安徽省宜城市2017年中考适应性考试数学试题(含答案)

合集下载

安徽省中考数学试卷 含答案

安徽省中考数学试卷 含答案

2017年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,共40分)1.12的相反数是【 】 A .12; B .12-; C .2; D .-22.计算()23a-的结果是【 】A .6a ; B .6a -; C .5a -; D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【 】4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为【 】A .101610⨯; B .101.610⨯; C .111.610⨯; D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为【 】6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒;B .50︒;C .40︒;D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是【 】A .280;B .240;C .300;D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足【 】 A .()161225x +=; B .()251216x -=; C .()216125x +=; D .()225116x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是【 】10.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PABABCD S S =矩形,则点P 到A ,B 两点距离之和PA +PB 的最小值为【 】A .29;B .34;C .52;D .41二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为___________.14、在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。

2017年数学中考模拟试题(含答案)

2017年数学中考模拟试题(含答案)

AB2017年安徽省中考数学模拟试题一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.) 1.下列运算正确的是( ).A .a b a b 11+-=+-B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=- 2.某地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数字并且用科学计数法表示应记为( )千瓦.A.51016⨯ B.6106.1⨯ C.610160⨯ D.71016.0⨯ 3.如图在数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( ).A .0>b a + B .0>ab C .0>b a - D .0>b a -4.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ). A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠55.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是( ).6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的BC横坐标逐渐增大时,OAB △的面积将会( ). A .逐渐增大 B .不变C .逐渐减小D .先增大后减小7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD ( ).A .4个B .3个C .2个D .1个 8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( ). A .18%)201(400160=++x x B .18%)201(160400160=+-+x x C .18%20160400160=-+x x D .18%)201(160400400=+-+xx 9.2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( ). A .中位数是6 B .平均数是5.8 C .众数是6 D .极差是410.如图,在△ABC 中,AB =AC =10,CB =16, 分别以AB 、AC 为直径作半圆,则图中阴影部 分面积是( ).A .4850-πB .4825-πC .2450-πD .24225-πCEBAFD 第11题图11.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积 的最大值为8.其中正确的结论是( ). A .①②③ B .①④⑤ C .①③④D .③④⑤12.已知二次函数2y ax bx c =++(a ≠0)的图象如图所 示,则下列结论:① ac >0; ② a –b +c <0; ③当 x <0时,y <0;④方程20ax bx c ++=(a ≠0)有两个大于-1的实数根.其中错误的结论有( ).A .②③B .②④C .①③D .①④二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:x 2-2xy +y 2-9= . 14.若关于x 的分式方程311x a x x--=-无解,则a = . 15.如图,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .16.若关于x 、y 的二元一次方程组⎩⎨⎧=++=+3313y x ay x的解满足2<y x +,则a 的取值范围是 .17.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,• •第12题x4 21y y >;③当1x =时,3BC =;④当x逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号 是 .三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18.(本题满分8分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由.19.(本题满分9分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)20.(本题满分9分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.21.(本题满分10分)如图,已知在梯形ABCD 中,AD ∥BC ,AB =CD ,E 、F 分别是AB 和BC 的边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC .若AD =4,BC =8,求梯形ABCD 的面积ABCD S 梯形的值.(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果EF k FG ∙=(k为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.22.(本题满分10分)某县响应“建设环保节约型社会”的号召,决定资助部分乡镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B 型沼气池共政府相关部门批给该村沼气池修建用地708m .设修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元. (1)求y 与x 之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.AB E DF C ① AB E DG C ②F23.(本题满分11分)如图,已知在Rt ABC △中,90C ∠= ,点O 在AB 上,以O为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 圆的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.24.(本题满分12分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.xA2017年安徽省中考数学模拟试题参考答案一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.)13.)3)(3(+---y x y x 14.21-==a a 或15.(8,3) 16. a <4 17.①③④ 三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18. 解答:解:(1)∵没有标数字扇形的面积为整个圆盘面积的41,∴指针指向没有标数字扇形的概率为p=41.(3分)(2)填入的数字为9时,两数和分别为奇数与为偶数的概率相等.理由如下:设填入的数字为x ,则有下表: 和 x 2 5 6x 2x (偶) 2+x 5+x 6+x 2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 6 6+x 偶 奇 偶从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足2+x ,5+x ,6+x 三个数中有2个是奇数,一个是偶数.将所给的数字代入验算知,x=9满足条件.∴填入的数字为9.(8分) (注:本题答案不惟一,填入数字7也满足条件;只填数字不说理由的不给分.) 19.(1)如图,作AD ⊥BC 于点D …………………1分Rt △ABD 中,AD =AB sin 45°=22224=⨯……2分 在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5…………………3分 即新传送带AC 的长度约为6.5米.……4分 (2)结论:货物MNQP 应挪走.……………5分 解:在Rt △ABD 中,BD =ABcos 45=22224=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走. ……………………………9分 20.解⑴①10+7x ②12+6x ……………………………….2分 ⑵y =(12+6x )-(10+7x )y =2-x ………………………………………………….5分 ⑶∵w =2(1+x )(2-x )=-2x 2+2x +4 ∴w =-2(x -0.5)2+4.5 ∵-2<0,0<x ≤11, ∴w 有最大值,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.…..9分21. 解:(1)如图,连接AC 交BD 于点O ,作DP ∥AC 交BC 的延长线于点P.∵AD ∥BP ,AC ∥DP∴四边形ACPD 是平行四边形∴AC=DP ,∠BOC=∠BDP=90°,AD=CP=4 ∵AB=DC ∴AC=BD ∴BD=DP∴DF=21BP=21(BC+CP)=6 ∴DF BP S BPD ∙=21三角形=36………………5分(2)KCG BE 1=……………………………..6分 过点E 作EQ ∥DG ,交BC 于点Q , ∴△EQF ∽△GCF∴KFG EF CG EQ 1==…….8分 ∵AB=CD, ∴∠B=∠DCB ∵EQ ∥DG ∴∠EQB=∠DCB ∴∠EQB=∠B ∴EQ=BE ∴KCG BE 1=……………………10分 22. 解:(1)40)20(23+=-+=x x x y ………………………3分(2)由题意可得⎩⎨⎧≤-+≥-+②②②①①708)20(648264)20(320x x x x 解得:12≤x ≤14 ∵x 是正整数∴x 的取值为12、13、14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个;……………………………………………………………7分(3)∵y=x+40,y 随x 的增加而增加,要使费用最少,则x=12 ∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案………………………10分23.解 ⑴ 直线BD 与O 相切.1分证明:如图1,连结OD . OA OD = , A ADO ∴∠=∠.90C ∠= , 90CBD CDB ∴∠+∠= . 又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切.…………………….5分 ⑵ 如图,连结DE .AA BED FC①A B EDGC ②F P QOx (第24题)AE 是O 的直径, 90ADE ∴∠= .:8:5AD AO = , 4cos 5AD A AE ∴==.………………………7分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.……………………..9分 2BC = , 52BD ∴=.………………11分 24.(1)解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =∴抛物线为2211(4)12344y x x x =--=-+. …3 (2) 答:l 与⊙C 相交. …………………………4分 证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BC OB AB =.∴2CE =.∴2CE =>.…………………………7 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. (8)(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+ (10)设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+). ∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+, ∴当3m =时,PAC ∆的面积最大为274. 此时,P 点的坐标为(3,34-). (12)。

2017安徽中考数学试卷(含答案)

2017安徽中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A .12- B .12- C .2D .-22.计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A .B . C. D .6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A .29B .34 C.52 D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈,2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数 中位数 方差 甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD 二、11、312、()22b a -13、p 14、40或8033三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+, 解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元. 四、17、解:在Rt BDF △中,由sin DFBDb =得, 2sin 600sin 4560030024232DF BD b=???°≈(m).在Rt ABC △中,由cos BCABa =可得, cos 600cos756000.26156BC AB a =???°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++ 134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠, ∵CE AD ∥,∴180E DAE +=∠∠°.∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1) 平均数 中位数 方差 甲 2 乙 丙6(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=ïí+=ïî,解得2200k b ì=-ïí=ïî,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x <?时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°, 又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠,∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠, 又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△, ∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =.由①知,BE CF =,∴BE CG =,∴2BE BC CE =?.(2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△, 故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==, 又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -=,2512x --=(舍去),∴512BE BC -=,于是51tan 2FC BE CBF BC BC -===∠,(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?, 解得1512x -=,2512x --=(舍去),即512BE -=,作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==,设MN y =,则2GN y =,5GM y =,∵GN ANBE AB =,即1221512y y +=-,解得125y =,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上, ∴AGB △是直角三角形,且90AGB =∠°, 由(1)知BE CF =,于是51tan 2FC BE CBF BC BC -===∠.。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1。

6×1011D.0。

16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为( )A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为( )A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0。

(完整word版)2017安徽中考数学试卷(含答案).docx

(完整word版)2017安徽中考数学试卷(含答案).docx

2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学一、选择题(本大题共 小题,每小题 分,共 分).12的相反数是【 】✌.12; .12-; . ;.-.计算()23a-的结果是【 】✌.6a; .6a-; .5a-;.5a.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【 】.截止 年底,国家开发银行对❽一带一路❾沿线国家累计发放贷款超过 亿美元,其中 亿用科学计数法表示为【 】✌.101610⨯; .101.610⨯; .111.610⨯;.120.1610⨯;.不等式420x->的解集在数轴上表示为【 】.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】✌.60︒; .50︒; .40︒;.30︒.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有 名学生,据此估计,该校五一期间参加社团活动时间在 ❞小时之间的学生数大约是【 】✌. ; . ; . ;. 一种药品原价每盒 元,经过两次降价后每盒 元,设两次降价的百分率都为x,则x满足【 】✌.()161225x+=; .()251216x-=; .()216125x+=; .()225116x-=.已知抛物线2y ax bx c=++与反比例函数byx=的图像在第一象限有一个公共点,其横坐标为 ,则一次函数y bx ac=+的图像可能是【 】.如图,在矩形✌中,✌= ,✌= ,动点 满足13PAB ABCDS S=矩形则点 到✌, 两点距离之和✌+ 的最小值为【 】✌.29; .34; .52;.41二、填空题(本大题共 小题,每小题 分,满分 分). 的立方根是♉♉♉♉♉♉♉♉♉♉♉♉♉.因式分解:244a b ab b-+=♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉.如图,已知等边 ✌的边长为 ,以✌为直径的 与边✌, 分别交于 ,☜两点,则劣弧DE的长为♉♉♉♉♉♉♉♉♉♉♉、在三角形纸片✌中,90A∠=︒,30C∠=︒,✌= ♍❍,将该纸片沿过点 的直线折叠,使点✌落在斜边 上的一点☜处,折痕记为 (如图 ),剪去 ☜后得到双层 ☜(如图 ),再沿着过 ☜某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为♉♉♉♉♉♉♉♉♉♉♉♍❍。

2017年宜城市中考适应性考试题

2017年宜城市中考适应性考试题

2017年宜城市中考适应性考试题初中语文(时间:120分钟总分:120分)一、积累与运用(20分)。

1、下面句子中有两个错别字,请改正后用正楷字将整个句子抄写在米字格中。

(2分)诸葛宁净观天下,浩然淡薄歌田园。

2、给下面一句话中加点字注音。

(2分)没有华美的舞台,没有绚.()丽的灯光,只是一尺方桌、一位读者、几封书信,却如涓涓山泉,沁.()人心脾,在荧屏内外,收获掌声无数。

《见字如面》节目“用书信打开历史”,让我们在书信中涵养文脉。

3.下列句子中加点词语运用不恰当的一项是()。

(2分)A.少数国家对我国南海主权指手画脚,甚至横加干涉,令人义愤填膺....。

B.无论大学还是中小学,多媒体、慕课等高科技手段的运用已经司空见惯....。

C.晓宇一年里竟然读完了四大古典名著,我对他的佩服是诚惶诚恐....,五体投地。

D.非洲大陆处处可见的中式风格的老建筑,正无言诉说着中非患难与共....的真情。

4.下列句子有语病的一项是()。

(2分)A.“一带一路”是推动建立以合作共赢为核心的新型国际关系的一个“大思路”。

B.南水北调不是简单的调水线,而是践行“节水优先”、诠释“生态文明”的发展线。

C.近日,从全国爱国卫生工作会议上传来喜讯,襄阳市荣获“国家卫生城市”荣誉称号。

D.针对学生特质各不相同的特点,学校走因材施教、让所有学生都学有所长的特色发展。

5.将下面一句话放回原文段,语序衔接、语意连贯的一项是()。

(2分)尤其在当下,人们面对的是物质潮流的冲击、浮躁风气的侵袭和功利心态的膨胀。

原文段:①相信生活,相信理想,相信一切美好的事物,做一个真实而坦荡的人。

②近期热播的电视剧《平凡的世界》道出了人心深处的呼唤。

③当此之时,这些平凡的价值力量,难道不是极好的清醒剂和营养剂?④只要理想之火不灭、赤子之心不变、奋斗之志不移,人就可以超越平凡,走向不凡。

⑤就此而言,最好的世界,其实就是平凡的世界。

A.①②句之间B.②③句之间C.③④句之间D.④⑤句之间6、阅读下面名著情节,填空。

宜城市2017年中考适应性考试数学试题及答案

宜城市2017年中考适应性考试数学试题及答案

宜城市2017年中考适应性考试试题数学姓名报名号考试号注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接在答题卡上每题对应的答题区域内,答在试题卷上无效.作图用2B铅笔或0.5毫米黑色签字笔.4.考试结束后,请将本试题卷和答题卡一并上交.选择题(12小题,共36分)一、选择题:(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.)1、计算2-|-3|结果正确的是【】A. 5B. 1C. -1D. -52、已知:如图,∠A0B的两边 0A、0B均为平面反光镜,∠A0B=35°,一束平行于OB的光线RQ经0A上的Q点反射后,反射光线与0B交于点P,则∠QPB的度数是:A.60°B.70°C.80 °D.85°3、下列运算正确的是【】A.235a a a+=B.a8÷a4=a2 C.2a+3b=5ab D.235a a a⋅=4、如右图所示,是一个由白纸板拼成的立体图形,但有两面刷上黑色,将该立体图形展开后是【】CBA5、湖北省2012年GDP总量为22250.16亿元,预计到2017年比上一年增长10%,则湖北省2017年GDP总量用科学计数法保留三个有效数字约为【】A.2.23⨯1210元B.2.231110⨯元C.121045.2⨯元D.111045.2⨯元(第4题)OABPQR6、不等式组{2139x x -≥->的解集在数轴上可表示为【 】7、如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE ∥CA ,DF ∥BA.下列四个判断中,不正确的是( )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形 C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形8、为创建园林城市,宜城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是【 】A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=9、七张完全相同的卡片上分别画有等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形既是轴对称图形又是中心对称图形的概率为【 】 A.73 B.74 C.75 D.76 10、关于x 的方程011)1(2=+++-x a x a 是一元二次方程,则a 的取值范围是【 】A .a ≠1B .a >-1 且a ≠1C .a ≥-1且a ≠1D .a 为任意实数 11、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0;⑤3a +c <0.其中所有正确结论的个数是 A .1B .2C .3D .412、已知点P 是⊙O 内的一点,⊙O 的半径是5cm ,OP=3cm,弦AB 经过点P ,且AB 的长为偶数,则AB 的长为( )A.38cmB.10cmC.8cm 或10cmD.6cm 或8cmABCDE F非选择题(14小题,共84分)二、填空题(本大题共5道小题,每小题3分,共15分.把答案填在题中的横线上.) 13、三角形的三边长分别为cm cm cm 45,40,20,则这个三角形的周长为 ▲ cm . 14、一个小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:11052++-=t t h ,则小球距地面的最大高度是 ▲ 米.15、为了创建文化校园,某初中l1个班级举行班级文化建设比赛,学校设置了5个获奖名额,得分均不相同.若知道某班的得分,要判断该班能否获奖,只需知道这11个班级得分的 ▲ .16、、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ▲ .第16题图 第17题图17、如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD =,B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为直角三角形,则CF 的长等于 . 三、解答题18、(本题满分5分)先化简再求值)11(2)2(yx y x xy y x y y x x +÷+∙+++, 其中23,23-=+=y x19、(本题满分7分)“八月十五”是我国的传统佳节,民间历来有吃“月饼”的习俗.我市某食品加工厂为了解市民对去年销量较好的梅干月饼、豆沙月饼、冰糖月饼、蛋黄月饼(以下分别用A、B、C、D表示)这四种不同口味月饼的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D月饼的人数;(4)若有外型完全相同的A、B、C、D月饼各一个,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C月饼的概率.20、(本题满分6分)襄阳市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6 m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长(结果保留根号).21、(本题满分6分)宜城市某楼盘准备以每平方米4000元的均价对外销售,由于国务院“新国五条”出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售。

中考模拟试题数学

中考模拟试题数学
2017年初中毕业生适应性考试
数学参考答案
注意事项:
1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.
2.答题前,考生先将自己的学校、姓名、考号填写在答题卡指定的位置,并认真核对、水平粘贴好条形码.
3.考生必须保持答题卡的整洁和平整(不得折叠),考试结束后,请将本试卷和答题卡一并上交.
13.在矩形ABCD中,AD=5,AB=4,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为★★★★.
14.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点, = = ,则CM+DM的最小值为★★★★.
15.若一次函数y=﹣2x+b的图象与直线y=2x﹣1的交点在第四象限,则b的取值范围是★★★★.
A.20B.22C.24D.26
二、填空题:(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分.)
11.某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为★★★★.
12.某小区2015年屋顶绿化面积为2000平方米,计划2017年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是★★★★.
= +1+4- ………5分
=5………6分
18.(本题满分6分)化简: ,再选取一个适当的a的值代入求值.
解:原式= ÷ -1………1分
× -1………2分
- ………3分
………4分
当a=……..时(a取除-2;0;1以外的任何数)………5分
原式 =
=………6分
19.(本题满分6分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的.其中测得坡长AB=600米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(结果保留根号)

宜城市中考适应性考试数学试题含答案

宜城市中考适应性考试数学试题含答案

宜城市2017年中考适应性考试试题数学姓名 报名号 考试号选择题(10小题,共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.) 1. -2的倒数的绝对值为( ) A .21B .21- C .-2 D .22.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=35°,则∠C 的度数为( )A .55°B .45°C .35°D .25° 3.下列运算结果为6m 的是( )A .32m m +B .32m m ∙C .32)(m - D .39m m ÷4.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( ) A .312×104B .3.12×106C .0.312×107D .3.12×1075.如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A .39πB .29πC .24πD .19π6.有11名同学参加传统文化比赛,他们的预赛成绩各不相同,现取其中前5名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这11名同学成绩的( ) A .方差B .平均数C .众数D .中位数7.某单位组织34人分别到张自忠将军纪念园和烈士陵园进行革命传统教育,到张自忠将军纪念园的人数是到烈士陵园的人数的2倍多1人,求到两地的人数各是多少?设到张自忠将军纪念园的人数为x 人,到烈士陵园的人数为y 人.下面所列的方程组正确的是( ) A .⎩⎨⎧=+=+y x y x 2134 B .⎩⎨⎧+==+1234y x y x C .⎩⎨⎧+==+1234y x y x D .⎩⎨⎧+==+12342y x y x8.请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,要说明∠D ′O ′C ′=∠DOC ,需要证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是( ) A.边边边 B.边角边 C.角边角 D.角角边9.如图,已知AB 是⊙O 的直径,∠CAB =50°,则∠D 的度数为( ) A .20° B .40° C .50°D .70°10.在同一坐标系中一次函数b ax y -=和二次函数2y ax bx =+的图象可能为( )非选择题(15小题,共84分)二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上.) 11.方程1312=++x x 的根是x= . 12. 若函数mx m y )1(+=是正比例函数,则该函数的图象经过第 象限.13.小明用S 2=101[(x 1﹣5)2+(x 2﹣5)2+…+(x 10﹣5)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .14. 已知实数x ,y 满足085=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .15.如图,将△ABC 沿BC 方向平移3cm 得到△DEF ,若四边形ABFD 的周长为22cm ,则△ABC 的周长为 cm .16. 如图,△ABC 中,∠C=90°,AC=6,AB=10,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为 .A BBA三、解答题(9小题,共72分) 17.(本题满分6分)先化简,再求值:x x x x x x x x 4)44122(22+÷+----+,其中x 满足方程0201342=--x x .18.(本题满分6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为700万平方米,2016年达到了1183万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题: (1)求这两年该市推行绿色建筑面积的年平均增长率;(2)2017年该市计划推行绿色建筑面积达到1500万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标?19.(本题满分6分)某条道路上通行车辆限速为60千米/时,在离道路50米的点P 处建一个监测点,道路AB 段为检测区(如图).在△ABP 中,已知∠PAB=30°,∠PBA=45°,一辆轿车通过AB 段的时间8.1秒,请判断该车是否超速?(参考数据:≈1.41,≈1.73,60千米/时=米/秒)第16题图20.(本题满分6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:21.(本题满分7分)已知,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,OA=OB ,函数xy 9-=的图象与线段AB 交于M 点,且AM=BM . (1)求点M 的坐标;(2)求直线AB 的解析式.22. (本题满分7分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D . (1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)23. (本题满分10分)某厂家生产的一种新型节能灯,为了打开市场出台了相关政策:由厂家协调,厂家按成本价提供产品给经营户自主销售,成本价与出厂价之间的差价由厂家承担.李明按照相关政策投资销售本产品.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =﹣10x +500. (1)李明在开始销售的第一个月将销售单价定为20元,那么厂家这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么厂家为他承担的总差价最少为多少元?24. (本题满分11分)如图,在正方形ABCD 中,点E 是AD 上的点,点F 是BC 的延长线上一点,CF=DE ,连结BE 和EF ,EF 与CD 交于点G ,且∠FBE=∠FEB . (1)过点F 作FH ⊥BE 于点H ,证明:BFBEBH AE ; (2)猜想:BE 、AE 、EF 之间的数量关系,并证明你的结论; (3)若DG=2,求AE 值.第22题图25. (本题满分13分)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1)(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.宜城市2017年中考适应性考试试题数学参考答案一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.) 1. A 2. C 3. D 4. B5. C 6. D 7. B 8. A 9. B 10. C二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上. 11. 2;12.一、三;13. 50;14. 18或21;15. 16;16. 712 三、解答题(9小题,共72分) 17.(本题满分6分)解:原式=[﹣]• …………1分=•…………2分=• …………3分=4412+-x x , …………4分当0201342=--x x 时,201342=-x x ,原式=20171.…………6分 18.(本题满分6分)解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,…………1分1183)1(7002=+x …………2分解得,x 1=0.3,x 2=﹣2.3(舍去), …………3分 即这两年该市推行绿色建筑面积的年平均增长率为30%; …………4分 (2)由题意可得,1183(1+30%)=1537.9, …………5分 ∵1537.9>1500,∴2017年该市能完成计划目标. …………6分19.(本题满分6分)解:过点P 作PC ⊥AB 于点C .…………1分在Rt △APC 中,tan ∠PAC=,∴AC==50≈86.5(米),…………2分同理,BC==PC=50(米),…………3分∴AB=AC+BC≈136.5(米),…………4分60千米/时=米/秒,则136.5÷≈8.2>8.1.…………5分故这辆车通过AB段超速.…………6分20.(本题满分6分)解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,即a的值是12;……………………………………………………………………… 1分②补充完整的频数分布直方图如下图所示,…………………………………………2分(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:;……………………………… 3分(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB)、(AC)、(AD)、(BA)、(BC)、(BD),………………… 5分(如果是用树状图或列表法表示这六种等可能结果,一样累计得5分)所以小明和小强分在一起的概率为:.………… 6分(如果没有用任何方法表示所有的6种等可能结果,但最终结果为正确,要扣一分)21.(本题满分7分)解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,…………1分∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,…………2分∴MC=MD,则点M的坐标可以表示为(﹣a,a),…………3分把M (﹣a ,a )代入函数xy 9-=中, 解得a=3,则点M 的坐标为(﹣3,3);…………4分(2)∵点M 的坐标为(﹣3,3),∴MC=3,MD=3,∴OA=OB=2MC=6,∴A (﹣6,0),B (0,6),…………5分 设直线AB 的解析式为y=kx+b ,把点A (﹣6,0)和B (0,6)分别代入y=kx+b 中得⎩⎨⎧==+-66b b k ,…………6分解得:⎩⎨⎧==61b k ,则直线AB 的解析式为y=x+6.…………7分 22. (本题满分7分)(1)证明:如图,连接OD ∵OD OB =,∴21∠=∠, ∴∠12∠=DOC ,…………1分∵12∠=∠A ,∴DOC A ∠=∠,…………2分∠ABC =90°,90=∠+∠∴C A∴ 90=∠+∠C ODC90=∠∴ODC …………3分 ∵OD 为半径,∴AC 是⊙O 的切线;…………4分 (2)解:60=∠=∠DOC A ,2=OD ∴在ODC Rt ∆中,ODDC=60tan 323260tan =⨯==OD DC …………5分 ∴323222121=⨯⨯=⋅=∆DC OD S ODC Rt …………6分 ∴32-3232-3602602ππ=⨯=阴影S …………7分23. (本题满分10分)解:(1)当x =20时,y =﹣10x +500=﹣10×20+500=300, 300×(12﹣10)=300×2=600,即厂家这个月为他承担的总差价为600元.…………2分(2)依题意得,w =(x ﹣10)(﹣10x +500)=5000600102-+-x x =4000)30(102+--x …………4分∵a =﹣10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.…………5分 (3)由题意得:30005000600102=-+-x x , 解得:x 1=20,x 2=40.…………6分 ∵a =﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.…………7分 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.…………8分 设厂家每个月为他承担的总差价为p 元,∴p =(12﹣10)×(﹣10x +500)=﹣20x +1000.…………9分 ∵k =﹣20<0.∴p 随x 的增大而减小, ∴当x =25时,p 有最小值500.即销售单价定为25元时,厂家每个月为他承担的总差价最少为500元.…………10分24. (本题满分11分)(1)证明:∵在正方形ABCD 中,AD ∥BC , ∴∠AEB=∠EBF ,…………1分又∵FH ⊥BE ,∴∠A=∠BHF=90°,…………2分 ∴△ABE ∽△HFB ;…………3分 (2)BE 2=2AE •EF …………4分 证明如下:∵∠FBE=∠FEB ,∴BF=EF , ∵FH ⊥BE ,∴FH 是等腰△FBE 底边上的中线, ∴BH=BE ,…………5分由(1)得,BFBE BH AE =,∴BF BEBE AE =21∴BE 2=2AE •BF ;…………6分∵BF=EF ,∴BE 2=2AE•EF ;…………7分 (3)解:∵DG ═2,∴正方形ABCD 的边长为4,…………8分设AE=k (0<k <4),则DE ═4﹣k ,BF=8﹣k ,∴在Rt △ABM 中,BE 2=AB 2+AE 2=16+k 2,由BE 2=2AE •BF ,得16+k 2=2k (8﹣k ),…………9分即3k 2﹣16k+16=0,解得4,3421==k k …………10分 ∵k ≠4,∴AE=34.…………11分 25. (本题满分13分) 解:(1)∵A (1,0),C (0,1)在抛物线2y ax b =+上,将x =1,y=0和x =0,y=1分别代入2y ax b =+解得:a =-1,b=1…………1分 ∴抛物线解析式为:12+-=x y …………2分∵抛物线12+-=x y 的对称轴为y 轴,∴B 与A 关于y 轴对称,即B (-1,0)…………3分(2)过D 作DF ⊥x 轴于点E ,∵D 点在抛物线12+-=x y 上,设D (x ,12+-x ), ∴OF=x ,DF=|12+-x | …………4分∵A (1,0),B (-1,0),C (0,1)∴OA=OB=OC=1,△AOC 、△BOC 、△ABC 为等腰Rt △,AC=BC=2211+=2,∠CAB=45°。

安徽省2017年初中数学中考模拟试卷及答案

安徽省2017年初中数学中考模拟试卷及答案

2017年安徽省初中毕业学业考试模拟试卷数 学一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中,最小的数是 ( ) A.0.5B.0C.12- D.-1 2.下列各式计算正确的是( ) A.235325a a a += B.22(2)4a a -=- C.22(3)9a a =D.33a a a ÷=3.如图,直线c 与直线a ,b 相交,且a ∥b ,有下列结论:(1)12∠=∠;(2)13∠=∠;(3)32∠=∠.其中正确的个数为 ( )A.0B.1C.2D.34.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ( ) A.0.83510⨯B.3.7510⨯C.3.6510⨯D.3.9510⨯5.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( )6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A.12x x ≥-⎧⎨<⎩B.12x x ≤-⎧⎨>⎩C.12x x <-⎧⎨≥⎩D.12x x >-⎧⎨≤⎩7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是 ( )∶∶1 ∶1D.22∶18.A ,B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13x 千米/时,则可列方程为 ( ) A.1010123x x -= B. 1010123x x -= C. 101123x x += D. 1011032x x+=9.如图,EF 是圆O 的直径,OE =5 cm,弦MN =8 cm,则E ,F 两点到直线MN 的距离之和等于 ( )A.12 cmB.6 cmC.8 cmD.3 cm10.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到点B ,再沿BC 边运动到点C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是 ( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.分解因式:210m m -= .y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第 象限. OABC 有两边在坐标轴的正半轴上,如图所示,双曲线6y x=与边AB ,BC 分别交于D ,E 两点,OE 交双曲线2y x=于点G ,若DG ∥OA ,OA =3,则CE 的长为 .第13题图 第14题图14.如图,正方形纸片ABCD 的边长为3,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF 折叠,点B ,D 恰好都落在点GBE =1,则EF 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:2019(34)2cos 452-⎛⎫-+-- ⎪⎝⎭.16.先化简后求值:当21x =-时,求代数式221121111x x x x x -+-•+-+的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在97⨯的小正方形网格中,△ABC 的顶点A ,B ,C △ABC 向左平移3个单位、再向上平移3个单位得到△A ′B ′C ′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90得到△323A B C ,依次旋转下去.(1)在网格中画出△A ′B ′C ′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A ′B ′C ′.18.同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+...+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道: 011223⨯+⨯+⨯+ (1)(1)(1)(1)3n n n n n +-⨯=+-时,我们可以这样做: (1)观察并猜想:2212(10)1(11)2101212(12)(0112)+=+⨯++⨯=+⨯++⨯=++⨯+⨯; 222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯ =(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+ =(1234)++++( ); …(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯ =( )+[ ] = + =16⨯ .(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y =kx -2的图象与x ,y 轴分别交于点A ,B ,与反比例函数3(0)2y x x =-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y =kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A 点处测得俯角为30正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有名;(2)中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC中,矩形DEFG的边DE在AB上运动,点F,G分别在边BC,AC上.(1)若AB =8,DE =2EF ,求GF 的长;(2)若90ACB ∠=,如图2,线段DM ,EN 分别为△ADG 和△BEF 的角平分线,求证:MG =NF ; (3)求出矩形DEFG 的面积的最大值.2017年安徽省初中毕业学业考试模拟试卷1.D 【解析】本题考查了有理数大小的比较.因为正数都大于0,负数都小于0,所以正数大于一切负数.又因为两个负数比较大小时,绝对值大的其值反而小,所以最小值为-1.2.C 【解析】本题考查合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则.23a 与32a 不是同类项,不能合并,故A 错误;22(2)44a a a -=-+,故B 错误;22(3)9a a =,故C 正确;3a ÷2a a =,故D 错误.12∠=∠;因为a ∥b ,所以3213∠=∠,∠=∠,故正确的个数为3.10n a ⨯,其中1≤|a |<10,n 为整数.故350万=3500000=3.6510⨯.5.B 【解析】本题考查了三视图的知识.俯视图是从物体的上面看得到的,观察选项可知B 项确.6.D 【解析】本题考查了在数轴上表示不等式解集的知识.由数轴上表示的不等式组的解集为-1<x ≤2,观察选项可知D 项正确.7.A 【解析】本题考查了概率的应用,相似多边形面积之比等于相似比的平方.根据针扎到小正方形(阴影部分)的概率是 19,可得19SS =,大小故大、小正方形的边长之比为3∶1.8.A 【解析】本题考查了由实际问题抽象出分式方程.根据时间找出等量关系是解决本题的关键.由题可知,甲的速度是2x 千米/时,根据题意可得1010123x x ,-=.O,E,F 点分别作OK ,EG ,FH 垂直于MN ,垂足为点K ,G ,H ,连接OM .则OK ∥EG ∥FH ,因为O 是EF 的中点,因此OK 是梯形EGHF 的中位线,欲求EG +FH 的值,需求出OK 的长.在Rt △OMK 中,OM =5,MK =4,所以223OK OM MK =-=,故EG +FH =6.P 点在边AB 上运动时,S 随着t 的增大而增大;当P 在BC 运动时,S 随着t 的增大而减小,又由等边三角形的性质可知两者增加和减小的速度相等,故C 项正确.11.m (m -10) 【解析】本题主要考查了提公因式法分解因式.210m m -=m (m -10).12.四 【解析】本题考查了一次函数的图象与系数的关系.∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.又∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.3=3得,直线AB 的解析式为x =3,把x =3代入反比例函数y =6x 可得D 点坐标为(3,2),由DG ∥OA 可得,直线DG 的解析式为y =2,把y =2代入2x y =可得G 点坐标为(1,2).设直线OE 的解析式为y =kx ,因为G 点在OE 上,所以2=k ,故直线OE 的解析式为y =2x .由 62xy x y =,⎧⎪⎨=⎪⎩ 可得,E 点坐标为33),.故3CE =14.52 【解析】本题考查了正方形的性质、翻折变换以及勾股定理.∵正方形纸片ABCD 的边长为3,∴90C ∠=,BC =CD =3,根据折叠的性质得EG =BE =1,GF =DF ,设DF =x ,则EF =EG +GF =1+x ,FC =CD -DF =3-x ,EC =BC -BE =3-1=2.在Rt △EFC 中222EF EC FC ,=+,即222(1)2(3)x x +=+-,解得32x =,∴32DF =,35122EF =+=.15.解:()20129(34)2cos 45--+--224312=-+-⨯6分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分 当21x =-时,原式=1. 8分17.解:(1)△A ′B′C ′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A ′B ′C ′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分 (2)1+2+3+…+n 011223⨯+⨯+⨯+…(1)n n +-⨯12(1)n n +()13(1)1n n n +- n (n +1)(2n +1)6分 (3)338350 8分19.解:(1)∵点()32M n -,在反比例函数32(0)x y x =-<的图象上. ∴n =1,∴()321M -,. 2分 ∵一次函数y =kx -2的图象经过点()321M -,,∴3212k =--,解得k =-2, ∴一次函数的解析式为y =-2x -2. 5分 ∴A (-1,0),B (0,-2). 6分12(2)(34)(14)P P -,,,-. 10分20.解:如图,过点C 作CE DE ⊥,交A B 的延长线于F ,交DE 于E .∵60FBC ∠=30BAC ,∠=,∴BAC BCA ∠=∠, ∴BC =AB =3000. 3分在Rt △BCF 中,BC =3000,60FBC ∠=, ∴sin 6015003CF BC =⋅=, 7分∴15003500CE =+. 9分答:海底黑匣子C 点处距离海面的深度为(15003500)+米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯2071217.25==, 11分 所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x =4000. 2分 经检验,x =4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分 (2)设购进甲种电脑x 台,则购进乙种电脑(15-x )台.由题意可得不等式4800035003000(15)50000x x ≤+-≤, 解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分 (3)设总获利为W 元,W =(4000-3500)x +(3800-3000-a )(15-x ) =(a -300)x +12000-15a , 10分 当a =300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分WORD 完整版----可编辑----教育资料分享----完整版学习资料分享---- 23.解:(1)∵△ABC 的面积为24,AB =8,∴△ABC 边AB 上的高h =6. 1分设EF =x ,则GF =DE =2x .∵GF ∥A B,∴△CGF ∽△CAB ,∴GF h EF AB h -=,即2686x x -=,解得x =2.4. 3分∴GF =4.8. 4分(2)过点G 作GP ∥BC ,过点D 作DP ∥EN ,GP ,DP 交于点P ,在DM 的延长线上截取DQ =DP ,连接QG . ∵DP ∥EN ,∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠=,∴GDP FEN ∠=∠.同理可得DGP EFN ∠=∠.又∵GD =FE ,∴△GPD ≌△FNE ,∴45PG NF GDP FEN =,∠=∠=. 6分∵45GDQ GDP ∠=∠=,∴△GQD ≌△GPD ,∴QG PG GQD GPD =,∠=∠. 7分∵90MGP MDP ∠=∠=,∴180GMD GPD ∠+∠=.又∵180GMQ GMD ∠+∠=,∴GMQ GPD GQM ∠=∠=∠. 9分∴MG =QG .∴MG =NF . 10分(3)作CH AB ⊥于点H ,交GF 于点I .设AB =a ,AB 边上的高为h ,DG =y ,GF =x ,则CH =h ,CI =h -y ,ah =48.由(1)知,△CGF ∽△CAB ,∴GF CI AB CH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24h x =时,S 取得最大值为5765764812ah==. ∴矩形DEFG 的面积的最大值为12. 14分。

2017年数学中考适应性考试

2017年数学中考适应性考试

保康县2017年中考适应性考试数 学 试 题(本试题卷共4页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或0.5毫米的黑色签字笔。

4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.|a|=2,则a 的值是( ▲ )A.-2B.21- C. 21D. ±22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下,将0.000075用科学记数法表示为( ▲ ) A.-5107.5⨯ B.5107.5⨯ C.-4100.75⨯ D.-61075⨯ 3.如图,下列水平放置的几何体中,主视图不是长方形的是( ▲ )4.下列运算正确的是( ▲ )A.222b b a a +=+() B.842a a a ÷= C.235a b ab += D. 532a a a =•5.不等式组的整数解有( ▲ ) A 、0个 B 、5个 C 、6个 D 、无数个6.若点123(2)(1)(1)A y B y C y -,,-,,,在反比例函数 y =−1x的图象上,则( ▲ )A.12y y > 3y >B.3y > 2y 1y > C.2y 1y > 3y > D.1y 3y >> 2y7.如下图,在平面直角坐标系中,A(-3,2)、B(-1,0)、C(-1,3),将△ABC 向右平移4个单位,再向下平移3个单位,得到△A 1B 1C 1,点A 、B 、C 的对应点分别A 1、B 1、C 1,则点A 1的坐标为( ▲ ) A .(3,-3) B .(1,-1) C .(3,0) D .(2,-1) 8.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则的长为( ▲ )A .103π B .109π C .59π D .518π302x x +>⎧⎨-≥-⎩9.如下图,是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,第三行有4个点,第四行有8个点,……,那么这个三角点阵中前n 行的点数之和可能是( ▲ ) A .510 B .511 C .512 D .51310.如图:边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( ▲ )A .60B .64C .68D .72二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上. 11.在函数32y x =-中,自变量x 的取值范围是 ▲ . 12.一组数据1,2,x ,4的众数是1,则这组数据的方差 ▲ . 13.若关于x 的方程x+m x−3+3m 3−x=2 的解为正数,则m 的取值范围是 ▲ .14.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 ▲ m (结果保留根号).15.已知在Rt ∆ABC 中,∠C =90°,AB=5cm ,BC=3cm ,把Rt ∆ABC 绕AB 旋转一周,所得几何体的表面积是 ▲ .16.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是260 1.5y x x =-,该型号飞机着陆后滑行 ▲ m 才能停下来.三、解答题(本大题共9个小题,共72分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(本小题满分6分) 先化简再求值:221211)24x x x x ++-÷+-(,其中0tan 601x =-. 第8题图 第7题图 第9题图18.(本小题满分6分) 已知:如图,BC ∥EF ,BC=EF ,AE=DB .证明:AC=DF .19.(本小题满分6分) 八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理作出如下统计图. 请你根据上面提供的信息回答下列问题:(1) 扇形图中跳绳部分的扇形圆心角为 ▲ 度,该班共有学生 ▲ 人,训练后篮球定时定点投篮平均每个人的进球数是 ▲ ;(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.20.(本小题满分7分) 如图,已知直线y=ax+b 与双曲线y=(x >0)在第一象限内交于A (x1,y1),B (x2,y2)两点,与x 轴交于点C (x0,0) (1)若A (2,2)、B (4,n ) ①求直线和双曲线解析式; ②直接写出S △AOB = ;(2)直接写出x 1、x 2、x 0之间的数量关系.21.(本小题满分6分) 现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.(本小题满分8分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=6,ADBD=23,求BE的长.23.(本小题满分10分) 中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为130(14148(2522448t t p t t t t ⎧+≤⎪⎪=⎨⎪-+≤≤⎪≤⎩,为整数),为整数),且其日销售量y (kg )与时间t (天)的关系如表: 时间t (天)13 6 10 20 40 … 日销售量y (kg ) 1181141081008040…(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售前24天中,子公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围. 24.(本小题满分11分)提出问题:(1)如图1,在正方形ABCD 中,点E 、H 分别在BC 、AB 上,若AE⊥DH 于点O ,求证:AE=DH ; 类比探究:(2)如图2,在正方形ABCD 中,点H 、E 、G 、F 分别在AB 、BC 、CD 、DA 上,若EF⊥HG,探究线段EF 与HG 的大小关系,并说明理由; 综合运用:(3)在(2)的条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO ,求图中阴影部分的面积.25.(本小题满分12分) 如图,在平面直角坐标系xOy 中,直线221+=x y 与x 轴交于点A ,与y 轴交于点 C.抛物线c bx ax y ++=2的对称轴是23-=x 且经过A 、C 两点,与x 轴的另一交点为点B. (1)①直接写出点A ,B 的坐标;②直接写出抛物线的解析式;(2)若点P 为直线AC 上方的抛物线上的一点,连接PA 、PC ,求△APC的面积的最大值,并求出此时点P 的坐标; (3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.2017年谷城县中考适应性考试数学试题(本试卷共4页,满分120分.考试时间120分钟.)★祝 考 试 顺 利★一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.2017-的倒数为( ▲ ). A. 2017- B. 2017 C. 20171- D. 201712.下列计算正确的是( ▲ )A.3a +4b =7abB.(ab 3)3=ab 6C.(a +2)2=a 2+4D.x 12÷x 6=x 6 3.如图,直线a ∥b ,直线c 分别与a 、b 相交于A 、C 两点, AB ⊥AC 于点A ,交直线b 于点B .已知∠1=42°, 则∠2的度数是( ▲ )A .38°B .48°C .42°D .58° 4.不等式组的解集在数轴上表示正确的是( ▲ )A .B .C .D .5.下列四个实数中,最小的是( ▲ ) A .2 B .2 C .3 D .1.46.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(▲ )A .B .C .D .7.某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:人数(人) 1 3 4 1 分数(分)80859095那么这9名学生所得分数的众数和中位数分别是( ▲ )A .90,90B .90,85C .90,87.5D .85,858.如图,菱形ABCD 中,AB =4,∠B =60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,图8DCBA连结EF ,则△AEF 的面积是( ▲ )A . 34B . 33C . 32D .39.如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B , OP 交⊙O 于点C ,点D 是优弧上不与点A 、点C 重合的一个动点,连接AD 、CD ,若∠APB=80°,则∠ADC 的度数是( ▲ ) A .15° B .20° C .30° D . 25°10.在同一平面直角坐标系中,函数y=ax+b 与y=ax 2﹣bx 的图象可能是( ▲ )A .B .C .D .二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 我国第一艘航母“辽宁舰”最大排水量为67500吨,67500这个数用科学记数法表示是 ▲ . 12.在﹣1、3、﹣2这三个数中,任选两个数的积作为k 的值,使反比例函数xky =的图象在第一、三象限的概率是 ▲ .13.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 ▲ km/h .14.在一次国际马拉松比赛中,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A 处的俯角为︒30,B 处的俯角为︒45.如果此时直升机镜头C 处的高度CD 为200米,点A 、D 、B 在同一直线上,则AB 两点的距离是 ▲ 米.15.有一面积为35的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 ▲ . 16.如图,在ABC Rt ∆中,︒=∠90ACB ,=AC 32,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将弧BD 绕点D 旋转︒180后点B 与点A 恰好重合,则图中阴影部分的面积为 ▲ .三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(本小题满分6分)先化简,再求值:222222)1(y xy x y x x x y x +--÷---,其中2=x ,6=y .18.(本小题满分6分)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的52, 求横、竖彩条的宽度.19.(本小题满分6分)在平面直角坐标系中,一次函数b ax y +=(0≠a )的图象与反比例函数xk y = (k ≠0)的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH=3,tan ∠AOH=,点B 的坐标为(m ,﹣2). 求: (1)反比例函数和一次函数的解析式;(2)写出当反比例函数的值大于一次函数的值时x 的取值范围. 20.(本小题满分6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 60 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 90° ; (2)请补全条形统计图;(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21. (本小题满分7分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)连接DE ,若AB AD 2=,求证:AF DE ⊥.22.(本小题满分8分)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC . (1)求证:∠FBC=∠FCB ;(2)已知FA •FD=12,若AB 是△ABC 外接圆的直径,FA=2,求CD 的长.23.(本小题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)满足一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 24.(本小题满分10分)如图1,△ABC 是等腰直角三角形,∠BAC=90°,AB=AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD=CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点H . ①求证:BD ⊥CF ; ②当AB=2,AD=3时,求线段DH 的长.25.(本小题满分13分)如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.老河口市2017年中考适应性考试数 学 试 题(本试卷共4页,满分120分)★祝考试顺利★注意事项:1、答卷前,考生务必将自己的学校、班级、姓名、考试号填写在试题卷和答题卡上。

最新宜城市中考适应性考试数学试题含答案.doc

最新宜城市中考适应性考试数学试题含答案.doc

宜城市2017年中考适应性考试试题数学姓名 报名号 考试号选择题(10小题,共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.) 1. -2的倒数的绝对值为( ) A .21B .21- C .-2 D .22.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=35°,则∠C 的度数为( )A .55°B .45°C .35°D .25° 3.下列运算结果为6m 的是( )A .32m m +B .32m m ∙C .32)(m -D .39m m ÷4.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( ) A .312×104B .3.12×106C .0.312×107D .3.12×1075.如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A .39πB .29πC .24πD .19π6.有11名同学参加传统文化比赛,他们的预赛成绩各不相同,现取其中前5名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这11名同学成绩的( ) A .方差B .平均数C .众数D .中位数7.某单位组织34人分别到张自忠将军纪念园和烈士陵园进行革命传统教育,到张自忠将军纪念园的人数是到烈士陵园的人数的2倍多1人,求到两地的人数各是多少?设到张自忠将军纪念园的人数为x 人,到烈士陵园的人数为y 人.下面所列的方程组正确的是( ) A .⎩⎨⎧=+=+y x y x 2134 B .⎩⎨⎧+==+1234y x y x C .⎩⎨⎧+==+1234y x y x D .⎩⎨⎧+==+12342y x y x8.请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,要说明∠D ′O ′C ′=∠DOC ,需要证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是( ) A.边边边 B.边角边 C.角边角 D.角角边9.如图,已知AB 是⊙O 的直径,∠CAB =50°,则∠D 的度数为( ) A .20° B .40° C .50°D .70°10.在同一坐标系中一次函数b ax y -=和二次函数2y ax bx =+的图象可能为( )非选择题(15小题,共84分)二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上.) 11.方程1312=++x x 的根是x= . 12. 若函数mx m y )1(+=是正比例函数,则该函数的图象经过第 象限.13.小明用S 2=101[(x 1﹣5)2+(x 2﹣5)2+…+(x 10﹣5)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .14. 已知实数x ,y 满足085=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .15.如图,将△ABC 沿BC 方向平移3cm 得到△DEF ,若四边形ABFD 的周长为22cm ,则△ABC 的周长为 cm .16. 如图,△ABC 中,∠C=90°,AC=6,AB=10,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为 .A BBA三、解答题(9小题,共72分) 17.(本题满分6分)先化简,再求值:x x x x x x x x 4)44122(22+÷+----+,其中x 满足方程0201342=--x x .18.(本题满分6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为700万平方米,2016年达到了1183万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题: (1)求这两年该市推行绿色建筑面积的年平均增长率;(2)2017年该市计划推行绿色建筑面积达到1500万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标?19.(本题满分6分)某条道路上通行车辆限速为60千米/时,在离道路50米的点P 处建一个监测点,道路AB 段为检测区(如图).在△ABP 中,已知∠PAB=30°,∠PBA=45°,一辆轿车通过AB 段的时间8.1秒,请判断该车是否超速?(参考数据:≈1.41,≈1.73,60千米/时=米/秒)第16题图20.(本题满分6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:21.(本题满分7分)已知,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,OA=OB ,函数xy 9-=的图象与线段AB 交于M 点,且AM=BM . (1)求点M 的坐标;(2)求直线AB 的解析式.22. (本题满分7分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D . (1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)23. (本题满分10分)某厂家生产的一种新型节能灯,为了打开市场出台了相关政策:由厂家协调,厂家按成本价提供产品给经营户自主销售,成本价与出厂价之间的差价由厂家承担.李明按照相关政策投资销售本产品.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =﹣10x +500. (1)李明在开始销售的第一个月将销售单价定为20元,那么厂家这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么厂家为他承担的总差价最少为多少元?24. (本题满分11分)如图,在正方形ABCD 中,点E 是AD 上的点,点F 是BC 的延长线上一点,CF=DE ,连结BE 和EF ,EF 与CD 交于点G ,且∠FBE=∠FEB . (1)过点F 作FH ⊥BE 于点H ,证明:BFBEBH AE ; (2)猜想:BE 、AE 、EF 之间的数量关系,并证明你的结论; (3)若DG=2,求AE 值.第22题图25. (本题满分13分)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1)(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.宜城市2017年中考适应性考试试题数学参考答案一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.) 1. A 2. C 3. D 4. B5. C 6. D 7. B 8. A 9. B 10. C二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上. 11. 2;12.一、三;13. 50;14. 18或21;15. 16;16. 712 三、解答题(9小题,共72分) 17.(本题满分6分)解:原式=[﹣]• …………1分=•…………2分=• …………3分=4412+-x x , …………4分当0201342=--x x 时,201342=-x x ,原式=20171.…………6分 18.(本题满分6分)解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,…………1分1183)1(7002=+x …………2分 解得,x 1=0.3,x 2=﹣2.3(舍去), …………3分 即这两年该市推行绿色建筑面积的年平均增长率为30%; …………4分 (2)由题意可得,1183(1+30%)=1537.9, …………5分 ∵1537.9>1500,∴2017年该市能完成计划目标. …………6分19.(本题满分6分)解:过点P 作PC ⊥AB 于点C .…………1分在Rt △APC 中,tan ∠PAC=,∴AC==50≈86.5(米),…………2分同理,BC==PC=50(米),…………3分∴AB=AC+BC≈136.5(米),…………4分60千米/时=米/秒,则136.5÷≈8.2>8.1.…………5分故这辆车通过AB段超速.…………6分20.(本题满分6分)解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,即a的值是12;……………………………………………………………………… 1分②补充完整的频数分布直方图如下图所示,…………………………………………2分(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:;……………………………… 3分(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB)、(AC)、(AD)、(BA)、(BC)、(BD),………………… 5分(如果是用树状图或列表法表示这六种等可能结果,一样累计得5分)所以小明和小强分在一起的概率为:.………… 6分(如果没有用任何方法表示所有的6种等可能结果,但最终结果为正确,要扣一分)21.(本题满分7分)解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,…………1分∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,…………2分∴MC=MD,则点M 的坐标可以表示为(﹣a ,a ),…………3分 把M (﹣a ,a )代入函数xy 9-=中, 解得a=3,则点M 的坐标为(﹣3,3);…………4分(2)∵点M 的坐标为(﹣3,3),∴MC=3,MD=3,∴OA=OB=2MC=6,∴A (﹣6,0),B (0,6),…………5分 设直线AB 的解析式为y=kx+b ,把点A (﹣6,0)和B (0,6)分别代入y=kx+b 中得⎩⎨⎧==+-66b b k ,…………6分解得:⎩⎨⎧==61b k ,则直线AB 的解析式为y=x+6.…………7分22. (本题满分7分)(1)证明:如图,连接OD ∵OD OB =,∴21∠=∠, ∴∠12∠=DOC ,…………1分∵12∠=∠A ,∴DOC A ∠=∠,…………2分∠ABC =90°,90=∠+∠∴C A ∴ 90=∠+∠C ODC90=∠∴ODC …………3分 ∵OD 为半径,∴AC 是⊙O 的切线;…………4分(2)解:60=∠=∠DOC A ,2=OD∴在ODC Rt ∆中,ODDC=60tan 323260tan =⨯==OD DC …………5分 ∴323222121=⨯⨯=⋅=∆DC OD S ODC Rt …………6分 ∴32-3232-3602602ππ=⨯=阴影S …………7分23. (本题满分10分)解:(1)当x =20时,y =﹣10x +500=﹣10×20+500=300, 300×(12﹣10)=300×2=600,即厂家这个月为他承担的总差价为600元.…………2分 (2)依题意得,w =(x ﹣10)(﹣10x +500)=5000600102-+-x x =4000)30(102+--x …………4分 ∵a =﹣10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.…………5分 (3)由题意得:30005000600102=-+-x x , 解得:x 1=20,x 2=40.…………6分 ∵a =﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.…………7分 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.…………8分 设厂家每个月为他承担的总差价为p 元,∴p =(12﹣10)×(﹣10x +500)=﹣20x +1000.…………9分 ∵k =﹣20<0.∴p 随x 的增大而减小, ∴当x =25时,p 有最小值500.即销售单价定为25元时,厂家每个月为他承担的总差价最少为500元.…………10分24. (本题满分11分)(1)证明:∵在正方形ABCD 中,AD ∥BC , ∴∠AEB=∠EBF ,…………1分又∵FH ⊥BE ,∴∠A=∠BHF=90°,…………2分 ∴△ABE ∽△HFB ;…………3分 (2)BE 2=2AE •EF …………4分 证明如下:∵∠FBE=∠FEB ,∴BF=EF , ∵FH ⊥BE ,∴FH 是等腰△FBE 底边上的中线, ∴BH=BE ,…………5分由(1)得,BFBE BH AE =,∴BF BEBE AE =21∴BE 2=2AE •BF ;…………6分∵BF=EF ,∴BE 2=2AE•EF ;…………7分(3)解:∵DG ═2,∴正方形ABCD 的边长为4,…………8分设AE=k (0<k <4),则DE ═4﹣k ,BF=8﹣k ,∴在Rt △ABM 中,BE 2=AB 2+AE 2=16+k 2,由BE 2=2AE •BF ,得16+k 2=2k (8﹣k ),…………9分即3k 2﹣16k+16=0,解得4,3421==k k …………10分 ∵k ≠4,∴AE=34.…………11分 25. (本题满分13分) 解:(1)∵A (1,0),C (0,1)在抛物线2y ax b =+上,将x =1,y=0和x =0,y=1分别代入2y ax b =+解得:a =-1,b=1…………1分 ∴抛物线解析式为:12+-=x y …………2分∵抛物线12+-=x y 的对称轴为y 轴,∴B 与A 关于y 轴对称,即B (-1,0)…………3分(2)过D 作DF ⊥x 轴于点E ,∵D 点在抛物线12+-=x y 上,设D (x ,12+-x ), ∴OF=x ,DF=|12+-x | …………4分∵A (1,0),B (-1,0),C (0,1)∴OA=OB=OC=1,△AOC 、△BOC 、△ABC 为等腰Rt △,AC=BC=2211+=2,∠CAB=45°。

宜城市2017届九年级数学上学期期中试题

宜城市2017届九年级数学上学期期中试题

2016—2017学年度上学期期中考试题九年级数学一、选择题(本大题有10个小题,每小题3分,共30分.)1。

已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A.5 B.2 C.﹣2 D.﹣52.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤13。

二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+34。

有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=455。

下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6。

抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=27。

如图,在⊙O中,=,∠AOB=44°,则∠ADC的度数是()A.44°B.34°C.22°D.12°8.如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE 的延长线交FC于点M,以下结论正确的是()A .AM ⊥FCB .BF ⊥CFC .BE=CED .FM=MC9.如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .4B .3C .2D .10。

一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .二、填空题 (本大题有5个小题,每小题3分,共15分.)11。

一元二次方程x 2+3x ﹣4=0的两根分别为 .12。

(完整版)2017年安徽省中考数学试卷(含答案解析版)

(完整版)2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宜城市2017年中考适应性考试试题数学姓名 报名号 考试号选择题(10小题,共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.) 1. -2的倒数的绝对值为( ) A .21B .21- C .-2 D .22.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=35°, 则∠C 的度数为( )A .55°B .45°C .35°D .25° 3.下列运算结果为6m 的是( )A .32m m +B .32m m •C .32)(m - D .39m m ÷4.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( ) A .312×104 B .3.12×106 C .0.312×107 D .3.12×1075.如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A .39πB .29πC .24πD .19π6.有11名同学参加传统文化比赛,他们的预赛成绩各不相同,现取其中前5名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这11名同学成绩的( ) A .方差B .平均数C .众数D .中位数7.某单位组织34人分别到张自忠将军纪念园和烈士陵园进行革命传统教育,到张自忠将军纪念园的人数是到烈士陵园的人数的2倍多1人,求到两地的人数各是多少?设到张自忠将军纪念园的人数为x 人,到烈士陵园的人数为y 人.下面所列的方程组正确的是( )A .⎩⎨⎧=+=+y x y x 2134B .⎩⎨⎧+==+1234y x y xC .⎩⎨⎧+==+1234y x y xD .⎩⎨⎧+==+12342y x y x8.请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,要说明∠D ′O ′C ′=∠DOC ,需要证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是( ) A.边边边 B.边角边 C.角边角 D.角角边9.如图,已知AB 是⊙O 的直径,∠CAB =50°,则∠D 的度数为( ) A .20° B .40° C .50°D .70°10.在同一坐标系中一次函数b ax y -=和二次函数2y ax bx =+的图象可能为( )非选择题(15小题,共84分)二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上.) 11.方程1312=++x x 的根是x= . 12.若函数mx m y )1(+=是正比例函数,则该函数的图象经过第 象限.13.小明用S 2=101[(x 1﹣5)2+(x 2﹣5)2+…+(x 10﹣5)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= . 14. 已知实数x ,y 满足085=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .15.如图,将△ABC 沿BC 方向平移3cm 得到△DEF ,若四边形ABFD 的周长为22cm ,则△ABC的周长为 cm .16. 如图,△ABC 中,∠C=90°,AC=6,AB=10,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为 .Oxy O x y Oxy OxyA B C D第9题图ODCBA第8题图三、解答题(9小题,共72分)17.(本题满分6分)先化简,再求值:x x x x x x x x 4)44122(22+÷+----+,其中x 满足方程0201342=--x x .18.(本题满分6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为700万平方米,2016年达到了1183万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年该市推行绿色建筑面积的年平均增长率;(2)2017年该市计划推行绿色建筑面积达到1500万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标?19.(本题满分6分)某条道路上通行车辆限速为60千米/时,在离道路50米的点P 处建一个监测点,道路AB 段为检测区(如图).在△ABP 中,已知∠PAB=30°,∠PBA=45°,一辆轿车通过AB 段的时间8.1秒,请判断该车是否超速?(参考数据:≈1.41,≈1.73,60千米/时=米/秒)20.(本题满分6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别 成绩x 分 频数(人数)第1组 50≤x <60 6 第2组 60≤x <70 8 第3组 70≤x <8014第4组 80≤x <90a第5组 90≤x <10010请结合图表完成下列各题:(1)①表中a 的值为 ; ②频数分布直方图补充完整; (2)若测试成绩不低于80分为优秀,则本次测试的优秀率是 .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.21.(本题满分7分)已知,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,OA=OB ,函数xy 9-=的图象与线段AB 交于M 点,且AM=BM . (1)求点M 的坐标;(2)求直线AB 的解析式.22. (本题满分7分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D . (1)求证:AC 是⊙O 的切线;频数(人数)50 60 70 80 90 100 测试成绩16 12 8 4(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)23. (本题满分10分)某厂家生产的一种新型节能灯,为了打开市场出台了相关政策:由厂家协调,厂家按成本价提供产品给经营户自主销售,成本价与出厂价之间的差价由厂家承担.李明按照相关政策投资销售本产品.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =﹣10x +500.(1)李明在开始销售的第一个月将销售单价定为20元,那么厂家这个月为他承担的总差价为多少元? (2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么厂家为他承担的总差价最少为多少元?24. (本题满分11分)如图,在正方形ABCD 中,点E 是AD 上的点,点F 是BC 的延长线上一点,CF=DE ,连结BE 和EF ,EF 与CD 交于点G ,且∠FBE=∠FEB . (1)过点F 作FH ⊥BE 于点H ,证明:BFBEBH AE ; (2)猜想:BE 、AE 、EF 之间的数量关系,并证明你的结论; (3)若DG=2,求AE 值.25. (本题满分13分)如图,抛物线y=ax 2+b 与x 轴交于点A 、B ,且A 点的坐标为(1,0),与y 轴交于点C (0,1)(1)求抛物线的解析式,并求出点B 坐标;第22题图EOCBA1D(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.宜城市2017年中考适应性考试试题数学参考答案一、选择题:(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.)1. A2.C3.D4.B5.C6. D7.B8.A9.B10. C二、填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上.1211. 2;12.一、三;13. 50;14.18或21;15. 16;16.7三、解答题(9小题,共72分) 17.(本题满分6分)解:原式=[﹣]• …………1分=•…………2分 =• …………3分=4412+-x x , …………4分 当0201342=--x x 时,201342=-x x ,原式=20171.…………6分18.(本题满分6分)解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,…………1分1183)1(7002=+x …………2分解得,x 1=0.3,x 2=﹣2.3(舍去), …………3分 即这两年该市推行绿色建筑面积的年平均增长率为30%; …………4分 (2)由题意可得,1183(1+30%)=1537.9, …………5分 ∵1537.9>1500,∴2017年该市能完成计划目标. …………6分19.(本题满分6分)解:过点P 作PC ⊥AB 于点C .…………1分 在Rt △APC 中,tan ∠PAC=,∴AC==50≈86.5(米),…………2分 同理,BC==PC=50(米),…………3分∴AB=AC +BC ≈136.5(米),…………4分 60千米/时=米/秒,则136.5÷≈8.2>8.1.…………5分故这辆车通过AB 段超速.…………6分20.(本题满分6分)解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,即a 的值是12;……………………………………………………………………… 1分 ②补充完整的频数分布直方图如下图所示,…………………………………………2分(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:;……………………………… 3分(3)设小明和小强分别为A 、B ,另外两名学生为:C 、D , 则所有的可能性为:(AB )、(AC )、(AD )、(BA )、(BC )、(BD ),………………… 5分 (如果是用树状图或列表法表示这六种等可能结果,一样累计得5分) 所以小明和小强分在一起的概率为:.………… 6分(如果没有用任何方法表示所有的6种等可能结果,但最终结果为正确,要扣一分)21.(本题满分7分) 解:(1)过点M 作MC ⊥x 轴,MD ⊥y 轴, ∵AM=BM ,∴点M 为AB 的中点,…………1分 ∵MC ⊥x 轴,MD ⊥y 轴,∴MC ∥OB ,MD ∥OA , ∴点C 和点D 分别为OA 与OB 的中点,…………2分 ∴MC=MD ,则点M 的坐标可以表示为(﹣a ,a ),…………3分 把M (﹣a ,a )代入函数xy 9-=中, 解得a=3,则点M 的坐标为(﹣3,3);…………4分(2)∵点M 的坐标为(﹣3,3),∴MC=3,MD=3,∴OA=OB=2MC=6,∴A (﹣6,0),B (0,6),…………5分 设直线AB 的解析式为y=kx+b ,把点A (﹣6,0)和B (0,6)分别代入y=kx+b 中得⎩⎨⎧==+-66b b k ,…………6分解得:⎩⎨⎧==61b k ,则直线AB 的解析式为y=x+6.…………7分 22. (本题满分7分)(1)证明:如图,连接OD ∵OD OB =,∴21∠=∠, ∴∠12∠=DOC ,…………1分∵12∠=∠A ,∴DOC A ∠=∠,…………2分Θ∠ABC =90°,ο90=∠+∠∴C A∴ο90=∠+∠C ODC ο90=∠∴ODC …………3分 ∵OD 为半径,∴AC 是⊙O 的切线;…………4分 (2)解:οΘ60=∠=∠DOC A ,2=OD ∴在ODC Rt ∆中,ODDC=ο60tan 323260tan =⨯==οOD DC …………5分 ∴323222121=⨯⨯=⋅=∆DC OD S ODC Rt …………6分 ∴32-3232-3602602ππ=⨯=阴影S …………7分23. (本题满分10分)解:(1)当x =20时,y =﹣10x +500=﹣10×20+500=300, 300×(12﹣10)=300×2=600,即厂家这个月为他承担的总差价为600元.…………2分 (2)依题意得,w =(x ﹣10)(﹣10x +500)=5000600102-+-x x =4000)30(102+--x …………4分∵a =﹣10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.…………5分(3)由题意得:30005000600102=-+-x x , 解得:x 1=20,x 2=40.…………6分 ∵a =﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.…………7分 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.…………8分 设厂家每个月为他承担的总差价为p 元,∴p =(12﹣10)×(﹣10x +500)=﹣20x +1000.…………9分 ∵k =﹣20<0.∴p 随x 的增大而减小, ∴当x =25时,p 有最小值500.即销售单价定为25元时,厂家每个月为他承担的总差价最少为500元.…………10分24. (本题满分11分)(1)证明:∵在正方形ABCD 中,AD ∥BC , ∴∠AEB=∠EBF ,…………1分又∵FH ⊥BE ,∴∠A=∠BHF=90°,…………2分 ∴△ABE ∽△HFB ;…………3分 (2)BE 2=2AE •EF …………4分 证明如下:∵∠FBE=∠FEB ,∴BF=EF , ∵FH ⊥BE ,∴FH 是等腰△FBE 底边上的中线, ∴BH=BE ,…………5分由(1)得,BFBE BH AE =,∴BF BEBE AE =21∴BE 2=2AE •BF ;…………6分∵BF=EF ,∴BE 2=2AE•EF ;…………7分 (3)解:∵DG ═2,∴正方形ABCD 的边长为4,…………8分设AE=k (0<k <4),则DE ═4﹣k ,BF=8﹣k ,∴在Rt △ABM 中,BE 2=AB 2+AE 2=16+k 2, 由BE 2=2AE •BF ,得16+k 2=2k (8﹣k ),…………9分 即3k 2﹣16k+16=0,解得4,3421==k k …………10分∵k ≠4,∴AE=34.…………11分 25. (本题满分13分) 解:(1)∵A (1,0),C (0,1)在抛物线2y ax b =+上,将x =1,y=0和x =0,y=1分别代入2y ax b =+解得:a =-1,b=1…………1分 ∴抛物线解析式为:12+-=x y …………2分∵抛物线12+-=x y 的对称轴为y 轴,∴B 与A 关于y 轴对称,即B (-1,0)…………3分(2)过D 作DF ⊥x 轴于点E ,∵D 点在抛物线12+-=x y 上,设D (x ,12+-x ), ∴OF=x ,DF=|12+-x | …………4分∵A (1,0),B (-1,0),C (0,1)∴OA=OB=OC=1,△AOC 、△BOC 、△ABC 为等腰Rt △,AC=BC=2211+=2,∠CAB=45°。

相关文档
最新文档