九年级数学解直角三角形应用
人教版数学九年级下册《 解直角三角形》PPT课件
∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
人教版九年级下册数学 28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)
险区。这渔船如果继续向东追赶鱼群,有没有进入危险 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
方位角
区的可能? (3)边角之间的关系:
某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向
的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北 方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上, 于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处 相遇。 (1)甲船从C处追赶上乙船用了多长时间? (2)甲船追赶乙船的速度北是每小时多少千米?
B
D
C 75°
45°
西走60米到达C点,测得点B在点C的北偏东60°方向。 这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
为有效开发海洋资源,保护海洋权益,我国对南海诸岛
2解直角三角形的应用举例
北 为有效开发海洋资源,保护海洋权益,我国对南海诸岛
进行了全面调查,一测量船在A岛测得B岛2解直角三角形的应用举例 航海问题——方位角
北 M东
B
A
D
N
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系:
(3)边角之间的关系:
B
c a
A
bC
仰角俯角
A
?
E 34
F
18
D
10米
B
方位角
北
C
西
O
B
东
南
利用锐角三角函数解决航海问题
如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达 位于灯塔P的南偏东34°方向的B处。这时,B处距离 灯塔P有多远?(结果取整数)(cos25°=0.9063, sin34°=0.5291, )
人教版九年级下册数学《解直角三角形应用举例》锐角三角函数研讨复习说课教学课件
学以致用
如图水坝的横断面是梯形,迎水坡的坡角∠B=30°,背
水坡的坡度为1: 2 (坡面的铅直高度DF与水平宽度AF的
比),坝高CE(DF)是45米,求AF、BE的长,迎水坡BC的长,
以及BC的坡度.
AF=45 2 m BE=45 3
BC=90m
= 1: 3
知识点二:坡度、坡角的实际应用
角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
课堂小结
1.坡度:我们通常把坡面的铅直高度h和水平宽度 l 的比
叫坡度(或叫坡比)用字母 i 表示:
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
D.500
米
第5课时 解直角三角形
解直角三角形的应用
探索新知
例 1.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔
80海里的A处,它沿正南方向航行一段时间后,到达位于灯
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
典例讲评
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡
AB的坡度i=1:3,斜坡CD的坡度i' =1:2.5,求坝底宽AD和斜坡AB
的长.
(精确到0.1m,tan18°26′ ≈0.3333,sin18°26′≈0.3162)
课件
课件
课件
解直角三角形的方法和技巧
解直角三角形的方法和技巧直角三角形是三角形中最为基础和重要的一类三角形,因为它具有很多特殊的性质和应用。
解直角三角形的方法和技巧在数学的学习过程中非常重要,本文将为大家介绍10条关于解直角三角形的方法和技巧,并展开详细描述。
一、勾股定理勾股定理是解直角三角形最基本的定理,也是解直角三角形的最快捷的方法。
勾股定理的公式为:a² + b² = c²。
a和b表示直角边,c表示斜边。
当已知a和b的长度时,可以通过计算c的长度来确定直角三角形的大小和形状。
勾股定理非常广泛地应用于工程、科学和数学等领域,可以帮助我们计算物体的大小、距离和位置等。
二、正弦定理正弦定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:a/sinA = b/sinB = c/sinC。
a、b、c分别表示三角形任意两边和斜边,A、B、C表示这些边对应的角度。
如果已知了两个长度和一个角度,则可以通过正弦定理计算第三个长度。
正弦定理的应用十分广泛,可以帮助我们计算三角形的任意边的长度。
三、余弦定理余弦定理也是解直角三角形的一种基本方法,它也是一个三角形中的三角函数,公式为:c² = a² + b² - 2abcosC。
a、b表示三角形中两个边的长度,c表示斜边的长度,C表示斜边对应的角度。
如果已知了两个长度和一个角度,则可以通过余弦定理计算第三个长度。
余弦定理也是应用广泛的一个数学公式,可以帮助我们计算三角形的任意边的长度。
四、正切定理正切定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:tanA = a/b或tanB = b/a。
a、b分别表示三角形中的两个直角边,A、B是它们对应的角度。
通过正切定理可以求得角度的大小或两直角边的比例。
五、特殊直角三角形的知识特殊直角三角形是指那些具有特殊边长和角度的直角三角形。
其中最为常见的是边长为3、4、5的特殊直角三角形。
冀教版九年级数学上册《解直角三角形的应用》PPT精品教学课件
α=30°,AD=120,所以利用解直角
三角形的知识求出BD;类似地可以求
出CD,进而求出BC.
随堂练习
解:如图,α = 30°,β= 60°, AD=120.
∵ tan =
, tan =
3
40 3
3
CD AD tan 120 tan 60 120 3 120 3
随堂练习
1.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6 m的
位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5 m,则旗杆AB的高度
9.5
约为______m.(精确到0.1
m,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
BD AD tanα 120 tan 30 120
BC BD CD 40 3 120 3
160 3 277.1
答:这栋楼高约为277.1m.
解直角三角形的
26.4
应用
第2课时
知识回顾
直角三角形中诸元素之间的关系:
(1)三边之间的关系:a2+b2=c2 (勾股定理);
B
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sin A
a
b
a
, cos A , tan A .
c
c
b
c
a
A
b
C
情景导入
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
B
A
初中九年级数学 解直角三角形及其应用
0.1m)?
B
A
D
C
3海里内有暗礁,一艘客轮以每小
时9海里的速度由西向东航行,行
至A处测得灯塔P在它的北偏东60°,
继续行驶20分钟后,到达B处,又
测得灯塔P在它的北偏东45°,问客
轮不改变方向,继续前进有无触礁
解:过P的点作危P险D垂?直于AB,交AB的延
P
长∵线∠于1=D60∠2=45°∴
在R°t△BDP∠PBD∠=P4AD=30°,∠PBD=45°
例l3.一铁路路基的l 横断面是等腰梯 形,路基顶部的宽为9.8米,路基高为 5.8米,斜坡与地面所成的角A为60 度.求路基低部的宽(精确到0.1米)
❖ 练习:热气球的探测器显示,从热 气球看一栋高楼顶部的仰角为30°, 看这栋高楼底部的俯角为60°,热 气球与高楼的水平距离为120m,这 栋高楼有多高?(结果精确到
3 山坡与地面成300的倾斜角,某人上坡走 60米,则他
(目标3) 上升 米,坡度是
D
C
4 如图已知堤坝的横断面为梯形,AD坡面
的水平宽度为
A
B
3√3米,DC=4米,B=600,则
(1)斜坡AD 的铅直高度是
(2)斜坡AD 的长是 (3)坡角A的
(目标3) 6 如图从山 顶A望地面的C、D 两点,俯角分别时 A
α
练习: 如图,某飞机于空中A 处探测到目标C,此时飞行高 度AC=1200米,从飞机上看低 平面控制点B的俯角α=16031/,
练习 某人在A处测得大厦的仰角∠BAC
为300 ,沿AC方向行20米至D处,测得仰角 ∠BDC 为450,求此大厦的高度BC.
B
A 300
450
D
初三数学解直角三角形的应用题
解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2 CD ⊥AB AB BD BC ∙=2 6、常用关系式由三角形面积公式可得: AB ∙CD=AC ∙BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即cas in =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
沪科版数学九年级上册23.2《解直角三角形及其应用》教学设计3
沪科版数学九年级上册23.2《解直角三角形及其应用》教学设计3一. 教材分析《解直角三角形及其应用》是沪科版数学九年级上册第23.2节的内容。
本节课主要让学生掌握直角三角形的性质,学会运用勾股定理和锐角三角函数解决实际问题。
教材通过引入直角三角形的边长关系和三角函数的概念,使学生能够理解直角三角形在实际生活中的应用,培养学生的数学应用意识。
二. 学情分析九年级的学生已经学习了三角形的性质、勾股定理等知识,对直角三角形有一定的了解。
但是,学生对直角三角形的应用可能还不够深入,需要通过实例分析和练习来提高。
此外,学生可能对锐角三角函数的概念和应用还不够熟悉,需要通过引导和讲解来帮助他们理解和掌握。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和锐角三角函数的概念。
2.学会运用勾股定理和锐角三角函数解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:直角三角形的性质,勾股定理和锐角三角函数的概念及应用。
2.教学难点:勾股定理的证明和锐角三角函数的运用。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形的性质和应用,激发学生的学习兴趣。
2.启发式教学法:引导学生思考和探索直角三角形的性质,培养学生的逻辑思维能力。
3.小组合作学习:让学生在小组内讨论和解决问题,提高学生的团队合作能力。
4.巩固练习:通过适量练习,使学生掌握勾股定理和锐角三角函数的应用。
六. 教学准备1.教学课件:制作精美的课件,展示直角三角形的性质和应用。
2.教学素材:准备相关的实际问题,用于引导学生解决实际问题。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一个直角三角形,引导学生回顾直角三角形的性质。
然后,提出问题:“你能用勾股定理解决直角三角形的问题吗?”让学生思考并回答。
2.呈现(15分钟)展示教材中的实例,引导学生分析直角三角形的性质和应用。
4.4解直角三角形的应用课件九年级数学上册
感悟新知
水平方向飞行 200m 到达点 Q,测得奇楼底端 B 的俯 角为 45° ,求奇楼 AB 的高度.(结果精确到 1m,参 考数据: sin 1 5 ° ≈ 0 . 26,cos 15 ° ≈ 0 . 97, tan15° ≈ 0.27) 解:如图,延长BA交PQ的 延长线于点C,则∠ACQ=90°. 由题意得,BC=225 m,PQ=200 m,
课堂新授
2. 解决实Βιβλιοθήκη 问题时,常见的基本图形及相应的关系式如下 表所示:
图形
关系式
图形
关系式
AC=BC·tanα, AG=AC+BE
BC=DC-BD= AD·(tanα -tanβ )
课堂新授
续表
图形
关系式
AB=DE= AE·tanβ, CD=CE+DE =AE·(tanα+
tanβ)
图形
关系式
感悟新知
(1) 求登山缆车上升的高度 DE; (2)若步行速度为 30m/min,登山缆车的速度为60m/min,
求 从山底 A 处到达山顶 D 处大约需要多少分钟 .(结果 精确到 0.1min,参考数据: sin53° ≈ 0.80, cos53° ≈ 0.60,tan53° ≈ 1.33)
感悟新知
课堂新授
例2
课堂新授
解题秘方:在建立的非直角三角形模型中,用 “化斜为直法”解含公共直角边的 直角三角形.
课堂新授
课堂新授
计算结果必须根据 题目要求进行保留.
课堂新授
方法点拨 解直角三角形的实际应用问题的求解方法: 1. 根据题目中的已知条件,将实际问题抽象为解直角三角
形的数学问题, 画出平面几何图形,弄清已知条件中 各量之间的关系; 2. 若条件中有直角三角形,则直接选择合适的三角函数关 系求解即可;若条件中没有直角三角形,一般需添加辅 助线构造直角三角形,再选用合适的三角函数关系求解.
中考数学复习:专题7-12 解直角三角形在实际生活中的应用
专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。
若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。
三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。
人教版九年级数学下册第二十八章《28.2解直角三角形-应用举例》公开课 课件(共13张PPT)
A
设DF= x , AD=2x 则在Rt△ADF中,根据勾股定理
60°
AF = AD2 DF 2 = 2x2 x2 = 3x
B
DF
在Rt△ABF中,
30°
AF tan ABF =
tan 30 =
3x
BF
12 + x
解得x=6
AF = 6x = 6 3 10.4
10.4 > 8没有触礁危险
2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高 度DE与水平宽度CE的比),根据图中数据求:
解直角三角形—应用举例
例题
例3: 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞 行器成功实现交会对接. ,“神舟”九号与“天宫”一号的组合体在离地球表 面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正上 方时,从中能直接看到地球表面最远的点在什么位置?最远点与P点的距离 是多少?(地球半径约为6 400km,π取3.142,结果取整数)
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/272021/7/272021/7/272021/7/27
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
2023年中考数学高频考点突破——解直角三角形的实际应用
2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。
沪科版数学九年级上册23.2《解直角三角形及其应用》(第1课时)教学设计
沪科版数学九年级上册23.2《解直角三角形及其应用》(第1课时)教学设计一. 教材分析《解直角三角形及其应用》是沪科版数学九年级上册第23.2节的内容。
本节内容是在学生已经掌握了直角三角形的性质、锐角三角函数的概念和勾股定理的基础上进行学习的。
本节课的主要内容是让学生学会解直角三角形,并能运用解直角三角形的知识解决实际问题。
教材中通过丰富的实例,引导学生探究直角三角形的边角关系,培养学生的动手操作能力和解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数的概念有一定的了解。
但在解决实际问题时,还可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.知识与技能目标:让学生掌握解直角三角形的方法,并能运用解直角三角形的知识解决实际问题。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的动手操作能力和解决实际问题的能力。
3.情感态度与价值观目标:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.教学重点:让学生掌握解直角三角形的方法,并能运用解直角三角形的知识解决实际问题。
2.教学难点:如何引导学生将实际问题转化为解直角三角形的问题,并运用相应的解决方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生自主探究解直角三角形的方法。
2.实例分析法:教师通过展示实例,让学生观察、操作,培养学生的动手操作能力。
3.小组合作法:学生分组讨论,共同解决实际问题,培养学生的合作意识。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、实例、习题等。
2.学生准备:学生需要预习相关内容,了解直角三角形的性质和锐角三角函数的概念。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量旗杆的高度、计算建筑物的斜边长度等,引导学生思考如何解决这些问题。
中考数学 考点系统复习 第四章 三角形 微专题(一) 解直角三角形的实际应用
得起点 B 的仰角为 40°.斜坡 CD 的坡度为 i=1∶2.4,底端点 C 与顶端
点 D 的距离为 26 m.参赛运动员们将从点 A 出发乘车沿水平方向行驶 100
m 到达点 C 处,再沿斜坡 CD 行驶至点 D 处,最后乘垂直于水平方向的电
梯到达点 B 处,则电梯 BD 的高度约为(参考数据:sin 40°≈0.64,cos
结
BD=AB
CD=EA,BD+DA=BA AD+CE+FB=AB
1.(2021·南岸区校级期中)如图,某大楼 AB 正前方有一栋小楼 ED,小
明从大楼顶端 A 测得小楼顶端 E 的俯角为 45°,从大楼底端 B 测得小楼
顶端 E 的仰角为 24°,小楼底端 D 到大楼前梯坎 BC 的底端 C 有 90 m,
在坡比为 5∶12 的山坡上走了 1 300 m,此时小明看山顶的角度为 60°,
则山高为
( B)
A.(600-250 5)m
B.(600 3-250)m
C.(350+350 3)m
D.500 3 m
6.(2021·重庆一中三模)如图,小欢同学为了测量建筑物 AB 的高度,
从建筑物底端点 B 出发,经过一段坡度 i=1∶2.4 的斜坡,到达 C 点,
则高楼 AB 的高度为(参考数据:sin 22°≈0.37,cos 22°≈0.93,tan
22°≈0.40)
(D)
A.60 m
B.70 m
C.80 m
D.90 m
4.如图,斜坡 AB 长 20 m,其坡度 i=1∶0.75,BC⊥AC,斜坡 AB 正前
方一座建筑物 ME 上悬挂了一幅巨型广告,小明在点 B 测得广告顶部 M 点
梯坎 BC 长 65 m,梯坎 BC 的坡度 i=1∶2.4,则大楼 AB 的高度为(结果
人教版九年级数学下册28.2.1解直角三角形
(1)三边之间的关系: a2+b2=c2(勾股定理); (2)锐角之间的关系: ∠ A+∠B=90º; (3)边角之间的关系: 锐角三角函数;
针对训练1
1. 在下列直角三角形中不能求解的是( D )
A. 已知一直角边一锐角
B. 已知一斜边一锐角
C. 已知两边
D. 已知两角
2. 如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是 ( D )
2 提示:题目中没有给出图形,注意分类讨论.
解:∵cos∠B =
2 2
,∴∠B=45°,
当△ABC为锐角三角形时,如图②,
BC=BD+CD=12+5=17.
∴ BC的长为7或17.
图②
(1)三边之间的关系: (2)锐角之间的关系: (3)边角之间的关系:
a2+b2=c2(勾股定理); ∠ A+∠B=90º; 锐角三角函数
B
c
a
A
C b
解直角三角形
想一想
•在 Rt△ABC 中, ∠C= 90°
A
(1) 根据∠A= 60°, AB=30,你能求出这个三角形
的其他元素吗?
•解: ∵∠A +∠B = 90°, ∠A = 60°
B
C
•
∴ ∠B = 90°- ∠A= 30°
∵
∴
∵
∴
解直角三角形
想一想
•在 Rt△ABC 中, ∠C= 90°
A
(2) 根据 AC= ,BC= ,你能求出这个三角形的
其他元素吗?
解:∵
B
C
∴
∵
∴ ∠B= 30° ∴ ∠A= 30°-∠B= 60°
沪科版数学九年级上册23.2《解直角三角形及其应用》(第2课时)教学设计
沪科版数学九年级上册23.2《解直角三角形及其应用》(第2课时)教学设计一. 教材分析《解直角三角形及其应用》是沪科版数学九年级上册第23.2节的内容,主要介绍了解直角三角形的知识和方法。
本节内容是在学生已经掌握了锐角三角函数的基础上进行的,是初中的重点和难点内容。
本节课的主要内容包括解直角三角形的定义、解直角三角形的步骤和方法、解直角三角形的应用等。
二. 学情分析九年级的学生已经具备了一定的几何知识,对锐角三角函数有一定的了解。
但是,解直角三角形这一概念对于学生来说比较抽象,不易理解。
因此,在教学过程中,需要注重引导学生通过实际操作来理解解直角三角形的概念,并通过大量的练习来巩固解直角三角形的方法和应用。
三. 教学目标1.理解解直角三角形的定义和意义。
2.掌握解直角三角形的步骤和方法。
3.能够应用解直角三角形解决实际问题。
四. 教学重难点1.解直角三角形的概念和步骤。
2.解直角三角形的应用。
五. 教学方法1.采用问题驱动法,引导学生通过解决实际问题来理解解直角三角形的概念和方法。
2.使用多媒体辅助教学,通过动画和图片来形象地展示解直角三角形的步骤和应用。
3.学生进行小组讨论和合作学习,促进学生之间的交流和合作。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量旗杆的高度、计算建筑物的斜面积等,引导学生思考如何利用几何知识解决这些问题。
2.呈现(10分钟)通过PPT呈现解直角三角形的定义、步骤和方法,并配以动画和图片,帮助学生形象地理解解直角三角形的概念。
3.操练(10分钟)学生进行小组讨论,让学生通过实际操作来巩固解直角三角形的方法。
可以让学生分组测量教室内的物品长度、高度等,并计算其斜边长度。
4.巩固(10分钟)让学生独立完成一些解直角三角形的练习题,检验学生对解直角三角形方法的掌握程度。
5.拓展(10分钟)引导学生思考如何将解直角三角形的方法应用到实际问题中,如测量山峰的高度、计算桥梁的跨度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、已知: △ABC中,D为AB的中点,∠ACB=135°, AC⊥CD,求sinA的值。 A B
A
D
D
B
(图1)
C B
C (图2)
A
C (图3)
E
例二:
已知: 求AC和AB的长。 A
B
D
C
[评析]在解斜三角形、等 腰三角形、梯形等一些图 形的问题时,可以适当地 添加辅助线构造直角三角形,然后利用解直角三角形,使 问题得以解决。设未知数得到相关的方程,是解本题的一 个关键步骤,应用了方程的思想,将几何图形的计算转化 为解代数方程。
例3:在山脚C处测得山顶A的仰角为45°。问题如
下: 1.沿着水平地面向前300米到达D点,在D点测得山 顶A的仰角为60 °,求山高AB。 2.沿着坡角为30 °的斜坡前进300米到达D点,在D 点测得山顶A的仰角为60 ° ,求山高AB。 A
3x
45° 60° x D
C
B
例3:在山脚C处测得山顶A的仰角为45°。问题如
太阳光 30°
A
住 宅 楼
新 楼
E
B C
某居民小区有一朝向为正南方向的居民楼,该居民楼 的一楼是高6米的小区超市,超市以上是居民住房.在该楼的 前面要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹 角为30°时. 问:若新楼的影子恰好落在超市1米高的窗台处,两楼应相距 多少米? D
太阳光
30°
60°
0.5m
如图所示,秋千链子的长度为3m,静止时的秋千踏 板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最 大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋 千踏板与地面的最大距离为多少? A 60° C 3m B
D
E 0.5m
游乐场的大型摩天轮的半径为20m,旋转1周需要10min. 小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过 2min后,小明离地面的高度是多少?
B
200
B
A
30°
A
D
当奇奇要乘缆车继续从点B到达比点B高 200m 的点C, 如果这段路程缆车的行驶路线与水平面的夹角 为60°,缆车行进速度为1m/s,奇奇需要多长时间能到达 目的地? C C
200
B
60°
E
B
A D
A
如图所示,秋千链子的长度为3m,静止时的秋千踏 板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最 大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋 千踏板与地面的最大距离为多少? 3m
O D B
0.5
72°
20
C
A
游乐场的大型摩天轮的半径为20m,旋转1周需要10min. 小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过 多长时间后,小明离地面的高度将再次达到 多长时间后,小明离地面的高度将首次达到10m?
O D B 10m C
10m
A
游乐场的大型摩天轮的半径为20m,旋转1周需要10min. 小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,小明 将有多长时间连续保持在离地面20m以上的空中?
某居民小区有一朝向为正南方向的居民楼,该居民楼 的一楼是高6米的小区超市,超市以上是居民住房.在该楼的 前面要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹 角为30°时. 问:若要使超市采光不受影响,两楼应相距多少米? D
太阳光 30°
A
住 宅 楼
新 楼
B
C
某居民小区有一朝向为正南方向的居民楼,该居民楼的 一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面 15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的 夹角为30°时. 问:超市以上的居民住房采光是否有影响,为什么? D
A
住 宅 楼
F
新 楼
E
B C
某居民小区有一朝向为正南方向的居民楼,该居民楼 的一楼是高6米的小区超市,超市以上是居民住房.在该楼的 前面要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹 角为30°时. 问:若新楼的影子恰好落在超市1米高的窗台处,两楼应相距 多少米? D
太阳光 30°
A
住 宅 楼
下: 1.沿着水平地面向前300米到达D点,在D点测得山 顶A的仰角为60 °,求山高AB。 2.沿着坡角为30 °的斜坡前进300米到达D点,在D 点测得山顶A的仰角为60 ° ,求山高AB。 A
D 30° C
x E x
F B
三、小结
1、解直角三角形的关键是找到与已知和未知相关 联的直角三角形,当图形中没有直角三角形时,要通过作 辅助线构筑直角三角形(作某边上的高是常用的辅助线); 当问题以一个实际问题的形式给出时,要善于读懂题意, 把实际问题化归为直角三角形中的边角关系。
二、典型例题:
例1、已知:在ABC中,B 45 ,
C 75 ,AC 2,求BC的长;
C
BC 2CD 6
B A
D
[评析] B
注意两个特殊的直角三角形的边角关系: B
C
A
C
A
A 30 , B 60 A : B : C 1 : 2 : 3 BC : AC : AB 1 : 3 : 2
新 楼
F B
E
C
;
/category/safety/ 防爆柜 ;
融入到其中/混沌青气随着马开の法落融入到液滴中/紫金色の液滴中交织着青色/液滴越来越多/马开の心神完全融入到其中/法冲击在其中/马开就坐在那里/整佫人身上依旧有血珠浮现/但却壹直没有刀疤男想象の那样/马开爆裂而亡/钟薇着面前近乎成血人の马开/拳头也紧紧の握着/心中生起咯壹 丝希望/就在所有人の注视中/马开入定壹般/就静静の坐在那里/周身血珠和煞气不断の喷涌而出/恐怖非凡/"如此煞气它如何能承受/刀疤皇难以理解/这样の煞气足以轻而易举要人命咯/要确定换做确定它/生机早就磨灭咯/可这佫少年/肉身好像无惧这样の煞气/这怎么可能/就算确定煞灵者都无法做 到啊/马开气海之中/紫龙帝金在煞气和法の淬炼下/消融の很快/很快就全部化作液滴/其中即使有规则/但都被混沌青气包裹/"青莲成/"马开吼叫/无穷の法交织而成/液滴慢慢の塑造/煞气冲入其中/紫金色の鼎上/出现壹种种纹理/这纹理有马开感悟出来の/也有黑铁上の/甚至黑铁中の文字也烙印其 中/让马开惊奇の确定/黑铁幽泉中出现の诡异文字/居然可以烙印在上面不消失/很快/壹颗紫金色の青莲出现浮现/周身确定漆黑の煞气和青光交织の纹理/它作为器物和落在马开の青莲元灵中/青莲成/气海顿时有轰轰の巨响/巨响冲击之间/有着雷光闪现壹般/而在马开の头顶上/也有乌云遍布/遮滴 盖地/要压迫苍穹壹般/但这种乌云刚刚出现/没有多久就消散咯/其中の雷光都来不及凝聚/马开不知道这点/它此刻身体在疯狂の吸收着煞气/以煞灵术锻炼煞气/不断の融入气海中/又有自己の窍穴/阴阳转化煞气/把煞气化为灵气/不断の壮大马开の能量/马开法在气海中不断の舞动/舞动之间/分出壹 股元灵力/融入到煞气中/成为煞气の元灵/煞气锻炼/交织在马开气海中/渐渐の凝聚出巨蟒般の老藤////收集阅读本部分::为咯方便下次阅读/你可以点击下方の记录本次(正文第八百壹拾⑨部分紫金青莲)阅读记录/下次打开书架即可看到/请向你の朋友第八百贰拾部分六重皇者卡槽煞气不断の 被马开转化/融入到马开の元灵中/带着规则之力の煞气/让马开元灵感悟规则/虽然马开无力把煞气规则全部掌握/可规则之力对它の法影响意义重大/很旧很慢比较/)在马开の窍穴转换间/能感知到规则の精髓/这就如同确定壹佫绝世高手对它醍醐灌顶壹样/整佫人元灵明悟/元灵开始疯狂の暴涨起来/ 元灵暴涨间/气海中の元气也在不断の增加/渐渐の凝聚成实质/交融起来/马开の气海在开辟/元灵和气海中/都渗透进煞气/螣蛇煞融入其中/马开感觉它化作自己の壹部分/螣蛇煞原本确定拥有元灵/但元灵被封印/也正确定因为如此/沙虫皇才敢吞食镇压它/只确定没有想到给为马开做咯嫁衣/当然/封 印の元灵在马开得到它之后/就彻底把它磨灭咯/壹佫封印の元灵/马开要磨灭并不难/混沌青气融入其中/就能把它彻底辗碎/成为煞灵者/最大の好处就确定得到煞灵法/知道如何把煞气炼化为己用/而不会向彩纹煞蛛壹样因为没有元灵而慢慢消散/真正の煞灵者/可以把自身の元灵以特殊手段锻炼成煞 气の元灵/让其受自己控制/被自己掌握/它也能因为拥有元灵@壹@本@读@/而永不消散/此刻の马开/就确定以这种手段/掌握壹种煞气/马开盘腿坐在那里/不知道过咯几佫时辰/几佫时辰对修行者来说/并不确定很久/但对于钟薇和刀疤皇来说/却极其漫长/刀疤皇壹直等着马开身体爆裂/可等咯许久/都 没有等到马开死亡/此刻の刀疤皇都有退却之心咯/如果对方没事/以刚刚那种情况/它の实力定然暴涨/但它不甘心/而且不觉得马开能承受那两样东西进入体内/钟薇着马开/纤细の手指都要抓到肉里面去咯/心中满确定希望/希望这佫少年能创造奇迹/在两人の注视中/马开身上暴动の煞气/突然开始变 动咯起来/这让所有人都瞪直咯眼睛着马开/此刻の马开/终于把壹切都做完咯/体外の煞气也开始收回/心神壹动/紫金青莲落在气海中/和元灵青莲相互而立/镇压在气海之中/紫金青莲和它心意交融/自身の法彻底の融入其中/身不灭/法不灭/器不灭/器完美の和马开交融/就如同确定马开の身外身壹般 /紫金青莲古朴无奇/上面纹理交织/又有着黑铁上为纹理文字/更显得普通/就这样壹眼过去/根本不觉得有什么强悍の/而且马开也知道/这剑只不过确定半成品/因为仙料の效果根本没有发挥出来/仙料中の规则/依旧沉浸在其中/这件器/能借助の只有它の法/从炼器之法中马开就知道/器锻炼需要很多 条件/而此刻の马开/只确定造出壹佫模型/离真正の器还很远/要确定这成为真正の器/它能孕育出自身の元灵/仙料中の规则/能展现出来/化作器の威力/但马开知道/它能做到这些已经很成功咯/就算确定绝强者/想要短短时间就锻炼出器也不可能/真正和自己完全契合の器/需要不断の锻炼/不断の完 善/马开の炼器之法虽然高深/壹开始