第四章几何图形初步知识点复习[1]

合集下载

人教版七年级上册数学第四章几何图形初步小结复习(一)

人教版七年级上册数学第四章几何图形初步小结复习(一)
小结复习(一)
一、复习回顾
几何图形
立体图形
从不同方向看立体图形 展开立体图形
直线、射线、线段
平面图形
平面图形
角的度量

角的比较与 运算
角的平分线
余角和补角
一、复习回顾
几何图形
立体图形
从不同方向看立体图形 展开立体图形
直线、射线、线段
平面图形
平面图形
角的度量

角的比较与 运算
角的平分线
余角和补角
一、复习回顾
N
B
所以 MC 1 AC ,NC 1 BC .
2
2
从而可得:
MN MC NC 1 ( AC BC) 1 AB .
2
2
又因为AB=6,
所以 MN=3.
二、典型例题
例4 如图,点C在线段AB上, AB=6,点M、点N分别是线段AC、 BC的中点,求MN的长度. 直线AB
A MC N B
(1)点C在线段AB上
分析: 点M是线段 AC的中点
点N是线段 BC的中点
A MC N B
MC 1 AC 2
NC 1 BC 2
MN MC NC
MN MC NC 1 ( AC BC) 1 AB
2
2
二、典型例题
例4 如图,点C在线段AB上, AB=6,点M、点N分别是线段AC、
BC的中点,求MN的长度.
A M C 解:因为点M、点N分别是线段AC、BC的中点,
直线的基本事实
二、典型例题
例3 (2)如图,从A地到B地有不同的路线可以到达,
其中__③__是最短的,理由是_两__点__之__间__,__线__段__最__短___.

第四章_几何图形初步小结复习

第四章_几何图形初步小结复习

A 图①
B
C
A
C 图②
B
(2)如图②,因AB=3,BC=1, 所以AC=AB-BC=3-1=2(cm).
问题4: 在本章中,我们学习了有关角的那些 知识?有那些重要结论?
例4 已知∠α和∠β互为补角,并且∠β的一半比 ∠α小30º ,求∠α、∠β.
解:设∠α=xº ,则∠β=180º - xº . 根据题意 ∠β=2(∠α-30º ), 得 180- x=2(x -30), 解得 x=80. 所以 ,∠α=80º ,∠β=100º .
义务教育教科书
数学
七年级
上册
第四章 几何图形初步 小结复习
本章我们学习了图形与几何的一些最基 本的知识,首先我们从观察生活中的物体入 手,从中抽象出几何图形、立体图形和平面 图形等概念,它们之间的关系如框图:
立体图形 几 何 图 形 平面图形
知识结构图
从不同方向看立体图形
立体图形 平面图形 展开立体图形
问题3: 在本章中,我们学习了有关直线、射 线、线段的那些知识?关于直线和线段有 那些重要结论? 经过两点有一条直线,并且只有一条直线. 两点的所有连线中,线段最短.
例3 点A,B,C 在同一条直线上, AB=3 cm,BC=1 cm.求AC的长.
解:(1)如图①,因AB=3 ,BC=1, 所以,AC=AB+BC=3+1=4(cm).
平 面 图 形 平面图形
例1 在下列图形中(每个小四边形皆为全等 的正方形),可以是一个正方体表面展开图的是
( C ).
(A)
(B)
(C)
(D)
例2 如图,从正面看A、B、C、D四个立体图 形,分别得到a、b、c、d四个平面图形,把上下两 行相对应立体图形与平面图形用线连接起来.

第四章 几何图形认识初步复习(1)

第四章 几何图形认识初步复习(1)
A E B C F D
• 10.如图,延长线段AB到C,使BC=3AB, 点D是线段BC的中点,如果CD=3㎝,那 么线段AC的长度是多少?
• 11.在数轴上有两个点A和B,A在原点左侧到 原点的距离为6,B在原点右侧到原点的距离为 4,M,N分别是线段AO和BO的中点,写出A 和B表示的数;求线段MN的长度。
2.线段的大小和比较
度量法
(1)线段的长短比较
叠合法 (2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点(middle point)。 例如:点B是线段AC的中点
.
A
.
B
.
C
则有:
AB=BC=
AC
AC=2AB=2BC
(3)线段的三等分点
把一条线段分成三条相等线段的两个点,叫做这条线 段的三等分点。
7部分,11部分,
把一条线段分成两条相等线段的点,叫做 这条线段的中点 如图,AB = 6厘米,点C是线段AB的中点,点D是 线段AB的中点,求线段AD的长.
. A
6厘米
?厘米
. C
.D
1 2 1 2
. B
∵ 点C是线段AB的中点, ∴ AC = BC = AB = 3厘米 ∴ CD = ∵ 点D是线段BC的中点, BC = 1.5厘米
32
11.在平面内有n个点(n≥3),其中没有 任何三个点在一条直线上,如果过任意 两点画一条直线,这n个点可以画多少 条直线? n(n-1)/2 (n2+n+2)/2
12.一条直线将平面分成两部分,两条直 线将平面分成四部分,那么三条直线将 平面最多分成几部分?四条直线将平面 最多分成几部分?n条直线呢?
(1)如果D是AC的中点,那么AD=

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

[基础知识]第四章图形认识初步复习资料

[基础知识]第四章图形认识初步复习资料

第四章图形认识初步复习资料[基础知识]一、多姿多彩的图形∵∴°′″∠1.把的各种图形统称为几何图形。

几何图形包括立体图形和平面图形。

各部分不都在同一平面内的图形是图形;如各部分都在同一平面内的图形是图形。

如▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图)[1].▲知道并会画出常见几何体的表面展开图.2.点、线、面、体组成几何图形,点是构成图形的基本元素。

点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。

[基础练习]画出下列几何体的三视图正面看上面看左面看二、直线、射线、线段1.直线公理:经过两点有一条直线,一条直线。

简述为:.·两条不同的直线有一个时,就称两条直线相交,这个公共点叫它们的。

·射线和线段都是直线的一部分。

2.直线、射线、线段的记法【如下表示】3.线段的中点:把一条线段分成相等的两条线段的点,叫做线段的中点。

·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或 2AM=2MB=AB 用符号语言表示就是: 因为 点M 是线段AB 的中点 所以 AM=MB=21 ( 或 AM=2=AB)类似的,把线段分成相等的三条线段的点,叫线段的三等分点。

把线段分成相等的n 条线段的点,叫线段的n 等分点。

4.线段公理:两点的所有连线中,线段最短。

简述为:之间,最短。

·两点之间的距离的定义:连接两点之间的,叫做这两点的距离。

▲会结合图形比较线段的大小;会画线段的“和”“差”图。

▲会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形。

[基础练习]1.写出图中所有线段的大小关系,“和”及“差”。

2.根据下列语句画图①延长线段AB与直线L交于点C.②连接MP.③反向延长PM.④在PC的方向上截取PD=PM.3.判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()(2)用刻度尺量出直线AB的长度()(3)直线没有端点,且可以用直线上任意两个字母来表示()(4)线段AB中间的点叫做线段AB的中点()(5)取线段AB的中点M,则AB-AM=BM ()(6)连接两点间的直线的长度,叫做这两点间的距离()(7)一条射线上只有一个点,一条线段上有两个点()4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________5.电筒发射出去的光线,给了我们的形象6.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=____7.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________8.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____9.C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,求AC+AB 的长。

七年级数学上册第四章几何图形初步知识点总结全面整理

七年级数学上册第四章几何图形初步知识点总结全面整理

(名师选题)七年级数学上册第四章几何图形初步知识点总结全面整理单选题1、如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁答案:B分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.2、将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=8°,则∠EAF的度数为()A.40.5°B.41°C.41.5°D.42°答案:B分析:由长方形和折叠的性质结合题意可求出∠EAB′+∠FAD′=49°.再根据∠EAF=∠EAB′+∠FAD′−∠B′AD′,即可求出答案.由长方形的性质可知:∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠DAF=90°.∴∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠B′AD′+∠DAF=90°+∠B′AD′,即∠BAE+∠EAB′+∠FAD′+∠DAF=98°.由折叠的性质可知∠BAE=∠EAB′,∠FAD′=∠DAF,∴∠EAB′+∠FAD′=49°.∵∠EAF=∠EAB′+∠FAD′−∠B′AD′,∴∠EAF=49°−8°=41°.故选B.小提示:本题考查长方形的性质,折叠的性质.利用数形结合的思想找到角之间的关系是解题关键.3、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.4、如图,该立体图形的左视图是()A.B.C.D.答案:D分析:根据从左边看得到的图形是左视图,可得答案.解:该立体图形的左视图为D选项.故选:D.小提示:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.6、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表答案:A分析:根据正方体展开图的对面,逐项判断即可.解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.小提示:本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cm.A.4B.3C.2D.1答案:C分析:由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD−AM,于是得到结论.解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD−AM=2cm.故选:C.小提示:此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、如图所示,正方体的展开图为()A. B.C. D.答案:A分析:根据正方体的展开图的性质判断即可;A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.小提示:本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.9、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线答案:B分析:点动线,线动成面,将滚筒看做线,在运动过程中形成面.解:滚筒看成是线,滚动的过程成形成面,故选:B.小提示:本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.10、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋯+M 10N 10=( )A .20−1029B .20+1029C .20−10210D .20+10210答案:A分析:根据MN =20,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋯+M 10N 10的值.解:∵MN =20,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM −12AN =12(AM −AN )=12×20=10,∵M 2、N 2分别为AM 1、AN 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12×10=5,根据规律得到M n N n =202n ,∴M 1N 1+M 2N 2+⋯+M 10N 10=202+2022+⋯+20210=20(12+122+⋯+1210)=20−1029,故选A. 小提示:本题是对线段规律性问题的考查,准确根据题意找出规律是解决本题的关键,相对较难. 填空题11、如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,若∠1=25°40′,则∠2=______.答案:55°40′分析:根据题目的已知可求出∠EAC 的度数,再利用90°减去∠EAC 的度数即可解答.解:∵∠BAC=60°,∠1=25°40',∴∠EAC=∠BAC-∠1=60°-25°40′=59°60′-25°40′=34°20′,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-34°20′=89°60′-34°20′=55°40′,所以答案是:55°40′.小提示:本题考查了角的计算,理解∠1、∠EAC、∠2之间的关系是解决问题的关键.12、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.答案:72°.分析:由∠AOB=∠COD=90°,∠AOC=∠BOD,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,又∠AOD=108°,∴∠AOC=∠BOD=108°-90°=18°,∴∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.13、如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=_____°.答案:45°.分析:根据角平分线的定义得到∠DOC=12∠AOC,∠COE=12∠BOC,根据角的和差即可得到结论.解:∵OD平分∠AOC,∴∠DOC=12∠AOC,∵OE平分∠BOC,∴∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC)=12∠AOB=45°.所以答案是:45°.小提示:本题考查了角平分线的定义以及有关角的计算,解题关键是熟练掌握角平分线的定义.14、已知∠A=20°18',则∠A的余角等于__.答案:69°42′分析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.15、如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.答案:20°分析:由∠AOB+∠BOC=∠BOC+∠COD知∠AOB=∠COD,设∠AOB=2α,则∠AOD=11α,故∠AOB+∠BOC=5α=90°,解得α即可.解:∵∠AOB+∠BOC=∠BOC+∠COD,∴∠AOB=∠COD,设∠AOB=2α,∵∠AOB:∠AOD=2:11,∴∠AOB+∠BOC=9α=90°,解得α=10°,∴∠AOB=20°.故答案为20°.小提示:此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键.解答题16、如图,点B在线段AC上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC的延长线上找一点D,使得CD=AB;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC______BD(填“>”“<”或“=”);(3)在(1)的基础上,若BC=2AB,BD=6,求线段AD的长度.答案:(1)作图见解析(2)6;=(3)AD=8分析:(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,所以答案是:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC=2CD,所以BD=BC+CD=3CD=6,所以CD=2=AB,所以AD=2+6=8.小提示:本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.17、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.18、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.答案:(1)填表见解析,V+F-E=2;(2)20;(3)14分析:(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.小提示:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.。

七年级数学第四章几何图形初步知识点总结(超全)

七年级数学第四章几何图形初步知识点总结(超全)

(每日一练)七年级数学第四章几何图形初步知识点总结(超全)单选题1、下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体答案:C解析:分析:根据平面图形的定义逐一判断即可.详解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.点睛:本题考查了平面图形的定义,一个图形的各部分都在同一个平面内的图形叫做平面图形据此可解.2、如图,下列各组角中,表示同一个角的是()A.∠ABE与∠EBC B.∠BAE与∠DACC.∠AED与∠AEB D.∠ACD与∠ADC答案:B解析:根据角的表示方法,用三个字母表示角,顶点字母写在中间,例如∠AOC表示该角是射线OA和线段OC的夹角,据此分析即可.A. ∠ABE表示射线BA,BE的夹角,∠EBC表示射线BE,BC的夹角,不是同一个角,不符合题意;B. ∠BAE表示射线AB,AE的夹角,∠DAC表示射线AD,AC的夹角,是同一个角,符合题意;C. ∠AED表示射线EA,ED的夹角,∠AEB表示射线EA,EB的夹角,不是同一个角,不符合题意;D. ∠ACD表示射线CA,CD的夹角,∠ADC表示射线DA,DC的夹角,不是同一个角,不符合题意.故选B.小提示:本题考查了角的表示方法,理解三个字母表示角的方法是解题的关键.3、如图所示,∠COD的顶点O在直线AB上,OE平分∠COD,OF平分∠AOD,已知∠COD=90°,∠BOC=α,则∠EOF的度数为()A.90°+αB.90°+α2C.45°+αD.90°﹣α2答案:B解析:先利用∠COD=90°,∠BOC=α,求出∠BOD的度数,再求出∠AOD的度数,利用角平分线,分别求出∠FOD和∠EOD的度数,相加即可.解:∵∠COD=90°,∠BOC=α,∴∠BOD=90°-∠BOC=90°-α,∴∠AOD=180°-∠BOD=90°+α,∵OF平分∠AOD,∴∠DOF=12∠AOD=45°+12α,∵OE平分∠COD,∴∠DOE=12∠COD=45°,∴∠EOF=∠FOD+∠DOE=90°+α2;故选:B.小提示:本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.填空题4、如图所示,从O点出发的五条射线,可以组成________个小于平角的角.答案:10解析:由一条射线OA为边可以得到4个角,然后求4+3+2+1和即可.解:由一条射线OA为边可以得到4个角,5条射线所成小于平角的角个数=4+3+2+1=10个.所以答案是:10小提示:本题考查了如何求角的数量问题,按照顺序求出一射线为边最多的角,然后求从1到最大数所有数的和是解题关键.5、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_______度.答案:60解析:先根据角平分线的定义、平角的定义可得∠COB=60°,再根据对顶角相等即可得.解:设∠AOC=2x,∵OE是∠AOC的平分线,∴∠AOE=∠EOC=1∠AOC=x,2∵OC平分∠EOB,∴∠COB=∠EOC=x,又∵∠AOE+∠EOC+∠COB=180°,∴x+x+x=180°,解得x=60°,即∠COB=60°,由对顶角相等得:∠AOD=∠COB=60°,所以答案是:60.小提示:本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键.解答题6、如图,点C在线段AB上,点M、N分别是线段AC、BC的中点.AB=2cm,求线段MN的长度;(1)若CN=15(2)若AC+BC=a cm,其他条件不变,请猜想线段MN的长度,并说明理由;(3)若点C在线段AB的延长线上,AC=p,BC=q,其它条件不变,则线段MN的长度会有变化吗?若有变化,请直接写出结果,不说明理由.答案:(1)MN=5cm;(2)MN=12a cm,见解析;(3)有变化,MN=12(p﹣q)解析:(1)由中点的性质得MC=12AC、CN=12BC,根据MN=MC+CN=12AC+12BC=12(AC+BC)可得答案;(2)由中点性质得MC=12AC、CN=12BC,根据MN=MC+CN=12(AC+CB)可得答案;(3)根据中点的性质得MC=12AC、CN=12BC,结合图形依据MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)可得答案.解:(1)∵CN=15AB=2cm,∴AB=10(cm),∵点M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∴MN=MC+CN=12AC+12BC=12(AC+BC)=12AB=5(cm);(2)∵M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∵AC+CB=a cm,∴MN=MC+CN=12(AC+CB)=12a(cm);(3)有变化,如图,∵M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∵AC=p,BC=q,∴MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)=12(p﹣q).小提示:本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

沪科版七年级数学上册 4.4 角(第4章 几何图形初步 自学、复习、上课课件)

沪科版七年级数学上册 4.4 角(第4章 几何图形初步 自学、复习、上课课件)

(2) ∠ BAC, ∠ BAD, ∠ CAD. (3) ∠ BAC, ∠ B, ∠ C, ∠ 1, ∠ 2, ∠ 3, ∠ 4.
感悟新知
2-1.如图,解答下列问题: (1) 用不同的方法表示图中以D为顶点的角;
解:用三个大写字母表示图中以D为顶 点的角为∠ADB,用一个大写字母表示 图中以D为顶点的角为∠D,用数字表 示图中以D为顶点的角为∠1.
感悟新知
知1-练
例1 下列说法:①两条射线组成的图形是角;②角的大小
与所画边的长短有关;③角的两边是两条射线;④因 为平角的两边成一条直线,所以一条直线可以看成 一个平角 . 其中,正确说法的个数为( )
A.1
B.2
C.3
D.4
感悟新知
解题秘方:紧扣角的定义中的关键词进行辨析 . 知1-练 解:①是错误的,因为若两条射线无公共端点,则组成 的图形不是角; ②是错误的,因为角的大小与所画边的长短无关; ③是正确的; ④是错误的,因为直线和平角是两个不同的概念,平角 有顶点和两边,它与直线不同 . 故有 1 个说法正确 . 答案:A
知2-练
例2 [母题 教材 P154 练习 T1]如图 4.4-3,写出符合以下 条件的角: (1) 能用一个大写字母表示的角; (2) 以 A 为顶点的角; (3) 小于平角的角 .
感悟新知
解题秘方:先要明确角的表示方法的“适用范
知2-练
围”,再根据图形特点将每个角用合
适的方法表示出来 .
解: (1) ∠ B, ∠ C.
知3-讲
1. 角的度量单位 度、分、秒是常用的角的度量单位 . 把一个周角 360 等分,每一等份是 1 度的角,记作 1 ° ; 把 1 ° 的角 60 等分,每一等份是 1 分的角,记作 1′;把 1 分的角 60等分,每一等份是 1 秒的角,记作 1″ .

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习知识点一:几何图形1、我们把从实物中抽象出的各种图形统称为几何图形。

2、有些几何图形的各部分不都在同一平面内,它们是立体图形。

如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

3、有些几何图形的各部分都在同一平面内,它们是平面图形。

如线段、角、三角形、长方形、圆等。

4、立体图形与平面图形虽然是两类不同的几何图形,但是立体图形中某些部分是平面图形,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形成为相应立体图形的展开图。

知识点二:点、线、面、体1、立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。

2、几何图形都是由点、线、面、体组成,点是构成图形的基本元素。

知识点三:直线、射线、线段1、线段:直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。

射线:将线段向一个方向无限延长就形成了射线。

直线:将线段向两个方向无限延长就形成了直线。

2、点与直线的位置关系:点p在直线a上(或说直线a经过点p);点p不在直线a上(或说直线a不经过点p)。

过一点可画无数条直线,过两点有且仅有一条直线。

简述为:两点确定一条直线。

3、线段的中点:把一线段分成两相等线段的点。

两点的所有连线中,线段最短,简述为:两点之间,线段最短。

两点间的距离:连接两点间的线段的长度。

线段的长短比较:⑴度量法;⑵叠合法判断:①两点间的距离是指两点间的线段。

()②两点间连线的长度叫这两点间的距离。

()知识点四:角角:由两条具有公共端点引出射线组成的图形(也可看做是由一射线绕端点旋转而成)。

角的表示:三个大写字母;一个大写字母(不混淆情况下方可使用);一个数字;一个希腊字母。

角的要素:顶点和边,角的大小与边的长短无关。

角的单位:度,分,秒①1°的60分之一为1分,记作1′,即1°=60′②1′的60分之一为1秒,记作1″,即1′=60″角的大小比较:⑴度量法;⑵叠合法。

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结1 .几何图形相关概念L几何图形:从形形色色的物体外形中得出的图形是几何图形。

它分为立体图形和平面图形。

2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形(如长方体.正方体.圆柱.圆锥.球等)。

3、平面图形:有些几何图形的各部分都在同一平面内,它们是平面图形(如线段.角.三角形.长方形.圆等)。

4、立体图形的展开图:将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、体:几何体简称为体。

6、面:包围着体的是面,面有平的面和曲的面两种。

7、体:面与面相交的地方形成线,线和线相交的地方是点。

8、点线面体关系:点动成面,面动成线,线动成体。

2.直线、射线、线段L直线基本事实:经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线(公理)。

2、直线表示方法:(1)用直线上任意表示两个点的大写字母表示,如直线AB ;(2 )用一个小写字母表示,如直线Io3、直线的特征:①无端点;②向两端无限延伸;③不可度量。

4、直线与点的位置关系:①点在直线上(直线经过点);②点在直线外(直线不经过点).5、直线相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

6、射线定义:直线上一点和它一旁的部分叫做射线,这一点叫做射线的端点。

7、射线的表示方法:(1)用射线的端点和射线上另一点的大写字母表示,如射线OA ;(2 )用一个小写字母表示,如射线I.8、射线的特性:①一个断定;②向一方无限延伸;③不可度量.9、线段概念:直线上两点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段的表示方法:IOs(1)用线段两个端点的大写字母表示,如线段AB ;(2 )用一个小写字母表示,如线段I.Ils线段的特征:①两个端点;②无方向;③可度量.12、线段的中点:点M把线段AB分成相等的两条线段AM和MB ,点M叫做线段AB的中点。

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。

点是构成图形的基本元素。

4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。

2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。

(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。

人教版初一数学上册第四章 几何图形初步知识点复习

人教版初一数学上册第四章 几何图形初步知识点复习

第四章几何图形初步知识点复习4.1空间图形知识点1.常见的立体图形1.现实生活中蕴含着大量的图形,为了方便研究问题,我们把具有共同特征的物体抽象为各种几何体,即各种立体图形、平面图形都是从实际生活中抽象出来的,如书本给我们以长方体的形象,笔筒给我们以圆柱的形象,等等。

2.常见的立体图形有如下分类:立体图形球柱体圆柱棱柱(三棱柱,四棱柱,)锥体圆锥棱锥(三棱锥,四棱锥,)3.还可以按围成立体图形的面是平的面或曲的面分类:立体图形多面体由平的面围成的立体图形曲面体围成立体图形的面中有曲的面4.几何图形的元素及其关系图形是由点、线、面构成的,几何体简称体;包围着体的是面;面和面相交形成线;线和线相交形成点。

点动成线,线动成面,面动成体。

常见的旋转体如下表:知识点2.立体图形的平面展开图把一个立体图形展开后得到的平面图形就是它的平面展开图。

常见几何体的平面展开图:知识点3.正方体的平面展开图正方体的平面展开图由个小正方形组成,为得到它的展开图,在其表面要减次。

正方体的平面展开图的个代表图形为:以上四种类型可编成如下口诀来辅助记忆:中间四个面,上下各一面;中间三个面,一二隔河现;中间两个面,楼梯天天见;中间没有面,三三连一线。

上面图形通过适当的变换还能得到多种展开图,如移动型中,两个面,还能得到另外的种,移动型中的面和、面(、面作为一个整体),还能得到另外的种,即正方体共有种展开图。

知识点4.从三个方向看的常见几何体的形状课堂练习1.三棱锥的立体图形是()2.写出图中几何图形的名称。

3.如图所示的圆柱体的表面展开后,得到的平面图形是()4.下面四个图形中,是三棱柱的平面展开图的是()5.下列选项中不是正方体的展开图的是()6.如图是一个正方体的展开图,那么原正方体中与平面平行的平面是。

(用图中字母表示)7.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们从三个不同方向看到的形状图,则货架上的红烧牛肉方便面至少有()桶桶桶桶8.如图,小明一家四口坐在桌子周围,桌上正中央有一把水壶,请选择他们分别看到的水壶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:
第四章 几何图形初步
1. 几何图形
平面图形:各部分都在同一平面内。

立体图形:各部分不在同一平面内。

常见的立体图形分类:
圆柱
柱体:
棱柱 圆锥 锥体
棱锥 球体
2. 立体图形的三视图及简单正方体组合图形的三视图
3.正方体积简单集合体的平面展开图
一四一型 二三一型
二二二型 三三型 判断时巧排“7”、“凹”、“田”。

5.点、线、面、体动态:点动成____,线动成____,面动成____。

静态:体由____构成,面与面相交成____,线与线相交成____。

习题
1.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是( )
2.如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是 ( ) A. 冷 B. 静 C. 应 D. 考
3.下面的平面图形中,是正方体的平面展开图的是( ) 4.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体。

它会变成右边( )
D.
C.B.A.
5.如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A 、B 、C 、中的三个数依次是( ) A 、1、-3、0 B 、0、-3、1 C 、-3、0、1 D 、-3、1、0 6、(2011•黑河)下图是一个由多个相同小正方体堆积而成的几何体的俯
视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是(
A 、
B 、
C 、
D 、
7. 5个棱长为1的正方体组成如图的几何体。

(1)画出这个几何图形的三视图。


2)求这个几何体的表面积。

8. 根据展开图画出物体的三视图,并求物体的体积和表面积.
A B C D 正面
4.2 直线、射线、线段
直线:(1)直线是向__________无限延伸的,直线没有端点。

(2)经过两点有且只有一条__________。

2. 射线:直线上一点和它一旁的部分叫做__________
,这个点叫做射线的端点,射线只有一个端点。

3. 线段:(1)直线上两点之间的部分叫做__________,__________有两个端点.
(2)两点之间,__________最短。

(3)把一条线段分成两条相等线段的点,叫做线段的__________
4. 若点M 是线段AB 的中点则AM=MB=21
_____ ( 或AB= ___AM=2______)
5.两点间的距离:连结两点的__________。

习题
1. 判断下列说法是否正确
(1)直线AB 与直线BA 不是同一条直线( ) (2)用刻度尺量出直线AB 的长度 ( )
(3)直线没有端点,且可以用直线上任意两个字母来表示( ) (4)如果AB=BC 则点B 是AC 的中点 ( )
(5)连接两点间的直线的长度,叫做这两点间的距离 ( ) (7)一条射线上只有一个点,一条线段上有两个点 ( ) 2.电筒发射出去的光线,给了我们 ________的形象
3.要在墙上钉牢一根木条,至少要钉________ 颗钉子,根据是____________________________.
4.点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为3,则点B 在数轴上对应的数为 _____ .
5.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=_ ___
6.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____ 7.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________ 8.如图,延长线段AB 到C,使BC=3AB ,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 的长度是多少?
.
. . . A
B C D A B C D
9.已知线段AB=14cm,C是AB上一点,且AC=9cm,O为AB中点,求线段OC的长度。

10.如图,已知C点为线段AB的中点,O点为BC的中点,AB=l0cm,求AD的长度.
11、如图4,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点。

(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=cm,其它条件不变,你能猜想MN 的长度吗?并说明理由。

12、如图4,线段,线段,点是的中点,在上取一点
,使,求的长。

4.3 角
1、角:有公共端点的两条__________组成的图形叫做角。

这个公共端点叫做角的顶点,这两条__________叫做角的边。

2、角的表示方法: (1)用__________表示;(2)用__________表示;
(3)用__________表示; (4)用__________表示。

3、角平分线:从一个角的顶点出发,把这个角分成两个__________的角的射线,叫做角平分线。

4 射线OB 是∠AOC 的平分线,则有
∠AOB=______=21
______ 或 ______=2∠AOB=2∠COB
5.平角、周角:射线绕端点旋转,当终止位置和起始位置成__________时,所成的角叫做平角;继续旋转回到__________位置时,所成的角叫做周角。

6、角的度量:1周角=__平角=___直角=360°, 1°=___’ , 1’=___” 7.小于平角的角的分类:__________角、__________角、__________角。

8.互为余角、补角:如果两个角的和是__________,这两个角叫做互为余角;如果两个角的和是__________,这两个角叫做互为补角。

9.相关角的性质:(1)对顶角__________;
(2)同角或等角的余角__________; (3)同角或等角的补角__________。

10.方位角:
方位角是表示方向的角,是确定物体位置的重要因素之一,具体表示时,南(北)在先,在说偏东(西),最后加上角度。

习题
15.已知α∠与β∠互余,且40α= ∠,则β∠为 .
16.已知α∠与β∠互余,且40α= ∠,则β∠的补角为_______度. 18.一个锐角的补角比它的余角的3倍少10°,则这个角等于 度. 20.一个角的余角比它的补角的
1
3
还少20°,则这个角的大小是____________.
21互余的两个角的度数之比为3∶7,则这两个角的度数___________.
22.已知∠α=72°36′,则∠α的余角的补角是 度。

23.从下午13:15到当天下午13:55,时钟的分针转过的角度为________度.
24.小明每天下午5:30回家,这时分针与时针所成的角的度数为___________。

9.学校、电影院、公园在平面图上的标点分别为A,B,C,电影院在学校的正东方向上,公园在学校的南偏西25°的方向上,那么平面图上的∠CAB= _______度.
10.如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC,OE 平分∠AOC. (1)指出图中∠AOD 与∠BOE 的补角;(2)求∠DOE 的度数.
(3)说明∠COD 与∠COE 具有怎样的数量关系.
12.如图,点A 、O 、E 在同一直线上,∠AO B=40°,∠COD=28°,OD 平分∠COE 。

(1)求∠CO B 的度数(2)求∠AOD 的度数
15.如图,OD 平分∠BOC ,OE 平分∠AOC .若∠BOC =70°,∠AOC =50°. (1)求出∠AOB 及其补角的度数; (2)请求出∠DOC 和∠AOE 的度数,并判断 ∠DOE 与∠AOB 是否互补,并说明理由.
18.如图,已知2BOC AOC =∠∠,OD 平分AOB ∠,且20COD = ∠,求AOB ∠的
度数.
O
A C D E
E
D C B A
O
E A
B
C
D
O
C
D B。

相关文档
最新文档