小学六年级奥数题-专题训练之逻辑推理问题

合集下载

六年级奥数逻辑推理

六年级奥数逻辑推理

逻辑推理(一)专题简逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。

它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。

解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。

逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。

推理的过程中往往需要交替运用“排除法”和“反正法”。

要善于借助表格,把已知条件和推出的中间结论及时填入表格内。

填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。

推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。

例题星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。

传达室人员告诉他:这是班里四个住校学生中的一个做的好事。

于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。

(1)许兵说:桌凳不是我修的。

(2)李平说:桌凳是张明修的。

(3)刘成说:桌凳是李平修的。

(4)张明说:我没有修过桌凳。

后经了解,四人中只有一个人说的是真话。

请问:桌凳是谁修的?挑战自我1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。

老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。

如果他们当中只有一人说了真话。

那么,谁是获奖者?2、一位警察,抓获4个盗窃嫌疑犯A、B、C、D,他们的供词如下:A说:“不是我偷的”。

B说:“是A偷的”。

C说:“不是我”。

D说:“是B偷的”。

他们4人中只有一人说的是真话。

你知道谁是小偷吗?3、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个说真话。

说真话的有多少人?说假话的有多少人?例题虹桥小学举行科技知识竞赛,同学们对一贯刻苦学习、爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二。

【经典】小学六年级奥数— 逻辑推理图文百度文库

【经典】小学六年级奥数— 逻辑推理图文百度文库

【经典】小学六年级奥数—逻辑推理图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.7.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.8.如图所示的“鱼”形图案中共有个三角形.9.若质数a,b满足5a+b=2027,则a+b=.10.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.11.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.12.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.7.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.8.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%11.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.12.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.。

小学六年级奥数题-专题训练之逻辑推理问题

小学六年级奥数题-专题训练之逻辑推理问题

小学六年级奥数题:专题训练之逻辑推理问题1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。

赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。

又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。

2、有一种俱乐部,里面的成员可以分成两类。

第一类是老实人,永远说真话。

第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。

李四说:张三是老实人,那么李四是老实人还是骗子?3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。

甲说:我第一,乙第二。

乙说:我第一,甲第四。

丙说:我第一,乙第四。

丁说:我第四,丙第一。

比赛结果无并列名次,且各人都只说对了一半。

那么,丁是第()。

4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。

5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。

试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。

6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。

A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。

结果,每人都只猜对了一半,那么1号是()队,3号是()队。

7、老师给甲、乙、丙各发一张写着不同整数的卡片。

老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。

六年级下册数学试题-奥数专练:逻辑推理(含答案)全国通用

六年级下册数学试题-奥数专练:逻辑推理(含答案)全国通用

逻辑推理很多同学喜欢逻辑推理,说明它有神奇魅力。

在小升初考试中,逻辑推理题依旧频繁的出现在各重点中学的试卷里,北京人大附中英语实验班选拔考试,甚至还出现了多道英语的奥数逻辑题,所以加强这方面的训练对于我们学生来说依然是十分必要的。

一、逻辑推理的“生命线”:逻辑推理找矛盾,真假不清暂先定。

找矛盾的依据是逻辑推理的四大定律。

⑴同一律。

在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。

⑵矛盾律。

在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。

例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的,甚至两个都是错的。

⑶排中律。

在同一推理过程中,对同一对象的两个恰好相反的判断必有一个是对的,它们不能同时都错。

例如“这个数大于8”和“这个数不大于8”是两个恰好相反的判断,其中必有一个是对的,一个是错的。

⑷理由充足律。

在一个推理过程中,要确认某一判断是对的或不对的,必须有充足的理由。

二、逻辑推理的几种主要类型:1.真假命题判断;2.数值限定推演;3.列表与对阵图。

例1某楼住着4个女孩和两个男孩,他们的年龄各不相同,最大的10岁,最小的4岁。

最大的男孩比最小的女孩大4岁,最大的女孩比最小的男孩也大4岁。

最大的男孩多少岁?例2三名学生进行了若干科目的考试,以考得的名次进行记分。

考得第一名得分最多,其次是第二名,第三名得分最少。

各科都是如此记分。

已知甲最后得22分,乙最后得9分,丙也是得9分。

并且已知乙英语考试得了第一名,问数学第二是谁?例3甲、乙、丙、丁四人对A先生的藏书数目做了一个估计,甲说:“A先生500本书”;乙说:“A先生至少有1000本书”;丙说:“A先生的书不到2000本”。

丁说:“A先生最少有1本书”,这四个人的估计中,只有一句是对的,问A先生究竟有多少本书?例4★★★(2006年浙江省小学数学活动课夏令营)足球世界杯小组赛的每个小组有四个队参加单循环(每两个队之间都踢一场)比赛,每组的前两名可以出线。

小学奥数:逻辑推理(二)计算逻辑

小学奥数:逻辑推理(二)计算逻辑

逻辑推理(二)计算逻辑莫泽凡例1:在一座办公大楼里,有30名办事员。

某天上班有一名办事员没有和其他办事员见面。

请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1:某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子。

问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2:如图。

六张四位数的纸片互相纵横交错叠在一起。

其中有且只有一个数是完全平方数。

这个数是多少?例3:伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者。

C年4月D日逝世于美国,享年E岁。

请将下列给出的一组数正确的填入A、B、C、D、E中。

(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2:A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬。

他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章。

在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世。

一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁。

请将下列给出的一组数正确的填入A、B、C、D、E中。

(1)26 (2)57 (3)1827 (4)12 (5)1770例4:10个好朋友彼此住得很远,没有电话,只能靠写信互通消息。

现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报。

请问至少要让邮递员传送几封信?例5:甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。

结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分。

随堂练习3:五个选手进行象棋比赛,每两个人之间都要赛一盘。

规定胜一盘得2分,平一盘各得1分,输一盘不得分。

已知比赛后,其中4位选手共得16分,则第5位选手得了分。

六年级奥数专题 逻辑推理问题(学生版)

六年级奥数专题 逻辑推理问题(学生版)

逻辑推理问题本讲知识可以说是多数孩子比较喜欢的一讲,有趣又可以开发智力,自主学习研究性比较高。

其中运用的一些方法和思想我们在平时的奥数学习中已经接触运用过了。

本讲我们主要从解答逻辑推理问题的方法入手讲解。

如假设法、列表法、排除法、比较法、整体考虑法等,通过实际例题具体讲解。

列表时要将同一对象的两种不同表达方式分别用行与列标出,通过横向与纵向的不断比较得出结论。

假设法“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,顺藤摸瓜,根据数量上出现的矛盾作适当调整,从而找到正确答案。

排除法还有一种组题形式的逻辑推理题(多为选择题),这种题型通常从题目条件出发,并结合排除法来确定选项。

一般的逻辑推理对于一般的逻辑推理题,要能够通过假设、枚举、列表或者列表与假设相结合等方法来分析,逐个探讨各种假设的正确性,进而得出确切的信息。

体育比赛中的逻辑推理问题对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

【试题来源】【题目】小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小. 问:谁是工人?谁是农民?谁是教师?【试题来源】【题目】甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。

此外:(1)数学博士夸跳高冠军跳得高;(2)跳高冠军和大作家常与甲一起去看电影;(3)短跑健将请小画家画贺年卡;(4)数学博士和小画家很要好;(5)乙向大作家借过书;(6)丙下象棋常赢乙和小画家。

你知道甲、乙、丙各有哪两个外号吗?【试题来源】【题目】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。

人教版六年级奥数— 逻辑推理

人教版六年级奥数— 逻辑推理

人教版六年级奥数—逻辑推理一、拓展提优试题1.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.2.22012的个位数字是.(其中,2n表示n个2相乘)3.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.6.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.7.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?8.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.9.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).10.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.11.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)12.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.13.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.14.已知两位数与的比是5:6,则=.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.2.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.3.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.6.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.7.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.8.解:==,答:这三个分数中最大的一个是.故答案为:.9.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.10.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.11.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.12.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.13.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100014.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。

趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理一、题目。

1. 甲、乙、丙三人进行跑步比赛。

甲说:“我跑得不是最快的,但比丙快。

”请你说出他们三人的跑步速度顺序。

- 解析:根据甲说的话,甲不是最快的且比丙快,那么最快的只能是乙,其次是甲,最后是丙。

所以三人的速度顺序为乙>甲>丙。

2. 有A、B、C、D四位同学参加数学竞赛。

他们对自己的成绩进行了预测。

A 说:“我肯定得第一名。

”B说:“我不会得最后一名。

”C说:“我不可能得第一名。

”D说:“我肯定得最后一名。

”竞赛结果出来后,发现他们四人中只有一人预测错误。

那么谁预测错误了呢?- 解析:假设A预测错误,那么A不是第一名,C说自己不可能得第一名是正确的,D说自己肯定得最后一名是正确的,B说自己不会得最后一名也是正确的,这样就符合只有一人预测错误;假设B预测错误,那么B就是最后一名,可是D说自己是最后一名,这样就矛盾了;假设C预测错误,那么C就是第一名,这与A说自己是第一名矛盾;假设D预测错误,那么D不是最后一名,B说自己不是最后一名,这样就没有人是最后一名了,也矛盾。

所以A预测错误。

3. 张、王、李三位老师分别教语文、数学、英语。

已知:张老师不教英语;王老师不教语文;教英语的老师不教数学;教语文的老师和王老师是好朋友。

请问三位老师分别教什么科目?- 解析:由可知张老师不教英语;由可知王老师不教语文;由可知王老师不教语文。

从知道教英语的老师不教数学,那么英语老师只能教语文或者英语。

假设张老师教语文,因为王老师不教语文,教英语的老师不教数学,所以王老师教数学,李老师教英语;假设张老师教数学,因为张老师不教英语,王老师不教语文,所以王老师教英语,李老师教语文。

4. 有红、黄、蓝、白、黑五种颜色的小球,它们之间的关系是:红色球比白色球大;蓝色球比黄色球大且比黑色球小;黄色球比白色球大;黑色球比红色球小。

请按照球的大小顺序排列这五种颜色的球。

- 解析:由可知黄<蓝<黑;由可知白<红;由可知白<黄;由可知黑<红。

六年级奥数之逻辑推理(二)

六年级奥数之逻辑推理(二)

逻辑推理(二)1.小华和甲、乙、丙、丁四个同学参加象棋比赛。

每两人要比赛一盘。

到现在为止,小华已经比赛了4盘。

甲赛了3盘,乙赛了2盘,丁赛了1盘。

丙赛了几盘?2.A,B,C,D,E五位同学一起比赛象棋,每两人都要比赛一盘。

到现在为止,A已经比赛了4盘。

B赛了3盘,C赛了2盘,D赛了1盘。

E赛了几盘?3.A先生和A太太以及三对夫妻举行了一次家庭晚会。

规定每两人最多握手一次,但不和自己的妻子握手。

握手完毕后,A先生问了每个人(包括他妻子)握手几次?令他惊讶的是每人答复的数字各不相同。

那么,A太太握了几次手?4.五位同学一起打乒乓球,两人之间最多只能打一盘。

打完后,甲说:“我打了四盘”。

乙说:“我打了一盘”。

丙说:“我打了三盘”。

丁说:“我打了四盘”。

戊说:“我打了三盘”。

你能肯定其中有人说错了吗?为什么?5.图32-2是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。

图中正方体三个朝左的一面的数字之积是多少?6.图32-3是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。

图中正方体三个朝左的一面的数字之和是多少?7.将红、黄、蓝、白、黑、绿六种颜色分别涂在正方体各面上(每一面只涂一种颜色)。

现有涂色方式完全一样的相同的四块小正方体,把它们拼成长方体(如图32-4所示),每个小正房体红色面的对面涂的是什么颜色?黄色对面的?黑色对面呢?8.如图32-5所示,每个正方体的6个面分别写着数字1~6,并且任意两个相对的面上所写的两个数之和都等于7。

把这样的5个正方体一个挨一个连接起来后,金挨着的两个面上的数字之和等于8。

图中写?的这个面上的数字是几?9.某班44人,从A,B,C,D,E五位候选人中选举班长。

A 得选票23张。

B得选票占第二位,C,D得票相同,E的选票最少,只得了4票。

那么B得选票多少张?10.某商品编号是一个三位数,现有5个三位数:874、765、123、364、925。

六年级下册数学试题-奥数专练:逻辑推理(含答案)全国通用

六年级下册数学试题-奥数专练:逻辑推理(含答案)全国通用

很多同学喜欢逻辑推理,说明它有神奇魅力。

在小升初考试中,逻辑推理题依旧频繁的出现在各重点中学的试卷里,北京人大附中英语实验班选拔考试,甚至还出现了多道英语的奥数逻辑题,所以加强这方面的训练对于我们学生来说依然是十分必要的。

一、逻辑推理的“生命线”:逻辑推理找矛盾,真假不清暂先定。

找矛盾的依据是逻辑推理的四大定律。

⑴同一律。

在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。

⑵矛盾律。

在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。

例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的,甚至两个都是错的。

⑶排中律。

在同一推理过程中,对同一对象的两个恰好相反的判断必有一个是对的,它们不能同时都错。

例如“这个数大于8”和“这个数不大于8”是两个恰好相反的判断,其中必有一个是对的,一个是错的。

⑷理由充足律。

在一个推理过程中,要确认某一判断是对的或不对的,必须有充足的理由。

二、逻辑推理的几种主要类型:1.真假命题判断;2.数值限定推演;3.列表与对阵图。

某楼住着4个女孩和两个男孩,他们的年龄各不相同,最大的10岁,最小的4岁。

最大的男孩比最小的女孩大4岁,最大的女孩比最小的男孩也大4岁。

最大的男孩多少岁?三名学生进行了若干科目的考试,以考得的名次进行记分。

考得第一名得分最多,其次是第二名,第三名得分最少。

各科都是如此记分。

已知甲最后得22分,乙最后得9分,丙也是得9分。

并且已知乙英语考试得了第一名,问数学第二是谁?甲、乙、丙、丁四人对A先生的藏书数目做了一个估计,甲说:“A先生500本书”;乙说:“A先生至少有1000本书”;丙说:“A先生的书不到2000本”。

丁说:“A先生最少有1本书”,这四个人的估计中,只有一句是对的,问A先生究竟有多少本书?★★★(2006年浙江省小学数学活动课夏令营)足球世界杯小组赛的每个小组有四个队参加单循环(每两个队之间都踢一场)比赛,每组的前两名可以出线。

六年级奥数逻辑推理含答案

六年级奥数逻辑推理含答案

逻辑推理知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理【难度】2星【题型】解答【解析】为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。

小学六年级奥数题及答案:逻辑推理

小学六年级奥数题及答案:逻辑推理

小学六年级奥数题及答案:逻辑推理
小学六年级奥数题及答案:逻辑推理
六年级是学习的冲刺阶段,也是拓展思维的好时机,有效的进行习题训练有助于同学们奥数能力的提升。

【小学生奥数题及答案:逻辑推理】
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

逻辑推理答案:
逻辑问题通常直接采用正确的`推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。

解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。

②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.
③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。

六年级下小升初典型奥数之逻辑推理

六年级下小升初典型奥数之逻辑推理

六年级下小升初典型奥数之逻辑推理在六年级的学习中,逻辑推理是一个既有趣又具有挑战性的部分,对于即将面临小升初的同学们来说,掌握逻辑推理的技巧和方法至关重要。

逻辑推理,简单来说,就是通过分析各种条件和信息,运用合理的思维方式,得出正确的结论。

它不仅仅是在数学中有用,在我们的日常生活中也处处都有它的身影。

比如,我们猜谜语、解决问题、做决策,都离不开逻辑推理。

我们先来看看逻辑推理中的“真假推理”。

这种类型的题目通常会给出一些陈述,其中有的是真的,有的是假的,需要我们通过分析来找出真相。

比如说,有这样一道题:甲、乙、丙三人分别说了一句话,甲说:“我今天没说谎。

”乙说:“甲在说谎。

”丙说:“甲和乙都在说谎。

”那么,到底谁说的是真话,谁说的是假话呢?遇到这样的问题,我们可以采用假设法。

先假设甲说的是真话,那么乙说的就是假话,丙说的也是假话。

但是如果丙说的是假话,那就意味着甲和乙不可能都在说谎,这就产生了矛盾。

所以假设不成立,那么甲说的就是假话。

既然甲说的是假话,那么乙说的就是真话,丙说的就是假话。

再来说说“列表推理”。

这种方法适用于信息较多、情况较复杂的题目。

例如,有四个小朋友,分别喜欢不同的水果,小明喜欢苹果,小红不喜欢香蕉,小刚喜欢橙子,问谁喜欢草莓?我们可以列一个表格,把小朋友和他们可能喜欢的水果一一对应起来,然后根据已知条件进行排除和确定。

还有“逻辑分析推理”。

比如有这样一道题:在一个班级里,数学成绩优秀的同学有 15 人,语文成绩优秀的同学有 12 人,英语成绩优秀的同学有 10 人,其中有 5 人数学和语文都优秀,有 3 人语文和英语都优秀,有 2 人数学和英语都优秀,并且有 1 人三门学科都优秀。

问这个班级里一共有多少同学至少有一门学科成绩优秀?对于这样的题目,我们要先算出数学和语文优秀但不重复的人数,再算出语文和英语优秀但不重复的人数,数学和英语优秀但不重复的人数,然后把这三部分人数相加,再加上三门学科都优秀的 1 人,就可以得出至少有一门学科成绩优秀的同学人数。

六年级奥数逻辑推理1答案

六年级奥数逻辑推理1答案

第三十一周逻辑推理(一)例题1:星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。

传达室人员告诉他:这是班里四个住校学生中的一个做的好事。

于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。

(1)许兵说:桌凳不是我修的。

(2)李平说:桌凳是张明修的。

(3)刘成说:桌凳是李平修的。

(4)张明说:我没有修过桌凳。

后经了解,四人中只有一个人说的是真话。

请问:桌凳是谁修的?练习1:1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。

老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。

如果他们当中只有一人说了真话。

那么,谁是获奖者?2、一位警察,抓获4个盗窃嫌疑犯A、B、C、D,他们的供词如下:A说:“不是我偷的”。

B说:“是A偷的”。

C说:“不是我”。

D说:“是B偷的”。

他们4人中只有一人说的是真话。

你知道谁是小偷吗?3、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个说真话。

说真话的有多少人?说假话的有多少人?虹桥小学举行科技知识竞赛,同学们对一贯刻苦学习、爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二。

(2)丙得第二,丁得第三。

(3)甲得第二,丁得死四。

比赛结果一公布,果然是这四名学生获得前4名。

但以上三种估计,每一种只对了一半错了一半。

请问他们各得第几名?练习2:1、甲、乙、丙、丁同时参加一次数学竞赛。

赛后,他们四人预测名词的谈话如下:甲:“丙得第一,我第三”。

乙:“我第一,丁第四”。

丙:“丁第二,我第三”。

丁:没有说话。

最后公布结果时,发现甲、乙丙三人的预测都只对了一半。

请你说出这次竞赛中甲、乙、丙、丁四人的名次。

2、某小学最近举行一次田径运动会,人们对一贯刻苦锻炼的5名学生的短跑成绩作了如下的估计:A说:“第二名是D,第三名是B”。

B说:“第二名是C,第四名是E”。

C说:“第一名是E,第五名是A”。

D说:“第三名是C,第四名是A”。

小学六年级奥数思维训练--逻辑推理

小学六年级奥数思维训练--逻辑推理

8.9.小学六年级奥数思维训练--逻辑推理(一)(二)(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--小学六年级奥数思维训练逻辑推理(一)一、尝试练习1、甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是谁?2、刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹?二、训练营地1、甲、乙、丙三人分别是一小、二小、三小的学生,在区级运动会上他们分别获得跳高、跳远和垒球冠军。

已知二小的是跳远冠军;一小的不是垒球冠军,甲不是跳远冠军,乙既不是二小的也不是跳高冠军。

问:他们三人分别是哪个学校的获得哪项冠军2、甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么3、甲、乙、丙、丁4个同学同在一间教室里,他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丁如果不在做数学题,那么一定在看小说,这种说法是不对的;⑤丙既不是在看小说,也不在念英语.那么在写信的是谁?小学六年级奥数思维训练逻辑推理(二)一、尝试练习1、王帆、李昊、吴一凡三人中,有一人看了《地球奥秘》这部科技片。

当老师问他们三个谁看了这部科技片时:王帆说:“李昊看了。

”李昊说:“我没有看。

”吴一凡说:“我没有看。

”如果知道他们三人中有两人说了假话,有一人说的是真话,你能判断谁看了这部影片吗?2、一个正方体有六个面,每个面分别涂有红、绿、黄、白、蓝、黑六种颜色,你能根据这个正方体的三种不同的摆法,判断出这个正方体每一种颜色对面各是什么颜色吗?黄红绿蓝黄白白红黑二、训练营地1、甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l 号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号2、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。

六年级奥数之逻辑推理

六年级奥数之逻辑推理

逻辑推理1.共有4人进行跳远、百米、铅球、跳高4项比赛,规定每个单项中,第一名记5分,第二名记3分,第三名记2分,第四名记1分.已知在每一单项比赛中都没有并列名次,并且总分第一名共获17分,其中跳高得分低于其他项得分;总分第三名共获11分,其中跳高得分高于其他项得分.问总分第二名在铅球项目中的得分是多少?2.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?3.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.现在比赛已进行了4轮,即每队都已与4个队比赛过,各队已赛4场的得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球踢成平局,那么总得分居第五位的队最多可得多少分?最少可得多少分?4.某商品的编号是一个三位数.现有5个三位数:874,765,123,364,925,其中每一个数与商品编号,恰好在同一位上有一个相同的数字.那么这个三位数是多少?5.某楼住着4个女孩和2个男孩,他们的年龄各不相同,最大的10岁,最小的4岁,最大的女孩比最小的男孩大4岁,最大的男孩比最小的女孩大4岁.求最大的男孩的岁数.6.某次考试满分是100分,A,B,C,D,E这5个人参加了这次考试.A说:“我得了94分.”B说:“我在5个人中得分最高.”C说:“我的得分是A和D的平均分,且为整数.”D说:“我的得分恰好是5个人的平均分.”E说:“我比C多得了2分,并且在5个人中居第二.”问这5个人各得了多少分?7.在一次射击练习中,甲、乙、丙3位战士各打了4发子弹,全部中靶.其命中情况如下:①每人4发子弹所命中的环数各不相同;②每人4发子弹所命中的总环数均为17环;③乙有2发命中的环数分别与甲其中的2发一样,乙另2发命中的环数与丙其中的2发一样:④甲与丙只有1发环数相同;⑤每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数题:专题训练之逻辑推理问题
1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。

赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。

又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。

2、有一种俱乐部,里面的成员可以分成两类。

第一类是老实人,永远说真话。

第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。

李四说:张三是老实人,那么李四是老实人还是骗子?
3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。

甲说:我第一,乙第二。

乙说:我第一,甲第四。

丙说:我第一,乙第四。

丁说:我第四,丙第一。

比赛结果无并列名次,且各人都只说对了一半。

那么,丁是第()。

4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。

5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。

试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。

6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。

A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。

结果,每人都只猜对了一半,那么1号是()队,3号是()队。

7、老师给甲、乙、丙各发一张写着不同整数的卡片。

老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。

请大家先看一下自己的数,然后猜一猜其他两位同学的数是多少?
甲:我猜不出其他两个人的数。

丙:我也猜不出其他两个人的数。

甲听了丙的话,问乙:你能猜出我和丙的数吗?
乙:我猜不出你们两人的数。

听到这里,甲:我已经道乙丙的数,乙的数是(),丙的数是()。

对不对?
那么,三个人手中的卡片上的数各是多少?
甲是(),乙是(),丙是()
8、三个盒子里分别装有两个红球,两个白球和一红一白球,但盒子外面的标签都贴错了。

如果只从其中一盒里摸出一个球,就要肯定判断出三个盒子里各装什么球,必须从贴()球的盒子里摸出一个球;若是()色球,则这个盒子装的是()球,那么贴()球的盒子里装的是()球,剩下的盒子里是()球。

9、甲、乙、丙三个学生分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服去参加一次争办奥运会的活动,已知:
(1)帽子和衣服的颜色都只有红、黄、蓝三种;
(2)甲没戴红帽子,乙没戴黄帽子;
(3)戴红帽子的学生没有穿蓝衣服;
(4)戴黄帽子的学生没有穿红衣服;
(5)乙没有穿黄色衣服。

试问:甲、乙、丙三人各戴什么颜色的帽子?穿什么颜色的衣服?
10、小明、小华、小强、小英和小兰同坐一排,小华、小强和小兰各讲了三句话。

(1)小华:有两个人在我和小强之间。

小明离小强最近。

我和小兰相邻。

(2)小强:我和小兰相邻。

我也和小华相邻。

有两个人在我和小华之间。

(3)小兰:我离小强最近。

我和小华相邻。

有一个人在我和小明之间。

如果每个人的三句话中只有两句是真话,问:坐在正中位置的是谁?
11、A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其他选手比赛一场),每天同时在三张球台各进行一场比赛。

已知第一天B对D,第二天C对E,第三天D对F,第四天B对C。

问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?
1、球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的2/3。

如果球从25米高处落下,那么第三次弹起的高度是多少米?
2、在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5。

种大豆和玉米各多少公顷?
3、水结成冰后,体积增加 1/10。

现有一块冰,体积是2立方分米,融化后的体积是多少?
4.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%。

为民中药店超额收购中草药多少千克?
5.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)
6.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?
7.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?
8.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是
6.28米,这棵树的横截面积是多少平方米?
9张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。

过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来。

想一想,如果老张买回房子,总共损失多少万元?
10、同学们参加野营活动。

一个同学到负责后勤的教师那是去领碗。

教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。

”算一算这个同学给多少人领碗?
11、某校五、六年级共有学生200人。

“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等。

求六年级有学生多少人?
12、修一条路,第一天修了全路的1/3 ,第二天修了余下的2/5 ,两天共修路135米,这条路全长多少米?
13、幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?
14、小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?
15、小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/8、1/7、1/6、1/5、1/4、1/3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?
16、一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?。

相关文档
最新文档