
知识链接:整除的规律 整除规则第一条(1):任何整数都能被1整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省栾川县第一高级中学高中数学人教版必修一导学案:1-1-1 集
合的含义与表示(2 )
一、复习回顾
1.集合中元素的特征: .
2.元素与集合的关系
(1)如果a 是集合A 的元素,就说 ,记作 ;
(2)如果a 不是集合A 的元素,就说 ,记作 ;
3. 集合的表示方法
列举法
二、认知探究 集合的表示方法描述法
描述法: 表示集合的方法.
三、合作探究
例1:试用列举法或描述法表示下列集合:
(1)15的正约数;
(2)不大于10的非负偶数;
(3)函数21y x =+的图象上所有点的集合;
(4)21y x =+函数值的集合;
(5)函数21y x =+的图象上所有整数点的集合;
例2 :用列举法表示下列集合:
(1)6{|}2A x Z Z x
=∈∈- (2)2{|8,,}B y y x x N y N ==-+∈∈
(3)2{(,)|8,,}C x y y x x N y N ==-+∈∈
(4)已知集合{2,1,0,1}A =--,集合{|||,}B y y x x A ==∈,求集合B
例3:已知{}{}
22,,,2,2,,M a b N a b ==且,M N =试求a 与b 的值.
四、巩固练习: 1. 试用列举法或描述法表示下列集合:
(1)二次函数24y x =-的函数值组成的集合;
(2)反比例函数2y x
=
自变量的值组成的集合; (3)不等式342x x ≥-的解集;
(420y -=的解集.
2. 用列举法表示下列集合:
(1){(,)|4,,}A x y x y x N y N **=+=∈∈
(2)31(,)|x y x y B x y +=-=-⎧⎫⎧=⎨⎨⎬⎩⎩⎭
(3)6{|}1C Z x N x
=∈∈+ 3.定义集合运算:{|,,}A B z z xy x A y B *==∈∈,设{1,2},{0,2},
A B ==则集合A B *的所有元素之和为 ( )
.A 0 .B 2 .C 3 .D 6
4.已知{(,)|20}A x
y x y m B x y x =-+>=+-≤若点(2,3)P A P B ∈∉
试求,m n 的取值范围.
5.已知集合2
{(,)|210}.A x y ax x =++= (1)若A 中没有任何元素,求a 的取值范围;(2)若A 中只有一个元素,求a 的取值范围.。