三角形的内角和 (3)

合集下载

三角形三边关系、内角和、外角定理

三角形三边关系、内角和、外角定理

三角形三边关系、三角形内角和定理定理:三角形两边的和大于第三边。

表达式:△ABC 中,设a >b >c 则b-c <a <b+ca-c <b <a+ca-b <c <a+b 给出三条线段的长度,判断它们能否构成三角形。

方法(设a 、b 、c 为三边的长)①若a+b >c ,a+c >b ,b+c >a 都成立,则以a 、b 、c 为三边的长可构成三角形; ②若c 为最长边且a+b >c ,则以a 、b 、c 为三边的长可构成三角形; ③若c 为最短边且c >|a-b|,则以a 、b 、c 为三边的长可构成三角形。

④已知三角形两边长为a 、b ,求第三边x 的范围:|a-b|<x <a+b 。

1、已知:如图△ABC 中AG 是BC 中线,AB=5cm AC=3cm ,则△ABG 和△ACG 的周长的差为多少?△ABG 和△ACG 的面积有何关系?2、三角形的角平分线、中线、高线都是( )A 、直线B 、线段C 、射线D 、以上都不对3、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、顶点上D 、以上三种情况都有可能4、直角三角形中高线的条数是( )A 、3B 、2C 、1D 、05、现有10cm 的线段三条,15cm 的线段一条,20cm 的线段一条,将它们任意组合可以得到几种不同形状的三角形?6、下列各组里的三条线段组成什么形状的三角形?(1)3cm 4cm 6cm (2)4cm 4cm 6cm(3)7cm 7cm 7cm (4)3cm 3cm 7cm7、已知△ABC 中,a=6,b=14,则c 边的范围是专题检测1.指出下列每组线段能否组成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=62.已知等腰三角形的两边长分别为11cm 和5cm ,求它的周长。

3.已知等腰三角形的底边长为8cm ,一腰的中线把三角形的周长分为两部分,其中一部分比另一部分长2cm ,求这个三角形的腰长。

三角形的内角和

三角形的内角和

三角形的内角和【设计者】新密市实验小学李永雪【教材】人教版四年级下册第85页例5——三角形的内角和。

【课程标准】《三角形的内角和》属于“空间与图形”领域中图形的认识方面的内容。

课程标准对本课的要求是:“通过观察、操作,了解三角形的内角和是180°。

”(课标P24)【内容分析】本节课的教学主要内容是探索和发现三角形内角和等于180°,这个内容是在学生认识三角形、认识平角、认识角的度量单位的基础上学习的。

在本单元,学生先学习了三角形的特性及分类之后,再学习三角形的内角和,它是学生以后学习多边形的内角和及解决其它实际问题的基础。

学生在本节课上获得的数学思想和学习方法,能够帮助学生探索为后续学习做好了铺垫。

教材在编写上注重创设有趣的情境激发学生的学习兴趣,让学生通过直观操作来认识和体验三角形内角和等于180°这个图形性质。

教材在编写上强调通过直观操作探索三角形的性质,重视学生对探索过程的亲身体验,关注学生的学习过程,让学生在探索的过程中体会先产生猜想,再通过动手操作进行验证的数学思想方法。

意图使学生在动手操作、合作交流中发现并形成结论。

【学情分析】学生已经对三角形有了较深刻的认识,能对三角形正确进行分类。

一部分学生通过课外学习或预习已经知道了三角形内角和等于180°,但却不知道怎样才能得出三角形的内角和是180°这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180°。

学生能正确使用量角器测量角的度数,有一定的动手操作能力,能够有效的进行小组活动,对动手操作的活动感兴趣,但是一部分学生还没有养成及时动笔记录活动过程的习惯,需要老师的提醒。

学生在验证三角形的内角和是180°的过程中可能会应用多种方法,容易出现的困难是在使用“折”的方法验证时,因为不知道根据三角形的高或中位线来折而导致三个内角无法拼成一个平角,不能证明三角形的内角和是180°。

三角形的内角和是什么

三角形的内角和是什么

三角形的三个内角相加起来的和叫三角形内角和。

三角形的内角和等于180度,三角
形的两边之和大于第三边。

三角形的一个外角等于两个不相邻的内角的和;三角形的一个
外角大于其他两内角的任一个角。

三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭
图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不
等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°
也可以用全称命题表示为:∀△ABC,∠1+∠2+∠3=180°。

内角和公式
任意n边形内角和公式
任意n边形的内角和公式为θ=180°·(n-2)。

其中,θ是n边形内角和,
n是该多边形的边数。

从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,∀n=3,4,5,......。

三角形三边关系公式三角函数

三角形三边关系公式三角函数

三角形三边关系公式三角函数三角形是平面几何中一种基本的图形,由三条边和三个角组成。

研究三角形的关系和性质,可以帮助我们解决很多与三角形相关的问题,如计算三角形的周长、面积,确定三角形的形状等。

在三角形中,三边之间的关系是三角函数的基础。

本文将详细介绍三角形三边关系公式和三角函数的相关知识。

首先,我们来看一下三角形的基本属性。

假设我们有一个三角形ABC,边a对应角A,边b对应角B,边c对应角C。

根据三角形的性质,我们可以得到以下结论:1.三角形的三个内角之和等于180度,即A+B+C=180度。

2.三角形的每个内角都小于180度。

3.三角形的任意两边之和大于第三边。

即a+b>c,b+c>a,c+a>b。

接下来,我们来介绍三角形的三边关系公式。

这些公式可以帮助我们计算三角形的周长、面积以及判断三角形的形状。

我们以边a、b、c来表示三角形的三边长度。

1.周长公式三角形的周长是三边长度之和,即P=a+b+c。

2.海伦公式对于任意三角形,可以使用海伦公式来计算其面积。

海伦公式的表达式为:S=√(p(p-a)(p-b)(p-c))其中,p是半周长,即p=(a+b+c)/23.直角三角形的斜边长度公式对于直角三角形,我们可以使用勾股定理来计算其斜边长度。

勾股定理的表达式为:c=√(a^2+b^2)其中,c为斜边的长度,a和b分别为直角三角形的两个直角边的长度。

4.三角形的面积公式根据三角形的性质,我们可以将任意三角形划分为两个直角三角形,并使用直角三角形的面积公式来计算三角形的面积。

面积公式的表达式为:S=1/2*b*h其中,b为三角形的底边长度,h为底边对应的高的长度。

三角函数是三角形内角和三边之间关系的另一种表达形式。

常用的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。

这些函数可以通过三角形的内角和三边之间的关系来定义。

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计教资《三角形内角和》的教学设计(通用12篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

那么优秀的教学设计是什么样的呢?以下是小编收集整理的教资《三角形内角和》的教学设计(通用12篇),仅供参考,大家一起来看看吧。

教资《三角形内角和》的教学设计篇1教学目标:1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

教学难点:通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。

"教师准备:4组学具、课件学生准备:量角器、练习本教学过程:一、兴趣导入,揭示课题1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"(生出示三角形并汇报各类三角形及特点)2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。

"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。

"(设置矛盾,使学生在矛盾中去发现问题、探究问题。

)3、我们来帮帮它们好吗?4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

你能标出三角形的三个角吗?(生快速标好)数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。

这节课我们就来研究一下"三角形的内角和"(课件片头1)"同学们,用什么方法能知道三角形的内角和?"二、猜想验证,探究规律(动手操作,探究新知)1.量角求和法证明:先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。

四年级三角形知识点四年级三角形知识点归纳

四年级三角形知识点四年级三角形知识点归纳

一、概念与特点1.三角形是由三条线段所围成的图形,它有且只有三个顶点、三条边和三个内角。

2.三角形的内角和为180度。

3.三角形的边可以分为等边三角形、等腰三角形和普通三角形三种情况。

4.等边三角形的三条边都相等,三个内角也都相等,每个内角为60度。

5.等腰三角形的两条边相等,两个相等的内角也相等。

6.普通三角形的三条边和三个内角都不相等。

7.直角三角形有一个直角,即一个内角为90度。

8.钝角三角形有一个钝角,即一个内角大于90度。

9.锐角三角形的三个内角都小于90度。

二、性质1.等边三角形的高同时也是它的中线和角平分线,且它可以由等腰直角三角形通过旋转得到。

2.等腰三角形的高、中线和角平分线都相等且重合,且它可以由等边三角形通过拉伸得到。

3.直角三角形的两个直角边的平方和等于斜边的平方,即勾股定理。

4.三角形的高是从一个内角所在顶点到对边的垂线段,将三角形分为两个三角形,其面积等于底乘以高再除以25.三角形两边夹角内的内角和等于它的对角外的内角。

6.三角形两个等边对应内角相等,两个等腰对应内角相等。

7.如果一个三角形的两个角分别等于另一个三角形的两个角,则这两个三角形相似。

8.如果两个三角形的对应边成比例,则这两个三角形相似。

9.如果两个三角形的对应边成比例且一个对应角相等,则这两个三角形相似。

三、判断题1.一个三角形的三个内角都小于90度,则它是一个锐角三角形。

√2.一个三角形的两个内角相等,则它是一个等腰三角形。

√3.一个三角形的三个内角和等于180度。

√4.一个三角形的两个内角相加小于90度,则它是一个钝角三角形。

√5.一个三角形的三条边都相等,则它是一个等腰直角三角形。

√四、计算题1. 已知一个等边三角形的周长为18cm,求它的边长。

解:因为等边三角形的三条边相等,所以周长18cm除以3,得到每条边的长度为6cm。

答: 6cm。

2. 已知一个等腰三角形的底边长度为10cm,等腰边长是底边的2倍,求它的周长。

《三角形内角和》说课稿

《三角形内角和》说课稿

《三角形内角和》说课稿《三角形内角和》说课稿范文(通用5篇)《三角形内角和》说课稿1一、说教材“三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。

“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。

主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。

从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

教学重点:三角形内角和是180°的实际应用。

教学难点:探索三角形的内角和是180°二、说教法新课程标准的基本理念就是要让学生“人人学有价值的数学”。

强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

任意三角形角度计算公式

任意三角形角度计算公式

任意三角形角度计算公式在初中数学中,我们学习了关于三角形的多个重要的角度计算公式。

这些公式可以帮助我们计算任意三角形中的角度大小。

下面我将介绍一些常见的角度计算公式。

1.三角形内角和公式:三角形的三个内角的和为180度。

这个公式在计算三角形中任意一个角度时非常有用。

例如,如果一个三角形的两个内角分别是60度和80度,那么第三个内角就是180度减去这两个角度的和,即180度-60度-80度=40度。

2.直角三角形中有关角度的公式:直角三角形是一个内含有一个直角(90度)的三角形。

在直角三角形中,我们可以使用特殊的三角函数(正弦、余弦和正切)来计算角度。

- 正弦函数公式:sinθ = 对边 / 斜边其中,θ表示直角三角形中的一个非直角的角度。

对边指的是与这个角度相对的边,斜边则是直角三角形的斜边。

例如,如果我们知道一个直角三角形的斜边长和对边长,我们可以使用正弦函数来计算出角度大小。

- 余弦函数公式:cosθ = 邻边 / 斜边在余弦函数中,邻边指的是与角度θ相邻的边。

- 正切函数公式:tanθ = 对边 / 邻边3.三角形外角和公式:三角形的一个外角等于其他两个内角的和。

这个公式在和已知两个内角的情况下,计算第三个内角时非常有用。

4.等腰三角形内角计算公式:等腰三角形是一种具有两条边相等的三角形。

在等腰三角形中,底角(顶点处的角)和两腰角(底边两侧的角)是相等的。

因此,在一个等腰三角形中,我们只需要知道一个角的大小,就可以计算出其余两个角的大小。

例如,如果一个等腰三角形底角为60度,那么另外两个角也是60度。

5.三角形外接圆角度计算公式:如果一个三角形的三个顶点在一个圆的圆周上,那么这个圆就被称为三角形的外接圆。

根据外接圆的性质,三角形的任意一个内角是其对应弧所对应的圆心角的一半。

根据这个性质,我们可以使用以下公式来计算三角形的内角:-圆心角的度数=2×弧度的度数-圆心角的度数=360度×弧度的长度/圆周的长度这些是一些常见的三角形角度计算公式。

三 角 形 的 内 角 和

三 角 形 的 内 角 和

陈省身:三角形内角和不等于180°外角和为360°作为公认的劳模,平日里,超模君不但要码字,工作之余还要监督表妹做作业,也难怪表妹成绩总是能名列前茅。

今天表妹做作业时,遇到一道判断题:“三角形的内角和等于180°”,她毫不犹豫打了勾。

超模君告诉表妹,这道题你可以打勾,但也要知道这个说法是不完全正确的。

表妹急了,怎么会呢?课本上明明说“三角形的内角和等于180°”,而且老师上课还再三强调大家一定要记住这个定理呢。

为了从小培养表妹严谨的科研精神,超模君决定给她上一课!三角形的外角和为360°我们从小就滚瓜烂熟的“三角形的内角和等于180°”这种数学常识其实是不严谨的。

我们先从伟大的华人数学家陈省身的一场讲学说起。

那是1980年,陈省身教授受邀在北京大学的一次讲学中语惊四座:“人们常说,三角形内角和等于180°。

但是,这是不对的!”当时现场一片哗然,目瞪口呆,三角形内角和等于180°不是数学常识吗?怎么回事?紧接着,陈教授就大家的疑惑作出了精彩的解答:说“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对,应当说“三角形外角和是360°”!把眼光盯住内角,只能看到:三角形内角和是180°;四边形内角和是360°;五边形内角和是540°;n边形内角和是(n-2)×180°。

这就找到了一个计算内角和的公式,公式里出现了边数n。

如果看外角呢?三角形的外角和是360°;四边形的外角和是360°;五边形的外角和是360°;任意n边形外角和都是360°。

这就把多种情形用一个十分简单的结论概况起来了。

用一个与n 无关的常数代替了与n有关的公式,找到了更一般的规律。

在这次讲学中,陈教授给我们传递了一个观点:数学不是罗列更多的现象,也不是追求更妙的技巧,而是要从更普遍的、更一般的角度寻求规律和答案。

三角形的内角和

三角形的内角和

1 认识三角形第1课时三角形与三角形的内角和【教材分析】本节课内容选自北京师范大学出版社的七年级数学下册第四章《三角形》第一节的第一课时:三角形的内角和。

主要内容包括三角形的有关概念、符号表示、三角形的三个角的大小关系以及内角和等基本性质。

呈现顺序是:观察一些生活中常见的物体图片——抽象出三角形的模型,概括出三角形的本质特点——认识三角形的有关概念、基本要素及三角形的符号表示——撕、拼三角形纸片得出三角形内角和——通过“议一议”活动,引出三角形按角分类——直角三角形的符号表示与直角三角形两锐角互余的结论.【学习目标】1.了解三角形及相关概念,能正确识别和表示三角形;2. 会按角的大小对三角形进行分类;3.掌握三角形的内角和等于180°,并会据此解决简单的问题.【教学重难点】重点:掌握三角形三个内角的和等于180°及其应用.难点:三角形三个内角的和等于180°的说理过程.)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到实用的三角梯,都有什么样的形象?为什么不选A、B、D?得出关键词:不在同一直线、首尾顺次相接1.定义:由不在同一直线上的三条线段由学生指出.二、三角形的内角和为180°如何来验证?度量或撕、拼角,通过撕角和拼角,我们把三角形的三个角拼成了一个平角.问:此时三角形的那个底边和这条虚线是什么关系?如果只撕一个角的话怎么来验证,小组讨论,动手操作。

证法2:过点C作l∥BA∴∠A=∠1 .两直线平行,内错角相等三、三角形的分类猜一猜:总结:锐角三角形:三个角都是锐角的三角形;直角三角形:有一个角是直角的三角形;(Rt▲ABC钝角三角形:有一个角是钝角的三角形.直角三角形中有一个角为直角,那么剩下的两个锐角的关系是:直角三角形两锐角互余.(平板分类活动:)典例精析:(学生讲)【课堂总结】【板书设计】三角形与三角形的内角和三角形的定义与表示由不在同一直线上的三条线段首尾顺次相接所组成的图. ▲ABC三角形的内角和为180°三角形的分类:锐角三角形。

三角形度数计算机公式角度数换算公式

三角形度数计算机公式角度数换算公式

三角形度数计算机公式角度数换算公式三角形是一个有三条边和三个角的多边形。

在三角形中,角度是一个重要的概念,可以用来计算和描述三角形的特性和性质。

以下是三角形度数计算的一些公式和换算公式。

1.三角形内角和公式:三角形的内角和是一个固定值,等于180度。

对于一个普通的三角形,可以用以下公式计算内角和:内角和=第一个角度+第二个角度+第三个角度2.三角形外角和公式:如果将三角形的每个内角延长成一条射线,那么这些射线的外角和等于360度。

对于一个普通的三角形,可以用以下公式计算外角和:外角和=360度-内角和3.三角形内角的关系:在一个三角形中,三个内角之间有一些特殊的关系。

这些关系可以用以下公式表示:第一个角度+第二个角度>第三个角度第一个角度+第三个角度>第二个角度第二个角度+第三个角度>第一个角度4.直角三角形的特殊角度关系:直角三角形是一个至少有一个内角为90度的三角形。

在直角三角形中,有以下特殊的角度关系:第一个角度+第二个角度+第三个角度=180度第三个角度等于90度5.三角形的边角关系:在一个三角形中,三个内角和三个对应的边之间有一些特殊的关系。

这些关系可以用以下公式表示:sin(A) = a / c (正弦定理)sin(B) = b / csin(C) = a / bcos(A) = (b² + c² - a²) / (2bc) (余弦定理)cos(B) = (a² + c² - b²) / (2ac)cos(C) = (a² + b² - c²) / (2ab)6.三角形的面积公式:三角形的面积可以通过以下公式计算:面积=0.5*底边长*高面积 = 0.5 * a * b * sin(C) (正弦定理)面积 = 0.5 * a * b * sin(C) = 0.5 * b * c * sin(A) = 0.5 * a * c * sin(B) (海伦公式)以上是三角形度数计算的一些公式和换算公式。

三角形三内角和教学教案

三角形三内角和教学教案

三角形三内角和教学教案这是一篇由网络搜集整理的关于三角形三内角和教学教案的文档,希望对你能有帮助。

三角形三内角和教学教案1教学目标:1.通过直观操作的方法,探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

2.能运用三角形内角和的性质解决一些简单的问题。

教学重点:知道三角形内角和为180°,并能根据已知两个内角的度数求出第三个角。

教学难点:知道三角形内角和为180°,并能根据已知两个内角的度数求出第三个角。

教学过程:一、导入板书课题:三角形三内角和师:今天我们学习什么新内容三角形三内角和指的是什么导入二、新授(一)认识三角形三内角1.在黑板中画一个三角形2.请学生上台来指一指三角形三内角3.标上字母,用一个算式表示我们今天所学知识4.猜一猜:三角形三内角和的度数5.思考:要想知道三角形三内角的度数和,可以怎么求证明黑板中的这种三角形的内角和度数够了没有为什么(二)画一画、量一量1.四人一小组,分别画一个锐角三角形,直角三角形,钝角三角形。

组长负责检查画得是否标准。

2.画三角形的同学分别测量出它们内角度数,组长负责检查并做好登记。

3.反馈(三)拼一拼,折一折1.打开数学书,独立思考,你是否能看到书中的方法。

2.让学生上台演示(四)试一试完成数学书28页练习三、巩固练习1.完成书中练一练1,2,3三题。

2.能力提升题,四边形、五边形的内角你能求吗四、课堂小结/三角形三内角和教学教案2一、学生知识状况分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.二、教学任务分析上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

3.三角形的内角和【教学目标】1、探索与发现三角形的内角和是180

3.三角形的内角和【教学目标】1、探索与发现三角形的内角和是180

3.三角形的内角和【教学目标】:1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

【教学重点和难点】:重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

【教材分析】《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。

教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。

扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

【教学过程】一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。

我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么优秀的教学设计是什么样的呢?读书破万卷,下笔如有神,这里是漂亮的编辑帮大伙儿找到的《三角形内角和》数学教案【优秀3篇】,希望大家能够喜欢。

《三角形内角和》教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计15篇
《三角形的内角和》教学设计 15 篇
《三角形的内角和》教学设计 1 教学内容:本节课的教学内容是义务教育课程标准试验教科书数 学四班级下册第五单位的第四课时《三角形的内角和》,主要内容是: 验证三角形的内角和是 180°等。 教学内容分析:三角形的内角和是 180 是三角形的一个重要性质, 它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的 基础。 教学对象分析:作为四班级的学生已有肯定的生活阅历,在平常 的生活中已经接触到三角形,在尊重学生已有的学问的基础上和利用 他们已把握的学习方法,老师把课堂教学组织生动、活泼,突出学问 性、趣味性和生活性,使学生能在轻松开心的气氛中学习。 教学目标: 1、学问目标:学生通过量、剪、拼、摆等操作学具活动,找到 新旧学问之间的联系,主动把握三角形内角和是 180°,并运用所学 学问解决简洁的实际问题。 2、能力目标:培养学生的观察、归纳、概括能力和初步的空间 想象力。 3、情感目标:培养学生的创新意识、探究精神和实践能力,在 学生亲自动手和归纳中,感受到理性的美。 教学重点:理解并把握三角形的内角和是 180°。
第 7 页 共 71 页
就是∠1+∠2+∠3=180°,借助图像 ∠2=180°-∠1-∠3 或∠2=180°-(∠1+∠3) =180°-140°-25°=180°-(140°+25°) =40°-25°=180°-165° =15°=15° 2、一个等腰三角形的顶角是 80°,它的两个底角各是多少度? 学生分析:因为等腰三角形的两个底角相等,又因为三角形的内
教学目标 1、通过试验、操作、推理归纳出三角形内角和是 180°。 2、能运用三角形的内角和是 180°这一规律,求三角形未知角 的度数并运用解决实际生活问题。 3、通过拼摆,感受数学的转化思想。 教学重点 探究发觉和验证“三角形的内角和 180 度”。 教学难点 验证三角形的内角和是 180 度。 教学预备 多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量 角器等。

与三角形有关的角(基础)知识讲解

与三角形有关的角(基础)知识讲解

与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.因为DF∥AC(已作),所以∠1=∠C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG.理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB.∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°.又∵∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》导学案
一、学习目标
1、能说出三角形的概念、表示方法,会表示三角形的边;
2、能解释三角形内角和是180˚,并能运用其进行运算;
3、会将三角形按内角的大小分类.
二、教学过程
课前准备:每人准备一张三角形卡片
(一)新课导入
播放有趣视频
(二)学习过程
1、自主学习(预习检测)
(1)学生自己进行学习课本81页的内容,结合图形把简单的知识树补充完整;
B
结合课本,完成以下问题: ①什么叫做三角形?(标出关键点) ②如何表示三角形? ③三角形的边可以怎么表示? 预习检测
(2)(2分)小强用三根木棒组成的图形,其中符合三角形概念是(

(3)如图 三角形ABC 记作: (1分) ∠B 的对边:(1分) 边AB 的对角是:(1分)
(4)此图中有几个三角形(2分)?你能表示出来吗?请表示出来(
3
C
B
A
分)。

(5)小组进行交流,小组长对本组进行批改统计。

2、合作探究
对小学探究过的三角形内角和等于180°进行简单的回顾。

(1)学生阅读81页的做一做中关于小明的做法进行思考,运用到了我们所学过的什么知识?(学生先自己进行阅读,再进行小组合作交流)找学生进行讲解。

拿出卡片进行操作
(2)小组进行讨论还有其他的方法能证明“三角形内角和等于180”
吗?(学生讨论的同时,教师参与其中),让学生分享自己的方法。

学以致用:
(1)在△ABC 中,∠B=∠C=40°,则∠A= 度(2分) (2) 在△ABC 中,∠A=60°, ∠B:∠C=1:5,则∠B=度(2分) 3、游戏环节 (1)猜猜猜
通过展示,你能猜出来被遮住的两个内角是什么角吗?说出你的理由。

(2)如果三角形按角进行分类的话,请你归类。

(3)
竞答
课本83页想一想 三、课堂总结
学生进行课堂总结,老师进行完善。

四、课堂达标:
1、(10分)已知∠A ,∠B ,∠C 是△ABC 的三个内角,∠A =
B
70°,∠C =30 °, ∠B =( )
2、(10分)直角三角形一个锐角为70°,另一个锐角( )度。

3、(30分)观察下面的三角形,并把它们的标号填入相应的椭圆框内:
锐角三角形 直角三角形 钝角三角形 (学生独立完成题目,小组进行互改,组长进行统计)
七、作业布置
课本84页知识技能的1和2题






①。

相关文档
最新文档