中考数学解直角三角形检测试题汇编
初三数学14 解直角三角形-2024年中考数学真题分项汇编(全国通用)(原卷版)
专题14 解直角三角形一.选择题1.(2022·广西贵港)如图,某数学兴趣小组测量一棵树CD 的高度,在点A 处测得树顶C 的仰角为45︒,在点B 处测得树顶C 的仰角为60︒,且A ,B ,D 三点在同一直线上,若16m AB =,则这棵树CD 的高度是( )A .8(3B .8(3C .6(3D .6(3+2.(2022·广西贵港)如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )A B C D .453.(2022·福建)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''' ,点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D .4.(2022·广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是()A.12sinα米B.12cosα米C.12sinα米D.12cosα米5.(2022·贵州毕节)如图,某地修建一座高5mBC=的天桥,已知天桥斜面AB的坡度为AB的长度为( )A.10m B.C.5m D.6.(2022·黑龙江牡丹江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A.(600-米B.250)米C.(350+米D.7.(2022·湖北十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC长为m,则大树AB的高为()A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m m αα-8.(2022·湖北荆州)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B C .13D .39.(2022·广西玉林)如图,从热气球A 看一栋楼底部C 的俯角是( )A .BAD ∠B .ACB ∠C .BAC ∠D .DAC∠10.(2022·辽宁)如图,在矩形ABCD 中,6,8AB BC ==,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ,作直线MN 分别交,AD BC 于点E ,F ,则AE 的长为( )A .74B .94C .154D .25411.(2022·福建)如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,27ABC ∠=︒,BC =44cm ,则高AD 约为( )(参考数据:sin 270.45︒≈,cos 270.89︒≈,tan 270.51︒≈)A .9.90cmB .11.22cmC .19.58cmD .22.44cm12.(2022·湖北武汉)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 二.填空题13.(2022·黑龙江绥化)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=sin15︒的值为_______.14.(2022·湖南)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD 的面积是100,小正方形EFGH 的面积是4,那么tan ADF ∠=__.15.(2022·辽宁)如图,1A 为射线ON 上一点,1B 为射线OM 上一点,1111160,3,1B AO OA B A ∠=︒==.以11B A 为边在其右侧作菱形1111D C B A ,且1111160,B A D C D ∠=︒与射线OM 交于点2B ,得112C B B ;延长21B D 交射线ON 于点2A ,以22B A 为边在其右侧作菱形2222A B C D ,且2222260,B A D C D ∠=︒与射线OM 交于点3B ,得223C B B ;延长32B D 交射线ON 于点3A ,以33B A 为边在其右侧作菱形3333A B C D ,且3333360,B A D C D ∠=︒与射线OM 交于点4B ,得334C B B △;…,按此规律进行下去,则202220222023C B B △的面积___________.16.(2022·山东青岛)如图,已知,,16,,ABC AB AC BC AD BC ABC ==⊥∠△的平分线交AD 于点E ,且4DE =.将C ∠沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号)①8BD = ②点E 到AC 的距离为3 ③103=EM ④EM AC ∥17.(2022·广西桂林)如图,某雕塑MN 位于河段OA 上,游客P 在步道上由点O 出发沿OB 方向行走.已知∠AOB =30°,MN =2OM =40m ,当观景视角∠MPN 最大时,游客P 行走的距离OP 是_____米.18.(2022·贵州黔东南)如图,校园内有一株枯死的大树AB ,距树12米处有一栋教学楼CD ,为了安全,学校决定砍伐该树,站在楼顶D 处,测得点B 的仰角为45°,点A 的俯角为30°,小青计算后得到如下结论:①18.8AB ≈米;②8.4CD ≈米;③若直接从点A 处砍伐,树干倒向教学楼CD 方向会对教学楼有影响;④若第一次在距点A 的8米处的树干上砍伐,不会对教学楼CD 造成危害.其中正确的是_______.(填写序号,1.7≈ 1.4≈)三.解答题19.(2022·辽宁锦州)某数学小组要测量学校路灯P M N --的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A 处测得路灯顶部P 的仰角α58α=︒从D 处测得路灯顶部P 的仰角β31β=︒测角仪到地面的距离1.6m AB DC ==两次测量时测角仪之间的水平距离2mBC =计算路灯顶部到地面的距离PE 约为多少米(结果精确到0.1米.参考数据;cos310.86,tan 310.60,cos580.53,tan58 1.60︒≈︒≈︒≈︒≈)20.(2022·山东临沂)如图是一座独塔双索结构的斜拉索大桥,主塔采用倒“Y”字形设计,某学习小组利用课余时间测量主塔顶端到桥面的距离.勘测记录如下表:活动内容测量主塔顶端到桥面的距离成员组长:××× 组员:××××××××××××测量工具测角仪,皮尺等测量示意图说明:左图为斜拉索桥的侧面示意图,点A 、C ,D ,B在同一条直线上,EF AB ⊥,点A ,C 分别与点B ,D关于直线EF 对称A ∠的大小28°AC 的长度84m 测量数据CD 的长度12m 请利用表中提供的信息,求主塔顶端E 到AB 的距离(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53︒≈).21.(2022·山东聊城)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B 点与古槐底D 点之间的地面H 点,竖直起飞到正上方45米E 点处时,测得塔AB 的顶端A 和古槐CD 的顶端C 的俯角分别为26.6°和76°(点B ,H ,D 三点在同一直线上).已知塔高为39米,塔基B 与树底D 的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈,sin 760.97︒≈,cos 760.24︒≈,tan 76 4.01︒≈)22.(2022·内蒙古通辽)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长度(结果保留小数点1.7≈).23.(2022·湖南)计算:0112cos 45( 3.14)1(2π-︒+-+-.24.(2022·湖南)阅读下列材料:在ABC 中,A ∠、B 、C ∠所对的边分别为a 、b 、c ,求证:sin sin a b A B=.证明:如图1,过点C 作CD AB ⊥于点D ,则:在Rt BCD ∆中, CD =a sin B在Rt ACD ∆中,sin CD b A =sin sin a B b A ∴=∴sin sin a b A B=根据上面的材料解决下列问题:(1)如图2,在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,求证:sin sin b c B C=;(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图3,规划中的一片三角形区域需美化,已知67A ∠=︒,53B ∠=︒,80AC =米,求这片区域的面积.(结果保留根号.参考数据:sin530.8︒≈,sin670.9)︒≈25.(2022·黑龙江大庆)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB .飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45︒和30︒.若飞机离地面的高度CD 为1000m ,且点D ,A ,B 在同一水平直线上,试求这条江的宽度AB (结果精确到1m 1.7321≈≈)26.(2022·湖南郴州)如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m )27.(2022·海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P 处,测得楼CD 楼顶D 处的俯角为45︒,测得楼AB 楼顶A 处的俯角为60︒.已知楼AB 和楼CD 之间的距离BC 为100米,楼AB 的高度为10米,从楼AB 的A 处测得楼CD 的D 处的仰角为30︒(点A 、B 、C 、D 、P 在同一平面内).(1)填空:APD ∠=___________度,ADC ∠=___________度;(2)求楼CD 的高度(结果保留根号);(3)求此时无人机距离地面BC 的高度.28.(2022·辽宁)如图,一艘货轮在海面上航行,准备要停靠到码头C ,货轮航行到A 处时,测得码头C 在北偏东60°方向上.为了躲避A ,C 之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B 处后,又沿着南偏东70°方向航行20海里到达码头C .求货轮从A 到B 航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).29.(2022·四川遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米.(参考数据:tan 50.2 1.20︒≈,tan 63.4 2.00︒≈,sin 50.20.77︒≈,sin 63.40.89︒≈)30.(2022·四川广安)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7531.(2022·内蒙古呼和浩特)“一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB 的高度,某数学兴趣小组在D 处用测角仪测得雕像顶部A 的仰角为30︒,测得底部B 的俯角为10︒.已知测角仪CD 与水平地面垂直且高度为1米,求雕像AB 的高.(用非特殊角的三角函数及根式表示即可)32.(2022·贵州铜仁)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C 、D 两处实地测量,如图所示.在C 处测得桥墩顶部A 处的仰角为60︒和桥墩底部B 处的俯角为40︒,在D 处测得桥墩顶部A 处的仰角为30︒,测得C 、D 两点之间的距离为80m ,直线AB 、CD 在同一平面内,请你用以上数据,计算桥墩AB 的高度.(结果保留整数,参考数据:sin 400.64,cos 400.77,tan 40 1.73︒≈︒≈︒≈≈)33.(2022·贵州遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB 是灯杆,CD 是灯管支架,灯管支架CD 与灯杆间的夹角60BDC ∠=︒.综合实践小组的同学想知道灯管支架CD 的长度,他们在地面的点E 处测得灯管支架底部D 的仰角为60°,在点F 处测得灯管支架顶部C 的仰角为30°,测得3AE =m ,8EF =m (A ,E ,F 在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD 的长(结果保留根号);(2)求灯管支架CD 的长度(结果精确到0.1m ,参考数据:1.73≈).34.(2022·山东烟台)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB =0.75m ,斜坡AC 的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED =2.55m .为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)(参考数据表)计算器按键顺序计算结果(已精确到0.001)11.3100.00314.7440.00535.(2022·湖北恩施)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈,≈,结果精确到1m).1.7336.(2022·吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)37.(2022·山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 2.75 1.73,,).︒≈︒≈︒≈≈38.(2022·河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC 方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与︒≈,拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin340.56︒≈,tan340.67︒≈).cos340.8339.(2022·四川宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A 处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1 1.7≈ 1.4≈)40.(2022·湖南岳阳)喜迎二十大,“龙舟故里”赛龙舟.丹丹在汩罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30 方向上,终点B位于点P AB=米,则点P到赛道AB的距离约为______米(结果保留整数,参考数据:的北偏东60︒方向上,200≈).1.73241.(2022·湖北荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°,已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:︒≈,tan320.625︒≈)︒≈,cos320.848sin320.53042.(2022·广西贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B 处,测量人员用高为1.2m 的测角器在与烟囱底部B 成一直线的C ,D 两处地面上,分别测得烟囱顶部A 的仰角60,30B C A B D A ''''∠=︒∠=︒,同时量得CD 为60m .问烟囱AB 的高度为多少米?(精确到0.1m 1.732≈≈)43.(2022·内蒙古包头)如图,AB 是底部B 不可到达的一座建筑物,A 为建筑物的最高点,测角仪器的高1.5DH CG ==米.某数学兴趣小组为测量建筑物AB 的高度,先在H 处用测角仪器测得建筑物顶端A 处的仰角ADE ∠为α,再向前走5米到达G 处,又测得建筑物顶端A 处的仰角ACE ∠为45︒,已知7tan ,9AB BH α=⊥,H ,G ,B 三点在同一水平线上,求建筑物AB 的高度.44.(2022·湖北武汉)小红同学在数学活动课中测量旗杆的高度,如图,己知测角仪的高度为1.58米,她在A点观测杆顶E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位) 1.732)45.(2022·江苏泰州)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1 m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)46.(2022·山东威海)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A ,B 两个观测点,然后选定对岸河边的一棵树记为点M .测得AB =50m ,∠MAB =22°,∠MBA =67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m ).参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125.47.(2022·黑龙江绥化)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)48.(2022·湖南长沙)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB 表示该小区一段长为20m 的斜坡,坡角30BAD BD AD ∠=︒⊥,于点D .为方便通行,在不改变斜坡高度的情况下,把坡角降为15︒.(1)求该斜坡的高度BD ;(2)求斜坡新起点C 与原起点A 之间的距离.(假设图中C ,A ,D 三点共线)49.(2022·广西梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB .如图,在平面内,点B ,C ,D 在同一直线上,AB CB ⊥垂足为点B ,52ACB ∠=︒,60ADB ∠=︒,200m CD = ,求AB 的高度.(精确到1m )(参考数据:sin520.79︒≈﹐cos520.62︒≈﹐tan 52 1.28︒≈ 1.73≈)50.(2022·湖北鄂州)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB ,(结果保留根号)51.(2022·四川广元)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.52.(2022·四川眉山)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30 ,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高. 1.41≈)≈ 1.73。
专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编
专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。
中考数学解直角三角形汇编
cos63.4 0.45, tan 63.4 2.00 , 2 1.41 , 3 1.73 )
4. (2019 甘肃中考 7 分)某数学课题研究小组针对兰州市住房窗户“如何设计遮阳篷”这课题进行了探究,过程如下:
问题提出: 如图 1 是某住户窗户上方安装的遮阳蓬,要求设计的遮阳篷既能最大限度地遮挡夏天 炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内. 方案设计: 如图 2,该数学课题研究小组通过调查研究设计了垂直于墙面 AC 的遮阳篷 CD 数据收集: 通过查阅相关资料和实际测量:兰州市一年中,夏至这一天的正午时刻,太阳光线 DA 与遮阳篷 CD 的夹角∠ADC 最大(∠ADC=°):冬至这一天的正午时刻,太阳光线 DB 与遮阳篷 CD 的夹角 ∠BDC 最小(∠BDC=°);窗户的高度 AB=2m 问题解决: 根据上述方案及数据,求遮阳篷 CD 的长. (结果精确到,参考数据:°≈ ,°≈, °≈
OP 为下水管道口直径,OB 为可绕轴 O 自由转动的阀 门,平时阀门被 管道中排出的水冲开,可排出城市污 水;当河水上涨时,阀门会因河水 的压迫而关闭,以 防止河水倒灌入城中,若阀门的直径OB=OP=100cm, OA 为检修时阀门开启的位置,且OA=OB. (1)直接写出阀门被下水道的水冲开与被河水关 闭过程中∠POB 的 取值范围; (2)为了观测水位,当下水道的水冲开阀门到达 OB 位置是,在点A 处测得俯角∠CAB=°,若此时点 B 恰 好与下水道的水平面齐平, 求此时下水道内水的深 度,(结果保留小数点后一位)
7.(2019 广西贺州中考 8)如图,在 A 处的正东方向有一港口 B.某巡逻艇从 A 处沿着北偏 东 60°方向巡逻,到达 C 处时接到命令,立刻在 C 处沿东南方向以 20 海里/小时的速度 行驶 3 小时到达港口 B.求 A,B 间的距离.(≈,≈,结果保留一位小数).
中考数学试卷分类汇编 解直角三角形(方位角问题)
中考数学 方位角1、(2013年潍坊市)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时答案:D .考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键. 2、(2013•株洲)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )3、(2013年河北)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN=40×2=80,又∠M=70°,∠N=40°,所以,∠MPN=70°,从而NP=NM=80,选D4、(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.∴CD=5、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=56、(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.7、(2013年广东湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船 的北偏西60ο的方向上,求此时渔政船距钓鱼岛A 的距离AB .1.732≈) 解:延长EB 至F ,则030CBF ∠=,00000180180603090ABC EBF CBF ∴∠=-∠-∠=--=,在Rt △ABC 中,060ACB ∠=,180402BC =⨯=,tan ,ABACB BC=∠tan 44 1.732 6.9AB BC ACB ∴=∠=≈⨯≈答:此时渔政船距钓鱼岛A 的距离AB 约为:6.9海里 8、(2013•荆门)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.∴CD=9、(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)BF=AB=1kmBC=km∴AD=xkmx=2﹣﹣∴BF=∴BC=km之间的距离为10、(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)中,(小时)(小时)11、(2013泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C 处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.12、(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1),=6,∴AC=6613、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)中,BD=AB•sin∠BAD=20×=10==20海里.14、(2013•资阳)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)=≈0.35,BD=12BH=12==的时间为:=15、(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M 的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.AC=∴BC==×60=12(千米∵AC=8∴CS=8(∴AS=8×∴BR=40•sin60°=20(∴AR=40×cos60°=40×=,,16、(2013年黄石)高考英语听力测试期间,需要杜绝考点周围的噪音。
专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)
专题15.解直角三角形一、单选题1.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+2.(2021·浙江金华市·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 3.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( ) A .1米 B .1.5米 C .2米 D .2.5米4.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)tan30︒的值等于( )A B .2 C .1 D .27.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米8.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .809.(2021·山东泰安市·中考真题)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米10.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m11.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π12.(2020·柳州市柳林中学中考真题)如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BC AB=( )A .35B .45CD .3413.(2020·山东济南市·中考真题)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE 的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m14.(2020·贵州黔南布依族苗族自治州·中考真题)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角ADE∠为55°,测角仪CD的高度为1米,其底端C与旗杆底端B 之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.6tan551x︒=-B.1tan556x-︒=C.1sin556x-︒=D.1cos556x-︒=15.(2020·辽宁大连市·中考真题)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60︒方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.C.D.m316.(2020·内蒙古赤峰市·中考真题)如图,A经过平面直角坐标系的原点O,交x轴于点B(-4,0),交y 轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.35B.34-C.34D.4517.(2020·江苏镇江市·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD =y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A .25B .12C .35D .71018.(2020·吉林长春市·中考真题)比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B ,塔身中心线AB 与垂直中心线AC 的夹角为A ∠,过点B 向垂直中心线AC 引垂线,垂足为点D .通过测量可得AB 、BD 、AD 的长度,利用测量所得的数据计算A ∠的三角函数值,进而可求A ∠的大小.下列关系式正确的是( )A .sin BD A AB = B .cos AB A AD =C .tan AD A BD = D .sin AD A AB=19.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34CD .1520.(2020·广东深圳市·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan 70︒米C .200sin70°米D . 200sin 70︒米 21.(2020·湖南娄底市·中考真题)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=⋅,阻力臂2cos L l β=⋅,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定22.(2020·江苏扬州市·中考真题)如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .13BC .23D .3223.(2020·湖南湘西土家族苗族自治州·中考真题)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x24.(2019·浙江中考真题)如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( ) A .BDC α∠=∠ B .tan BC m a =⋅ C .2sin m AO α= D .cos m BD a= 25.(2019·山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣C .米D .(36﹣)米26.(2019·四川绵阳市·中考真题)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15BCD .9527.(2019·重庆中考真题)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米三、填空题28.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.29.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =. (1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)30.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).31.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile (3 1.73≈,结果用四舍五入法精确到0.1).32.(2021·四川乐山市·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.33.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)34.(2021·浙江中考真题)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.35.(2021·浙江宁波市·中考真题)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.36.(2021·四川乐山市·中考真题)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.37.(2021·浙江杭州市·中考真题)sin30°的值为_____.38.(2020·贵州黔南布依族苗族自治州·中考真题)如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________. 39.(2020·辽宁阜新市·中考真题)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5m AB =,则这两棵树的水平距离约为_________m (结果精确到0.1m ,参考数据:sin200.342,cos200.940,tan200.364︒≈︒≈︒≈).40.(2020·湖北荆州市·中考真题)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90︒∠=C ,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km ,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了_______km .41.(2020·湖北省直辖县级行政单位·中考真题)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为________海里.42.(2020·湖北孝感市·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)三、解答题43.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).44.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)45.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)46.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=,tan152︒=.计算结果保留根号)47.(2021·四川资阳市·中考真题)资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为1:2.4i=的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45︒,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53︒(点A、B、C、D均在同一平面内)(参考数据:434sin53,cos53,tan53553︒≈︒≈︒≈)(1)求D处的竖直高度;(2)求基站塔AB的高.48.(2021·江苏宿迁市·中考真题)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,≈1.414≈=1.732).49.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ). (参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)50.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)51.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.52.(2021·四川达州市·中考真题)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35︒,CD 平行于水平线BM ,CD 长为AB 的高(结果保留1位小数).(sin350.57︒≈,cos350.82︒≈,tan350.70︒≈ 1.73≈)53.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为45︒,再从C 点出发沿斜坡走D 点,在点D 处测得树顶端A 的仰角为30︒,若斜坡CF 的坡比为1:3i =(点E C H ,,在同一水平线上).(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).54.(2021·四川广安市·中考真题)如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角15CDE ∠=︒,支架AC 长为1m ,75ACD ∠=︒,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.73≈)55.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.56.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)57.(2021·四川眉山市·中考真题)计算:(1143tan 602-⎛⎫-︒--+ ⎪⎝⎭58.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.59.(2021·四川泸州市·中考真题)如图,A ,B 是海面上位于东西方向的两个观测点,有一艘海轮在C 点处遇险发出求救信号,此时测得C 点位于观测点A 的北偏东45°方向上,同时位于观测点B 的北偏西60°方向上,且测得C 点与观测点A 的距离为海里.(1)求观测点B 与C 点之间的距离;(2)有一艘救援船位于观测点B 的正南方向且与观测点B 相距30海里的D 点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C 点需要的最少时间.60.(2021·四川遂宁市·中考真题)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B 、C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向, C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得 C 在北偏东60°方向.(1)求∠C 的度数;(2)求两颗银杏树B 、C 之间的距离(结果保留根号).61.(2021·四川自贡市·中考真题)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan370.75︒≈,tan53 1.33︒≈ 1.73≈)62.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平线AE 垂直,AB=154cm ,∠A=30°,另一根辅助支架DE=78cm ,∠E=60°.(1)求CD 的长度.(结果保留根号)(2)求OD 的长度.(结≈1.414)63.(2020·山东日照市·中考真题)阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R .根据锐角三角函数的定义:sin A =a c ,sin B =b c ,可得sin a A =sin b B =c =2R ,即:sin a A =sin bB =sin c C=2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:sin aAsin bB sin c C(用>、=或<连接),并说明理由. 事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C的仰角为45°,求古塔CD 的高度(结果保留小数点后一位).,sin15°64.(2020·辽宁铁岭市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大A B C M在同一平面内)(1)求大桥主架在桥桥主架的水平距离CM为60米,且AB垂直于桥面.(点,,,面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)50.(2020·辽宁盘锦市·中考真题)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:︒=︒≈︒≈)(选择一sin670.92,cos670.39,tan67 2.36︒≈︒=︒=.sin220.37,cos220.93,tan220.40种方法解答即可)65.(2020·云南昆明市·中考真题)(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=20.43dR(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)66.(2020·山东烟台市·中考真题)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)67.(2020·海南中考真题)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图, 隧道AB 在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P 处测得点A 的俯角为30,继续飞行1500米到达点Q 处,测得点B 的俯角为45︒.(1)填空:A ∠=__________度,B ∠=_________度;(2)求隧道AB 的长度(结果精确到1米).( 1.732≈≈)68.(2020·山西中考真题)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.69.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)70.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB '与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)71.(2019·上海中考真题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米. (1)求点D 到BC 的距离;(2)求E 、E '两点的距离.72.(2019·江西中考真题)图1是一台实物投影仪,图2是它的示意图,折线B A O --表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: 6.8cm AO =,8cm CD =,30cm AB =,35cm BC =.(结果精确到0.1)(1)如图2,70ABC ︒∠=,//BC OE .①填空:BAO ∠=_________°;②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求ABC ∠的大小.(参考数据:sin 700.94︒≈,cos200.94︒≈,sin36.80.60︒≈,cos53.20.60︒≈)。
中考数学解直角三角形试题汇编
中考数学解直角三角形试题分类汇编含答案一、选择题1、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )350m(B )100 m(C )150m (D )3100m解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos30°=ADAB,所以,AD =503,CD =200-50=150,在Rt △ADC 中, AC =22AD CD +=22(503)150+=1003,故选(D )。
2、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )AA.82米B.163米C.52米D.70米3、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B (A )30海里 (B )40海里 (C )50海里 (D )60海里4、(2007江苏盐城)利用计算器求sin30°时,依次按键则计算器上显示的结果是( )AA .0.5B .0.707C .0.866D .15、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )150m(B )350m(C )100 m(D )3100m6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米图145︒30︒BAD C(注:数据3 1.732≈,2 1.414≈供计算时选用)B二、填空题1、(2007山东济宁)计算45tan 30cos 60sin -的值是 。
“解直角三角形”中考试题选编(含答案)
“解直角三角形”中考试题选编1、(2008广东)如图,梯形ABCD 是拦水坝的横断面图,(图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)2、(2008乌鲁木齐)如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河岸b 上的A 处测得30DAB ∠=,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).3、(2008青岛)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5. 请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)A DB E i =1:3C B ED C F a b A4、(2008吉林)如图所示,张伯伯利用假日在某钓鱼场钓鱼.风平浪静时,鱼漂露出水面部分6cm AB =,微风吹来时,假设铅锤P 不动,鱼漂移动了一段距离BC ,且顶端恰好与水面平齐(即PA PC =),水平线l 与OC 夹角8α=(点A 在OC 上).请求出铅锤P 处的水深h .(参考数据:2721sin8cos8tan87≈,≈,≈)5、(2008荆州)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,1.7≈≈)l C 鱼漂 铅锤 P A Bα O h6(2008辽宁)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离()CD 是1.5m ,看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上).请求出旗杆MN 的高度.1.41.7,结果保留整数)7、气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB .台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?MN BA DC30° 45°C60458、(2007山东威海)如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈1.7329、(2007苏州)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l .6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°. (1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)P 北403010、(2005 哈尔滨)如图,拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m .为了提高水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的12i =∶变成1 2.5i '=∶,(有关数据在图上已注明).求加高后的坝底HD 的长为多少?11、沪杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD BC ∥,斜坡DC的坡度为1i ,在其一侧加宽7.75DF =米,点E 、 F 分别在BC 、AD 的延长线上,斜 坡FE 的坡度为221()i i i <.设路基的高DM h =米,拓宽后横断面一侧增加的四边形DCEF 的面积为2S 米.(1) 已知211.7i =∶,3h =米,求ME 的长;(2) 不同路段的1i 、2i 、h 是不同的,请你设计一个求面积S 的公式(用含1i 、2i 、h 的代数式表示).(通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度.坡度常用字线i 表示,即hi l=通常写成1m ∶的形式HAN G F D12(2008黑龙江哈尔滨)如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处.求此时轮船所在的B 处与灯塔P 的距离(结果保留根号). 13、(2008天津市卷)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)14、(2008内蒙赤峰)如图,在海岸边有一港口O .已知:小岛A 在港口O 北偏东30的方向,小岛B 在小岛A 正南方向,60OA =海里,OB = (1)小岛B 在港口O 的什么方向? (2)求两小岛A B ,的距离.CAB15、(2008山东滨州)如图,AC 是某市坏城路的一段,AE 、BF 、CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C 经测量花卉世界D 位于点A 的北偏东45°方向,点B 的北偏东30°方向上,AB=2km ,∠DAC=15°. (1)求∠ADB 的大小;(2)求B 、D 之间的距离;(3)求C 、D 之间的距离.300150450环城路和平路文化路中山路FBEDCA16、(2008山东济南)某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.11.731.41)AD B北东17、(2008山东烟台)某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3 米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C 的深度.(结果精确到0.11.41 1.73≈≈)18、(08年江苏常州)如图,港口B位于港口O正西方向120海里外,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏东30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?19、(2008年江苏南通)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?20、(2008年江苏泰州)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米。
中考数学复习《解直角三角形的实际应用 》专项检测卷(附带答案)
中考数学复习《解直角三角形的实际应用》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图,胡爷爷家在点A处,清晨胡爷爷要到他家正西方向的公园B处进行晨练,结束后再去菜市场P处买菜.已知菜市场P在胡爷爷家A的北偏西60°方向上,在公园B的北偏东45°方向上,AB间的直线距离为1500米,求菜市场P到AB的垂直距离.(结果精确到0.1米,参考数据:3≈1.73)第1题图2.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来.已知CM=3 m,CO=5 m,DO=3 m,∠AOD=70°,汽车从A 处前行多少米,才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)第2题图3.如图,在数学综合实践活动课上,九年级(1)班数学兴趣小组的同学们利用所学的数学知识测量建筑物CD的遮光板DE的长度,先测得建筑物CD的高为10 m,然后在A处测得建筑物CD的遮光板外沿E的仰角为30°,向正前方走9 m到达B处后测得遮光板内沿D的仰角为45°,求遮光板DE的长.(点A、B、C在一条直线上,DE∥AC,结果保留根号)第3题图4.小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A 处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B、C之间的距离(结果保留根号).第4题图5.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走210米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1∶3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).第5题图6.拓展小组研制的智能操作机器人,如图①,水平操作台为l,底座AB固定,高AB为50 cm,连杆BC长度为70 cm,手臂CD长度为60 cm,点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图②,求手臂端点D离操作台l的高度DE的长(精确到1 cm,参考数据:sin53°≈0.8,cos53°≈0.6);(2)物品在操作台l上,距离底座A端110 cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.第6题图创新题7.白塔市位于呼和浩特市东临17公里的白塔村,原为辽代丰州古城内一座佛教寺院中的藏经塔.某数学活动小组在学习完“锐角三角函数”之后,决定测量白塔的高度.为了减小误差,该数学活动小组在测量仰角的度数及两个测量点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整):活动课题测量白塔的高度活动工具测角仪和皮尺测量示意图第7题图说明:如图,他们先在点C处测得古塔顶端A的仰角为∠ACB,再在点D处测得古塔顶端A的仰角为∠ADB,且B、C、D在同一条直线上测量数据测量项目第一次第二次平均值∠ACB40.5°39.5°40°∠ADB30.2°29.8°30°C、D之间的距离29.6 m29.4 m……(1)两次测量C、D之间的距离的平均值是_____________________________________m;(2)根据以上测量结果,请你帮助该数学活动小组计算白塔AB的高度.(结果精确到1 m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,3≈1.73)参考答案1.解:如解图,过点P作PD⊥AB于点D第1题解图则∠PDB =∠PDA =90°由题意,得∠BPD =45°,∠APD =60°,AB =1500 设菜市场P 到AB 的垂直距离PD 为x ∴AD =PD ·tan60°=3x ,BD =PD =x ∴AB =AD +BD =3x +x =1500 解得x ≈547.5.答:菜市场P 到AB 的垂直距离约为547.5米. 2. 解:∵CM =3,CO =5,∠CMO =90° ∴在Rt △CMO 中,MO =52-32=4. ∵∠BOD =∠COM ,∠BDO =∠CMO =90° ∴△BDO ∽△CMO ∴BD CM =DO MO即BD 3=34,∴BD =2.25. 在Rt △ADO 中,tan ∠AOD =ADOD∴tan70°=AD3∴AD ≈3×2.75=8.25∴AB =AD -BD =8.25-2.25=6(m ).答:汽车从A 处前行约6 m ,才能发现C 处的儿童.3. 解:如解图,过点E 作EF ⊥AC 于点F ,可得四边形EFCD 是矩形第3题解图由题意得∠EAC =30°,∠DBC =45°,AB =9,CD =10∴EF =CD =10,DE =CF .在Rt △AEF 中,AF =EFtan30°=103在Rt △BCD 中,BC =CDtan45°=10∴CF =AC -AF =AB +BC -AF =19-103 ∴DE =CF =19-103答:遮光板DE 的长为(19-103)m . 4. 解:(1)由题意知,BE ∥AD ,∠EBD =60° ∴∠BDA =∠EBD =60°.∵∠BDA =∠C +∠CAD ,∠CAD =30° ∴∠C =∠BDA -∠CAD =30°; (2)如解图,过点B 作BG ⊥AD 于点G . ∴∠AGB =∠BGD =90°.在Rt △AGB 中,AB =20,∠BAG =45° ∴AG =BG =20×sin45°=10 2. 在Rt △BGD 中,∠BDA =60° ∴BD =BG sin60°=2063,DG =BG tan60°=1063.∵∠C =∠CAD =30°∴CD =AD =AG +DG =102+1063∴BC =BD +CD =102+106=10(2+6)米. 答:两棵银杏树B 、C 之间的距离为10(2+6)米.第4题解图5. 解:(1)如解图,过点D 作DH ⊥CE 于点H 在Rt △CDH 中,i =DH CH =13∴CH =3DH .∵CH2+DH2=CD2∴(3DH)2+DH2=(210)2解得DH=2或-2(舍去)∴王刚同学从点C到点D的过程中上升的高度为2米;(2)如解图,延长AD交CE于点G由题意,得∠AGC=30°∴GH=DHtan∠AGC=233=2 3.∵CH=3DH=6∴GC=GH+CH=23+6.在Rt△BAC中,∠ACB=45°∴AB=BC∴tan∠AGB=ABBG=ABBC+CG=ABAB+23+6=33解得AB=6+43答:大树AB的高度为(6+43)米.第5题解图6.解:(1)如解图①,过点C作CP⊥AE于点P,过点B作BQ⊥CP于点Q第6题解图①由题意,得∠ABC=143°,∠ABQ=90°∴∠CBQ=53°∴在Rt△BCQ中,CQ=BC·sin53°≈70×0.8=56.∵CD∥l,PQ=AB=50∴DE=CP=CQ+PQ=56+50=106答:手臂端点D离操作台l的高度DE长为106 cm;(2)能.理由如下:如解图②,当点B,C,D共线时第6题解图②BD=60+70=130,AB=50在Rt△ABD中,AD=BD2-AB2=1302-502=120.∵120>110∴手臂端点D能碰到点M.7.解:(1)29.5;(2)由题意,设白塔AB的高度为x m在Rt△ABC中,∠ACB=40°,tan∠ACB=xBC∴BC=xtan40°.在Rt△ABD中,∠ADB=30°,tan∠ADB=x BD∴BD=x tan30°.∵BD-BC=29.5∴xtan30°-xtan40°=29.5解得x≈55.答:白塔AB的高度约为55 m.。
精选-中考数学真题分类汇编第三期专题28解直角三角形试题含解析
解直角三角形一.选择题1.(2018·重庆市B卷)(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·吉林长春·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·江苏常州·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1.(2018·湖北江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182.(2018·湖北荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·辽宁省葫芦岛市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD 为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,DB=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·湖北咸宁·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·辽宁大连·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1.(2018·广西贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2.(2018·广西梧州·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3.(2018·湖北十堰·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·云南省昆明·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·浙江省台州·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·辽宁省盘锦市)两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·辽宁省抚顺市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8.(2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9.(2018•广安•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10.(2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴DE=CD﹣CE=5.04﹣3.33=1.71≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·江苏镇江·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则CN=xm,在Rt△AFM中,MF=,在Rt△CNH中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·江苏常州·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。
历年初三数学中考解直角三角形练习题及答案
在Rt∆ADC中tanD=tan150=
评注: 利用含300角的直角三角形巧妙地构造出含150角的直角三角形,从而求出150角的三角函数值。利用此图还可以求出750的各三角函数值。
强化训练
一、填空题:
⒈ 在∆ABC中,若AC= 。BC= AB=3,则cosA=____________.
∴AB=4BD
在Rt∆ABD中,AD=
∴ sinB=
cosB=
tanB=
cotB=
[例4]计算
分析:本题主要是考察特殊角的三角函数值和分母有理化知识
解:原式= .
= =
=
[例5] 要求tan300的值.可构造如图19-5所示的直角三角形进行计算,作Rt∆ABC,使C=900,斜边AB=2,直角边AC=1,那么BC= ∠ABC=300,所以 tan300=
在此图的基础上,通过添加适当的辅助线,可求出tan150的值。请你就此图添加辅助线,并求出tan150的值。
分析:只需找出一个150的角,并放入一个可求出各边长的直角三角形中。
解:延长CB至D,使BD=AB。连结AD,如图19-6
A A
2 1
2 1
300
B C D B C
图19-5 图19-6
则BD=2,D=150
6、用计算器计算:sin56050/+cos39030/-tan46010/=_______
分析会用计算器求任意一个锐角的三角函数值,然后进行计算。原式=0.5671.
7、已知方程4x2-2(m+1)x+m=0的两根恰为一个直角三角形两锐角的余弦,则m=______
分析设这个直角三角形的两个锐角分别为α、β,且α+β=900。cosβ=sinα.由一元二次方程根与系数的关系得:cosα+cosβ= ,cosαcosβ=
【精品】初中数学中考专题《解直角三角形》真题汇编
专题16 解直角三角形真题汇编1总分数 100分时长:不限题型单选题填空题简答题综合题题量 2 3 15 4总分 4 6 60 441(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 83(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:si n15°=cos75°≈0.259).4(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.7(3分)(2017株洲中考)计算:.8(3分)(2017益阳中考)计算:.9(3分)(2017岳阳中考)计算:10(3分)(2017邵阳中考)计算:.11(3分)(2017永州中考)计算:.12(3分)(2017娄底中考)计算:.13(3分)(2017怀化中考)计算:. 14(3分)(2017张家界中考)计算:.15(3分)(2017湘西土家族苗族自治州中考)计算:16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.专题16 解直角三角形真题汇编1参考答案与试题解析1(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.【解析】本题考查坐标网格中的三角函数计算,作AB⊥x轴于点B,由勾股定理得OA=5,D 在Rt△AOB中,利用正弦函数的定义得出,故选C.【答案】C2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 8【解析】本题考查实数的运算.分别选取第一行一列,第二行二列,第三行四列,第四行三列的四个“数”,求其和为.设第三行三列,第四行二列的四个“数”,求其和为,解得x=7,故选C.【答案】C3(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:sin15°=cos75°≈0.259).【解析】本题考查圆周率的近似值的计算.当n=12时,如图所示,由题意可知,作OC⊥AB,则∠AOC=15°.在直角三角形AOC中,,所以AC≈0.259r,AB=2AC≈0.518r,L=AB≈6.216r,所以.【答案】3.114(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.【解析】本题考查正方形的性质、等边三角形的性质、三角形面积的计算.∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,又BC=BP,∠CBP=30°,∴AB=BP,∠ABP=60°.∴是等边三角形,∴,∠DAE=30°.,AE=2DE=2×2=4,,.过点P作PF⊥CD,垂足为F,则∠EPF=∠DAE=30°,,∴.【答案】5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.【解析】本题考查利用特殊的角解直角三角形,在Rt△ALR中,由∠ARL=30°,AR=40 km,得AL=20 km,,所以.【答案】6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.【解析】【名师指导】本题考查绝对值、零次幂、负指数幂的运算法则、特殊角的正弦值.根据去绝对值符号法则、零次幂、负指数幂的运算法则、特殊角的正弦值分别计算求解.【答案】解:原式=3+1-2×+3=6.7(3分)(2017株洲中考)计算:.【解析】【名师指导】本题考查有理数运算的化简与求值.【答案】解:原式.(其中:)8(3分)(2017益阳中考)计算:.【解析】【名师指导】本题考查绝对值、特殊角的三角函数值、零指数幂的计算.【答案】解:原式==-5.9(3分)(2017岳阳中考)计算:【解析】【名师指导】本题考查实数的相关计算、三角函数、负指数、零指数、绝对值. 【答案】解:原式===2.10(3分)(2017邵阳中考)计算:.【解析】【名师指导】本题考查二次根式、特殊角三角函数值的计算、负指数的计算. 【答案】解:原式===-211(3分)(2017永州中考)计算:.【解析】【名师指导】本题考查二次根式、零指数幂、特殊角的三角函数值的混合运算. 根据运算法则计算即可.【答案】解:==-1.12(3分)(2017娄底中考)计算:.【解析】【名师指导】本题考查实数的综合运算.先化简二次根式,计算负指数幂,求特殊角的三角函数值,计算零指数幂,然后进行综合运算,求出算式的结果即可.【答案】解:原式===-2.13(3分)(2017怀化中考)计算:.【解析】【名师指导】本题考查实数的计算,涉及绝对值、零指数、负指数、特殊角的三角函数值及立方根的运算.【答案】解:原式==-2.14(3分)(2017张家界中考)计算:.【解析】【名师指导】本题考查整数指数幂、三角函数值、绝对值的意义.【答案】解:原式==2.15(3分)(2017湘西土家族苗族自治州中考)计算:【解析】【名师指导】本题考查实数的相关计算、二次根式、指数幂、三角函数.【答案】解:原式=.(其中)16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解析】(1)本题考查解直角三角形的应用.根据方位角的概念得到三角形中角的度数,进而求解;(2)根据含特殊角的直角三角形的边的关系求解相关线段的长度,进而求解.【答案】(1)解:依题意得,∠PAB=30°,∠PBE=60°,∵∠PBE=∠PAB+∠APB,∴∠APB=∠PBE-∠PAB=60°-30°=30°.(2)由(1)知∠PAB=∠APB=30°,∴PB=AB=50(海里),如图,过点P作PC⊥AB于点C,在中,PC=PB·sin60°=(海里).∵>25,∴海监船继续向正东方向航行是安全的.17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)【解析】【名师指导】本题考查利用解直角三角形解决实际问题.根据已知条件可得等腰三角形ABC,从而得AB=BC,再在直角三角形中利用锐角三角函数求解或设CD为x米,锐角三角函数表示出BD,找到等量关系,建立方程求解.【答案】解法一:∵∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴AB=BC=10.4.又∵∠CDA=90°∴CD=BC·sin∠CBD=10.4×sin60°=10.4×≈9.0064,9.006 4+1.5≈10.5答:来雁塔高约10.5米.解法二:设CD为x米.∵∠CBD=60°,∠CDA=90°,∴.又∵∠CAB=30°,∴.∴10.4+x,x≈9.0064,9.006 4+1.5≈10.5(米).答:来雁塔高约10.5米.18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5.所以这架无人机的长度为5米.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于将实际问题转化到直角三角形中求解.【答案】解:过点P作PH⊥AC垂足为点H,由题意可知∠EAP=60°,∠FBP=30°,∴PAB=30°,∠PBH=60°,∴∠APB=30°,∴AB=PB=120.在,∵,∴,∵103.80>100,∴要修建的这条高速铁路不会穿越森林保护区.20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于添加辅助线构造直角三角形求解.【答案】解:过点E作EP⊥BC,交CB的延长线于点P,过点A作AQ⊥FP于点Q,在Rt△ABC中,,∴AB=CB·tan75°≈0.60×3.732≈2.239,∴四边形ABPQ是矩形,∴PQ≈2.239,又∵HE⊥FP,AQ⊥FP’∴,∴∠FAQ=∠FHE=60°,在中,,∴,∴DQ=FQ-FD≈2.165-1.35=0.815,∴DP=DQ+QP≈0.815+2.239=3.054≈3.05.答:篮筐D到地面的距离约为3.05米.21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).【解析】【名师指导】本题考查解直角三角形的应用.作垂线构造直角三角形,根据锐角三角函数求出相关线段的长度,再根据线段间的数量关系求出仙女峰的高度.【答案】解:过点B作AC的垂线,交AC的延长线于点D.设BD=x米,在中,,在中,,∵AD-CD=AC,∴,解得x=580.答:仙女峰的高度是580米.22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【解析】【名师指导】本题考查应用解直角三角形的知识解决实际问题.【答案】解:在中,∵∠DBC=45°,∴BC=DC=2.3米,在中,AC=BC·tan70.5°≈6.5米,则AD=AC-DC≈6.5-2.3=4.2(米).23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).【解析】(1)【名师指导】本题考查解直角三角形.利用在直角三角形中,30°角所对的直角边等于斜边的一半求解;(2)根据特殊角的正弦值求解相关线段的长度,进而得到结论.【答案】(1)解:在中,∵∠ABE=90°,∠BAE=30°,AE=80,∴∠AEB=60°,.答:旋转木马E处到出口B处的距离为40米.(2)在中,∵∠C=90°,∴∠CED=∠AEB=60°∵,CD=34,∴(或者).∴DB=DE+BE=40+40=80(慊蛘逥B=DE+BE=40+39=79).答:海洋球D处到出口B处的距离为80(或者79)米(其他方法参照给分).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5. 所以这架无人机的长度为5米.。
中考数学真题专项汇编解析—解直角三角形
中考数学真题专项汇编解析—解直角三角形一.选择题1.(2022·天津)tan 45︒的值等于( )A .2B .1C D 【答案】B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∠∠B =90°-45°=45°,∠∠ABC 是等腰三角形,AC =BC , ∠根据正切定义,tan 1BCA AC∠==, ∠∠A =45°,∠tan 451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键. 2.(2022·四川乐山)如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A.B .3 C D .2【答案】C【分析】先根据锐角三角函数值求出AC =5,AB =过点D作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB == 过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=,∠11,,23DE DE AE BE == ∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE = ∠5,AE BE += ∠352AE AE += ∠2,AE = ∠1DE =, 在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +== ∠CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.3.(2022·浙江杭州)如图,已知∠ABC 内接于半径为1的∠O ,∠BAC =θ(θ是锐角),则∠ABC 的面积的最大值为( )A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+ 【答案】D【分析】要使∠ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大.【详解】解:当∠ABC 的高AD 经过圆的圆心时,此时∠ABC 的面积最大, 如图所示,∠AD ∠BC ,∠BC =2BD ,∠BOD =∠BAC =θ, 在Rt ∠BOD 中,sin θ=1BD BD OB =,cos θ=1OD ODOB =, ∠BD =sin θ,OD =cos θ,∠BC =2BD =2sin θ,AD =AO +OD =1+cos θ, ∠S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ).故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.4.(2022·云南)如图,已知AB 是∠O 的直径,CD 是OO 的弦,AB ∠CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .1312【答案】B【分析】先根据垂径定理求出12CE CD =,再根据余弦的定义进行解答即可. 【详解】解:∠AB 是∠O 的直径,AB ∠CD . ∠112,902CE CD OEC ==∠=︒,OC =12AB =13, ∠12cos 13CE OCE OC ∠==.故选:B . 【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.5.(2022·陕西)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )B.C.D.A.【答案】D【分析】先解直角ABC求出AD,再在直角ABD△中应用勾股定理即可求出AB.【详解】解:∠26CD=,BD CD==,∠3∠直角ADC中,tan2∠=,∠tan326C=⋅∠=⨯=,AD CD C∠直角ABD△中,由勾股定理可得,AB D.【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.6.(2022·浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知∠=,则房顶A离地面EF的高度为()6mBC=,ABCαA .(43sin )m α+B .(43tan )m α+C .34m sin α⎛⎫+ ⎪⎝⎭ D .34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【分析】过点A 作AD ∠BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案. 【详解】解:过点A 作AD ∠BC 于D ,如图所示:∠它是一个轴对称图形,∠132BD DC BC ===m ,tan 3AD ADBD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( )A.3B.83CD.52【答案】B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,E是BC的中点,∠BE=2,又∠1cos4B=,∠BH=1,即H是BE的中点,∠AB=AE=4,又∠AF是∠DAE的角平分线,AD∠FG,∠∠F AG=∠AFG,即AG=FG,又∠PF∠AD,AP∠DF,∠PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,∠PF∠BC,∠∠AGP=∠AEB=∠B,∠cos∠AGP=12PGAG=22xx-=14,解得x=83;故选B.【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2022·四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A B C.2D5【答案】B【分析】把AB向上平移一个单位到DE,连接CE,则DE∠AB,由勾股定理逆定理可以证明∠DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.【详解】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∠AB,∠∠APC=∠EDC.在∠DCE中,有DE=,EC=DC==5∠222EC DC DE+=+==,52025∠DCE∠=︒,∆是直角三角形,且90DCE∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.9.(2022·湖北随州)如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A .tan tan a αβ- B .tan tan a βα- C .tan tan tan tan a αβαβ- D .tan tan tan tan a αββα-【答案】D【分析】设AB =x ,利用正切值表示出BC 和BD 的长,CD =BC -BD ,从而列出等式,解得x 即可.【详解】设AB =x ,由题意知,∠ACB =α,∠ADB =β,∠tan x BD β=,tan xBC α=, ∠CD =BC -BD ,∠tan tan x x a αβ-=,∠tan tan tan tan a x αββα=-,即AB =tan tan tan tan a αββα-,故选:D . 【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键. 二.填空题10.(2022·山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【分析】根据题意可得AD ∠CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∠CP , ∠∠DPC =30°,∠∠ADB =30°,∠0.8m AD =,∠tan 0.80.46m AB AD ADB =⨯∠=≈, ∠AF =2m ,CF =1m ,∠BC =AF +CF -AB =2.54m , ∠ 2.544.4m tan tan 30BC CP BPC ︒==≈∠,即CP 的长度为4.4m .故答案为:4.4m.【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.11.(2022·天津)如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(∠)线段EF 的长等于___________;(∠)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻..度.的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.【答案】 见解析【分析】(∠)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(∠)由图可找到点Q ,EQ BQ EF BF ====EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(∠)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ;(∠)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF ====由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠=,QBA FBC ∴∠=∠, AOG COH ∠=∠,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF ∴∠=∠()Rt BQM Rt BFN ASA ∴≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.12.(2022·江苏扬州)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为__________.【详解】解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c ⎛⎫+= ⎪⎝⎭,求出ac =a c =,∴在Rt ABC 中:in s a c A == 【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC 中,sin A A ∠=的对边斜边 ,cos A A ∠=的邻边斜边,tan A A A ∠=∠的对边的邻边. 13.(2022·湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,10m AE =,30BDG ∠=︒,60BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则大雁雕塑BC 的高度约为_________m .(结果精确到0.1m .参考数据:1.732)【答案】10.2【分析】先根据三角形外角求得30∠=∠=,再根据三角形的等角对等边DBF BDG得出BF=DF=AE=10m,再解直角三角形求得BG即可求解.【详解】解:∠30∠=︒,BFGBDG∠=︒且60∠30∠=∠-∠=︒,DBF BFG BDG∠∠=∠DBF BDG,即10mBF DF AE===.∠=⋅=≈,BG BF︒sin608.66m∠8.66 1.510.2mBC BG GC BG DA=+=+=+≈,故答案为:10.2m.【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键.14.(2022·浙江嘉兴)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC 30,90,A ABC 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或35 4【分析】过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN =3x,由∠ACN∠∠CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得∠NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt∠CNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN=BN•tan∠CBN=3x,∠∠CAD,∠ECD都是等腰直角三角形,∠CA=CD,EC=ED,∠EDC=45°,∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,在∠ACN和∠CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,∠∠ACN∠∠CDM(AAS),∠AN=CM=10+x,CN=DM=3x,∠∠CMD=∠CED=90°,∠点C、M、D、E四点共圆,∠∠CME=∠CDE=45°,∠∠ENM=90°,∠∠NME 是等腰直角三角形,∠NE =NM =CM -CN =10-2x ,Rt ∠ANC 中,ACRt ∠ECD 中,CD =AC ,CE =2CD , Rt ∠CNE 中,CE 2=CN 2+NE 2,∠()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54,∠BE =BN +NE =x +10-2x =10-x ,∠BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键. 16.(2022·山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.+【答案】(20mm,求出x=10,【分析】过D作DF∠BC于F,DH∠AB于H,设DF=x m,CF则BH=DF=,CF=,DH=BF,再求出AH DH,即可求解.【详解】解:过D作DF∠BC于F,DH∠AB于H,∠DH=BF,BH=DF,∠斜坡的斜面坡度i=1∠:DF CF=m,设DF=x m,CF∠CD==,220x∠x=10,∠BH=DF=10m,CF=,∠DH=BF=(m),∠∠ADH =30°,∠AH10=+m ), ∠AB =AH +BH =20103(m ),故答案为:(20m +.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.17.(2022·江苏连云港)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45【分析】如图所示,过点C 作CE ∠AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ∠AB 于E ,由题意得43CE AE ==,,∠5AC , ∠4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.18.(2022·四川凉山)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ∠CD 于点C ,BD ∠CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为_______.【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.19.(2022·四川凉山)如图,在边长为1的正方形网格中,∠O 是∠ABC 的外接圆,点A ,B ,O 在格点上,则cos∠ACB 的值是________.【分析】取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ∠AB ,则OB==cos∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∠OD ∠AB ,∠∠ODB =90°,∠OB==cos∠DOB =OD OB ==, ∠OA =OB ,∠∠BOD =12∠AOB ,∠∠ACB =12∠AOB ,∠∠ACB =∠DOB ,∠cos∠ACB = cos∠DOB【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB 中点D ,得Rt ∠ODB 是解题的关键.20.(2022·山东滨州)在Rt ∠ABC 中,∠C =90°,AC =5,BC =12,则sin A =______. 【答案】1213【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∠∠C =90°,AC =5,BC =12,∠AB ,∠sin A =1213BC AB =. 故答案为:1213. 【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB 的长是解题的关键.21.(2022·湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,结果保留整数).【答案】16【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案. 【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∠90AED BED ABC DCB ∠=∠=∠=∠=︒,∠四边形BCDE 是矩形,∠从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∠6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∠9045EAD ADE ∠=︒-∠=︒,∠EAD ADE ∠=∠,∠DE AE x ==,∠BC DE x ==,∠6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈, ∠6tan tan 58 1.60AB x ACB BC x +∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∠()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.22.(2022·四川广元)如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【分析】由题意易得CD CE DE ===,则当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,然后可得D C N E C M ''''≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∠2CD CE DE ===, 如图,当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,∠∠DAM =90°,∠四边形NAMC ′是矩形,∠90NC M '∠=︒,∠90D C N NC E NC E E C M ''''''''∠+∠=∠+∠=︒,∠D C N E C M ''''∠=∠,∠,90D C E C D NC E MC ''''''''=∠=∠=︒,∠D C N E C M ''''≌,∠C N C M ''=,∠C N AB '⊥,C M AF '⊥,∠AC '平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∠当C D AB ''⊥时,此时四边形C D AE '''是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∠当点D 滑动到点A 时,点C 运动的路径长为((21224cm ⨯-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.23.(2022·湖北宜昌)如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是_____.【答案】85︒【分析】过C作CF DA∥交AB于F,根据方位角的定义,结合平行线性质即可求解.【详解】解:C岛在A岛的北偏东50︒方向,50∴∠=︒,DACC岛在B岛的北偏西35︒方向,35∴∠=︒,CBE过C作CF DA∥交AB于F,如图所示:∴∥∥,DA CF EB50,35∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三.解答题24.(2022·江苏宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保冒根号).20)m.【答案】(【分析】过点A作AE∠CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt∠ADE中,求出AE的长,在Rt∠ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE∠CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∠四边形ABDE是矩形,∠DE=AB=20m,在Rt ∠ADE 中,∠AED =90°,∠DAE =30°,DE =20m ,∠tan∠DAE =DE AE ,∠20tan tan 30DE AE DAE ===∠︒, 在Rt ∠ACE 中,∠AEC =90°,∠CAE =45°,∠∠ACE 是等腰直角三角形, ∠CE AE =m ,∠CD =CE +DE =(20)m , ∠信号塔的高度为(20)m .【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.25.(2022·天津)如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan350.70tan 420.90︒≈︒≈,.【答案】这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=, ∠tan AC PA APC =∠. 在Rt PAB 中,tan AB APB PA ∠=, ∠tan AB PA APB =∠. ∠AC AB BC =+, ∠tan tan AB BC AB APC APB+=∠∠. ∠()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.26.(2022·浙江湖州)如图,已知在Rt ∠ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∠∠C =Rt ∠,AB =5,BC =3,∠4AC =.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.27.(2022·新疆)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45︒,看这栋楼底部的俯角为37︒,已知两楼之间的水平距离为30m ,求这栋楼的高度.(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)【答案】这栋楼的高度为:52.5米【分析】如图,过A 作AE ∠BC 于E ,在Rt ∠AEB 和Rt ∠AEC 中,根据正切的概念分别求出BE 、EC ,计算即可.【详解】解:过A 作AE BC ⊥于E ,∠90AEB AEC ∠=∠=︒由依题意得:45,37,30EAB CAE CD AE ∠=︒∠=︒==,Rt AEB 和Rt AEC 中, ∠tan BAE BE AE ∠=,tan CE CAE AE∠= ∠tan 4530130BE AE =⨯︒=⨯=,tan37300.7522.5CE AE =⨯︒≈⨯=∠3022.552.5BC BE CE =+=+=∠这栋楼的高度为:52.5米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.28.(2022·湖南邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.1.414 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【分析】如图,过C作CD∠AB于点D,根据方向角的定义及余角的性质求出∠BAC=30°,∠CBD=45°,解Rt∠ACD和Rt∠BCD,求出CD即可.【详解】解:过点C作CD∠AB,垂足为D.如图所示:根据题意可知∠BAC=90°−60°=30°,∠DBC=90°-45°=45°,AB=30×1=30(km),在Rt∠BCD中,∠CDB=90°,∠DBC=45°,tan∠DBC=CDBD ,即CDBD=1∠CD=BD设BD=CD=x km,在Rt∠ACD中,∠CDA=90°,∠DAC=30°,∠tan∠DAC =CD AD ,即30x x =+解得x,∠40.98km>40km∠这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.29.(2022·湖南怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.≈1.41)【答案】不穿过,理由见解析【分析】先作AD ∠BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ∠BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x ,在Rt ∠ACD 中,∠ACD=45°,∠∠CAD=45°,∠AD=CD =x .在Rt ∠ABD 中,tan 30AD BD ︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.30.(2022·四川成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】约为19cm【分析】在Rt ∠ACO 中,根据正弦函数可求OA =20cm ,在Rt ∠A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt ∠ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∠OA =10201sin 302OC,在Rt ∠A DO '中,18072A OC A OB ,20OA OA '==cm , ∠sin72200.9519A D OA cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.31.(2022·四川泸州)如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10 nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C位于西北方向且与点B 相距nmile.求B,D 间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【分析】如图,过点D作DE∠AB于点E,根据题意可得,∠BAC=∠ABC=45°,nmile.再根据锐角三角函数即可求出B,∠BAD=60°,AD=10 nmile,BCD间的距离.【详解】解:如图,过点D作DE∠AB于点E,nmile.根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC在Rt∠ABC中,AC=BC=16(nmile),∠AB在Rt∠ADE中,AD=10 nmile,∠EAD=60°,∠DE=AD,AE=1AD=5 (nmile),2∠BE=AB-AE=11(nmile),∠BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.32.(2022·浙江台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC 的长.【详解】解:在Rt ∠ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∠BC =AB ∠sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.33.(2022·湖南湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DH AH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,1.732)【答案】72cm【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解.【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒1cos 60102AE AB AB ∴=︒⨯==,BE ==,,AB AC BAD CAD AD AD =∠=∠= ADC ADB ∴≌90BDC ∠=︒45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+ 0.618DHAH ≈0.618DH DH AD∴≈+ 解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈答:最少需要准备72cm 长的伞柄【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.34.(2022·湖南常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)【答案】70【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形, HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.35.(2022·湖北宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据∠ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB=4,OB=1.64,利用∠ABO的余弦函数值,即可求出∠ABO的大小,从而得到答案.(1)∠5372α︒≤≤︒当72α=︒时,AO取最大值,在Rt AOB中,sinAO ABOAB∠=,∠sin4sin7240.95 3.8AO AB ABO=∠=︒≈⨯=,所以梯子顶端A与地面的距离的最大值3.8米.(2)在Rt AOB中,cosBO ABOAB∠=,cos 1.6440.41ABO∠=÷=,cos660.41︒≈,∠66ABO∠=︒,∠5372α︒≤≤︒,∠人能安全使用这架梯子.【点睛】本题考查三角函数的应用,属于中考常见考题,利用图形中的直角三角形,建立三角函数模型是解题的关键.36.(2022·湖南株洲)如图1所示,某登山运动爱好者由山坡∠的山顶点A处沿线段AC至山谷点C处,再从点C处沿线段CB至山坡∠的山顶点B处.如图2所示,将直线l视为水平面,山坡∠的坡角30ACM∠=︒,其高度AM为0.6千米,山坡∠的坡度1:1i=,BN l⊥于N,且CN。
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
2023年中考数学专题20 解直角三角形(原卷版)
专题20 解直角三角形一、锐角三角函数的定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,正弦:sin A=∠的对边=斜边A ac;余弦:cos A=∠的邻边=斜边A bc;正切:tan A=∠的对边=邻边A ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.二、特殊角的三角函数值αsinαcosαtanα30°12323345°2222160°32123三、解直角三角形1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠A+∠B=90°;3)边与角关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab;4)sin2A+cos2A=1.3.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.四、解直角三角形的应用1).仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.2).坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=hl.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.3).方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.5.解直角三角形实际应用的一般步骤1)弄清题中名词、术语,根据题意画出图形,建立数学模型;2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;3)选择合适的边角关系式,使运算简便、准确;4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.考向一求三角函数的值1.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为()A.B.C.D.2.△ABC在网格中的位置如图,则cos B的值为()A.B.C.D.23.如图,△ABC的顶点都是正方形网格中的格点,则tan∠ACB等于.4.如图,在正方形网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOC的正弦值是.考向二利用特殊角的三角函数值求值5.tan30°的值等于()A.B.C.D.6.在△ABC中,∠A=105°,∠B=45°,tan C的值是()A.B.C.1D.7.已知α是锐角,sin(α+15°)=,则cosα=.8.若,那么△ABC的形状是.考向三解直角三角形的应用—坡角(堤坝)问题9.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是()A.5米B.6米C.6.5米D.7米10.小明沿着坡度为1:2的山坡向上走了1 000m,则他升高了()A.200m B.500m C.500m D.1 000m11.如图是一斜坡的横截面,某人沿着坡度为i=1:的斜坡从点A向上走了5米到点B处,则此时人离水平面的垂直高度为.12.如图,小李从西边山脚的点A走了300m后到达山顶C,已知∠A=30°,东边山坡的坡度tan B=.(1)求山顶C离地面的高度.(2)求B、C的距离.考向四解直角三角形的应用—仰角俯角问题13.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15D.15﹣514.如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角α为30°,看这栋楼底部C处的俯角β为60°,热气球与楼的水平距离AD为90米,则这栋楼的高度BC为()A.米B.90米C.120米D.225 米15.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为米.16.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为260米,在坡顶A处的同一水平面有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)考向五解直角三角形的应用—方位角问题17.如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为()千米.A.4B.4C.2D.618.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.3019.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为海里.20.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的A处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向B移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响.(1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈,cos42°≈,tan42°≈)考向六解直角三角形的应用—其他问题21.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点D到OB的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x22.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6米C.3米D.2米23.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片平方米(结果保留π).24.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).25.图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为70°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=60厘米,DC=40厘米,求点D'到BC的距离.(参考数据:sin70°≈0.94,cos70°≈0.34)一.选择题1.cos30°的值是()A.B.C.D.2.在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.3B.C.D.3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.2+B.2C.3+D.34.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.5.如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()海里.A.15+15B.30+30C.45+15D.606.如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A.55m B.60m C.65m D.70m二.填空题7.计算:=.8.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为.9.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是50m,则甲楼的高AB是m(结果保留根号).10.如图,一根竖直的木杆在离地面2.1m处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为m.(结果保留一位小数)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)三.解答题11.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.12.如图,AB、CD为两个建筑物,建筑物AB的高度为100米,从建筑物AB的顶点A处测得建筑物CD 的顶部C处的俯角∠EAC为30°,测得建筑物CD的底部D处的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).13.如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时10千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?14.如图,在一段观景斜坡DE上种有若干棵树,小明测得斜坡上铅直的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°);(2)若这段斜坡用厚度为15cm的长方体台阶来铺,需要铺几级台阶?(最后一个高不足15cm时,按一个台阶计算)(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)。
中考数学模拟试卷精选汇编:解直角三角形附答案
解直角三角形一.选择题1. (2015·北京市朝阳区·一模)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ为A.40 m B.60 m C.120 m D.180 m答案:C二.填空题1.(2015·江苏江阴青阳片·期中)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为____▲____米。
(用含有a、b的式子表示)第1题答案:b+3a2. (2015·屯溪五中·3月月考)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为__________答案:2倍根号23.(2015•山东潍坊广文中学、文华国际学校•一模)如图2,菱形ABCD 的周长为20cm ,且tan ∠ABD =34,则菱形ABCD 的面积为 cm 2. 答案:24;4.(2015·邗江区·初三适应性训练)如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为 ▲ .答案:552 第2题 5.(2015·重点高中提前招生数学练习)在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】26.(2015·重点高中提前招生数学练习)已知∠A 为锐角,且4sin 2A -4sinAcosA +cos 2A =0,则tanA = . 【答案】12【解析】由题意得(2sinA -cosA )2=0,∴2sinA -cosA =0,∴sinA cosA =12. ∴tanA =sinA cosA =12.7(2015·网上阅卷适应性测试)小聪有一块含有30°角的直角三角板,他想只利用量角器来测量较短直角边的长度,于是他采用如图的方法,小聪发现点A 处的三角板读数为12cm ,点B 处的量角器的读数为74°,由此可知三角板的较短直角边的长度约为 ▲ cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75).答案:98.(2015·山东省东营区实验学校一模)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出___个这样的停车位.(2≈1.4)答案:17三.解答题1.(2015·江苏江阴长泾片·期中)2015年4月18日潍坊国际风筝节拉开了帷幕,这天小敏同学正在公园广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小亮同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)在(1)的条件下,若在A处背向旗杆又测得风筝的仰角为75°,绳子在空中视为一条线段,求绳子AC为多少米?(结果保留根号)答案:解:(1)在Rt△BPQ中,PQ=10米,∠B=30°,则BQ= tan60°×PQ=103, ……………2分又在Rt△APQ中,∠PAB=45°,则AQ=tan45°×PQ=10,即:AB=(103+10)(米)……………4分(2)过A作AE⊥BC于E,在Rt△ABE中,∠B=30°,AB=103+10,∴AE=sin30°×AB=12(103+10)=53+5,……………6分∵∠CAD=75°,∠B=30°∴∠C=45°,……………7分在Rt△CAE中,sin45°=AEAC,图8∴AC =2(53+5)=(56+52)(米) ……………9分2.(2015·江苏江阴青阳片·期中)如图,某广场一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且CB =5米.(1)求钢缆CD 的长度;(精确到0.1米)(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?(参考数据:tan 400=0.84, sin 400=0.64, cos 400=34)答案:(1)在Rt ⊿BCD 中∵cos 40°=CDBC…………1分 ∴CD =40cos BC =5÷43=320…………3分 (2)∵∠EAF =180°-120°=60° 在Rt ⊿AEF 中 cos 60°=AEAF ∴AF =AE ·cos 60°=1.6·21=0.8…………5分 在Rt ⊿BCD 中 tan 40°=BCBDBD =BC ·tan 40°=5·0.84=4.2…………7分 BF =4.2+2+0.8=7…………8分3.(2015·江苏江阴夏港中学·期中)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.(1)求点C 与点A 的距离(精确到1km ) (2)确定点C 相对于点A 的方向 (参考数据:2≈1.414,3≈1.732)答案:解法1:(1)如答图2,过点A 作AD ⊥BC ,垂足为D .············1分由图得,∠ABC =︒=︒−︒601575.·······························2分在Rt △ABD 中,∵∠ABC =60°,AB =100,∴BD =50,AD =350····················3分 ∵BC =200,∴CD=BC -BD =150.·································4分 ∴在Rt △ABD 中,AC =22CD AD +=3100≈173(km ). 答:点C 与点A 的距离约为173km .························5分(2)在△ABC 中,∵2222)3100(100+=+AC AB =40 000,22200=BC =40 000. ∴222BC AC AB =+,∴︒=∠90BAC .···················7分 ∴︒=︒−︒=∠−∠=∠751590BAF BAC CAF 答:点C 位于点A 的南偏东75°方向.················8分 解法2:(1)如答图3,取BC 的中点D ,连接AD.············ 1分由图得,∠ABC =︒=︒−︒601575···················2分 ∵D 为BC 的中点,BC =200,∴CD=BD =100. 在△ABD 中,∵BD =100,AB =100,∠ABC =60°, ∴△ADB 为等边三角形,··························3分 ∴AD=BD=CD ,∠ADB =60°,∴∠DAC =∠DCA =30°. ∴∠BAC =∠BAD +∠DAC =90°,···················4分 ∴AC =)(km 173310022≈=−AB BC 答:点C 与点A 的距离约为173km .·······················5分 (2)由图得,︒=︒−︒=∠−∠=∠751590BAF BAC CAF答:点C 位于点A 的南偏东75°方向.······························8分4.(2015·江苏江阴要塞片·一模)如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E 到地面的距离EF .经测量,支架的立柱BC 与地面垂直,即∠BCA =90°,且BC =1.5m ,点F 、A 、C 在同一条水平线上,斜杆AB 与水平线AC 的夹角∠BAC =30°,支撑杆DE ⊥AB 于点D ,该支架的边BE 与AB 的夹角∠EBD =60°,又测得AD =1m .请你求出该支架的边BE 及顶端E 到地面的距离EF 的长度.答案:解:在Rt △ABC 中,∵∠BAC =30°,BC =1.5m ,∴AB=3m,∵AD=1m,∴BD=2m,·········1分在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°﹣60°=30°,∴EB=2BD=2×2=4m,·········3分过B作BH⊥EF于点H,∴四边形BCFH为矩形,HF=BC= 1.5m,∠HBA=∠BAC=30°,········4分又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD﹣∠HBD=30°,∴EH=EB=2m,∴EF=EH+HF=2+1.5=3.5(m).········7分答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.5. (2015·屯溪五中·3月月考)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(结果都保留根号)(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.答案:解:(1)如图,过点P 作PD ⊥AB 于点D .设PD =xkm . 在Rt △PBD 中,∠BDP =90°,∠PBD =90°﹣45°=45°, ∴BD =PD =xkm .在Rt △P AD 中,∠ADP =90°,∠P AD =90°﹣60°=30°, ∴AD =PD =xkm .∵BD +AD =AB , ∴x +x =2, x =﹣1,∴点P 到海岸线l 的距离为(﹣1)km ;(2)如图,过点B 作BF ⊥AC 于点F . 在Rt △ABF 中,∠AFB =90°,∠BAF =30°, ∴BF =AB =1km .在△ABC 中,∠C =180°﹣∠BAC ﹣∠ABC =45°. 在Rt △BCF 中,∠BFC =90°,∠C =45°, ∴BC =BF =km ,∴点C 与点B 之间的距离为km .6. (2015·安徽省蚌埠市经济开发·二摸)合肥新桥国际机场出港大厅有一幅“黄山胜景”的壁画.聪聪站在距壁画水平距离15米的地面,自A 点看壁画上部D 的仰角为045,看壁画下部C的仰角为030,求壁画CD 的高度.3 1.7≈2 1.4≈,精确到十分位)答案:过A 点作AB ⊥DC 于点B ,则AB =15,在Rt ABD ∆中,045DAB ∠=,∴BD =AB =15 ……… 3分 在Rt ABC ∆中,030BAC ∠=, ∴03tan 3015533BC AB ==⨯= ………… 6分 ∴CD =BD -BC =15-53155 1.7 6.5≈−⨯=答:壁画CD 的高度为6.5米 …………… 8分7. (2015·安庆·一摸)为维护南海主权,我海军舰艇加强对南海海域的巡航.2015年4月10日上午9时,我海巡001号舰艇在观察点A 处观测到其正东方向802海里处有一灯塔S ,该舰艇沿南偏东450的方向航行,11时到达观察点B ,测得灯塔S 位于其北偏西150方向,求该舰艇的巡航速度?(结果保留整数)(参考数据:73.13,41.12≈≈)答案:解:过点S 作SC ⊥AB ,C 为垂足.在Rt △ACS 中,∠CAS =450,AS =802,∴SC =AC =80;………3分在Rt △BCS 中,∠CBC =450-150=300,∴BC =803,AB =AC +BC =80+803;………6分∴该舰艇的巡航速度是(80+803)÷(11-9)=40+403≈109(海里/时)…………8分8. (2015·屯溪五中·3月月考)如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =∠BAC ,求tan ∠BPC 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形一、选择题1.(2016福州,9,3分)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.2.(2016·云南)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.3.(2016·四川巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度是坡角的正切值,可得答案.【解答】解:斜坡AB的坡度是tan10°=,故B正确;故选:B.4.(2016山东省聊城市,3分)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.5.(2016.山东省泰安市,3分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PNsin∠PNA=60×0.6947≈41.68(海里)故选:B.【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.6.(2016·江苏苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.7.(2016•辽宁沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.4【考点】解直角三角形.【分析】根据cosB=及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.二、填空题1.(2016·黑龙江大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.【考点】解直角三角形的应用-方向角问题.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.2.(2016·湖北十堰)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为(30+10)米.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10.∴河的宽度为(30+10)米.【点评】本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.3.(2016年浙江省宁波市)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.4.(2016福州,18,4分)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.5.(2016·上海)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.6.(2016大连,15,3分)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.三、解答题1. (2016·湖北鄂州)(本题满分9分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。