高考数学模拟题孙泰
泰州中学2025届高考仿真卷数学试题含解析
泰州中学2025届高考仿真卷数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个2.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.83.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重比为58.79kg4.已知0a >且1a ≠,函数()1log ,031,0a x x a x f x x ++>⎧=⎨-≤⎩,若()3f a =,则()f a -=( )A .2B .23C .23-D .89-5.一个陶瓷圆盘的半径为10cm ,中间有一个边长为4cm 的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率π的值为(精确到0.001)( ) A .3.132B .3.137C .3.142D .3.1476.已知3log 74a =,2log b m =,52c =,若a b c >>,则正数m 可以为( ) A .4B .23C .8D .177.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .2368.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( ) A .1-B .0C .1D .39.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( ) A .25B .1325C .35D .192510.在直角坐标系中,已知A (1,0),B (4,0),若直线x +my ﹣1=0上存在点P ,使得|PA |=2|PB |,则正实数m 的最小值是( )A .13B .3C D11.已知集合{lgsin A x y x ==+,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .22⎛⎫⎪⎪⎝⎭12.若,,x a b 均为任意实数,且()()22231a b ++-=,则()()22ln x a x b -+- 的最小值为( )A .B .18C .1D .19-二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市兴化一中2025届高三第二次模拟考试数学试卷含解析
江苏省泰州市兴化一中2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.△ABC 的内角A ,B ,C 的对边分别为,,a b c ,已知1,30a b B ===,则A 为( )A .60B .120C .60或150D .60或1202.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列; ②若直线l 上有两个不同的点到平面α的距离相等,则//l α; ③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件; ④若0,0,24a b a b >>+=,则ab 的最大值为2. A .1B .2C .3D .04.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .255.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )A .5i >B .8i >C .10i >D .12i >6.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( ) A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如sin a bx 的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数0.06sin180000y t =构成乐音的是( ) A .0.02sin 360000y t = B .0.03sin180000y t = C .0.02sin181800y t=D .0.05sin 540000y t =8.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .6139.若平面向量,,a b c ,满足||2,||4,4,||3a b a b c a b ==⋅=-+=,则||c b -的最大值为( )A .523B .523C .133D .13310.tan570°=( ) A 3B .3C 3D 311.函数sin()(0y A x ωϕω=+>,||2ϕπ<,)x R ∈的部分图象如图所示,则函数表达式为( )A .4sin()84y x ππ=-+ B .4sin()84y x ππ=-C .4sin()84y x ππ=--D .4sin()84y x ππ=+ 12.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰兴市第一高级中学2025届高考仿真模拟数学试卷含解析
江苏省泰兴市第一高级中学2025届高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( ) A .12种B .24种C .36种D .72种2.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =,则AB 为( )A .409B .40C .16D .1633.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A .155B .15C .1510D .21555.已知集合{}2lgsin 9A x y x x ==+-,则()cos22sin f x x x x A =+∈,的值域为( ) A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .2,22⎛⎫⎪⎪⎝⎭6.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .7.函数()()ln 12f x x x=+-的定义域为( )A .()2,+∞B .()()1,22,-⋃+∞C .()1,2-D .1,28.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A .5-12B .3-12C .314+ D .514+ 9.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .810.若函数()222y sin x ϕϕπ⎛⎫< ⎪⎝+⎭=的图象经过点012π⎛⎫⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-11.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .67412.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B 3C .212D 31+ 二、填空题:本题共4小题,每小题5分,共20分。
山东省临沂市临沭县第一中学2025届高考考前提分数学仿真卷含解析
山东省临沂市临沭县第一中学2025届高考考前提分数学仿真卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .62.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15- B .3715 C .3720 D .13153.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .84.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( )A .13i +B .13i -C .13i -+D .13i --5.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ON OP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( )A .0B .1C .2D .36.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A 51+B 51+C 51RD - D 51RC - 7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为( )A .3y x =± B.y = C .2y x =± D.y =8.35(1)(2)x y --的展开式中,满足2m n +=的m n x y 的系数之和为( )A .640B .416C .406D .236- 9.设直线l 过点()0,1A-,且与圆C :2220x y y +-=相切于点B ,那么AB AC ⋅=( ) A .3± B .3 CD .110.圆心为()2,1且和x 轴相切的圆的方程是( )A .()()22211x y -+-=B .()()22211x y +++= C .()()22215x y -+-= D .()()22215x y +++= 11.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC ∆是边长为,若球O 的表面积为20π,则直线PC 与平面PAB 所成角的正切值为( )A .34 BCD12.已知a ,b ,c 分别是ABC 三个内角A ,B ,C的对边,cos sin a C A b c =+,则A =( ) A .6π B .4π C .3π D .23π 二、填空题:本题共4小题,每小题5分,共20分。
2022年高考数学(文)模拟卷三(全国卷)(原卷版+解析版)
2022年高考数学(文)模拟卷(全国卷)二轮拔高卷03(本卷满分150分,考试时间120分钟。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数3i z a =+,且()i i ,R z m m a m =+∈,则a m +=( ) A .3B .0C .3-D .6-2.已知命题:p x ∃∈R ,2610x x +=-,命题:q x ∀∈R ,3sin 2cos 22x x +<,则下列命题中为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∧⌝D .p q ⌝∧3.某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )A .高一年级得分中位数小于高二年级得分中位数B .高一年级得分方差大于高二年级得分方差C .高一年级得分平均数等于高二年级得分平均数D .高一年级班级得分最低为344.已知在ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,则根据条件解三角形时恰有一解的一组条件是( )A .3a =,4b =,6A π= B .4a =,3b =,3A π=C .1a =,2b =,4A π=D .2a =,3b =,23A π=5.若实数x ,y 满足约束条件10330390x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最大值是( )A .-2B .-4C .3D .46.其几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .34cmB .38cmC .3163cm D .3323cm 7.五声音阶(汉族古代音律)就是按五度的相生顺序,从宫音开始到羽音,依次为:宫,商,角,徵,羽,若宫的频率为f ,则宫,商,角,徵,羽的频率分别是f 、98f 、8164f 、32f 、2716f .定义音比(大于1)是相邻两个音的频率比,上述音比只有两个不同的值,记为(),αβαβ>,则下列关系式不成立...的是( )(参考数据:lg 20.301≈、lg30.477≈) A .3227α=B .lg 2lg33lg 2β=-C .10lg lg 9αβ⋅=D .lg lg 0.2αβ-<8.已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><的最小正周期3π4T ≥,且7π12x =是函数()f x 的一条对称轴,π(,0)3是函数()f x 的一个对称中心,则函数()f x 在ππ,46⎛⎤- ⎥⎝⎦上的取值范围是( )A .(B .(]-1,2C .1-12⎛⎤⎥⎝⎦, D .[]1,2-9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=A .14 B .13C D 10.已知正四棱柱1111ABCD A B C D -中,12312AA AB ==,点M 是线段1BB 的中点,点N 是线段1DD 上靠近D 的三等分点,若正四棱柱1111ABCD A B C D -被过点1A ,M ,N 的平面所截,则所得截面的周长为( )A .10+B .10+C .9+D .9+11.数列{}n a 满足:221110101n n n n a a a a a ++<<≥=+-,,,则( )A .3420191a a a <<,B .3420191a a a ,C .3420191a a a ><,D .3420191a a a >>,12.已知函数()e xf x =,()cosg x t x =;若()()g x f x ≤在,22x ππ⎛⎫∈- ⎪⎝⎭上恒成立,则实数t 的取值范围是( )A.4π⎛⎤-∞ ⎥⎝⎦B.4,π-⎫+∞⎪⎭C.4,π⎫+∞⎪⎭D.4π-⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
高中高考数学模拟试卷
高中高考数学模拟试卷试卷一一、单项选择题(本大题10小题,每题3分,共计30分)1、集合A={ 1 , 2 , 3 , 4 , 5 },集合B={ 2 , 3 , 4 , 6 }则A B= ( )A. { 1 , 2 , 3 , 4 , 5 , 6 }B. { 1 , 2 , 3 , 4 , 5 }C. { 2 , 3 , 4 , 6 }D. { 2 , 3 , 4 }2、设全集U=R,集合A={ x | -1 < x≤5 },则C A=()A. {x | x≤- 1}B. {x | x > 5}C. {x | x < - 1或x > 5}D. {x | x≤ - 1或x > 5}3、当a > b > 0时,则下列比较关于a , b的式子大小正确的为()A. a - 1 < b - 1B. 2 a + 1 < 2 b + 1C. - a > - bD. - a < b4、设2 x - 3 < 7,则x < ( )A. x < 5B. x < - 5C. x > 5D. x > - 55、已知集合A= [ - 3,4 ],B= [ 1,6 ],求A B = ( )A. [ - 3 ,4 ]B. [ 1 ,6 ]C. [ - 3 ,6 ]D. [ 1 ,4 ]6、设全集U=R,集合A= [ - 6,9),则C A=()A. ( -,- 6) [ 9 ,+)B. ( -,- 6)C. [ 9 ,+)D. ( -,- 6 ] ( 9 ,+)7、不等式(1-x)(4+x)>0的解集为()A.(1 ,+)B.(-,- 4)C.(- 4,1 )D.(-,- 4)(1 ,+)8、解含绝对值的不等式| x - 8 | < 2解集正确的为()A. (6,10)B.(-,6)(10 ,+)C.(-,6)D.(10 ,+)9、梯形面积公式正确的为()A.×底×高B. 底×高C.× (上底+下底)×高D. (上底+下底)×高10、用描述法表示集合:由第一象限所有点组成的集合,正确的为()A. {(x,y)| x > 0 , y > 0 }B. {(x,y)| x > 0 , y < 0 }C. {(x,y)| x < 0 , y > 0 }D. {(x,y)| x < 0 , y < 0 }11、用列举法表示集合:大于- 4且小于等于6的所有偶数组成的集合,正确的为()A. { - 4 , - 2 , 0 , 2 , 4 , 6}B. { - 4 , - 2 , 0 , 2 , 4 }B. { - 2 , 0 , 2 , 4 , 6} D. { - 2 , 0 , 2 , 4 }12、五边形的内角和为()度A. 360度B. 180度C. 540度D. 720度13、所有正整数组成的集合叫做正整数集,记作()A. NB. ZC. QD.14、不含任何元素的集合叫做( ),记作A. 全集B. 补集C. 空集D. 交集15、当x是什么实数时,有意义?()A. x ≠ 3B.x = 3C. x > 3D. x ≥ 3二、填空题(每个空3分,共计30分)1、设集合A={x | - 2 < x < 3},B={x | x > 1},则集合A B=2、方程3- x - 2的解集为(解集用区间表示)3、设全集为U=R,A={x | x ≤ 1},则集合C A=4、设,则x<5、设x+5 < - 3,则x <6、设集合A={- 3 , - 2 , 0 , 1 , 3 , 4},B={0 , 2 , 4 , - 3},则A B=7、不等式(1 - x)(3x - 2)> 0的解集为8、设a > b,则a + 2 b + 2 ,2 a 2 b , 5 - a 5 - b三、计算题(本大题5小题,共计40分)1、在开秋季运动会时,某班共有28名同学参加比赛,其中有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加田赛和径赛的有3人,同时参加径赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田赛和球类比赛的有多少人?只参加径赛的同学有多少人?(6分)2、已知全集U={0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8,9 },集合A={0 , 1 , 2 , 3},集合B={2 ,3,4 , 6 , 8},求:(1)A B , A B (2)C A ,C B (6分)3、设全集U={x | - 7 ≤ x ≤ 5},集合A={x | -4 < x ≤ 2},B={x | - 2 < x < 4},求:(1)C A ,C B (2)(C A)(C B)(3)(C A)(C B)(4)C(A B)(12分)4、当x为何值时,代数式的值与代数式的值之差不小于3 ?(5分)5、设全集为R,集合A=(-,4],集合B=[-3,+) , 求:(1)C A ,C B (2)(C A)(C B)(3)(C A)(C B)(4)C(A B)(12分)6、解一元二次不等式 -- 6x+7 ≤ 0 (5分)7、解含绝对值的不等式 | 3x-5 | - 4 ≥ 3 (5分)8、当x是什么实数时,有意义?(5分)9、解含绝对值的不等式 | 2x-1 | - | x+3 | >2 (8分)试卷二一、选择题:本大题共10小题,每小题5分,共50分。
2025届江苏省泰州市兴化一中高考数学五模试卷含解析
2025届江苏省泰州市兴化一中高考数学五模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .22.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .33.函数f x x 2()cos(2)3π=+的对称轴不可能为( ) A .65x π=-B .3x π=-C .6x π=D .3x π=4.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .5.已知正方体1111ABCD A B C D -的棱长为1,平面α与此正方体相交.对于实数(03d d <<,如果正方体1111ABCD A B C D -的八个顶点中恰好有m 个点到平面α的距离等于d ,那么下列结论中,一定正确的是A .6m ≠B .5m ≠C .4m ≠D .3m ≠6.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2B .3C .4D .17.已知函数()3sin cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3cos2g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 8.已知数列 {}n a 是公比为 q 的等比数列,且 1a , 3a , 2a 成等差数列,则公比 q 的值为( )A .12-B .2-C .1- 或12D .1 或 12-9.已知函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像与一条平行于x 轴的直线有两个交点,其横坐标分别为12,x x ,则12x x +=( ) A .34π B .23π C .3π D .6π 10.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .14011.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a <D .b a >12.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-13.已知椭圆C :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆的焦距为2c ,过C 外一点P (c ,2c )作线段PF 1,PF 2分别交椭圆C 于点A 、B ,若|PA |=|AF 1|,则22PF BF =_____.14.在直三棱柱111ABC A B C -内有一个与其各面都相切的球O 1,同时在三棱柱111ABC A B C -外有一个外接球2O .若AB BC ⊥,3AB =,4BC =,则球2O 的表面积为______.15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知在等差数列{}n a 中,717a =,13515a a a ++=,前n 项和为n S ,则6S =________. 三、解答题:共70分。
2025届江苏泰兴一中高考数学全真模拟密押卷含解析
2025届江苏泰兴一中高考数学全真模拟密押卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=( )A .-2B .-4C .3D .-3 2.在区间[]3,3-上随机取一个数x ,使得301x x -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( )A .8B .9C .10D .113.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .44.已知双曲线C :2222x y a b-=1(a >0,b >0)的右焦点为F ,过原点O 作斜率为43的直线交C 的右支于点A ,若|OA |=|OF |,则双曲线的离心率为( )ABC .2 D5.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是( )A .()lg 1y x =+B .12y x =C .2x y =D .ln y x =6.已知圆锥的高为3体积的比值为( )A .53B .329C .43D .2597.已知数列{}n a 为等差数列,n S 为其前n 项和,56104a a a +=+,则21S =( )A .7B .14C .28D .848.已知i 是虚数单位,若z 211i i=+-,则||z =( )A .2B .2C .10D .109.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+,x ,y R ∈,则23x y +=( )A .2B .53C .43D .3210.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( )A .35B .36C .45D .5411.如图,在ABC ∆中,点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=( )A .1233BA BC +B .5799BA BC + C .11099BA BC +D .2799BA BC + 12.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B .66C .34D 3 二、填空题:本题共4小题,每小题5分,共20分。
2023届河南省五岳在线考试高考仿真模拟数学试卷含解析
2023年高考数学模拟试卷 考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.二项式52x ⎫-⎪⎭的展开式中,常数项为( ) A .80- B .80C .160-D .1602.已知函数()()4,2x f x x g x a x =+=+,若[]121,3,2,32x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≥,则实数a 的取值范围是( ) A .1a ≤ B .1a ≥ C .0a ≤D .0a ≥3.已知集合(){}lg 2A x y x ==-,集合1244xB x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( ) A .{}2x x >-B .{}22x x -<<C .{}22x x -≤<D .{}2x x <4.已知集合{}0,1,2,3A =,{|22}B x x =-≤≤,则A B 等于( )A .{}012,,B .{2,1,0,1,2}--C .{}2,1,0,1,2,3-- D .{}12,5.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b +的最大值为( )A .94 B .9C .13 D .16.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30,若向弦图内随机抛掷200颗米粒(大小忽略不计,取1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .647.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S=( )A .42B .21C .7D .38.已知函数在上的值域为,则实数的取值范围为( )A .B .C .D .9.在各项均为正数的等比数列{}n a 中,若563a a =,则3132310log log log a a a +++=( )A .31log 5+ B .6 C .4D .510.已知0x >,0y >,23x y +=,则23x yxy +的最小值为( )A .322-B .221+C .21-D .21+11.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]12.如图,平面四边形ACBD 中,AB BC ⊥,3AB =,2BC =,ABD △为等边三角形,现将ABD △沿AB 翻折,使点D 移动至点P ,且PB BC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823二、填空题:本题共4小题,每小题5分,共20分。
2023届安徽省滁州高考数学二模试卷含解析
2023年高考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183B .163C .143D .1232.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-3.若复数z 满足i 2i z -=,则z =( ) A .2B .3C .2D .54.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为( )A 3B 6C 3D 33 5.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a //β,b //α,则“a //b “是“α//β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知复数z 满足1z =,则2z i +-的最大值为( ) A .23+B .15+C .25D .67.已知n S 是等差数列{}n a 的前n 项和,1252a a +=,234+=a a ,则10S =( ) A .85B .852C .35D .3528.在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r =( ) A .512- B .32- C .212-D .23-9.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 10.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m =,例如112(mod3)=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( ).A .21B .22C .23D .2411.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .312.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( ) A .平行 B .重合C .垂直D .相交但不垂直二、填空题:本题共4小题,每小题5分,共20分。
2025届江苏省泰兴市西城中学高考数学一模试卷含解析
2025届江苏省泰兴市西城中学高考数学一模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x2.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离3.设F 为抛物线24x y =的焦点,A ,B ,C 为抛物线上三点,若0FA FB FC ++=,则|||||FA FB FC ++=( ). A .9B .6C .38D .3164.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cm B 36463cm C 33223cm D 36423cm 5.过抛物线()220y px p =>的焦点F 作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=( )A .54 B .43C .32D .2 6.已知a >0,b >0,a +b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( )A .3B .4C .5D .67.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++()*n ∈N ,则当2020n T <时,n 的最大值是( )A .8B .9C .10D .118.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A .B .C .D .9.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( ) A .5B .11C .20D .2510.已知函数()f x 满足(4)17f =,设00()f x y =,则“017y =”是“04x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.已知向量(2,4)a =-,(,3)b k =,且a 与b 的夹角为135︒,则k =( ) A .9-B .1C .9-或1D .1-或912.已知函数2()(2)g x f x x =+为奇函数,且(2)3f =,则(2)f -=( )A .2B .5C .1D .3二、填空题:本题共4小题,每小题5分,共20分。
江苏泰兴一中2025届高考数学倒计时模拟卷含解析
江苏泰兴一中2025届高考数学倒计时模拟卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2B .2iC .4D .4i2.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}3.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 4.已知平面向量,a b ,满足1,13a b ==,且2a b a b +=+,则a 与b 的夹角为( ) A .6π B .3π C .23π D .56π 5.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .2746.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( ) A .1ln 22+B .2e -C .1ln 22-D 127.已知(1,2)a =,(,3)b m m =+,(2,1)c m =--,若//a b ,则b c ⋅=( ) A .7-B .3-C .3D .78.在平面直角坐标系xOy 中,已知,n n A B 是圆222x y n +=上两个动点,且满足()2*2n n n OA OB n N ⋅=-∈,设,n n A B到直线()310x y n n +++=的距离之和的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 的取值范围是( ) A .3,4⎛⎫+∞⎪⎝⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .2,3⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭9.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .32B .12C .34D .7410.若复数()12()()z m m i m R =+-∈+是纯虚数,则63iz+=( ) A .3 B .5C .5D .3511.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .52B .23C .8D .8312.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π二、填空题:本题共4小题,每小题5分,共20分。
山东省泰安三中、新泰二中、宁阳二中三校2025届高考考前提分数学仿真卷含解析
山东省泰安三中、新泰二中、宁阳二中三校2025届高考考前提分数学仿真卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}10,1,0,12x A xB x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( ) A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,12.执行如图所示的程序框图,若输入的3t =,则输出的i =( )A .9B .31C .15D .633.已知直线1l :x my =(0m ≠)与抛物线C :24y x =交于O (坐标原点),A 两点,直线2l :x my m =+与抛物线C 交于B ,D 两点.若||3||BD OA =,则实数m 的值为( ) A .14B .15C .13D .184.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .85.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A .)2,⎡+∞⎣B .[)2,+∞C .(1,2⎤⎦D .(]1,26.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( )A .1233AD AB - B .2133AD AB + C .2133AD AB -D .1233AD AB +7.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C .1D .1-8.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅9.已知等比数列{}n a 满足21a =,616a =,等差数列{}n b 中54b a =,n S 为数列{}n b 的前n 项和,则9S =( ) A .36B .72C .36-D .36±10.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±11.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个12.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )A .16πB .323πC .23πD .2053π二、填空题:本题共4小题,每小题5分,共20分。
高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案104
高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(10)一、选择题(共10小题,每小题5分,共50分)1.(5分)函数f(x)=cos(2x+)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1]D.[0,1)3.(5分)已知复数z=2﹣i,则z•的值为()A.5B.C.3D.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3B.f(x)=3xC.f(x)=xD.f(x)=()x8.(5分)原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假9.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s210.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=x3﹣x2﹣xB.y=x3+x2﹣3xC.y=x3﹣xD.y=x3+x2﹣2x二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4x的准线方程是.12.(5分)已知4a=2,lgx=a,则x=.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.14.(5分)已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f(x)的表达式为.选考题(请在1517三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC 三边围成的区域(含边界)上,且=m +n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:0 1000 2000 3000 4000赔付金额(元)500 130 100 150 120 车辆数(辆)(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.22.(13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l:y=﹣x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程.23.(14分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(10)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)函数f(x)=cos(2x+)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1]D.[0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:D.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)已知复数z=2﹣i,则z•的值为()A.5B.C.3D.【分析】由z求出,然后直接利用复数代数形式的乘法运算求解.【解答】解:由z=2﹣i,得z•=(2﹣i)(2+i)=4﹣i2=5.故选:A.【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:C.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:B.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3B.f(x)=3xC.f(x)=xD.f(x)=()x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故B正确;C.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故C 错;D.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故D错.故选:B.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.【解答】解:∵<an=⇔an+1<an,n∈N+,∴{an}为递减数列,命题是真命题;其否命题是:若≥an,n∈N+,则{an}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A.【点评】本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键.9.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s2【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论.【解答】解:由题意知yi=xi+100,则=(x1+x2+…+x10+100×10)=(x1+x2+…+x10)=+100,方差s2=[(x1+100﹣(+100)2+(x2+100﹣(+100)2+…+(x10+100﹣(+100)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2.故选:D.【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.10.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=x3﹣x2﹣xB.y=x3+x2﹣3xC.y=x3﹣xD.y=x3+x2﹣2x【分析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案.【解答】解:由函数图象知,此三次函数在(0,0)上处与直线y=﹣x相切,在(2,0)点处与y=3x﹣6相切,下研究四个选项中函数在两点处的切线.A、,将0,2代入,解得此时切线的斜率分别是﹣1,3,符合题意,故A 正确;B、,将0代入,此时导数为﹣3,不为﹣1,故B错误;C、,将2代入,此时导数为﹣1,与点(2,0)处切线斜率为3矛盾,故C 错误;D、,将0代入,此时导数为﹣2,与点(0,0)处切线斜率为﹣1矛盾,故D错误.故选:A.【点评】本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一.二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4x的准线方程是 x=﹣1 .【分析】先根据抛物线的标准方程形式求出p,再根据开口方向,写出其准线方程.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是x=﹣1.故答案为x=﹣1.【点评】根据抛物线的方程求其焦点坐标和准线方程,一定要先化为标准形式,求出的值,再确定开口方向,否则,极易出现错误.12.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.【分析】由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ【解答】解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣cosθ=0,∴tanθ=,故答案为:.【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.14.(5分)已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f(x)的表达式为.【分析】由题意,可先求出f1(x),f2(x),f3(x)…,归纳出fn(x)的表达式,即可得出f(x)的表达式【解答】解:由题意...…故f(x)=故答案为:【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.选考题(请在1517三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.【点评】此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.【分析】(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH是矩形.【解答】(Ⅰ)解:由题意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V==;(Ⅱ)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形,∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)由点的坐标求出向量和的坐标,结合m=n=,再由=m+n求得的坐标,然后由模的公式求模;(Ⅱ)由=m+n得到,作差后得到m﹣n=y﹣x,令y﹣x=t,然后利用线性规划知识求得m﹣n的最大值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),∴,又m=n=,∴.∴;(Ⅱ)∵,∴,两式相减得,m﹣n=y﹣x.令y﹣x=t,由图可知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为:1.【点评】本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:0 1000 2000 3000 4000赔付金额(元)500 130 100 150 120 车辆数(辆)(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.【分析】(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率.【解答】解:(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=,P(B)=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为,由频率估计概率得P(C)=0.24.【点评】本题主要考查了用频率来表示概率,属于中档题.23.(14分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x )﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h (x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.22.(13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l:y=﹣x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程.【分析】(Ⅰ)由题意可得,解出即可.(Ⅱ)由题意可得以F1F2为直径的圆的方程为x2+y2=1.利用点到直线的距离公式可得:圆心到直线l的距离d及d<1,可得m的取值范围.利用弦长公式可得|CD|=2.设A (x1,y1),B(x2,y2).把直线l的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长|AB|=.由=,即可解得m.【解答】解:(Ⅰ)由题意可得,解得,c=1,a=2.∴椭圆的方程为.(Ⅱ)由题意可得以F1F2为直径的圆的方程为x2+y2=1.∴圆心到直线l的距离d=,由d<1,可得.(*)∴|CD|=2==.设A(x1,y1),B(x2,y2).联立,化为x2﹣mx+m2﹣3=0,可得x1+x2=m,.∴|AB|==.由=,得,解得满足(*).因此直线l的方程为.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交的弦长问题、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.高考数学试卷(理科)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)2.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π3.(5分)定积分(2x+ex)dx的值为()A.e+2 B.e+1 C.e D.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2n B.an=2(n﹣1)C.an=2n D.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3 C.f(x)=()x D.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣x B.y=x3﹣xC.y=x3﹣x D.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m +n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)定积分(2x+ex)dx的值为()A.e+2 B.e+1 C.e D.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2n B.an=2(n﹣1)C.an=2n D.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3 C.f(x)=()x D.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()。
2025届江苏省镇江心湖高级中学高考仿真模拟数学试卷含解析
2025届江苏省镇江心湖高级中学高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(,4)a m =-,(,1)b m =(其中m 为实数),则“2m =”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知集合{|4},{|2,}A x N y x B x x n n Z =∈=-==∈,则A B =( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]3.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .5.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( ) A .1ln 22+B .2e -C .1ln 22-D 12e 6.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎣C .2,4⎤⎦D .[]1,47.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A 17B .32C .53D 10 8.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .19.已知P 为圆C :22(5)36x y -+=上任意一点,(5,0)A -,若线段PA 的垂直平分线交直线PC 于点Q ,则Q 点的轨迹方程为( )A .221916x y +=B .221916x y -=C .221916x y -=(0x <)D .221916x y -=(0x >)10.已知函数3ln ()3ln x a x f x a x x=-+-在区间()1,+∞上恰有四个不同的零点,则实数a 的取值范围是( ) A .(,3)(3,)e +∞ B .[)0,eC .()2,e +∞D .(,){3}e -∞11.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米12.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()UA B =( )A .()0,3B .[)2,3C .()0,2D .()0,∞+二、填空题:本题共4小题,每小题5分,共20分。
2025届江苏省泰州市兴化一中高考仿真卷数学试题含解析
2025届江苏省泰州市兴化一中高考仿真卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭, 则()1E ξ= D .am bm >是a b >的充分不必要条件2.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个3.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对4.已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为( )A .2214y x -=B .221520y x -=C .221205x y -=D .2214x y -=5.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 6.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u = lny ,v =(x -4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v +2,则变量y 的最大值的估计值是( ) A .eB .e 2C .ln 2D .2ln 27.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( ) A .2B .3C .4D .58.设函数()()21ln 11f x x x =+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1-D .()()1,00,1-9.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .1648110.已知α,β表示两个不同的平面,l 为α内的一条直线,则“α∥β是“l ∥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N12.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21xf x =-,则()()20f f -+=( )A .3-B .2C .3D .2-二、填空题:本题共4小题,每小题5分,共20分。
江苏高三数学20套数学附加题
实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤ a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. 22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1;(2) 1-1n <x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2 30 1对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式;(2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲) 如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。
河南省正阳县第二高级中学2021-2022学年高考考前模拟数学试题含解析
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤2.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3AB ⎛⎫= ⎪⎝⎭B .10,3AB ⎛⎤= ⎥⎝⎦C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞3.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4amB .2a m+ C .2a mm+ D .42a mm+ 4.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为A .16B .23 C .53D .565.函数()256f x x x =-+ )A .{2x x ≤或}3x ≥B .{3x x ≤-或}2x ≥- C .{}23x x ≤≤D .{}32x x -≤≤-6.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为2c .点A 为双曲线C 的右顶点,若点A 到双曲线C 的渐近线的距离为12c ,则双曲线C 的离心率是( ) A .2B .3C .2D .37.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -=B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-8.若双曲线22214x y a -=的离心率为3,则双曲线的焦距为( )A .26B .25C .6D .89.将一块边长为cm a 的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为3722cm ,则a 的值为( )A .6B .8C .10D .1210.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( ) A .若//m α,//n α,则//m n B .若//m α,n ⊂α,则//m n C .若m n ⊥,m α⊥,则//n αD .若m α⊥,//n α,则m n ⊥11.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若32a =,12b =,则输出的n =( )A .3B .4C .5D .612.已知某几何体的三视图如右图所示,则该几何体的体积为( )A .3B .103C .113D .83二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题方法策略 分类讨论;
分类讨论;构造函数(化双 为单主元、换元、奇次)
数形结合;
构造函数
2010 导数试题考查研究
总体分析
省份 试卷题 号 新课标 (21) 12 求常数值; 求参数 导数公式;导数的 范围; 几何意义;导数研 究单调性; 辽宁 (11) (21) 17 解不等式; 讨论单 导数研究单调性; 调性; 证明不等式
试卷命制的原则
科 学 性
适 纲 性
原 创 性
模拟题的特点
检 测 性 仿 真 性 统 筹 性 前 瞻 性
如何编制试题?
编制流程
1.研究《考试大纲和考试说明》 2.研究教材 3.研究高考试题 4.分工明确,初命、交流筛选试题 5.制定双向细目表及填写考点总目表 6.反复推敲、调整试题 7.精心校对、编写答案和评分标准 8.定稿
比例
交集、补集、子集 量词、逆否命题、逻辑联结 5 ☆ 词 5 三角函数的图象及性质 5 函数的性质及导数 12 导数的综合应用 5 12 5 5 积分的运算和性质 等差等比数列通项公式、错 位相减法求和 均值不等式 线性规划
5
☆
▲ ▲ ☆ ▲ ▲ ▲ ▲ ☆ ▲ ▲ ▲ ※ ※ ※ ※
※
☆ ☆ ☆
研究教材
教材P47/11计算下列定积分
(2) x dx a
a 3
f xdx 0 f x是奇函数
a a
(3) x 4 dx a
a
已知
a 2 x 2011 cos x d x
2
,则二项式
项的系数
1 a x x
6
1 展开式 中含 x
洁 求证:x1 x美 1 (或g ' x1 x2 0) 2
和谐 美
第一版
已知函数 f x ax ln x x 1 , g x x e
(21) 性; (3)证 (2) 明不等式.
逐步 挖掘
横向比较
2011 导数试题考查研究总体分析
省份
试卷 分 设问特 知识点 核心函数类 题型 题号 值 点 型及背景 新课 (21) 12 求 常 数 导 数公 y 2ln x a x 1 恒 成 立 求 参 x 标 值; 求参 式 ;导 数;罗比达法 数范围; 数 研究 则型 单 调 性; 辽宁 (11) 17 解 不 等 导 数研 y ln x ax2 bx 求单调区间; (21) 式; 讨论 究 单调 不等式证明 单调性; 性; (双变量) 图 ; 证明不 象性质“偏” 等式 对称 2 y ln x ax 天津 求单调 求单调区间; 区间; 零 零点存在问 点判断; 题;不等式证 不等式 明(单变量) 证明 2x 全国 不等式证明 y ln 1 x x2 Ⅰ
(22) (2)存在性证明; 数 ; 指 题 ; 双 变 形结合;主 (3)证明不等式。 数、 幂函 量不等式 数组合 型函数 2008 元法。 母函数:
ex x 1
单调区间 和极值; 恒成立求 参数
(1) 求单调区间和 对 数 组 无 参 数 求 分类讨论; 合型
(22) 极值; (2)求参数范围
y (a 1)ln x ax2 1
分值
设问特点
知识点
核心函数类型 及背景
y ex ax2 x 1
题型
解题方法 策略
恒成立求 参数;
分类讨 论;二次 导;
罗比达法则型
求单调区
分类讨
间;不等式 论;构造 证明(双变 量) 函数
天津
(21)
求单调区间;证 明不等式
y xe x 图象性
2009
(1)讨论单调
f x a 1 ln x
1 2 x ax a 1 2
含 参 数 讨 论 分类讨论(二次函数根的 单调性;单函 分布) ;构造函数转化证函 数 双 参 数 不 数单调问题。 等式;
(21) 性; (2)证明不等 式. 2010 (1)讨论单调
y 3 2 x3 2
(22) 等式 (3)求参数 范围 2006
式;双参数恒成立 数转化最值。 求参数范围
( 21 ) 求 参 三次函数; 幂函数 xn 最值逆向问题;讨 数形结合; 转化函 论单调性;单函数 数最值问题。 双参数;
(21) 数; (22) (22) 证明不 等式
2007
(1)证明单调性; 二 次 函 存 在 性 问 换元法;数
※ ※
※ ※
不等式与 11 线性规划 16
☆ ☆
向量、 解三 角形 立体几何
7 16 4 15 18 8 9 20 19 10 14 1 3 22
解析几何 概率统计 排列组合二 项式定理 复数 算法
正、余弦定理和三角形面积公 式 向量的数量积 5 空间平行、垂直的判定 5 三视图、球 12 面面垂直及二面角 5 直线与圆 5 双曲线与抛物线的几何性质 12 轨迹方程、向量与椭圆的综合 独立、互斥事件的概率、分布 12 列和期望 5 5 5 5 5 排列、组合
a 1 f x a ln x x x
第一步:以量 “代”数,
f x ax ln x x 1
2
1 f x a ln x x x
a ln x 1 x f x 1 x x
2
a(1 x ) f x ln x x
模拟试题的使用流程
统一批卷 数据统计 试卷分析 试卷讲评 校正、拓展作业
前 期 工 作
研究《考试大纲和考试说明》
研究教材 研究高考试题
研究《考试大纲和考试说明》
导数及其应用
(1)了解导数概念的实际背景
(2)通过图象直观理解导数的几何意义。 (3)能根据导数的定义求函数y=C(C是常数),y=x, 1 y , y x 2 , y x 3 , y x 的导数 x (4)能利用以下给出的基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,并了解复合函数求导法 则,能求简单复合函数(仅限形如 y f ax b )的导数
不等式证
构 造 函
质“偏”对称 明(单、双 数; 变量)
x 1 全国 (22) 12 求参数 导 数 ; 最 y ln x Ⅰ 范围; 值 ; 不 等 x 1 证明不 式 等式; 全国 (22) 12 证明不 ex x 1 Ⅱ 等式; 罗比达法则型 求参数 范围;
不等式证 构 造函 数分 离 明 参数法;分析 法 (零点分类) 单变量不 变形; (函数放 等式; 证明 缩)二次导; 恒成立求 参数;
山东 (22)
求单调 区间; 求参数 范围
f x ln x ax
1 a 含 参 求 单 1 x
调区间; 恒成立求 参数;
我们会问自己的几个问题?
这几年的导数试题的题干设问见过吗? 这几年的导数试题的函数类型考过吗? 这几年的导数试题的解题技巧策略用过吗?
制定双向细目表
是
纵向比较
辽宁高考导数大题(理科) 设问 函数形式
f x ln e x a 对、指
组合 构造
解题策略
题型
研 究 高 考 试 题
2004
(1)求导
单参数恒成立求参 分离参数求最值; 数范围;
(22) (2)求参数 复合函数 范围 2005
(2)证明不 二次函数及幂函数 双函数单变量不等 数形结合; 构造函
高考数学模拟试卷的编制及 使!
高考试题与我们的模拟题神同!
学会命制数学高考模拟卷的目的与意义
• 促使掌握高考考试规律,熟悉高考考试 说明,了解高考命题特点。
要学会命制高考数学模拟试卷,就必须研 究高考试题的主要依据《高考大纲》、《考 试说明》,知道考试内容、考试形式及试卷 结构,以及较高的信度、效度,必要的区分 度,适当的难度。同时熟悉高考试题,分析 命题方向,了解试卷的问题设计的结构、长 度、检查知识点个数和能力,领会命题大家 的苦心、匠心、创新。
a(1 x2 ) f x 1 x (ln x ) x
第二步:变形深化
广度挖掘:
1 令x n N 得: n 1 1 1 n n 1 1 2 ln n ! 2 3 n 2
深度挖掘:
已知: x1 0,简 0, x1 x2且g x1 g x2 x2
'
,
x 0,1
1 1 时,必有 xf x f x x
特殊 化
g x x e
2 2x
1 x a ln x x 1 x 2ln x x 1 a x a ln x x
1 f x a ln x x x a 1 ax ln x x 1 a f x ln x ax x
f ( x) (a 1) ln x ax2 1
含 参 数 讨 论 分类讨论(二次函数根的 单调性; 分布) ;构造函数转化函数 单调恒成立问题。
(21) 性; (2)求参数 范围 2011 (1)讨论单调
f x ln x ax 2 (2 a) x
含 参 数 讨 论 分类讨论(二次函数根的 单调性;单函 分布) ;构造函数转化函数 数 双 参 数 不 最值问题;数形结合,巧 等式; 借前问(或化双为单)
有利于更科学的高三复习备考,是 备考的重要组成部分。
要命制一套高考模拟试卷,迫使 你研究教材,借鉴优秀的模拟试题, 从而能更好的指导日常的教学,更 高效的复习备考。
培养自己命制试卷的能力,提升自己的 研究能力。
命制高考模拟试卷的过程,促使你思 考、琢磨、研究平时教学中忽视的、发现 不了的问题,探索教学规律和解题策略, 因此,有利于自己教学业务水平的提高。