煤油冷却器设计

合集下载

煤油冷却器设计

煤油冷却器设计

目录第1章工艺综述 (2)1.2工艺原理 (2)1.3工艺流程 (3)第2章工艺计算 (4)2.1设计参数 (4)2.2管径和管内流速 (5)2.3 估算换热面积 (7)2.4 管程数和传热管数的计算 (7)2.5 传热管排列和分程方法的确定 (8)2.6 壳体内径以及折流板数的计算 (8)第3章结构设计 (10)3.1 封头和圆筒厚度 (10)3.2 接管 (10)3.3 折流板 (11)3.4分程隔板 (12)3.5 拉杆的数量与直径 (12)3.6判断是否安装膨胀节 (12)3.7 支座 (14)第4章强度计算 (15)4.1传热系数核算 (15)4.2 壁温核算 (17)4.3 压强降的核算 (17)第5章设计结果一览表 (20)参考文献 (21)评价表 (22)第1章工艺综述1.1 装置简介ARGG装置包括反应-再生、分馏、吸收塔、气压机、能量回收及余热锅炉、产品精制几部分租成,ARGG工艺以常压渣油等重油质油为原料,采用重油转化和抗金属能力强,选择性好的ARG催化剂,以生产富含丙烯、异丁烯、异丁烷的液化气、并生产高辛烷只汽油。

1.2工艺原理1.2.1催化裂化部分催化裂化是炼油工业中最重要的二次加工过程,是重油轻质化的重要手段。

它是使原料油在适宜的温度、压力和催化剂存在的条件下,进行分解、异构化、氢转移、芳构化、缩和等一系列化学反应,原料油转化为气体、汽油、柴油等主要产品及油浆、焦炭的生产过程。

催化裂化的原料油来源广泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。

随着石油资源的短缺和原油的日趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚至是全减渣。

在硫含量较高时,则需用加氢脱硫装置进行处理,提供催化原料。

催化裂化过程具有轻质油收率高、汽油辛烷值较高、气体产品中烯烃含量高等特点。

催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。

煤油冷却器 设计

煤油冷却器 设计

河西学院HexiUniversity化工原理课程设计题目:煤油冷却器设计学院:化学化工学院专业:化学工程与工艺学号:姓名:张冠雄指导教师:王兴鹏2016年11月21日化工原理课程设计任务书一、设计题目煤油冷却器的设计二、设计任务及操作条件1.设计任务生产能力(进料量)25000吨/年操作周期7200小时/年2.操作条件煤油入口温度120℃,出口温度40℃冷却介质自来水,入口温度20℃,出口温度40℃允许压降≦105Pa冷却水温度20℃饱和水蒸汽压力0.25Mpa(表压)3.设备型式列管式换热器4.厂址上海(压力:1atm)三、设计内容1.设计方案的选择及流程说明2.换热器的工艺计算3.换热器的主要尺寸设计4.辅助设备选型5.设计结果汇总6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图7.设计评述目录附图煤油冷却器设计作者:张冠雄摘要:换热器在许多行业中有非常重要的地位,尤其是在化工、石油、等行业中。

本次课程设计的任务是设计年处理25000吨煤油的煤油冷却器,采用列管式换热器。

设计过程包括方案确定、换热器结构选择、主要换热设计计算并绘制列管式换热器的装配图。

通过热量核算,压力降的核算以及面积裕度的求解,该换热器能够完成设计任务。

关键词:列管式换热器折流板法兰管板煤油水1概述1.1化工原理课程设计的目的、要求课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初步尝试,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工设计的初步训练通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。

同时,通过课程设计,还可以使学生树立正确的设计思路,培养实事求是、严肃认真、高度负责的科学作风。

课程设计是学生展示创新能力的有益实践。

在设计中需要学生作出决策,即自己确定方案、选择流程、查阅资料、进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析和比较,择优选定最理想的方案和合理的设计。

管式换热器煤油冷却器的设计

管式换热器煤油冷却器的设计

管式换热器煤油冷却器的设计管式换热器是工业生产中非常常见的一种设备,其主要作用是将热量从一种物质传递到另一种物质中,从而实现物质的加热或冷却。

而煤油冷却器,则是一种利用煤油作为工质,通过管式换热器将其冷却的装置。

本文将介绍煤油冷却器的设计及其应用。

一、煤油冷却器的基本原理煤油冷却器的基本原理是利用管式换热器的传热原理,将需要冷却的物质通过管道输送到换热器中,再将煤油作为冷却介质,通过换热器与被冷却物质进行热量交换,将物质的温度降低。

整个过程中,煤油的循环至关重要,一般采用泵将煤油压入冷却器中,然后再将冷却后的煤油送回煤油箱进行循环利用。

二、煤油冷却器的设计要点1. 结构设计煤油冷却器的结构设计主要包括管道系统和冷却器本体。

管道系统包括进出口管道、泵进口和出口管道等,而冷却器本体则包括线管、壳体、管板和泥罐等。

其中,线管是用来输送煤油或被冷却物质的管道,壳体则将线管密封在内,并提供冷却介质的进出口。

管板用于固定线管,而泥罐则用于收集沉积物,保持换热器的清洁。

2. 材料选择在选择煤油冷却器的材料时,需要考虑煤油的化学性质和冷却介质的耐腐性。

一般来说,冷却器的材料可以选用碳钢、不锈钢、铜等材料。

碳钢的价格相对较低,但容易被腐蚀,不锈钢则具有较好的耐腐蚀性能,但价格较高。

选择时需要根据实际需要进行综合考虑。

3. 换热面积和流量计算煤油冷却器的换热面积和流量计算是设计过程中的重要环节。

首先需要确定被冷却物质的流量和温度,以及要达到的冷却效果。

然后,通过热力学计算,确定煤油冷却器的换热面积和煤油的循环流量,以保证冷却效果达到设计要求。

三、煤油冷却器的应用煤油冷却器广泛应用于各种工业生产过程中,如钢铁生产、化工生产、造纸生产等。

例如,在钢铁生产中,煤油冷却器可以用于冷却钢水和铁水,控制铸件的温度,保证质量。

在化工生产中,煤油冷却器可以用于冷却化学反应过程中产生的热量,保护反应釜不受过热损坏。

在造纸生产中,煤油冷却器可以用于冷却生产过程中的水蒸气,保证造纸机的正常运转。

煤油冷却器的设计

煤油冷却器的设计

煤油冷却器的设计摘要煤油冷却器是利用流体易导热原理,将煤油的热量向环境转移,冷却其受热部件的装置。

本文介绍了煤油冷却器的结构与设计及其性能的研究。

本文主要从流体流动系统、热交换系统、控制系统以及特殊设备等方面介绍了煤油冷却器的设计,研究了冷却器的结构性能及实际工作条件下的性能,并探讨了冷却器在操作过程中的安全措施。

本文所讨论的煤油冷却器的性能高,安全可靠,能够满足大多数用户的使用要求。

关键词:煤油冷却器;结构设计;性能研究;安全措施IntroductionFlow SystemThe flow system is the main part of oil coolers, which provides the means for the fuel oil and cooling fluid to enter and exit the heat exchanger. The oil coolers generally include two oil inlets and two oil outlets and two cooling inlets andtwo cooling outlets, as shown in Figure 1. The oil inlet is connected to the fuel oil supply pipe and the oil outlet is connected to the oil return pipe. The cooling inlet is connected to the water supply pipe, and the cooling outlet is connected to the water return pipe. Both cooling inlets and cooling outlets are equipped with high-pressure relief valves to prevent overpressure of the coolant.![Oil-cooler-structure.png](attachment:Oil-cooler-structure.png)Figure 1. Oil cooler structureHeat Exchange System。

煤油冷却器的设计

煤油冷却器的设计

西北大学化工原理课程设计任务书设计题目煤油冷却器院系化工学院专业化学工程与工艺指导教师赵彬侠姓名张洪姣学号2008115023目录(一)设计题目(二)流程和方案的说明和论证(三)计算过程(四)流程图(五)设计感想(六)参考文献一、设计题目:根据条件设计合适的换热器(煤油冷却器的设计)设计任务及操作条件:1.煤油:入口温度150℃,出口温度50℃;运行表压1bar。

2.冷却介质:凉水塔中处理过的补给水,入口温度30℃,出口温度50℃;运行表压3bar。

二、流程和方案的说明和论证1.传热过程易采用逆流传热方式,因为逆流平均推动力大于并流;选用单壳程四管程固定式列管换热器;2.流体空间的选择:由于煤油流量为14T/h,且由于水的定性温度t=1/2(50+30)=40℃,煤油定性温T=1/2(150+50)=100℃,煤油的定性温度查得相应的物性值:煤油的粘度:μ油=0.81×10-3Pa.S 密度:ρ油=818kg/m3 C油=2.26kJ/(kg. ℃)λ油=0.135W/(m. ℃)水的粘度:μ水=0.656×10-3Pa.S 密度:ρ水=992.2kg/m3C水=4.174kJ/(kg. ℃)λ水=0.6333W/(m. ℃)高温流体一般走管程,因为高温会降低材料的许用应力,高温流体走管程可节省保温层和减少壳体厚度;腐蚀性较强的流体应该走管程,可以节省耐腐蚀材料;较脏和易结垢的流体走管程,以便于清洗和控制结垢,如必须走管程,则可采用正方形排列,并采用可拆式换热器。

且煤油为热物体,易放在管壳。

流体空间的选择还与粘度、压力降、流速、传热膜系数等因素有关。

根据上述原则及水和煤油的物性参数,最终设计煤油走管壳,水走管程。

结构与结构参数的选择a) 直径小的换热器不仅便宜,而且可以获得较好的传热膜系数与阻力系数的比值。

但管径愈小则换热器的压降愈大,在满足允许压力的前提下,一般推荐用外径为19mm ,对于易结垢的流体,为方便清洗,采用外径为25mm 的管子b) 管长 无相变的换热器时,管子较长则传热系数也增大,在相同的传热面积的情况下,采用长管流动截面积小,流速大,管程数小,从而减小了回弯次数,因而压降也较小;但是罐子过长会带来制造的麻烦,因此一般选用4—6米,对于传热面积大的,若无相变的可用8—9米。

材科0902煤油冷却器(列管式换热器)设计任务书

材科0902煤油冷却器(列管式换热器)设计任务书

材科0902---煤油冷却器设计任务书
(一)设计题目
煤油冷却器设计
(二)设计任务及操作条件
1、处理能力见下表
2、设备型式列管式换热器
3、操作条件
(1)煤油:入口温度140℃,出口温度40℃
(2)冷却介质:自来水,入口温度30℃,出口温度40℃
(3)允许压强降:不大于105 Pa
(5)每年按330天计,每天24小时连续运行
煤油处理能力表
1本设计组(列管式换热器组)集中辅导时间:1月31日(星期六)第1、2节,地点厚学楼110,请同学们准时上课;
2请把<化工原理课程设计A>一书中p37~p59“列管式换热器”内容打印好,设计时参考;
联系电话(陆雷老师)。

化工原理课程设计-煤油冷却器的设计

化工原理课程设计-煤油冷却器的设计

化工原理课程设计煤油冷却器的设计目录一.化工原理课程设计任务书 (3)二.概述 (4)换热器的发展和分类 (4)列管式换热器的分类 (5)设计背景以及设计要求 (8)三.换热器的设计论述以及计算 (11)四.确定设计方案 (20)4.1选择换热器的类型 (20)4.2 流程安排 (20)4.3确定物性数据 (20)试算并初步选择换热器的型号 (21)4.5 壳体内径 (22)4.6折流板 (23)4.7 接管 (13)五.换热器的核算 (13)六.机械设计 (26)七.设计结果 (46)八.参考文献 (47)九.后记 (48)一·化工原理课程设计任务书(一)设计题目:煤油冷却器的设计(3组:21- )(二)设计任务及操作条件1.处理能力:18万吨/年煤油2.设备形式:列管式换热器3.操作条件(1)煤油:入口温度100℃,出口温度35℃(2)冷却介质:自来水,入口温度25℃,出口温度40℃(3)允许压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃) (5)每年按330天计,每天24小时连续运行(三)选择适宜的列管式换热器并进行核算3.1 传热计算3.2 管、壳程流体阻力计算3.3管板厚度计算3.4 U形膨胀节计算(浮头式换热器除外)3.5 管束振动3.6 管壳式换热器零部件结构(四)绘制换热器装配图(A2图纸)二.概述2·1换热器的发展和分类在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

它是将热流体的部分热量传递给冷流体的设备,有称为热交换器。

换热器既可以是一种单独的设备,如加热器、冷却器和蒸汽器等;也可以使某个工艺设备的组成部分,如氨合成塔内的热交换器。

由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。

煤油冷却器设计范文

煤油冷却器设计范文

煤油冷却器设计范文一、引言煤油冷却器是燃料系统中重要的设备之一,能有效地降低燃油进入喷油嘴时的温度,提高喷雾效果,确保燃油能够完全燃烧。

本文将介绍煤油冷却器的设计理念、结构特点以及功能等方面的内容,以期为相关领域的工程师和研究人员提供参考。

二、设计理念1.热交换效率高:煤油冷却器应具有较高的热交换效率,使燃油在经过冷却器后能有效地降温。

为此,设计中应采用优质的冷却材料和合理的换热结构。

2.结构简单可靠:煤油冷却器的结构应尽量简单可靠,尽量减少零部件的数量和种类,以降低故障率和维护成本。

3.适应性强:煤油冷却器应具有一定的适应性,能够在不同的工况下正常运行,适应各种不同燃油的冷却需求。

三、结构特点1.简单紧凑:煤油冷却器的结构一般较为简单紧凑,能够节省空间,提高整体的稳定性。

2.冷却效果好:煤油冷却器的冷却管束应布置合理,以便燃油能够在冷却器内充分接触冷却介质,从而达到较好的冷却效果。

3.传热效率高:煤油冷却器应采用高传热系数的材料,以提高冷却介质与燃油的传热效率。

4.冷却介质流动性好:煤油冷却器内的冷却介质应具有良好的流动性,能够快速将热量带走,从而确保燃油快速冷却。

四、功能1.降低燃油温度:煤油冷却器能够通过与冷却介质的热交换作用,有效地降低燃油的温度,防止燃油在进入喷油嘴之前过热,从而提高燃油的喷雾效果。

2.增加燃烧效率:降低燃油温度能够提高燃油的可燃性,使其更容易燃烧,从而提高发动机的燃烧效率和动力输出。

3.保护喷油嘴:煤油冷却器能够降低燃油的温度,减轻喷油嘴对高温燃油的负荷,延长其使用寿命。

4.提高燃油利用率:通过减少燃油的热损失,煤油冷却器能够提高燃油的利用率,降低燃油消耗,从而实现节能减排的目的。

五、结论煤油冷却器作为燃料系统中的重要设备,能够有效地降低燃油温度,提高燃烧效率,保护喷油嘴,提高燃油利用率。

设计中应充分考虑热交换效率、结构简单可靠和适应性强等因素,使煤油冷却器能够在各种工况下正常运行。

煤油冷却器的设计

煤油冷却器的设计

煤油冷却器的设计1.材料选择:煤油冷却器需要使用耐高温、耐腐蚀的材料,如不锈钢、钛合金等。

这些材料能够在高温环境下保持结构的稳定性,并且不会被煤油中的化学物质腐蚀。

2.结构设计:煤油冷却器一般采用管壳式结构,即在外围设立一个壳体,在内部布置多根冷却管。

冷却管通常采用联管式结构,即由内外两根管组成,内管用于传递煤油,外管用于传递冷却介质,这样可以增大煤油与冷却介质之间的接触面积,提高冷却效果。

3.管道布局:煤油冷却器的管道布局需要合理安排,以确保冷却介质能够充分接触到煤油,并且得到有效冷却。

通常采用螺旋式布置,即将冷却管盘绕在内部壳体上,使冷却介质与煤油多次接触,提高冷却效率。

4.流速控制:煤油冷却器的流速需要控制在一定范围内,过高的流速会导致煤油在冷却过程中受到热量约束不足,无法充分冷却;过低的流速则会影响煤油的冷却速度,降低冷却效果。

因此,在设计煤油冷却器时需要考虑流速的合理控制。

5.冷却介质选择:常用的煤油冷却介质有水和空气。

水冷却效果好,但需要考虑使用水冷却系统的成本和能源消耗。

空气则常用于小型设备的煤油冷却,由于空气冷却效果较差,可能需要增加冷却面积以达到需要的冷却效果。

6.温度控制:煤油冷却器需要设置温度控制装置,以保证煤油的温度在合理范围内。

可以采用温度传感器和控制装置的组合来实现温度的测量和调控,保证冷却效果的稳定性。

总之,煤油冷却器的设计需要考虑材料、结构、管道布局、流速控制、冷却介质选择和温度控制等方面的因素。

只有在合理考虑这些因素的基础上,才能设计出高效、可靠的煤油冷却器,提高设备的使用效率和寿命。

化工原理课程设计--煤油冷却器的设计

化工原理课程设计--煤油冷却器的设计

化工原理课程设计--煤油冷却器的设计
煤油冷却器是一种更耐用、更耐高压的流体换热器,在航空、轮渡和工业中都得到了
广泛的应用,具有容易安装、可靠性高、维护更容易等优点。

煤油冷却器的设计包括流体
的流动和传热的计算,以及冷却器的安装及其他特殊要求。

设计前首先要确定冷却器的功能需求,由质量流量和工作压力的选择决定其能力,以
决定其设计的主要参数。

在确定冷却器的性能指标之后,根据系统的复杂度,确定冷却器
的结构及各部件位置,选择使用已有规格型号的冷却器或按要求订做冷却器,确定冷却器
容积、介质、外形尺寸及其附件。

在设计煤油冷却器的过程中,最重要的是要根据冷却的性能需求,考虑安装空间的限制,采用合理的结构,以提高冷却器的效率。

一般而言,需要用计算机对冷却器的设计进
行仿真,实质上利用数值模拟和流体动力学方法,进行论证和优化设计。

在设计完成之后,还需要进行热性能试验,原则上应符合安装场合条件下外界温度、
物料温度和流体静态压力之间的变化规律,以确保冷却器的可靠性、稳定性及使用寿命。

综上所述,对煤油冷却器的设计工作需要遵照以下步骤:确定设计要求,计算参数,
分析结构,设计冷却器,仿真及有限元分析,试验证明。

以务实的态度,坚持合理的原则,从而让煤油冷却器的设计更加科学、全面。

煤油冷却器设计

煤油冷却器设计

煤油冷却器设计课程设计报告( 2016—2017年度第一学期)名称:化工原理题目:煤油冷却器的设计院系:环境科学与工程学院班级:能化1402学号:201405040207学生姓名:冯慧芬指导教师:朱洪涛设计周数: 1成绩:日期:2016 年11月目录一.任务书1.1目的与要求1.2.主要内容二.设计方案简介2.1.换热器概述2.2 列管式换热器2.3.设计方案的拟定三.工艺计算及主体设备设计3.1热量设计3.1.1.初选换热器的类型3.1.2.管程安排(流动空间的选择)及流速确定3.1.3.确定物性数据3.1.4.计算总传热系数3.1.5.计算传热面积3.2工艺结构设计3.2.1管径和管内流速3.2.2管程数和传热管数3.2.3平均传热温差校正及壳程数3.2.4传热管排列和分程方法3.2.5折流板3.2.6壳程内径及换热管选型汇总3.3换热器核算3.3.1热量核算3.3.2压力降核算四.辅助设备的计算及选型4.1 封头4.2 缓冲挡板4.3 放气孔、排液管4.4 假管4.5 拉杆和定距管4.6 膨胀节4.7 接管五.设计结果一览表六.心得体会七.参考文献八.主体设备的工艺条件图一.任务书1.1 目的与要求1. 要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成列管换热器设计任务。

2. 使学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。

3. 熟悉和掌握查阅技术资料、国家技术标准,正确地选用公式和数据。

1.2 主要内容1.2.1处理能力:25000kg/h 煤油1.2.2设备型式:列管换热器1.2.3操作条件:煤油:入口温度:140℃ 出口温度:40℃冷却介质:自来水入口温度:30℃ 出口温度:40℃允许压强降:不大于100kPa煤油定性温度下的物性参数:密度825kg/m3粘度7.15×10-4Pa·s比热容2.22kJ/kg·℃ 导热系数0.14W/m·℃水定性温度下的物性参数:密度994kg/m3粘度7.28×10-4Pa·s比热容4.174kJ/kg·℃ 导热系数0.626W/m·℃1.2.4主体设备工艺条件图。

化工原理课程设计煤油冷却器的设计

化工原理课程设计煤油冷却器的设计

广西工学院化工原理课程设计说明书设计题目煤油冷却器的设计系别生化系专业班级学生姓名学号指导教师日期设计成绩一、化工原理课程设计任务书(换热器的设计)(一)设计题目:煤油冷却器的设计(二)设计任务与操作条件:1.处理能力:(19.8×104+5×17)吨/年煤油2.设备型式:列管式换热器3.操作条件:(1)煤油入口温度140℃,出口温度40℃;(2)冷却介质循环水,入口温度30℃,出口温度40℃;(3)允许压强降不大于105Pa;(4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为:7.5×10-4Pa.S;比热容为:2.22kJ/(kg. ℃);导热系数为:0.14W/(m. ℃)(5)每年按330天计,每天24小时连续运行。

(三)设计项目1.选择适宜的列管换热器并进行核算。

2.画出工艺设备图与列管布置图。

目录一、设计任书 (1)二、工艺流程草图与说明 (5)三、工艺计算与主要设备设计 (6)1、确定设计方案 (6)1.1选择换热器的类型 (6)1.2流程安排 (6)2、确定物性数据 (6)3、估算传热面积 (7)3.1热流量 (7)3.2平均传热温差 (7)3.3传热面积 (7)3.4冷却水用量 (7)4、工艺结构尺寸 (7)4.1管径和管内流速 (7)4.2管程数和传热管数 (7)4.3平均传热温差校正与壳程数 (8)4.4传热管排列和分程方法 (8)4.5壳体内径 (8)4.6折流板 (8)4.7其他附件 (8)4.8接管 (8)5、换热器核算 (9)5.1热流量核算 (9)5.1.1壳程表面传热系数 (9)5.1.2管内表面传热系数 (9)5.1.3污垢热阻和管壁热阻 (9)5.1.4传热系数K C (10)5.1.5传热面积裕度 (10)5.2壁温核算 (10)5.3换热器内流体的流动阻力 (11)5.3.1管程流体阻力 (11)5.3.2课程阻力 (11)四、辅助设备的计算和选型 (12)五、设计结果概要 (13)六、设计评述 (15)七、附图 (16)八、参考资料 (17)九、主要符号说明 (18)二、工艺流程草图与说明工艺流程草图主要说明:由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,煤油走壳程。

煤油冷却器的设计,化工原理课程设计

煤油冷却器的设计,化工原理课程设计

目录1设计任务书 (1)1.1设计题目 (1)1.2设计任务及操作条件 (1)1.3设计已知条件 (1)1.4设计内容 (2)2设计目的及要求 (3)2.1目的 (3)2.2要求 (3)3概述及简介 (5)4设计方案简介 (6)4.1试算并初选设备规格 (6)4.2计算管程、壳程压强降 (7)5工艺计算 (8)5.1流体走法确定 (8)5.2计算和初选换热器的规格 (8)5.3核算总传热系数 (10)5.4核算压强降 (13)6辅助设计 (17)6.1换热器主要尺寸的确定 (17)6.2法兰的确定及垫片的确定 (17)6.3支座的确定 (18)6.4筒体的确定 (19)6.6拉杆及定距管的确定 (19)6.7分程隔板的确定 (20)6.8管板尺寸的确定 (20)6.9折流板的确定 (20)6.10接管尺寸的确定 (20)6.11浮头主要尺寸的确定 (21)6.12滑板结构 (21)7计算结果汇总 (23)7.1计算结果 (23)7.1计算结果 (24)8评述 (26)9重要符号说明 (28)10参考文献 (30)1设计任务书1.1设计题目煤油冷却器的设计1.2设计任务及操作条件1、设计任务①处理能力(煤油流量) 6500 kg/h②设备型式列管式换热器2、操作条件①煤油入口温度145℃,出口温度35℃②冷却介质河水入口温度25℃,出口温度35℃③管程、壳程的压强降不大于20kPa④换热器的热损失忽略3、厂址齐齐哈尔地区1.3设计已知条件1、定性温度下两流体的物性参数(1)煤油定性温度t m=90℃ 密度ρh=825kg/m3;比热容C ph=2.22kJ/(kg.℃) 导热系数λh=0.140W/(m℃)粘度μh=0.000715Pa.s(2) 河水定性温度t m=30℃ 密度ρc=995.7kg/m3比热容C pc=4.174kJ/(kg.℃) 导热系数λc=0.6176W/(m℃) 粘度μc=0.0008007Pa.s2、管内外两侧污垢热阻分别是R si=6.9157×10-4(m2℃)/WR so=1.7085×10-4 (m2℃)/W3、管壁导热系数λw=48.85 W/(m℃)1.4设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、换热器装配图(1号图纸)7、设计评述8、参考资料*总传热系数K暂取为200W/m2℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河西学院Hexi University化工原理课程设计题目: 煤油冷却器的设计学院: 化学化工学院专业: 化学工程与工艺学号:姓名: 朱振宇指导教师: 王兴鹏2016年11月20日设计任务书一、设计题目煤油冷却器的设计二、设计任务及操作条件1.设计任务生产能力(进料量)23000 吨/年操作周期7200 小时/年2.操作条件煤油入口温度120℃,出口温度40℃冷却介质自来水,入口温度20℃,出口温度40℃允许压降≦105Pa冷却水温度20℃饱和水蒸汽压力0.25Mpa(表压)3.设备型式列管式换热器4.厂址自选(压力:1atm )三、设计内容1.设计方案的选择及流程说明2.换热器的工艺计算3.换热器的主要尺寸设计4.辅助设备选型5.设计结果汇总6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图7.设计评述目录1 概述 ................................................ 错误!未定义书签。

1.1 换热器的分类 01.2 流动空间的选择原则 (1)2 设计方案简介 (2)2.1 选择换热器的类型 (2)2.2 流体空间及流速的确定 (2)3 工艺流程草图及说明 (2)4 厂址的选择 (2)5 列管式换热器的工艺计算 (2)5.1 确定物性参数 (2)5.2 计算总传热系数 (3)5.2.1 热流量 (3)5.2.2 平均传热温差 (3)5.2.3 冷却水用量 (3)5.2.4 总传热系数K (3)5.3 计算传热面积 (3)5.4 工艺结构尺寸 (3)5.4.1 管径和管内流速 (3)5.4.2 管程数和传热管数 (4)5.4.3 平均传热温差校正及壳程数 (4)5.4.4 传热管排列和分程方程方法 (4)5.4.5 壳体内径 (4)5.4.6 折流板 (4)5.4.7 接管 (5)5.5 换热器核算 (5)5.5.1 热量核算: (5)5.5.2 管程对流传热系数 (5)5.5.3 传热系数K (5)5.5.4 传热面积S (6)5.5.5 换热器内流体的流动阻力 (6)6 设计结果一览表 (6)7 设计评述 ............................................ 错误!未定义书签。

8 主要符号说明 (8)参考资料 (9)致谢词 (10)煤油冷却器的设计朱振宇摘要:本文主要介绍了如何设计一台换热性能优良的管壳式换热器,涉及内容较多,包括初始条件确立、换热管尺寸、壳体类型、换热器的选型等信息来确定。

通过换热器核算来校正换热器的尺寸、壳体类型等,分析了流体的流动和换热机理等。

关键词:煤油冷却器、设计、管壳式、换热管、折流板1 概述1.1 换热器的分类在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

换热器的类型多种多样,不同类型的换热器各有优缺点,性能各异。

列管式换热器是最典型的换热器,它在工业上的应用有着悠久的历史,在所以的换热器中占着主导的地位。

列管式换热器有以下几种:①固定管板式固定管板式换热器的两端和壳体连为一体,管子则固定在管板上,在外壳上焊有膨胀节,当两流体的温度差较大时,管体和管束热膨胀不同,补偿圈发生缓慢的弹性形变来来补偿因温差引起的热膨胀。

特点:结构简单、在相同的壳体直径内,排管最多、比较紧凑;造价低廉、壳程清洗和检修困难(壳程宜用于不易结垢和清洗的流体)。

适用:比较适合用于温差不大或温差较大但壳程压力不高的场合。

②浮头换热器浮头式换热器的两端管板只有一端与壳体完全固定,另一端则可相对于壳体做某些移动,该端称之为浮头。

此类换热器的管束膨胀不受壳体的约束,所以壳体与管束之间不会由于膨胀量的不同而产生热应力。

特点:结构复杂、笨重,造价比较高,材料消耗量大,浮头的端盖在操作中无法检查,安装时要密封,管束和管壳的间隙较大。

适用:管壳壁间温差较大,易于腐蚀和易于结垢的场合。

③ U型换热器U型管式换热器每根管子均弯成U型,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。

特点:结构简单、质量轻、管程清洗困难,管程流体必须是洁净和不易结垢的物料。

适用:高温高压的场合1.2 流动空间的选择原则①尽量提高两侧传热系数较小的一个,使传热面两侧的传热系数接近。

②管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。

③应减小管子和壳体因受热不同而产生的热效应。

④对于有毒的介质或气相介质,必使其不泄露,应注意密封。

⑤应尽量避免使用贵金属,以降低成本。

宜于通入管内空间的流体:①不清洁的流体:管内流速高,悬浮物不易沉积,且管内空间便于清洗。

②体积小的流体:管内空间的流动截面往往比管外空间的截面小,流体易于获得必要的理想流速,而且也便于做成程流动。

③有压力的流体:管子承压能力强,简化了壳体密封的要求。

④腐蚀性强的流体:只有管子及管箱才需要耐腐蚀的材料,而壳体及管外空间的所有零件均可用普通材料制造,造价可以降低。

⑤与外界温差大的流体:可以减少热量的散逸。

宜通于管间的流体:①两流体温差相差较大:可减少管壁于壳壁间的温度差,因而可减少了管束与壳体间的相对伸长。

②两流体给热性能相差较大③饱和蒸汽:易于排出冷凝液④粘度大的流体:管间的流动截面和方向都在不断的变化,在低雷诺数下,管外给热系数比管内大⑤泄露后危险性大的流体可减少泄露机会2 设计方案简介2.1 选择换热器的类型两流体温度变化情况:热流体进口温度120℃ ,出口温度40 ℃;冷流体(循环水)进口温度20℃,出口温度40℃.由于该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

2.2 流体空间及流速的确定根据流体流径选择的基本原则,循环冷却水易结垢,而固定管板式换热器的壳程不易清洗,且循环冷却水的推荐流速应大于煤油的推荐流速,故选择循环冷却水为管城流体,煤油为壳程流体。

根据流体在直管内常见适宜流速,管内循环冷却水的流速初选为m/s 0.1 i u ,用 2.5m m ×φ25的碳钢管(换热管标准:GB8163)。

3 工艺流程草图及说明图1 工艺流程图说明:由于循环冷却水较易结垢,为便了水垢的清洗,应使循环水走管程,煤油走壳程。

如图:煤油先到达原油储罐,再经原油泵抽上来,经粗管道进入换热器壳程,冷却水经细管道进入换热器管程。

两物质在换热器中进行换热,煤油从120℃冷却至40℃后再由粗管道流进产品储罐经产品泵流出;循环冷却水则从20℃加热至40℃后,再由细管道流出。

4 厂址的选择珠海5 列管式换热器的工艺计算5.1 确定物性参数定性温度:可取流体进口温度的平均温度值。

壳程油的定性温度为管程流体的定性温度为定性温度,分别查取壳程和管程流体的有关物性数据。

根据油在80℃下的有关物性数据如下:密度:30m kg 781=ρ定压比热容:)℃KJ/(kg.28.20=p C导热系数:)℃0.141W/(m.0=λ粘度:.s 0.000664Pa 0=μ循环冷却水在30℃下的物性数据:密度:kg/m37.995=i ρ定压比热容:)℃KJ/(kg.174.4=pi c导热系数:)℃0.618W/(m .i =λ粘度:Pa.s 0008007.0=i μ5.2 计算总传热系数5.2.1 热流量o m =(23000×310)/7200=3194.4kg/h5.2.2 平均传热温差5.2.3 冷却水用量5.2.4 总传热系数K管程传热系数壳程传热系数假设壳程的传热系数()℃4002o ⋅=m w α污垢热阻管壁的导热系数()℃m .45W/=λ5.3 计算传热面积考虑15%的面积裕度:2'15.18m =13.2×21.15=S ×1.15=S 5.4 工艺结构尺寸5.4.1 管径和管内流速选用φ25×2.5传热管(碳钢),取管内流速s m 0.5u i =5.4.2 管程数和传热管数依据传热管内径和流速确定单程传热管数 ()137.125.002.0785.036007.9956.71444n 22≈⨯⨯⨯==u d vi s π(根) 按单程管计算,所需的传热管长度为按单程管设计,传热管过长,宜采用多管程结构。

现取传热管长L=4.5m,则该换热管程数为传热管总根数52=4×13=N (根)5.4.3 平均传热温差校正及壳程数平均传热温差校正系数按单壳程,双管程结构,温差校正系数应查有关图表。

查同一直线,可得0.83t =∆ϕ平均传热温差℃92.3528.4383.0t 'm =⨯=∆=∆∆t t ϕ5.4.4 传热管排列和分程方程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

取管心距025.1d t =,则横过管束中心线的管数958.85219.119.1≈===N n c (根)5.4.5 壳体内径采用多管程结构,取管板利用率η=0.7,则壳体内径为圆整可取D =300mm5.4.6 折流板采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为mm h 7530025.0=⨯=故可取mm h 75=取折流板间距D B 3.0=,则mm B 903003.0=⨯=,可取B 为mm 100。

折流板数()块折流板间距传热管长441-10045001-b ===N 折流板圆缺面水平装配。

5.4.7 接管壳程流体进出口接管:取接管内油品流速为s m u 0.1=,则接管内径为()m u v d 038.00.114.378136004.319444=⨯⨯⨯==π 取标准管径为mm 345⨯φ管程流体进出口接管:取接管内循环水流速u=1.5m/s 则接管内径为取标准管径为mm 450⨯φ5.5 换热器核算5.5.1 热量核算:壳程对流传热系数:对圆缺形折流板,可采用克恩公式14.03155.000Pr Re 0.36⎪⎪⎭⎫ ⎝⎛=w e d μμλα当量直径,由正三角形排列得壳程流通截面积壳程流体及雷诺数为普兰特准数5.5.2 管程对流传热系数 管程流通截面积22i 00816.025202.0785.0m S =⨯⨯= 管程流体流速普兰特准数5.5.3 传热系数K 查有关文献知管外侧污垢热阻:w m R s ℃000172.020⋅=管内侧污垢热阻:w m R si ℃000344.02⋅=管壁热阻 查有关文献知碳钢在该条件下的热导率为45w/(m.k)=λ。

5.5.4 传热面积S该换热器的实际传热面积p S 该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。

相关文档
最新文档