【期末试卷】唐山市滦县2015-2016学年八年级下期末数学试卷

合集下载

15-16第二学期期末八年级数学答案

15-16第二学期期末八年级数学答案

2015-2016学年第二学期期末八年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试八年级数学试题参考答案及评分标准二、填空题(每小题2分,共10分)16.> 17.100 18.x >1 19.15° 或105° (只填一个答案不能得分) 20.241cm n (无单位不能得分) 三、解答题(本大题共6个小题;共60分) 21.(本题满分12分,每小题3分)(1)12 (2)2 (3)0 (4)ab 2-(以上四个小题,如果结果不正确便不能得分) 22.(本题满分8分)(1)证明:∵四边形ABCD是正方形 ∴AD ∥BC∴∠E=∠DAE---------------------------------------------------2分 ∵AC=EC∴∠E=∠CAE -------------------------------------------------4分 ∴∠DAE =∠CAE即AE 平分∠CAD --------------------------------------------5分 (2)解: ∵正方形ABCD 是正方形且边长为1 ∴∠B=90° AB=BC=1 ∴ EC =AC==--------------------------------7分∴BE=1+∴△ABE 的面积是(1+) ---------------------------8分(其他做法参照此评分标准酌情给分) 23. (本题满分10分) 解:(1)10 ----------------------------------------------------------2分 (2)∵A (1,0),B (9,0),AD=6.∴D (1,6). 将B ,D 两点坐标代入y=kx+b 中, 得, ----------------------------------------4分解得 ,---------------------------------------------6分∴. ----------------------------------8分(3)或.----------------------10分(只答对一个给1分)(第22题图)(第23题图)2015-2016学年第二学期期末八年级数学答案 第2页(共2页)24、(本小题满分10分) 解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;---------------------------------------------------------2分 由于乙厂数据中12出现3次,是众数,故乙厂的广告利用了统计中的众数;------4分 丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;-------------------6分(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.----------10分(如果考生回答选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月,可得满分;如果只回答选用乙厂的产品,有适当理由也不扣分,如果没有适当理由则扣1--2分。

唐山市滦县2015-2016学年八年级下期末数学试卷含答案解析

唐山市滦县2015-2016学年八年级下期末数学试卷含答案解析

23.(8 分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满 足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四 个类别进行了抽样调查在平面直角坐标系中,已知直线 y1= x+2 与 x 轴、y 轴分别交于点 A 和点 B,直线 y2 =kx+b(k≠0)与 x 轴交于点 C(1,0),且与 线段 AB 相交于点 P,并把△ABO 分成两部分. (1)求△ABO 的面积; (2)若△ABO 被直线 CP 分成的两部分面积相等,求点 P 的坐标.
2015-2016 学年河北省唐山市滦县八年级(下)期末数学试卷
一、选择题(本大题共 10 个小题,每小题 2 分,满分 20 分) 1.某新品种葡萄试验基地种植了 10 亩新品种葡萄,为了解这些新品种葡萄的 单株产量,从中随机抽查了 4 株葡萄,在这个统计工作中,4 株葡萄的产量是 () A.总体 B.总体中的一个样本 C.样本容量 D.个体 2.已知,矩形 OABC 按如图所示的方式建立在平面直角坐标系总,AB=4, BC=2,则点 B 的坐标为( )
三、解答题(本大题共 6 小题,共 50 分) 21.(7 分)已知,在四边形 ABCD 中,AD=BC,P 是对角线 BD 的中点,N 是 DC 的中点,M 是 AB 的中点,∠NPM=120°,求∠MNP 的度数.
22.(7 分)如图,矩形 ABCD 的对角线相交于点 O,DE∥AC,CE∥BD. 求证:四边形 OCED 是菱形.
A.6 B.9 C.12 D.3 8.如图,已知 E 是菱形 ABCD 的边 BC 上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为( )
A.20° B.25° C.30° D.35° 9.如图,边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 45°后得到正方形 AB1 C1 D1 ,边 1B 1C 与 CD 交于点 O,则四边形1AB OD 的周长是( )

河北省滦县八年级数学下学期期末试题(扫描版)新人教版

河北省滦县八年级数学下学期期末试题(扫描版)新人教版

河北省滦县2017-2018学年八年级数学下学期期末试题6468建模车模海模空模参赛类别参赛人数(单位:人)246802017——2018学年度第二学期期末考试八年级数学答案及评分标准一、选择题:1—5 CACDB 6—10 ACBCC 二、填空题:11.x ≥-1且x ≠0; 12.80;(没有单位) 13.9; 14.32%或0.32或82515.-2<m <1; 16.16; 17.45; 18.x >3; 19.22.5; 20.114n -.或114n -⎛⎫ ⎪⎝⎭或2212n -或2212n -⎛⎫ ⎪⎝⎭(17,19题带单位也不扣分) 三、解答题:21. 证明一:∵四边形ABCD 为平行四边形 ∴AB ∥CD ,AB =CD (1分) ∴∠ABD =∠CDB (2分) ∵∠BAE =∠DCF (3分) ∴△ABE ≌△CDF (ASA ) (4分) ∴AE =CF (5分) 证明二:∵四边形ABCD 为平行四边形∴A D ∥BC ,AD=BC , ∠BAD=∠BCD (1分) ∴∠ADB =∠CBD, (2分) ∵∠BAE=∠DCF∴∠BAD-∠BAE =∠BCD - ∠DCF ∴∠DAE =∠B CF (3分) ∴△ABE≌△CDF(ASA ) (4分)∴AE=CF (5分) 22.解:(1)4,6 (每空1分)(2)24,120° (每空1分,补图1分,不涂黑,不标数不减分) (3)32÷80=40%(1分),2485×40%=994(1分)∴获奖人数为994人 ( 列综合式子列式1分,结果1分) 23.解:(1)8吨以内收费标准:17.6÷8=2.2元 (1分)8吨以上收费标准:(31.6-17.6)÷(12-8)=3.5元(2分,分步亦可)(结果错不给分)(2)由题意可知:y=3.5(x-8)+2.2×8 (4分)即:y=3.5x-10.4 (5分)(直接写出表达式的结果给3分,如果用待定系数法求表达式,k,b解对各1分,表达式给1分)当y=28.1时,有:3.5x-10.4=28.1 (6分)∴x=11 (7分)答:芳芳家6月份用水量为11吨。

2015- 2016学年八年级下学期期末考试数学试题

2015-  2016学年八年级下学期期末考试数学试题

2015~2016学年第二学期期末考试试卷八年级数学 2016.07注意事项:1. 本试卷满分130分,考试时间120分钟;2. 答卷前将答题卡上的相关项目填涂清楚,所有解答均须写在答题卡上,在本试卷上 答题无效.一、选择题: (本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其 中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.分式211x x -+的值为0,则A .1x =- B. 1x = C . 0x =D. 1x =±2.使52x +有意义的x 的取值范围是 A. 25x >B. 25x >-C. 25x ≥D. 25x ≥-3.袋子中装有标号为1, 2, 3, 4的完全相同的四个小球,从中任取一个,则A. 最有可能取到1号球B. 最有可能取到2号球C. 最有可能取到3号球D.取4种球的可能性一样大4.如图,在△ABC 中,点M 、N 分别为BC 、AC 的中点.若MN 的长为2,则AB 的长为A .1 B. 2 C. 4 D. 85.如图,矩形ABCD 的对角线AC 、BD 相交于O 点,0120AOD ∠=, AB =4,则矩形对角线的长为A. 4B. 8C. 12D. 166. 下列根式中,最简二次根式是 A.22m n + B. 16m C.2mD. 0.57.左下图是反比例函数k y x =(k 为常数,0k ≠)的图像,则一次函数y kx k =-的图像 大致是8.如图,四边形ABCD 中,//AB DC ,对角线AC 、BD 交于点O ,有以下四个结论: ①△AOB ∽△COD ;②△AOD ∽△ACB ;③::DOC AOD S S DC AB =; ④AOD BOC S S =. 其中始终正确的有A. 1个B.2个C. 3个D.4个 9.如图直线与双曲线(0)k y x x =>交于A .将直线43y x =向右平移92个单位后,与双曲线43y x =交于B ,与x 轴交于点C ,若2AO BC =,则k 的值是A. 10B. 11C. 12D. 13 10.如图1,在矩形ABCD 中,动P 点从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则 △ABC 的面积是A.10B. 16C. 18D. 20二、填空题: (本大题共8 }J"题,每小题3分,共24分,把答案直接填在答题卡相对应的 位置上)11. 要调查下列问题,你认为哪些适合抽样调查▲ .(填写顺序号)①市场上某种食品的某种添加剂的含量是否符合国家标准; ②检测某地区空气质量; ③ 调查全市中学生一天的学习时间. 12. 化简:83=▲.13.在ABCD 中,如果AC BD =时,那么这个ABCD 是▲形.14. 若4220a a b +++-=,则1a b +的值为▲.15. 如图,直线1,1l //2l //3l ,另两条直线分别交1l ,2l ,3l于点A 、B 、C 及点D 、E 、F , 且3AB =,4DE =,6DF =,则BC =▲.16.菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是8和6(AC BO >),反比例函数(0)k y x x =<的图像经过C ,则k 的值为▲;17.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围为▲.18.如图,在Rt ABC 中,090C ∠=;翻折C ∠,使点C 落在斜边AB 上某一点D 处, 折痕为EF (点E 、F 分别在边AC 、BC 上).若△CEF 与△ABC 相似,当3AC =, 4BC =时,AD 的长为▲.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答 时应写出必要的计算过程、推演步骤或文字说明.)19.(本题满分8分,每小题4分)计算或化简:(1)2118(21)8+--(2)22116()4(0,0)336a ab b a b ÷-⨯>>20. (本题满分8分,每小题4分)(1)化简:22221244x y x y x y x xy y ---÷--+ (2)解方程:32111x x x x +-=+21.(本题满分6分)先化简,再求值: 935(2)422a a a a -÷+--- ,其中:33a =-.22. (本题满分6分)某中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1) 样本中最喜欢A项目的人数所占的百分比为▲;(2) 请把条形统计图补充完整;(3) 若该校有学生1700人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?(4) 为了推动课外体育活动的开展,学校准备举行“四项全能”比赛,某班要从小张和小李中选一人参加,现设计如下游戏来确定:在一个不透明的袋中装有2个红球和3个白球,它们除了颜色外都相同,小张先从袋中随机摸出一个球,小李再从剩下的四个球中随机摸出一个球,若摸出的两个球颜色相同,则小张去;否则小李去.现在,小张同学摸出了一个红球,则小张参加比赛的概率为▲.23.(本题满分7分)己知反比例函数1kyx-=(k常数,1k≠).(1)若点A(1, 2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围;(3)若k=13,试判断点B(3, 4)是否在这个函数的图象上,并说明理由.24.(本题满分7分)Rt ABC 与Rt FED 是两块全等的含030, 060角的三角板,按如图1所示拼在一起,CB 与DE 重合。

2015--2016学年度第二学期期末考试初二数学

2015--2016学年度第二学期期末考试初二数学

2015--2016学年度第二学期期末考试初二 数学(考试时间:120分钟 满分:150分) 得分一、选择题(本大题共6小题,每小题3分,满分18分.在每小题所给出的四个选项中,恰有一项是正确的,请将正确选项的字母代号填在题后括号内) 1.下列调查中,适合普查的是( )A .某品牌电冰箱的使用寿命B .公民保护环境的意识C .长江中现有鱼的种类D .你班每位同学穿鞋的尺码 2.下列运算正确的是( )A .12223=-B .27226=+C .257=- D .312=+3.下列事件是确定事件的是( )A .在标准大气压下,温度低于0℃时冰融化B .抛掷一枚质地均匀的硬币正面朝上C .买一张电影票,座位号是奇数D .打开电视,正在播广告 4.在平面直角坐标系中,函数kx y =与xky -=(k >0)的图像是下列图像中的( )5.下列说法正确的是( )A .一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .有一个角是直角的菱形是正方形D .平行四边形的对角互补 6.如果09622=+-b ab a ,那么ba ba 22-+的值等于( )A.-7B.-7bC.7D.7b二、填空题(本大题共有10小题,每小题3分,共30分) 7.若分式312--x x 有意义,则x 的取值范围是 . 8.计算)53)(35(-+= .第14题DOEABCF D COE BA第13题9.在温度不变的条件下,一定量的气体的压强p (Pa )与它的体积V (m 3)成反比例,已知当V =125 m 3时p =80 Pa ,则当V =200 m 3时p = Pa . 10.当a = 时,最简二根根式3-a 与a -93是同类二次根式.11.将容量是200的样本分成5组,其中,第1组的频数是20,第2、3组的频数都是40,第4组的频率是0.3,那么第5组的频数是 . 12.如果关于x 的方程mx x -=23的解为x =6,则m = . 13.如图,△ABC 的中线AF 与中位线DE 相交于O ,若DO =2,则BC = . 14.如图,矩形ABCD 的对角线相交于O ,AC =2AB ,E 是边BC 延长线上一点,且CE =OC ,则∠E 等于 °.15.平行四边形ABCD 中,边AB 的长为6,一条对角线AC 的长为8,则另一条对角线BD 长的取值范围是 . 16.如图,双曲线 x y 1=(x >0)经过Rt △OCB 的斜边OB 的中点A ,点B 在双曲线xk y = (x >0)上,则△OBC 的面积= .三、解答题(本大题共有10小题,共102分) 17.(12分)计算:(1)752712-- (2)b a ab ab ab a 33322+⋅+ (3) 21823xx x +-)0(≥x18.(8分)解方程:3233252---=--x x x x 第16题19.(8分)如图,小方格的边长为1. (1)BC = ,△ABC 的面积为 ; (2)将△ABC 绕点O 逆时针旋转90°,请画出对应的△A 1B 1C 1; (3)请在图中找出:以A 1、B 1、C 1为顶点的矩形的第四个顶点D 1.20.(10分)某市教育局为了了解初二学生第一学期参加社会实践活动的情况,随机抽查了本市部分初二学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a 的值为 %,该扇形圆心角的度数为 ; (2)补全条形统计图;(3)如果该市共有初二学生20 000人,请你估计“活动时间不少于5天”的大约有多少人?21.(8分)在一个暗箱里放有a 个除颜色外其它完全相同的红、白、蓝三种球,其中红球有2个,白球有5个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.天和7天以上53天学生参加实践活动天数的人数分布扇形统计图7天和7天以上学生参加实践活动天数DA(1)试求出a 的值;(2)从中任意摸出一个球,①该球是红球②该球是白球③该球是蓝球,估计这三个事件发生的可能性的大小,将三个事件的序号按发生的可能性从小到大的顺序排列.22.(10分)某校为迎接市中学生运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?23.(10分)甲、乙两港口分别位于长江的上、下游,相距s km ,一艘游轮往返其间,若游轮在静水中的速度为a km/h ,水流速度为b km/h (b <a ). (1)该游轮往返两港口所需的时间相差多少?(2)若水流速度为3 km/h 时游轮在两港口往返一次的时间为t 1,水流速度为0 km/h (静水中)时游轮在两港口往返一次的时间为t 2,问t 1与 t 2哪个大?为什么?24.(10分)如图,点E 、F 为菱形ABCD 对角线BD 的两个三等分点. (1)求证:四边形AECF 是菱形;(2)若菱形ABCD 的周长为52,BD 为24,试求四边形AECF 的面积.…………………………25.(12分)已知正方形OABC 的面积为4,O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数)0,0(>>=k x x k y 的图像上,点P (m , n )是函数)0,0(>>=k x xky 的图像上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,若设矩形OEPF 和正方形OABC 不重合部分的面积为S. (1)求B 点的坐标和k 的值; (2)当38=S 时,求点P 的坐标; (3)当521≤≤m 时,求S 的最大值.26.(14分)如图,矩形ABCD 中,AB =6cm ,AD =8cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度沿A →D →C 移动,一直到达点C 为止;点Q 以2cm/s 的速度向点B 移动,到B 停止.(1)经过多长时间,四边形ABQP 为矩形?(2)P 、Q 两点在运动过程中,直线PQ 能否垂直平分线段BD ?为什么?(3)若以A 为坐标原点,AD 为x 轴正方向,以BA 为y 轴正方向,建立平面直角坐标系,问:是否存在某一时刻,点P 、Q 既在某反比例函数图像上又在某一次函数的图像上?为什么?备用图。

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

2015-2016(下)八年级期末试题及答案

2015-2016(下)八年级期末试题及答案

2015~2016学年度下期期末测试题八年级 数学(满分150分,考试时间120分钟)题号 一 二 三 四 五 总分 得分得分 评卷人 一、选择题:(本大题12个小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项符合题意.1. 在a 中,a 的取值范围是( )A .0≥aB .0≤aC .0>aD .0<a 2. 下列运算中错误的是 ( )A.632=⨯ B. 532=+ C. 228=÷ D.3)3(2=-3. 某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。

为此,初二(1)班组 织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是,根据以上数据,下列说法正确的是( ) A. 甲的成绩比乙的成绩稳定 B. 乙的成绩比甲的成绩稳定 C. 甲、乙两人的成绩一样稳定 D. 无法确定甲、乙的成绩谁更稳定 4. P 1(x 1,y 1)、P 2(x 2,y 2)是正比例函数x y 21-=图象上的两点,下列判断中,正确的是( )A 、y 1>y 2B 、y 1<y 2C 、当x 1<x 2 时,y 1<y 2D 、当x 1<x 2时, y 1>y 25. 如图是某射击选手5次射击成绩的折线图,根据图示信息,这 5次成绩的众数、中位数分别是( )A .8 、9B .7 、9C .7 、8D .8 、10 6. 甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲 客轮用15min 到达A ,乙客轮用20min 到达B .若A 、B 两处的 直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙 客轮的航行方向可能是( )5题图A .北偏西30°B .南偏西30°C .南偏西60°D .南偏东60° 7. 不能判定四边形ABCD 为平行四边形的条件是( )A .AB=CD ,AD=BCB .AB=CD ,AB ∥CDC .AB=CD ,AD ∥CD D .AD=BC ,AD ∥BC 8. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°, 则∠AOB 的大小为( )A, 30° B. 60° C. 90° D. 120°9. 如图,把一个小球垂直向上抛出,则下列描述该小球的运动速 度v (单位:m/s )与运动时间(单位:s )关系的函数图象中, 正确的是( )A B C D10. 已知一个直角三角形的两边长分别为8和15,则第三边长是( )A .17B .289C .161D .17或16111.如图所示,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm 2, 第②个图形的面积为18cm 2,第③个图形的面积 为36 cm 2,……,那么第⑥个图形的面积为( )A. 84 cm 2B. 90 cm 2C. 126 cm 2D. 168 cm 2 12.如图,直线233+-=x y 与x 轴,y 轴分别交于A 、B 两点,把 △AOB 沿着直线AB 翻折后得到△AO´B ,则点O´的坐标是( ) A .(3,3) B .(3,3)ByBO ´y9题图8题图ODCBA8题图11题图C .(2,32)D .(32,4)13. 计算:28-= .14. 如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE= .15. 如图已知函数b x y +=2与函数3-=kx y 的图像交于点P ,则 不等b x kx +>-23的解集是 .16. 有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是________. 17. 如图,直线42+=x y 与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等边△OBC ,将点C 向左平移,使其对应点C´恰好落在直线AB 上,则点C´的坐标为 . 18. 如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD=120°;②△BDF ≌△CGB ;③BG+DG=CG ;④S △ADE =43AB 2. 其中正确的有 . 19. 计算:1)31()12(132---+-得分 评卷人 二、填空题:(本大题6个小题,每小题4分,共24分)得分 评卷人 三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程.14题图17题图18题图15题图20. △ABC 中,∠C=90°,BC=3,AB=5,CD ⊥AB 于D , (1)求AC 长; (2)求CD 长.得分 评卷人 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程.21. 先化简,再求值:)1()1112(2-⋅++-x x x ,其中x=313-.20题图22. 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲93 86 73乙95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.23. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.24.如图,在平行四边形ABCD 中,∠C =60°,M 、N 分别是AD 、BC 的中点,BC =2CD (1)求证:四边形MNCD 是平行四边形; (2)求证:BD =3MN 得分评卷人五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写23题图 ABOxyABO Cx y24题图出必要的演算过程或推理过程.25. 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“梦想中国秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量(件)和销售价(元/件)之间的函数关系式;(2若该店暂不考虑偿还债务,当天的销售价为48元时/件时,当天正好收支平衡(收入=支出),求该店员工的人数;25题图26、猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论. 拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其它条件不变,则DM和ME 的关系为_______;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.ABCDEFG M26题图① ABCDEFGM26题图②2015~2016学年度下期期末测试题八年级数学答案一、选择题:1.A2. B3. A4. D5. C6. D7. C8. B9. C 10. D 11. C 12. A 二、填空题: 13.2 14.3 15. x <4 16. 2 17.(-1,2) 18. ①③三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程. 19. 解:原式=23﹣1+1﹣3=3.……………………………… 7分20.解:(1)∵△ABC 中,∠C=90°,BC=3,AB=5,∴AC=22BC AB -=2235-=4;………………………………4分(2) ∵CD ⊥AB ,AB=5,由(1)知AC=4,∴AB•CD=AC•BC ,即CD=AB BC AC ⋅=534⨯=512.……………………………7分 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程. 21.解:原式=)1()1)(1()1()1(22-⋅-+-++x x x x x=2x+2+x ﹣1=3x+1,………………………………8分 当x=313-时,原式=3. ………………………………10分 22. 解:(1)∵甲的平均成绩是:x 甲=3738693++=84(分),乙的平均成绩为:x 乙=3798195++=85(分),∴ x 乙>x 甲,∴ 乙将被录用;………………………………3分 (2)根据题意得:x 甲=253273586393++⨯+⨯+⨯(分),x 乙=253279581393++⨯+⨯+⨯(分);∴ x 甲>x 乙,∴ 甲将被录用;………………………………6分20题图(3)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段85≤x <90中有7人,公司招聘8人,又因为x 甲分,显然甲在该组,所以甲一定能被录用;在80≤x <85这一组内有10人,仅有1人能被录用,而x 乙分,在这一段内不一定是最高分,所以乙不一定能被录用;由直方图知,应聘人数共有50人,录用人数为8人, 所以本次招聘人才的录用率为508=16%.………………………………10分 23.解:(1)设直线AB 的解析式为b kx y +=.直线AB 过点A(1,0)、B(0,-2), ∴ ⎩⎨⎧-==+20b b k 解得⎩⎨⎧-==22b k∴直线AB 的解析式为22-=x y .…………………5分(2)设点C 的坐标为(x ,y ).12222BOC S x =∴=△,··,解得x=2.∴ y=2×2-2=2 ∴ 点C 的坐标是(2,2) ………………………………10分24. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ,∵M 、N 分别是AD 、BC 的中点 ∴MD =NC ,MD ∥NC ,∴四边形MNCD 是平行四边形 ………………………………5分 (2)∵N 是BC 的中点,BC =2CD ∴CD =NC ∵∠C =60°,∴△DCN 是等边三角形,∴ND =NC , ∠DNC =∠NDC =60° ∴ND =NB =CN∴∠DBC =∠BDN =30°∴∠BDC =∠BDN +∠NDC =90°∴CD CD DC CD BC BD 3)2(2222=-=-=∵四边形MNCD 是平行四边形 ∴MN =CD∴BD =3MN ………………………………10分五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程. 25. 解:(1)当40≤x <58时,设函数关系式为y =k x +b .把x =40,y =60和x =58,y =24分别代入得⎩⎨⎧=+=+24586040b x b x 解得⎩⎨⎧=-=1402b k . 即y =-2x +140.………………………………4分当58x ≤x ≤71时,设函数关系式为y =mx +n .把x =58,y =24和x =71,y =11分别代入得⎩⎨⎧=+=+11712458n m n m 解得⎩⎨⎧=-=821n m . 即y =-x +82. ………………………………8分(2)设该店员工为a 人.把x =48分别代入y =-2x +140得 y =-2×48+140=44.由题意 (48-40)×44=82a +106.解得 a =3.即该店员工为3人.………………………………12分26、解:猜想与证明猜想DM 与ME 的关系是:DM =ME .………………………………2分证明:如图1,延长EM 交AD 于点H .∵四边形ABCD 、四边形ECGF 都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF . ∴∠AHM =∠FEM . 又∵AM =FM ,∠AMH =∠FME ,∴△AMH ≌△FME . ∴HM =EM . 又∵∠HDE =90°,∴DM =EM .………………………………6分拓展与延伸(1)DM 和ME 的关系为:DM =ME ,DM ⊥ME .………………………………8分(2)证明:如图2,连结AC .∵四边形ABCD 、四边形ECGF 都是正方形,∴∠DCA =∠DCE =45°,∴点E 在AC .∴∠AEF =∠FEC =90°.又∵M 是AF 的中点, ∴ME =21AF . ∵∠ADC =90°,M 是AF 的中点,∴DM =21AF . ∴DM =EM .∵ME =21AF =FM ,DM =21AF =FM , ∴∠DFM =21(180º-∠DMF ),∠MFE =21(180º-∠FME ), A BC D E F G M 图1 H A B C D E F G M 图2∴∠DFM +∠MFE =21(180º-∠DMF )+21(180º-∠FME ) =180°-21(∠DMF-∠FME ) =180°-21∠DME . ∵∠DFM +∠MFE =180°-∠CFE =180°-45°=135°, ∴180°-21∠DME =135°. ∴∠DME =90°.∴DM ⊥ME .………………………………12分。

2015—2016学年人教版八年级下期末数学试题及答案

2015—2016学年人教版八年级下期末数学试题及答案

2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。

2015-2016学年度(下)八年级数学期末试题(最新精品)

2015-2016学年度(下)八年级数学期末试题(最新精品)

AFE D CB2015-2016学年度(下)八年级数学期末测试试卷一、选择题(每题3分,共30分)1、下列计算结果正确的是: (A)(B)(C) (D)2、已知,那么的值为( )A .一lB .1C .32007D .3、在△ABC 中AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或334、△ABC 中,若AB=15,AC=13,高AD=12,则△ABC 的周长是( )A.42B.32C.42或32D.37或33 5、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点,则下列式子中,一定成立的是( ) A. B. C.D.6、已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3<y 1<y 27、一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( )A . B. C. D. 9、某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,811、8名学生在一次数学测试中的成绩为80,82,79,69,74,78,,81,这组成绩的平均数是77,则的值为( )A .76B .75C .74D .73 10、如图、已知梯形ABCD 中,AD ∥BC,AB=CD=AD,AC 、BD 相交于点O ,∠BCD=60°,有下列说法:(1)梯形ABCD是轴对称图形。

(2)BC=2AD.(3)梯形ABCD是中心对称图形。

(4)AC平分∠DCB.其中正确的说法有()A、1个B、2个C、3个D、4个二、填空题(每题3分,共30分)11、直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________ .12、已知a,b,c为三角形的三边,则= .13、如图所示,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下滑了__________米.14、直角三角形的两边为3和4,则该三角形的第三边为 .15、在长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.16、如图,已知正方形ABCD的边长为1,连接AC,BD,相交于点O,CE平分∠ACD 交BD于点E,则DE= .17、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。

2015-2016学年初二数学第二学期期末试卷带答案

2015-2016学年初二数学第二学期期末试卷带答案

八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。

2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。

2015-2016学年八年级下期末质量数学试题含答案

2015-2016学年八年级下期末质量数学试题含答案

21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.如图:已知:AD是△ ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.求证:四边形AEDF是菱形;23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.2.分解因式:2244423x xy y x y ++---2.如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足b=++16.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒)(1)求B 、C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标;(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.八年级下学期期末学业水平考试数学试题【答案】1、选择题(每小题3分,共36分)∴∠FDB=∠B∴DF=BF ..............3分∴DE+DF=AB=AC;..............4分(2)图②中:AC+DE=DF.. ............6分图③中:AC+DF=DE...............8分(3)当如图①的情况,DF=AC-DE=6-4=2;..............9分当如图②的情况,DF=AC+DE=6+4=10...............10分27、(1)证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);..............3分(2)证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,..............4分由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;..............5分在△DBG和△FBG中,,BD==,BF=,BC=﹣(﹣,﹣)、(,).每个坐标:(1), ,, 故;:,,:,,当时,:,;(3)当时,过Q作,根据题意得:,计算得出:,故,,当时,过P作轴,根据题意得:,,则,计算得出:,,故P( ,12),. .............12分。

2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。

)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。

2016年八年级下册期末考试试卷

2016年八年级下册期末考试试卷

2016年八年级下册期末考试试卷篇一:2016八年级下册期末试题含答案12015—2016学年第二学期期末八年级数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项 1、下列各式中,属于最简二次根式的是()A、B、C、D、2、下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是 () A、a?9,b?41,c?40B、a?5,b?5,c?52 C、 a:b:c?3:4:5 D、a?11,b?12,c?133、将直线y?2x向下平移一个单位后所得的直线解析式为()A、y?2x?1B、y?2x?2C、y?2x?1D、y?2x?24、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如右表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大。

上述结论正确的是()A、①②③B、①②C、①③D、②③(第5题图)5、如图,在矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( ) A、3B、4 C、5 D、66、如图,把一枚边长为1的正方形印章涂上红色印泥,在4×4的正方形网格纸上盖一下,被盖上印泥的正方形网格个数最多是() A、6B、5 C、4 D、3 二、填空题(本大题共8个小题,每小题3分,共24分)7、计算(2(第6题图)印章11)?(27)?; 338、写出一个图象经过点(-2,0)且函数y随x增大而增大的一次函数解析式;229、已知2<x<5,化简(x?2)?(x?5)?.10、如图,每个小正方形的边长为1.在?ABC中,点D为AB的中点,则线段CD 的长为; 11、如图,直线y?kx?b交坐标轴于A、B两点,则不等式kx?b?0的解集是 12、某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表15、计算:16、若a?17、如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为元(2)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式。

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C.6D.74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则 四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CD ABCP第13题图 第14题图 第8题图 第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( ) A .40平方米B .50平方米C .80平方米D .100平方米10.如右图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点 经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y , 则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.如图,点D ,E 分别为△ABC 的边AB ,BC 的中点,若DE =3cm ,则AC = cm .12.已知一次函数2()y m x m =++,若y 随x 的增大而增大,则m 的取值范围是 .13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ACD ∽△ABC (只填一个即可).14.如图,在□ABCD 中,BC =5,AB =3,BE 平分∠ABC 交AD 于点E ,交对角线AC 于点F ,则AEFCBFS S △△= .D AB CFE D B C A EDABCS t /平方米/小时16060421ODA FE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N . (1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案CABADBDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分 12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---= △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x = ⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m =-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。

15-16学年第二学期八年级期末数学试卷及参考答案

15-16学年第二学期八年级期末数学试卷及参考答案

2015-2016学年度第二学期期末质量监测八 年 级 数 学 试 题(时间:100分钟 总分:100分)温馨提示:1.亲爱的同学,欢迎你参加本次考试,本次考试满分100分,时间100分钟,祝你答题成功!2.数学试卷共6页,共22题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题意的,请把你认 为正确的选项前字母填写在该题后面的括号中.1. 在数﹣,0,1,中,最大的数是( )A .B .1C .0D . 2. 下列长度的三条线段能组成直角三角形的是( ) A .4,5,6 B .2,3,4 C .1,1, D .1,2,23.如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .D .2第3题 第4题4. 如图,在 ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=6,AD=4,则 ABCD 的面积是( ) A .12 B .12C .24D .30 5.函数y=2x ﹣1的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 若=b ﹣a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b7. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,C.中位数40 D.这10户家庭月用电量共205度8. 两个一次函数y=ax﹣b,y=bx﹣a(a,b为常数),它们在同一直角坐标系中的图象可能是()A.B.C.D.9. 如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm第9题第10题10. 甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:①a=4.5;②甲的速度是60千米/时;③乙出发80分钟追上甲;④乙刚到达货站时,甲距B地180千米;其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6小题,每小题3分,共18分) 11. 若二次根式有意义,则x 的取值范围是 .12. 已知a 、b 、c 是的△ABC 三边长,且满足关系+|a ﹣b|=0,则△ABC 的形状为 .13. 如图,在线段AB 上取一点C ,分别以AC 、BC 为边长作菱形ACDE 和菱形BCFG ,使点D 在CF 上,连接EG ,H 是EG 的中点,EG=4,则CH 的长是 . 14. 在△ABC 中,∠ABC=30°,AB=8,AC=2,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为 .第13题 第16题x 与方差S 2: 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 . 16.如图,已知正方形ABCD ,以AB 为边向外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD 的度数. 三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)计算:(1)﹣÷(2)(2﹣3)(3+2)18. (本小题满分8分)如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.(本小题满分8分)分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.20. (本小题满分8分)某校为了解八年级女生体能情况,抽取了50名八年级女学生进行“一分钟仰卧起坐”测试.测(1)通过计算得出这组数据的平均数是40,请你直接写出这组数据的众数和中位数,它们分别是、;(2)被抽取的八年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是39次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;(3)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为38次,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?21. (本小题满分9分)A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(2)设总运费为W元,请写出W与x的函数关系式,并直接写出x的取值范围.(3)怎样调送荔枝才能使运费最少?如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.2015-2016学年度第二学期期末质量监测八年级数学参考答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共6小题,每小题3分,共18分)11. x≥﹣1 12.等腰直角三角形 13. 214.或 15.甲 16. 60°三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)(1)解:原式=2﹣…………………………………………………3分=…………………………………………………………………4分(2)解:原式=(2)2﹣32…………………………………………2分=﹣1……………………………………………………………4分18.(本小题满分8分)解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:,解得:k=﹣1,b=﹣3.…………………………………………………………………5分(2)x>﹣3.……………………………………………………………………………8分19.(本小题满分8分)解:(每小题4分,满分8分)20.(本小题满分8分)解:(1)38 ;38 ………………………………………………………………………2分(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的;………………4分(3)合格人数为:250×80%=200(人).………………………………………………8分21.(本小题满分9分)(1)如下表:………………3分(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,……5分由,解得:1≤x≤13.……………………………………………………………………………6分(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.…………………………9分22.(本小题满分11分)解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;………………………………………… 3分(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN…………………………………………………………………………… 6分(3)解:作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=1﹣x,……………………………………………………………… 10分x的取值范围为0≤x≤.………………………………………………………… 11分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年河北省唐山市滦县八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,满分20分)1.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是()A.总体B.总体中的一个样本C.样本容量D.个体2.已知,矩形OABC按如图所示的方式建立在平面直角坐标系总,AB=4,BC=2,则点B的坐标为()A.(4,2)B.(﹣2,4)C.(4,﹣2)D.(﹣4,2)3.如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图象只能是()A.B.C.D.4.某商店售货时,其数量x与售价y关系如表所示:则y与x的函数关系式是()A.y=8x B.y=8x+0.4 C.y=8.4x D.y=8+0.4x5.若一次函数y=(k﹣6)x+b的图象经过y轴的正半轴上一点,且y随x的增大而减小,那么k,b的取值范围是()A.k<0,b>0 B.k<6,b>0 C.k>6,b>0 D.k=6,b=06.如图,若∠1=∠2,AD=CB,则四边形ABCD是()A.平行四边形B.菱形C.正方形D.以上说法都不对7.如图,已知▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF的长是()厘米.A.6 B.9 C.12 D.38.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为()A.20°B.25°C.30°D.35°9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是()A.B.2 C.1+D.310.将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E 处,直线MN交BC于点M,交AD于点N,若AB=4,AD=8,则线段AN的长为()A.8 B.12 C.5 D.4二、填空题(本大题共10个小题,每小题3分,共30分)11.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为,频率为.12.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是.13.如果函数y=有意义,则x的取值范围是.14.若四边形ABCD为平行四边形,请补充条件(一个即可)使四边形ABCD 为矩形.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图,菱形ABCD对角线AC,BD相交于点O,且AC=8cm,BD=6cm,DH⊥AB,垂足为H,则DH的长为cm.17.如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x (km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费元.18.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.20.如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为.三、解答题(本大题共6小题,共50分)21.(7分)已知,在四边形ABCD中,AD=BC,P是对角线BD的中点,N是DC 的中点,M是AB的中点,∠NPM=120°,求∠MNP的度数.22.(7分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.(8分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查在平面直角坐标系中,已知直线y1=x+2与x轴、y轴分别交于点A和点B,直线y2=kx+b(k≠0)与x轴交于点C(1,0),且与线段AB 相交于点P,并把△ABO分成两部分.(1)求△ABO的面积;(2)若△ABO被直线CP分成的两部分面积相等,求点P的坐标.25.(10分)如图①所示,已知两个边长均为a的全等的正方形ABCD与A1B1C1D1,正方形ABCD的点C与正方形A1B1C1D1的中心重合,且绕点C旋转.(1)当正方形ABCD由图①旋转至图②时,两个阴影部分的面积是否相等?如果相等,直接回答出都等于什么;(2)当正方形ABCD旋转至任意位置时,如图③,重叠部分的面积会变化吗?说明你的结论.26.(10分)甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)2015-2016学年河北省唐山市滦县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,满分20分)1.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是()A.总体B.总体中的一个样本C.样本容量D.个体【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:4株葡萄的产量是样本.故选B.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.已知,矩形OABC按如图所示的方式建立在平面直角坐标系总,AB=4,BC=2,则点B的坐标为()A.(4,2)B.(﹣2,4)C.(4,﹣2)D.(﹣4,2)【考点】矩形的性质;坐标与图形性质.【分析】直接利用矩形的性质结合点B 所在象限得出B 点坐标即可. 【解答】解:∵矩形OABC 中,AB=4,BC=2, ∴点B 的坐标为:(4,﹣2). 故选:C .【点评】此题主要考查了矩形的性质,正确利用矩形边长得出B 点坐标是解题关键.3.如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h 后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(x )的函数,那么这个函数的大致图象只能是( )A .B .C .D .【考点】函数的图象.【分析】根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.【解答】解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的,∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多, ∴3小时后,未装箱的产品数量是下降的,直至减至为零. 表现在图象上为随着时间的增加,图象是先上升后下降至0的. 故选A .【点评】本题考查的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.4.某商店售货时,其数量x与售价y关系如表所示:则y与x的函数关系式是()A.y=8x B.y=8x+0.4 C.y=8.4x D.y=8+0.4x【考点】根据实际问题列一次函数关系式.【分析】根据数量x与售价y如下表所示所提供的信息,列出售价y与数量x的函数关系式y=8x+0.4.【解答】解:依题意得:y=8x+0.4.故选:B.【点评】本题考查的是一次函数的关系式和应用.读懂图表信息是解题的关键.5.若一次函数y=(k﹣6)x+b的图象经过y轴的正半轴上一点,且y随x的增大而减小,那么k,b的取值范围是()A.k<0,b>0 B.k<6,b>0 C.k>6,b>0 D.k=6,b=0【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=(k﹣6)x+b的图象经过y轴的正半轴上一点,且y 随x的增大而减小,∴k﹣6<0,b>0,即k<6,b>0.故选B.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.6.如图,若∠1=∠2,AD=CB,则四边形ABCD是()A.平行四边形B.菱形C.正方形D.以上说法都不对【考点】平行四边形的判定.【分析】由已知可证AD∥BC,AD=BC,所以四边形ABCD是平行四边形.【解答】解:∵∠1=∠2,∴AD∥BC.∵AD=BC,∴四边形ABCD是平行四边形,故选A.【点评】本题主要考查了平行四边形的判定,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.7.如图,已知▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF的长是()厘米.A.6 B.9 C.12 D.3【考点】平行四边形的性质;三角形中位线定理.【分析】根据平行四边形的性质可知OA=AC,OB=BD,结合AC+BD=24厘米,△OAB的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF的长.【解答】解:∵▱ABCD的对角线AC,BD相交于点O,∴OA=OC,OB=OD,∵AC+BD=24厘米,∴OB+0A=12厘米,∵△OAB的周长是18厘米,∴AB=18﹣12=6厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3厘米,故选:D.【点评】本题主要考查了三角形中位线定理以及平行四边形的性质的知识,解答本题的关键是求出AB的长,此题难度不大.8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质.【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.【点评】本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是()A.B.2 C.1+D.3【考点】旋转的性质;正方形的性质.【分析】连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.【解答】解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.【点评】本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.10.将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E 处,直线MN交BC于点M,交AD于点N,若AB=4,AD=8,则线段AN的长为()A.8 B.12 C.5 D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】由折叠得到AM=CM,设CM=x,则BM=8﹣x,关键勾股定理求出x,再判断四边形AMCN是平行四边形,即可.【解答】解:在矩形纸片ABCD中,AB=4,AD=8,∴∠B=∠D,AD∥BC,BC=8,由折叠得,AM=CM,设CM=x,则BM=8﹣x,在RT△ABM中,AM2=AB2+BM2,即x2=16+(8﹣x)2,∴x=5,∴CM=5,由折叠得,AM∥NC,∵AD∥BC,∴四边形AMCN是平行四边形,∴AN=CM=5,故选C,【点评】此题是折叠问题,考查了矩形的性质、折叠的性质、勾股定理以及平行四边形的性质和判定.用勾股定理求出CM是解本题的关键;此题难度适中,掌握数形结合思想与方程思想的应用.二、填空题(本大题共10个小题,每小题3分,共30分)11.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为8,频率为0.4.【考点】频数与频率.【分析】根据题意,找在64.5﹣66.5之间的数据,计算其个数;再由频率的计算方法,计算可得答案.【解答】解:根据题意,发现数据中在64.5﹣66.5之间的有8个数据,故64.5~66.5这一小组的频数为8,频率为=0.4;故答案为:8,0.4.【点评】本题考查频率的计算、频数的确定方法,通过查找确定该组的频数时,要十分细心.12.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是y=﹣x+15(0<x<15).【考点】根据实际问题列一次函数关系式;平行四边形的性质.【分析】根据平行四边形的周长公式列出等式,整理即可.【解答】解:根据题意2(x+y)=30,整理得y=﹣x+15,∵边长为正数,∴﹣x+15>0,解得x<15,∴y与x的函数关系式是y=﹣x+15(0<x<15).故答案为:y=﹣x+15(0<x<15).【点评】本题主要利用平行四边形的周长公式求解,要注意根据平行四边形的边是正数,求出自变量的取值范围.13.如果函数y=有意义,则x的取值范围是x>2.【考点】二次根式有意义的条件;函数自变量的取值范围.【分析】根据二次根式中的被开方数必须是非负数,以及分母不为0,可得x﹣2>0,据此求出x的取值范围即可.【解答】解:∵函数y=有意义,∴x﹣2>0,则x的取值范围是:x>2.故答案为:x>2.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.若四边形ABCD为平行四边形,请补充条件∠A=90°(一个即可)使四边形ABCD为矩形.【考点】矩形的判定;平行四边形的性质.【分析】添加条件是∠A=90°,根据矩形的判定推出即可.【解答】解:添加条件∠A=90°,理由是:∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形,故答案为:∠A=90°.【点评】本题考查了矩形的判定的应用,此题答案不唯一,是一道开放型的题目.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【考点】正方形的性质;等边三角形的性质.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE 为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图,菱形ABCD对角线AC,BD相交于点O,且AC=8cm,BD=6cm,DH⊥AB,垂足为H,则DH的长为cm.【考点】菱形的性质.【分析】直接利用菱形的性质得出AO,BO的长,再利用勾股定理得出AB的长,进而利用菱形面积求法得出答案.【解答】解:如图所示:∵菱形ABCD对角线AC,BD相交于点O,且AC=8cm,BD=6cm,∴∠AOB=90°,AO=4cm,BO=3cm,故AB==5(cm),则×AC×BD=DH×AB,故×6×8=5DH,解得:DH=.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键.17.如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x (km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费 1.4元.【考点】函数的图象.【分析】由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.【解答】解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.4(元).答:每多行驶1km,要再付费1.4元.【点评】本题考查了函数图象问题,解题的关键是理解函数图象的意义.18.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240度.【考点】多边形内角与外角.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.【考点】一次函数与一元一次不等式.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为2.【考点】轴对称的性质;平行四边形的性质.【分析】先根据轴对称性质和两点间线段最短,确定MD是PM+PB的最小值的情况,再利用特殊角60°的三角函数值求解.【解答】解:连接PD,BD,∵PB=PD,∴PM+PB=PM+PD,连接MD,交AC的点就是P点,根据两点间直线最短,∴这个P点就是要的P点,又∵∠BAD=60°,AB=AD,∴△ABD是等边三角形,∵M为AB的中点,∴MD⊥AB,∵MD=3,∴AD=MD÷sin60°=3÷=2,∴AB=2.【点评】本题考查的是平行四边形的性质及特殊角的三角函数值,属中等难度.三、解答题(本大题共6小题,共50分)21.已知,在四边形ABCD中,AD=BC,P是对角线BD的中点,N是DC的中点,M是AB的中点,∠NPM=120°,求∠MNP的度数.【考点】三角形中位线定理.【分析】首先利用三角形中位线定理可得PM=AD,PN=CB,然后可得PM=PN,然后可计算出∠MNP的度数.【解答】解:∵在四边形ABCD中,M、N、P分别是AB、CD、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AD,PN=CB,∵AD=CB,∴PM=PN,∴△PMN是等腰三角形,∵∠NPM=120°,∴∠MNP==30°.【点评】此题主要考查了三角形的中位线,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.【考点】菱形的判定;矩形的性质.【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【点评】此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.23.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016春•滦县期末)在平面直角坐标系中,已知直线y1=x+2与x轴、y轴分别交于点A和点B,直线y2=kx+b(k≠0)与x轴交于点C(1,0),且与线段AB相交于点P,并把△ABO分成两部分.(1)求△ABO的面积;(2)若△ABO被直线CP分成的两部分面积相等,求点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)根据题意可以求得点A、点B的坐标,从而可以求得△ABO的面积;(2)根据第(1)问的答案和题目中的额信息可以求得点P的坐标.【解答】解:(1)∵y1=x+2,∴当x=0时,y1=2;当y1=0时,x=3;∴点A(3,0),点B(0,2),即OA=3,OB=2,∴,即△ABO的面积是3;(2)∵点A(3,0),点C(1,0),∴AC=3﹣1=2,设点P的坐标为(a,b),∵△ABO被直线CP分成的两部分面积相等,△ABO的面积是3,∴,得b=,将y1=代入y1=x+2,得x=,即点P的坐标为(,).【点评】本题考查两直线相交与平行问题,解题的关键是明确题意,利用数形结合的思想解答问题.25.(10分)(2016春•滦县期末)如图①所示,已知两个边长均为a的全等的正方形ABCD与A1B1C1D1,正方形ABCD的点C与正方形A1B1C1D1的中心重合,且绕点C旋转.(1)当正方形ABCD由图①旋转至图②时,两个阴影部分的面积是否相等?如果相等,直接回答出都等于什么;(2)当正方形ABCD旋转至任意位置时,如图③,重叠部分的面积会变化吗?说明你的结论.【考点】四边形综合题.【分析】(1)分别计算图①、图②阴影部分的面积,得出结论;(2)连接CD1与CC1,通过三角形全等,说明图形旋转其阴影面积不变.【解答】解:(1)如图①所示,由于点C与正方形A1B1C1D1的中心重合,=a2;所以阴影正方形的面积=S正方形A1B1C1D1图①如图②所示,过点C做CE⊥C1D1,垂足为E.由题意易知△D1CC1为等腰直角三角形∴CE=a,C1D1=a,=×C1D1×CE=a2,∴S△CC1D1∴当正方形ABCD由图①旋转至图②时,两个阴影部分的面积相等,都等于.图②(2)阴影面积保持不变.理由如下:如图,连接CD1、CC1,∵正方形ABCD与正方形A1B1C1D1的边长相等,∴CD1=CC1,∠CD1E=∠CC1F=45°,∠ECD=∠D1CC1=90°,∴∠BCD1+∠D1CD=∠D1CD+∠C1CD=90°,∴∠BCD1=∠DCC1.在△ECD1和△FCC1中,∴△ECD1≌△FCC1∵C是正方形ABCD的中心,=S正方形A1B1C1D1=a2.∴S阴影=S△D1CC1图③所以阴影面积保持不变.【点评】点评:本题是与正方形中心相关,通过面积计算进行比较和说明的题目.其阴影部分面积不随图形的旋转而变化,运用的是割补的办法,通过三角形全等来说明.26.(10分)(2016春•滦县期末)甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)【考点】一次函数的应用.【分析】(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得,交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.【解答】解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得,解得:,故y与x的函数关系式为y=60x﹣120;(2)由图可得,交点F表示第二次相遇,F点的横坐标为6,此时y=60×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得,解得,故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=60.可得:点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,则交点P的坐标为(3,60),∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.。

相关文档
最新文档