中考数学分类 解直角三角形

合集下载

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)

2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)

解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。

中考数学试卷分类汇编 解直角三角形(方位角问题)

中考数学试卷分类汇编 解直角三角形(方位角问题)

中考数学 方位角1、(2013年潍坊市)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时答案:D .考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键. 2、(2013•株洲)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )3、(2013年河北)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN=40×2=80,又∠M=70°,∠N=40°,所以,∠MPN=70°,从而NP=NM=80,选D4、(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.∴CD=5、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=56、(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.7、(2013年广东湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船 的北偏西60ο的方向上,求此时渔政船距钓鱼岛A 的距离AB .1.732≈) 解:延长EB 至F ,则030CBF ∠=,00000180180603090ABC EBF CBF ∴∠=-∠-∠=--=,在Rt △ABC 中,060ACB ∠=,180402BC =⨯=,tan ,ABACB BC=∠tan 44 1.732 6.9AB BC ACB ∴=∠=≈⨯≈答:此时渔政船距钓鱼岛A 的距离AB 约为:6.9海里 8、(2013•荆门)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.∴CD=9、(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)BF=AB=1kmBC=km∴AD=xkmx=2﹣﹣∴BF=∴BC=km之间的距离为10、(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)中,(小时)(小时)11、(2013泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C 处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.12、(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1),=6,∴AC=6613、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)中,BD=AB•sin∠BAD=20×=10==20海里.14、(2013•资阳)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)=≈0.35,BD=12BH=12==的时间为:=15、(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M 的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.AC=∴BC==×60=12(千米∵AC=8∴CS=8(∴AS=8×∴BR=40•sin60°=20(∴AR=40×cos60°=40×=,,16、(2013年黄石)高考英语听力测试期间,需要杜绝考点周围的噪音。

中考数学分类(含答案)解直角三角形的应用

中考数学分类(含答案)解直角三角形的应用

中考数学分类(含答案)解直角三角形应用一、选择题 1.(2010辽宁丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树 的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m 二、填空题1.(2010山东济宁)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .【答案】tan tan m n αα-⋅2.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈732.13≈)【答案】82.0 3.(2010江西)如图,从点C 测得树的顶角为33º,BC =20米,则树高AB = 米(用计算器计算,结果精确到0.1米)(第15题)13【答案】0.4.(2010 湖北孝感)如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是海里(不作近似计算)。

6【答案】35.(2010广东深圳)如图5,某渔船在海面上朝正方方向匀速航行,在A处观测到灯塔M 在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置。

【答案】156.(2010广东佛山)如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的政务时刻阳光刚好不能射入窗户,则AB的长度是米。

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

解直角三角形知识点总结

解直角三角形知识点总结

解直⾓三⾓形知识点总结 解直⾓三⾓形是中考数学的⼀⼤考点,但相关的知识点其实并不是⼗分的难,下⾯解直⾓三⾓形知识点总结是⼩编为⼤家带来的,希望对⼤家有所帮助。

解直⾓三⾓形知识点总结 【知识梳理】 1.解直⾓三⾓形的依据(1)⾓的关系:两个锐⾓互余;(2)边的关系:勾股定理;(3)边⾓关系:锐⾓三⾓函数 2.解直⾓三⾓形的基本类型及解法:(1)已知斜边和⼀个锐⾓解直⾓三⾓形;(2)已知⼀条直⾓边和⼀个锐⾓解直⾓三⾓形;(3)已知两边解直⾓三⾓形. 3.解直⾓三⾓形的应⽤:关键是把实际问题转化为数学问题来解决 【课前预习】 1、在Rt△ABC中,∠C=90°,根据已知量,填出下列表中的未知量: a b c ∠A ∠B 6 30° 10 45° 2、所⽰,在△ABC中,∠A=30°,,AC= ,则AB= . 变式:若已知AB,如何求AC? 3、在离⼤楼15m的地⾯上看⼤楼顶部仰⾓65°,则⼤楼⾼约 m. (精确到1m, ) 4、铁路路基横断⾯为⼀个等腰梯形,若腰的坡度为1:,顶宽为3⽶,路基⾼为4⽶, 则坡⾓= °,腰AD= ,路基的下底CD= . 5、王英同学从A地沿北偏西60°⽅向⾛100m到B地,再从B地向正南⽅向⾛200m到C地,此时王英同学离A地 m. 【解题指导】 例1 在Rt△ ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB. (1)求tanB;(2)若DE=1,求CE的长. 例2 34-4所⽰,某居民⼩区有⼀朝向为正南⽅向的居民楼,该居民楼的⼀楼是⾼6m的⼩区超市,超市以上是居民住房,在该楼的前⾯15m处要盖⼀栋⾼20m的新楼.当冬季正午的阳光与⽔平线的夹⾓为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若新楼的影⼦刚好部落在居民楼上,则两楼应相距多少⽶? (结果保留整数,参考数据: ) 例3某校初三课外活动⼩组,在测量树⾼的⼀次活动中,34-6所⽰,测得树底部中⼼A到斜坡底C的⽔平距离为8.8m.在阳光下某⼀时刻测得1m的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡⽐,求树⾼AB.(结果保留整数,参考数据 ) 例4 ⼀副直⾓三⾓板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长. 【巩固练习】 1、某坡⾯的坡度为1: ,则坡⾓是_______度. 2、已知⼀斜坡的坡度为1:4,⽔平距离为20m,则该斜坡的垂直⾼度为 . 3、河堤的横断⾯1所⽰,堤⾼BC是5m,迎⽔斜坡AB长13m,那么斜坡AB的坡度等于 . 4、菱形在平⾯直⾓坐标系中的位置2所⽰, ,则点的坐标为 . 5、先锋村准备在坡⾓为的⼭坡上栽树,要求相邻两树之间的⽔平距离为5⽶,那么这两树在坡⾯上的距离AB为 . 6、⼀巡逻艇航⾏⾄海⾯处时,得知其正北⽅向上处⼀渔船发⽣故障.已知港⼝处在处的北偏西⽅向上,距处20海⾥; 处在A处的北偏东⽅向上,求之间的距离(结果精确到0.1海⾥) 【课后作业】 ⼀、必做题: 1、4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为 cm. 2、某⼈沿着有⼀定坡度的坡⾯前进了10⽶,此时他与⽔平地⾯的垂直距离为⽶,则这个坡⾯的坡度为__________. 3、已知5,在△ABC中,∠A=30°,tanB= ,BC= ,则AB的长为__ ___. 4、6,将以A为直⾓顶点的等腰直⾓三⾓形ABC沿直线BC平移得到△,使点与C重合,连结,则的值为 . 5、7所⽰,在⼀次夏令营活动中,⼩亮从位于A点的营地出发,沿北偏东60°⽅向⾛了5km到达B 地,然后再沿北偏西30°⽅向⾛了若⼲千⽶到达C地,测得A地在C地南偏西30°⽅向,则A、C两地的距离为( ) (A) (B) (C) (D) 6、8,⼩明要测量河内岛B到河边公路l的距离,在A测得,在C测得,⽶,则岛B到公路l的距离为( )⽶. (A)25 (B) (C) (D) 7、9所⽰,⼀艘轮船由海平⾯上A地出发向南偏西40°的⽅向⾏驶40海⾥到达B地,再由B地向北偏西10°的⽅向⾏驶40海⾥到达C地,则A、C两地相距( ). (A)30海⾥ (B)40海⾥ (C)50海⾥ (D)60海⾥ 8、是⼀⽔库⼤坝横断⾯的⼀部分,坝⾼h=6m,迎⽔斜坡AB=10m,斜坡的坡⾓为α,则tanα的值为( ) (A) (B) (C) (D) 9、11,A,B是公路l(l为东西⾛向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°⽅向上. (1)求出A,B两村之间的距离; (2)为⽅便村民出⾏,计划在公路边新建⼀个公共汽车站P,要求该站到两村的距离相等,请⽤尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法). 10、是⼀个半圆形桥洞截⾯⽰意图,圆⼼为O,直径AB是河底线,弦CD是⽔位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE = .(1)求半径OD;(2)根据需要,⽔⾯要以每⼩时0.5 m的速度下降,则经过多长时间才能将⽔排⼲? 11、所⽰,A、B两城市相距100km. 现计划在这两座城市间修筑⼀条⾼速公路(即线段AB),经测量,森林保护中⼼P在A城市的北偏东30°和B城市的北偏西45°的⽅向上. 已知森林保护区的范围在以P 点为圆⼼,50km为半径的圆形区域内. 请问:计划修筑的这条⾼速公路会不会穿越保护区?为什么?(参考数据:, ) 12、,斜坡AC的坡度(坡⽐)为1: ,AC=10⽶.坡顶有⼀旗杆BC,旗杆顶端B点与A点有⼀条彩带AB 相连,AB=14⽶.试求旗杆BC的⾼度. ⼆、选做题: 13、,某货船以每⼩时20海⾥的速度将⼀批重要物资由A处运往正西⽅向的B处,经过16⼩时的航⾏到达.此时,接到⽓象部门的通知,⼀台风中⼼正以40海⾥每⼩时的速度由A向北偏西60o⽅向移动,距台风中⼼200海⾥的圆形区域(包括边界)均会受到影响.⑴ B处是否会受到台风的影响?请说明理由.⑵为避免受到台风的影响,该船应在到达后多少⼩时内卸完货物? 14、所⽰,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P. (1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长; (2)若CE=2,BD=BC,求∠BPD的正切值; (3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式.。

中考数学黄金知识点系列专题37解直角三角形

中考数学黄金知识点系列专题37解直角三角形

专题37 解直角三角形 聚焦考点☆温习理解一、锐角三角函数的定义在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b正弦:sinA =∠A 的对边斜边=ac余弦:cos A =∠A 的邻边斜边=bc余切:tanA =∠A 的对边∠A的邻边=ab二、特殊角的三角函数值三、解直角三角形解直角三角形的常用关系在Rt △ABC 中,∠C =90°,则:(1)三边关系:a 2+b 2=c 2;(2)两锐角关系:∠A+∠B=90°;(3)边与角关系:sinA =cos B =ac ,cos A =sinB =b c ,tanA =ab ;(4)sin 2A +cos 2A =1四、解直角三角形的应用常用知识1. 仰角和俯角:仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角2.坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=________坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα坡度越大,α角越大,坡面________3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角名师点睛☆典例分类考点典例一、锐角三角函数的定义【例1】如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是()A.51312B.125C.3135D.2133【答案】B.在Rt △PBF 和Rt △OAF 中,FAO FBPOFA PFB ∠=∠∠=∠⎧⎨⎩,∴Rt △PBF ∽Rt △OAF . ∴2332AFAO r FB BP r ===,∴AF=23FB ,在Rt △FBP 中,∵PF 2-PB 2=FB 2∴(PA+AF )2-PB 2=FB 2 ∴(32r+23BF )2-(32r )2=BF 2,解得BF=185r ,∴tan∠APB=18125352rBFPB r==,故选:B.考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.【点睛】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.【举一反三】(2016山东淄博第9题)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【答案】D.考点:相似三角形的判定及性质;勾股定理.考点典例二、锐角三角函数的计算【例2】(凉山州)在△ABC中,若|cosA-12|+(1-tanB)2=0,则∠C的度数是()A .45°B .60°C .75°D .105°【答案】考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【点睛】利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、开方、二次根式相结合.此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.【举一反三】(2016湖南永州第11题)下列式子错误的是( )A .cos40°=sin50° B.tan15°•tan75°=1C .sin 225°+cos 225°=1 D.sin60°=2sin30°【答案】D .【解析】试题分析:选项A ,sin40°=sin (90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C ,sin 225°+cos 225°=1正确;选项D ,sin60°=23,sin30°=21,则sin60°=2sin30°错误.故答案选D .考点:互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.考点典例三、解直角三角形【例3】(宁夏)在△ABC 中,AD 是BC 边上的高,∠C=45°,sinB=13,AD=1.求BC 的长.【答案】22+1. 考点:解直角三角形;勾股定理. 【点睛】本题考查了三角形的高的定义,勾股定理,解直角三角形,难度中等,分别解Rt △ADB 与Rt △ADC ,得出BD=22,DC=1是解题的关键.将三角形转化为直角三角形时,注意尽量不要破坏所给条件.【举一反三】(2016湖北襄阳第9题)如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )21.A 55.B 1010.C 552.D【答案】B.考点:锐角三角函数函数;三角形面积公式;勾股定理.考点典例四、解直角三角形的实际运用【例4】(2016四川达州第21题)如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)【答案】(1)轮船照此速度与航向航向,上午11::00到达海岸线;(2)轮船不改变航向,轮船可以停靠在码头,理由详见解析.【解析】试题分析:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,易证△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可解决问题.(2)在RT△BEC中,求出CD的长度,和CN、CM比较即可解决问题.试题解析:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.考点:解直角三角形的应用.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解方位角角的定义,及勾股定理的表达式,要注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用.【举一反三】(2016河南第19题)(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处. 若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sian37°=0.60, cos37°=0.80,tan37°=0.75)【答案】国旗应以0.3米/秒的速度匀速上升.考点:解直角三角形的应用.课时作业☆能力提升1. (2016辽宁沈阳第9题)如图,在Rt△ABC 中,∠C=90°,∠B=30°,AB=8,则BC 的长是( )A .B .4C .83D .43【答案】D.考点:解直角三角形.2. (2016湖南怀化第10题)在Rt △ABC 中,∠C=90°,sinA=54,AC=6cm ,则BC 的长度为( ) A .6cm B .7cm C .8cm D .9cm【答案】C .【解析】试题分析:已知sinA=AB BC =54,设BC=4x ,AB=5x ,又因AC 2+BC 2=AB 2,即62+(4x )2=(5x )2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm ,故答案选C .考点:解直角三角形.3.(2016浙江宁波第16题)如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1.考点:解直角三角形的应用.4. (2016江苏苏州第8题)如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .23mB .26mC .(23﹣2)mD .(26﹣2)m【答案】B.【解析】试题分析:在Rt △ABD 中,∠D=90°,∵sin ∠ABD=ADAB,∴AD=4sin60°=23(m ),在Rt △ACD 中,∠D=90°,∵sin ∠ACD=ADAC ,∴AC=6245sin 32=︒(m ).故选B. 考点:解直角三角形的应用.5. (2016年福建龙岩第13题)如图,若点A 的坐标为)3,1(,则sin∠1= .【答案】23. 考点:1三角函数;2坐标与图形性质.6. (2016黑龙江大庆第16题)一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为 海里/小时.【答案】334040+. 【解析】试题分析:设该船行驶的速度为x 海里/时,3小时后到达小岛的北偏西45°的C 处,由题意得:AB=80海里,BC=3x 海里,在Rt △ABQ 中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=21AB=40,BQ=3AQ=403, 在Rt △AQC 中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+403=3x ,解得:334040+=x .即该船行驶的速度为334040+海里/时. 考点:解直角三角形的应用. 7. (2016新疆第14题)如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).【答案】30 3.考点:解直角三角形的应用.8. (2016湖南岳阳第14题)如图,一山坡的坡度为i=1:,小辰从山脚A 出发,沿山坡向上走了200米到达点B ,则小辰上升了 米.【答案】100.【解析】试题分析:根据坡比的定义可得tan ∠A=3331==AC BC ,即可得∠A=30°,根据含30度的直角三角形三边的关系可得BC=21AB=21×200=100m . 考点:解直角三角形的应用.9. (2016湖北黄石第22题)(本小题满分8分)如图,为测量一座山峰CF 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800=AB 米,200=BC 米,坡角︒=∠30BAF ,︒=∠45CBE .(1)求AB 段山坡的高度EF ;(2)求山峰的高度CF .(414.12≈,CF 结果精确到米)A B CF E【答案】(1)400;(2)541.考点:解直角三角形的应用.10. (2016湖北鄂州第21题)(本题满分9分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。

中考数学专题 解直角三角形含答案

中考数学专题 解直角三角形含答案

4、在 ABC 中, C 1350 ,a 2,b 2 求:①c 的长 ②sinA 的值 ③求 AB 边上的高 h
5、如图 8,在 ABC 中,已知 C 900 , AC 6 3,BAC 的平分线 AD=12,求 ABC 其余各边的长,各角的度数和 ABC 的内切圆的半径的长。
6、如图 9,要测铁塔的高 AB,从与铁塔底部在同一水平直线上的 C、D 两处,用测 角仪器测得铁塔顶 B 的仰角分别为 300 和 450 ,C、D 间距离为 14 米,测角仪器的
2
A、 >600
B、 <600
C、 >300
D、 <300
13、若 00< <1800,且 cos 3 ,则角 的度数是:
2
A、300
B、600
C、1500
D、300 或 1500
14、在 ABC 中, A 900 ,AD⊥BC,若 AB=2AC,则 BC 与 DC 之间的关系为:
A、BC=2DC
A、12, 3 3
B、12, 3
C、 4 3, 3 3
D、 4 3, 3
11、若 , 互为补角,那么以下四个关系式中,不一定成立的是:
A、 sin sin >0
B、cos -cos >0
C、 sin sin =0
D、cos +cos =0
12、 是直角三角形的一个锐角, cos > 1 则:
为:
A、16 和 9
B、9 和 16
C、16 和 12
D、12 和 16
三、解答题
1、已知 00< <1800,00<θ <1800,且 cos 3 ,sin 1 ,
2
2
求 tg ctg 的值。
2、 RtABC 中, C =900,c=17,内切圆半径 r=3,求两条直角边 a、b。

11.3解直角三角形(分类精讲)·数学中考分类精粹

11.3解直角三角形(分类精讲)·数学中考分类精粹

ɦ11.3㊀解直角三角形㊀运用直角三角形中边角关系㊁三边关系㊁三角关系解决一些实际问题.一㊁选择题1.(2012 浙江杭州)如图,在R t әA B O 中,斜边A B =1.若O C ʊB A ,øA O C =36ʎ,则(㊀㊀).A.点B 到A O 的距离为s i n 54ʎB .点B 到A O 的距离为t a n 36ʎC .点A 到O C 的距离为s i n 36ʎs i n 54ʎD.点A 到O C 的距离为c o s 36ʎs i n 54ʎ(第1题)㊀㊀(第2题)2.(2012 浙江嘉兴)如图,A ㊁B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出A C =a 米,øA =90ʎ,øC =40ʎ,则A B 等于(㊀㊀).A.a s i n 40ʎ米㊀㊀㊀㊀㊀㊀㊀㊀B .a c o s 40ʎ米C .a t a n 40ʎ米D.a t a n 40ʎ米3.(2012 湖北宜昌)在 测量旗杆的高度 的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27ʎ,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为(㊀㊀).A.24米B .20米C .16米D.12米(第3题)㊀㊀(第4题)4.(2012 广东深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30ʎ,同一时刻,一根长为1米㊁垂直于地面放置的标杆在地面上的影长为2米,则树的高度为(㊀㊀).A.(6+3)米B .12米C .(4-23)米D.10米5.(2012 四川广安)如图,某水库堤坝横断面迎水坡A B 的坡比是1ʒ3,堤坝高B C =50m ,则应水坡面A B 的长度是(㊀㊀).A.100mB .1003mC .150mD.503m(第5题)㊀㊀(第6题)6.(2012 湖北孝感)如图,在塔A B 前的平地上选择一点C ,测出看塔顶的仰角为30ʎ,从点C 向塔底走100米到达点D ,测出看塔顶的仰角为45ʎ,则塔A B 的高为(㊀㊀).A.503米B .1003米C .1003+1米D.1003-1米7.(2012 贵州黔西南)兴义市进行城区规划,工程师需测某楼A B 的高度,工程师在点D 用高2m 的测角仪C D ,测得楼顶端A 的仰角为30ʎ,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60ʎ,楼A B 的高为(㊀㊀).A.(103+2)m B .(203+2)mC .(53+2)mD.(153+2)m(第7题)㊀㊀(第8题)8.(2012 福建福州)如图,从热气球C 处测得地面A ㊁B 两点的俯角分别是30ʎ㊁45ʎ,如果此时热气球C 处的高度C D为100米,点A ㊁D ㊁B 在同一直线上,则A ㊁B 两点的距离是(㊀㊀).A.200mB .2003mC .2203m D.100(3+1)m二㊁填空题9.(2012 广西柳州)已知:在әA B C 中,A C =a ,A B 与B C 所在直线成45ʎ角,A C 与B C 所在直线形成的夹角的余弦值为255(即c o s C =255),则边A C 上的中线长是㊀㊀㊀㊀.10.(2012 湖北咸宁)如图,某公园入口处原有三级台阶,每级台阶高为18c m ,深为30c m ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡B C 的坡度i =1ʒ5,则A C 的长度是㊀㊀㊀㊀c m .第十一章㊀解直角三角形(第10题)㊀(第11题)11.(2012 福建南平)如图,在山坡A B上种树,已知øC=90ʎ,øA=28ʎ,A C=6米,则相邻两树的坡面距离A Bʈ㊀㊀㊀㊀米.(精确到0.1米)12.(2012 湖南株洲)数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60ʎ,则旗杆的高度是㊀㊀㊀㊀米.13.(2012 辽宁大连)如图,为了测量电线杆A B的高度,小明将测量仪放在与电线杆的水平距离为9m的D处.若测角仪C D的高度为1.5m,在C处测得电线杆顶端A的仰角为36ʎ,则电线杆A B的高度约为㊀㊀㊀㊀m.(精确到0.1m)(参考数据:s i n36ʎʈ0.59,c o s36ʎʈ0.81,t a n36ʎʈ0.73)(第13题)㊀㊀(第14题)14.(2012 辽宁铁岭)如图,在东西方向的海岸线上有A㊁B两个港口,甲货船从A港沿北偏东60ʎ的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行㊀㊀㊀㊀海里.三㊁解答题15.(2012 四川巴中)一副直角三角板如图放置,点C在F D 的延长线上,A BʊC F,øF=øA C B=90ʎ,øE=30ʎ,øA=45ʎ,A C=122,试求C D 的长.(第15题)16.(2012 湖南张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图(1)所示,小明据此构造出该岛的一个数学模型如图(2)所示,其中øB=øD=90ʎ,A B=B C=15千米,C D=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据:2ʈ1.41,3ʈ1.73,6ʈ2.45)(2)求øA C D的余弦值.(1)㊀(2)(第16题)17.(2012 新疆)如图,跷跷板A B的一端B碰到地面时,A B 与地面的夹角为15ʎ,且O A=O B=3m.(1)求此时另一端A离地面的距离;(精确到0.1m) (2)若跷动A B,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.(参考数据:s i n15ʎʈ0.26,c o s15ʎʈ0.97,t a n15ʎʈ0.27)(第17题)18.(2012 山东青岛)如图,某校教学楼A B的后面有一建筑物C D,当光线与地面的夹角是22ʎ时,教学楼在建筑物的墙上留下高2米的影子C E;而当光线与地面夹角是45ʎ时,教学楼顶A在地面上的影子F与墙角C有13米的距离.(点B㊁F㊁C在一条直线上)(1)求教学楼A B的高度;(2)学校要在A㊁E之间挂一些彩旗,请你求出A㊁E之间的距离.(结果保留整数)(参考数据:s i n22ʎʈ38,c o s22ʎʈ1516,t a n22ʎʈ25)(第18题)19.(2012 湖北黄冈)新星小学门口有一直线马路,为方便学生过马路,交警在路口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为øF A E=15ʎ和øF A D=30ʎ,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E㊁D㊁C㊁B四点在平行于斑马线的同一直线上)(参考数据:t a n15ʎ=2-3,s i n15ʎ=6-24,c o s15ʎ=6+24,3ʈ1.732,2ʈ1.414)(第19题)20.(2012 江苏苏州)如图,已知斜坡A B长60米,坡角(即øB A C)为30ʎ,B CʅA C,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线C A的平台D E和一条新的斜坡B E.(请将下面2小题的结果都精确到0.1米,参考数据:3ʈ1.732)(1)若修建的斜坡B E的坡角(即øB E F)不大于45ʎ,则平台D E的长最多为㊀㊀㊀㊀米;(2)一座建筑物G H距离坡角点A27米远(即A G=27米),小明在点D测得建筑物顶部H的仰角(即øHDM)为30ʎ.点B㊁C㊁A㊁G㊁H在同一个平面内,点C㊁A㊁G在同一条直线上,且H GʅC G,问建筑物G H高为多少米?(第20题)21.(2012 四川内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形A B C D.如图所示,已知迎水坡面A B的长为16米,øB=60ʎ,背水坡面C D的长为163米,加固后大坝的横截面积为梯形AGB E D,C E的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面D E的坡度.(第21题)22.(2012 浙江台州)如图,为测量江两岸码头B㊁D之间的距离,从山坡上高度为50米的A处测得码头B的仰角øE A B为15ʎ,码头D的仰角øE A D为45ʎ,点C在线段B D的延长线上,A CʅB C,垂足为C,求码头B㊁D的距离.(结果保留整数,s i n15ʎʈ0.26,c o s15ʎʈ0.97, t a n15ʎʈ0.27)(第22题)23.(2012 天津)如图,甲楼A B的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45ʎ,测得乙楼底部D 处的俯角为30ʎ,求乙楼C D的高度.(结果精确到0.1m,3取1.73)(第23题)第十一章㊀解直角三角形24.(2012 内蒙古呼和浩特)如图,线段A B ㊁D C 分别表示甲㊁乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B 外测得D 点的仰角为α,在A 处测得D 点的仰角为β.已知甲㊁乙两建筑物之间的距离B C 为m .请你通过计算用含α,β,m 的式子分别表示出甲㊁乙两建筑物的高度.(第24题)25.(2012 四川资阳)小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部A D 的距离,小强测得办公大楼顶部点A 的仰角为45ʎ,测得办公大楼底部点B 的俯角为60ʎ,已知办公大楼高46米,C D=10米.求点P 到A D 的距离.(用含根号的式子表示)(第25题)26.(2012 江苏盐城)如图所示,当小华站立在镜子E F 前A 处时,他看自己的脚在镜中的像的俯角为45ʎ.若小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30ʎ.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3ʈ1.73)(第26题)27.(2012 江苏泰州)如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60ʎ,然后他从P 处沿坡角为45ʎ的山坡向上走到C 处,这时,P C =30m ,点C 与点A 在同一水平线上,A ㊁B ㊁P ㊁C 在同一平面内.(1)求居民楼A B 的高度;(2)求C ㊁A 之间的距离.(精确到0.1m ,参考数据:2ʈ1.41,3ʈ1.73,6ʈ2.45)(第27题)28.(2012 广西南宁)如图,山坡上有一棵树A B ,树底部B 点到山脚C 点的距离B C 为63米,山坡的坡角为30ʎ.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪E F 的水平距离C F =1米,从E 处测得树顶部A 的仰角为45ʎ,树底部B 的仰角为20ʎ,求树A B 的高度.(参考数值:s i n 20ʎʈ0.34,c o s 20ʎʈ0.94,t a n 20ʎʈ0.36)(第28题)29.(2012 江苏扬州)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45ʎ的方向上,港口A 位于B 的北偏西30ʎ的方向上.求A ㊁C 之间的距离.(结果精确到0.1海里,参考数据:2ʈ1.41,3ʈ1.73)(第29题)30.(2012 浙江温州)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿A B方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若C D=40米,B在C的北偏东35ʎ方向,甲㊁乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:s i n55ʎʈ0.82,c o s55ʎʈ0.57,t a n55ʎʈ1.43)(第30题)31.(2012 辽宁丹东)南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37ʎ方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离A B长为10海里.此时位于A岛正西方向C 处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50ʎ的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿B C航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C 处?(参考数据:s i n37ʎʈ0.60,c o s37ʎʈ0.80,s i n50ʎʈ0.77,c o s50ʎʈ0.64,s i n53ʎʈ0.80,c o s53ʎʈ0.60,s i n40ʎʈ0.64,c o s40ʎʈ0.77)(第31题)32.(2012 江苏连云港)已知B港口位于A观测点北偏东53.2ʎ方向,且其到A观测点正北方向的距离B D的长为16k m,一艘货轮从B港口以40k m/h的速度沿如图所示的B C方向航行,15m i n后达到C处,现测得C处位于A观测点北偏东79.8ʎ方向,求此时货轮与A观测点之间的距离A C的长.(精确到0.1k m)(参考数据:s i n53.2ʎʈ0.80,c o s53.2ʎʈ0.60,s i n79.8ʎʈ0.98,c o s79.8ʎʈ0.18,t a n26.6ʎʈ0.50,2ʈ1.41,5ʈ2.24)(第32题)33.(2012 辽宁本溪)如图,әA B C是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路A B㊁B C㊁C A跑步(小路的宽度不计).观测得点B在点A的南偏东30ʎ方向上,点C在点A的南偏东60ʎ的方向上,点B在点C的北偏西75ʎ方向上, A C间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:2ʈ1.414,3ʈ1.732)(第33题)ɦ11.3㊀解直角三角形1.C㊀2.C㊀3.D㊀4.A㊀5.A㊀6.D㊀7.D㊀8.D 9.8510a或510a㊀10.210㊀11.6.8㊀12.10313.8.1㊀14.2215.过点B作B MʅF D于点M,在әA C B中,øA C B=90ʎ,øA=45ʎ,A C=122.ʑ㊀B C=A C=122.ȵ㊀A BʊC F,ʑ㊀B M=B Cˑs i n45ʎ=122ˑ22=12,C M=B M=12.在әE F D中,øF=90ʎ,øE=30ʎ,ʑ㊀øE D F=60ʎ.ʑ㊀MD=B Mːt a n60ʎ=43.ʑ㊀C D=C M-MD=12-43.16.(1)连接A C.ȵ㊀A B=B C=15千米,øB=90ʎ,ʑ㊀øB A C=øA C B=45ʎ,A C=152千米.又㊀øD=90ʎ,C D=33千米,ʑ㊀A D=A C2-C D2=(152)2-(32)2=123(千米).ʑ㊀周长=A B+B C+C D+D A=30+32+123ʈ30+4.23+20.76ʈ55(千米),面积=SәA B C+SәA C D=12ˑ15ˑ15+12ˑ123ˑ32ʈ157(平方千米).(2)c o søA C D =C D A C=32152=15.17.(1)过点A作A DʅB C于点D.(第17题)ȵ㊀O A=O B=3m,ʑ㊀A B=3+3=6m.ʑ㊀A D=A B s i n15ʎʈ6ˑ0.26ʈ1.6m.(2)如图所示,点A的运动路线是以点O为圆心,以O A 的长为半径的A D︵的长.连接O D.ȵ㊀O是A B的中点,ʑ㊀O D=O A=O B.ʑ㊀øA O D=2øB=30ʎ.ʑ㊀点A运动路线长=30ˑπˑ3180=π2.18.(1)过点E作E MʅA B,垂足为M.(第18题)设A B为x米.在R tәA B F中,øA F B=45ʎ,ʑ㊀B F=A B=x.ʑ㊀B C=B F+F C=x+13.在R tәA E M中,øA E M=22ʎ,AM=A B-B M=A B-C E=x-2,t a n22ʎ=AM M E,则x-2x+13ʈ25,解得xʈ12.故教学楼A B的高度约为12米.(2)由(1)可得M E=B C=x+13=12+13=25.在R tәAM E中,c o s22ʎ=M E A E,ʑ㊀A E=M Ec o s22ʎʈ251516ʈ27.故A㊁E之间的距离约为27米.19.ȵ㊀øF A E=15ʎ,øF A D=30ʎ,ʑ㊀øE A D=15ʎ.ȵ㊀A F ʊB E ,ʑ㊀øA E D =øF A E =15ʎ,øA D B =øF A D =30ʎ.设A B =x .则在R t әA E B 中,E B =A B t a n 15ʎ=x t a n 15ʎ.ȵ㊀E D =4,E D +B D =E B ,ʑ㊀B D =xt a n 15ʎ-4.在R t әA D B 中,B D =A B t a n 30ʎ=x ta n 30ʎ.ʑ㊀x t a n 15ʎ-4=x t a n 30ʎ,即12-3-133æèçöø÷x =4,解得x =2.ʑ㊀B D =2t a n 30ʎ=23.ȵ㊀B D =C D +B C =C D +0.8,ʑ㊀C D =23-0.8ʈ2ˑ1.732-0.8ʈ2.7>2.故该旅游车停车符合规定的安全标准.20.(1)ȵ㊀修建的斜坡B E 的坡角(即øB E F )不大于45ʎ,ʑ㊀øB E F 最大为45ʎ.当øB E F =45ʎ时,E F 最短,此时E D 最长.ȵ㊀øD A C =øB D F =30ʎ,A D =B D =30,ʑ㊀B F =E F =12B D =15,D F =153.故D E =D F -E F =15(3-1)ʈ11.0(m ).(2)过点D 作D P ʅA C ,垂足为P .在R t әD P A 中,D P =12A D =12ˑ30=15,P A =A D c o s 30ʎ=30ˑ32=153.在矩形D P G M 中,M G =D P =15,DM =P G =153+27.在R t әDMH 中,HM =DM t a n 30ʎ=(153+27)ˑ33=15+93.G H =HM +M G =15+93+15ʈ45.6(m ).故建筑物G H 高约为45.6米.21.(1)分别过点A ㊁D 作A F ʅB C ,D G ʅB C ,垂点分别为点F ㊁G ,如图所示.(第21题)在R t әA B F 中,A B =16,øB =60ʎ,s i n B =A F A B,ʑ㊀A F =16ˑ32=83,D G =83.ʑ㊀S әD C E =12ˑC E ˑD G =12ˑ8ˑ83=323.需要填方150ˑ323=48003(立方米).(2)在直角三角形D G C 中,D C =163.ʑ㊀G C =D C 2-D G2=24.ʑ㊀G E =G C +C E =32.ʑ㊀坡度i =D G GE =8332=34.22.ȵ㊀A E ʊB C ,ʑ㊀øA D C =øE A D =45ʎ.又㊀A C ʅC D ,ʑ㊀C D =A C =50.ȵ㊀A E ʊB C ,ʑ㊀øA B C =øE A B =15ʎ.又㊀t a n øA B C =A CB C,ʑ㊀B C =A Ct a n 15ʎʈ185.2.ʑ㊀B D =185.2-50ʈ135.故码头B ㊁D 的距离约为135米.23.过点A 作A E ʅC D 于点E ,(第23题)根据题意,øC A E =45ʎ,øD A E =30ʎ.ȵ㊀A B ʅB D ,C D ʅB D ,ʑ㊀四边形A B D E 为矩形.ʑ㊀D E =A B =123.在R t әA D E 中,t a n øD A E =D E A E ,ʑ㊀A E =D E t a n øD A E =123t a n 30ʎ=1233.在R t әA C E 中,øC A E =45ʎ,ʑ㊀C E =A E =1233.ʑ㊀C D =C E +D E =123(3+1)ʈ335.8.故乙楼C D 的高度约为335.8m .24.过点A 作AM ʅC D 于点M ,在R t әB C D 中,t a n α=C D B C,ʑ㊀C D =B C t a n α=m t a n α.在R t әAMD 中,t a n β=DM AM ,ʑ㊀DM =AM t a n β=m t a n β,ʑ㊀A B =C D -DM =m (t a n α-t a n β).故甲建筑物的高度为m (t a n α-t a n β),乙建筑物的高度为m t a n α.(第25题)25.连接P A ㊁P B ,过点P 作P M ʅA D 于点M ;延长B C ,交P M 于点N .则øA P M =45ʎ,øB P M =60ʎ,NM =10.设P M =x 米,在R t әP MA 中,AM =P M ˑt a n øA P M =x t a n 45ʎ=x .在R t әP N B 中,B N =P N ˑt a n øB P M =(x -10)t a n 60ʎ=(x -10)3.由AM +B N =46,得x +(x -10)3=46.解得x =46+1031+3.ʑ㊀点P 到A D 的距离为46+1031+3米.(结果分母有理化为(183-8)米也可)26.ȵ㊀当小华站立在镜子E F 前A 处时,他看自己的脚在镜中的像的俯角为45ʎ.ʑ㊀A C =A A 1.ȵ㊀若小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30ʎ,ʑ㊀A B =A 1B 1=0.5,øD B 1B =30ʎ.ʑ㊀t a n 30ʎ=B D B B 1=B D A B +A 1B 1+AA 1=B D 1+B D =33,解得B D =3+12ʈ1.4.故小华的眼睛到地面的距离为1.4米.27.(1)过点C 作C E ʅB P 于点E ,(第27题)在R t әC P E 中,ȵ㊀P C =30,øC P E =45ʎ,s i n 45ʎ=C E P C,ʑ㊀C E =P C s i n 45ʎ=30ˑ22=152.ȵ㊀点C 与点A 在同一水平线上,ʑ㊀A B =C E =152ʈ21.2.故居民楼A B 的高度约为21.2m .(2)在R t әA B P 中,ȵ㊀øA P B =60ʎ,ʑ㊀t a n 60ʎ=A BB P.ʑ㊀B P =1523=56.ȵ㊀P E =C E =152,ʑ㊀A C =B E =152+56ʈ33.4.故C ㊁A 之间的距离约为33.4m .28.ȵ㊀底部B 点到山脚C 点的距离B C 为63米,山坡的坡角为30ʎ,ʑ㊀D C =B C c o s 30ʎ=6332=9.ȵ㊀C F =1,ʑ㊀D F =9+1=10.ʑ㊀G E =10.ȵ㊀øA E G =45ʎ.ʑ㊀A G =E G =10,在R t әB G E 中,B G =G E t a n 20ʎ=10ˑ0.36=3.6,ʑ㊀A B =A G -B G =10-3.6=6.4.故树高约为6.4米.29.作A D ʅB C ,垂足为D ,(第29题)由题意得,øA C D =45ʎ,øA B D =30ʎ,设C D =x ,在R t әA C D 中,可得A D =x ,在R t әA B D 中,可得B D =3x ,又㊀B C =20,即x +3x =20,解得x =10(3-1).ʑ㊀A C =2x ʈ10.3(海里).故A ㊁C 之间的距离为10.3海里.30.由题意得øB C D =55ʎ,øB D C =90ʎ.ȵ㊀t a n øB C D =B DCD ,ʑ㊀B D =C D t a n øB C D =40ˑt a n 55ʎʈ57.2.ȵ㊀c o s øB C D =C D B C,ʑ㊀B C =C D c o s øB C D =40c o s 55ʎʈ70.2.ʑ㊀t 甲=57.22+10=38.6(秒),t 乙=70.22=35.1(秒).ʑ㊀t 甲>t乙,故乙先到达B 处.31.过点B 作B D ʅA C 于点D .(第31题)根据题意,得øA B D =øB A M =37ʎ,øC B D =øB C N =50ʎ,在R t әA B D 中,ȵ㊀c o s øA B D =B D A B ,ʑ㊀c o s 37ʎ=B D10ʈ0.80.ʑ㊀B D ʈ10ˑ0.8=8(海里).在R t әC B D 中,ȵ㊀c o s øC B D =B D B C,ʑ㊀c o s 50ʎ=8B Cʈ0.64.ʑ㊀B C ʈ8ː0.64=12.5(海里),ʑ㊀12.5ː30=512(小时).ʑ㊀512ˑ60=25(分钟).故渔政船约25分钟到达渔船所在的C 处.32.B C =40ˑ1560=10,在R t әA D B 中,s i n øD A B =D B A B,s i n 53.2ʎʈ0.8,ʑ㊀A B =D Bs i n øD A B ʈ160.8=20,如图,过点B 作B H ʅA C ,交A C 的延长线于点H ,(第32题)在R t әAH B 中,øB AH =øD A C -øD A B =79.8ʎ-53.2ʎ=26.6ʎ,t a n øB AH =B H AH,0.5=B H AH ,AH =2B H ,B H 2+AH 2=A B 2,B H 2+(2B H )2=202,B H =45,ʑ㊀AH =85.在R t әB C H 中,B H 2+C H 2=B C 2,C H =25,ʑ㊀A C =AH -C H =85-25=65ʈ13.4.故此时货轮与A 观测点之间的距离A C 约为13.4k m .33.作C D ʅA B 的延长线于点D ,(第33题)根据题意得øB A C =30ʎ,øB C A =15ʎ,ʑ㊀øD B C =øD C B =45ʎ.在R t әA D C 中,ȵ㊀A C =400米,øB A C =30ʎ,ʑ㊀C D =B D =200(米).ʑ㊀B C =2002(米),A D =2003(米).ʑ㊀A B =A D -B D =(2003-200)(米).ʑ㊀三角形A B C 的周长为400+2002+(2003-200)ʈ829米.故小金沿三角形绿化区的周边小路跑一圈共跑了829米.。

2020年中考数学必考考点专题18解直角三角形问题含解析

2020年中考数学必考考点专题18解直角三角形问题含解析

专题18 解直角三角形问题一、勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3.定理:经过证明被确认正确的命题叫做定理。

4.我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)5. 直角三角形的性质:(1)直角三角形的两锐角互余;(2)直角三角形的两条直角边的平方和等于斜边的平方;(3)直角三角形中30°角所对直角边等于斜边的一半;(4)直角三角形斜边上的中线等于斜边的一半。

6.直角三角形的判定:(1)有一个角等于90°的三角形是直角三角形(2) 两锐角互余的三角形是直角三角形(3)两条边的平方和等于另一边的平方的三角形是直角三角形(4)有一边上的中线等于这边的一半的三角形是直角三角形二、锐角三角函数1.各种锐角三角函数的定义(1)正弦:在△ABC中,∠C=90°把锐角A的对边与斜边的比值叫做∠A的正弦,记作sinA=∠A的对边斜边(2)余弦:在△ABC中,∠C=90°,把锐角A的邻边与斜边比值的叫做∠A的余弦,记作cosA=∠A的邻边斜边(3)正切:在△ABC中,∠C=90°,把锐角A的对边与邻边的比值叫做∠A的正切,记作tanA=∠A的对边∠A的邻边2.特殊值的三角函数:专题知识回顾三、仰角、俯角、坡度概念 1.仰角:视线在水平线上方的角; 2.俯角:视线在水平线下方的角。

3.坡度(坡比):坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

四、各锐角三角函数之间的关系 (1)互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA •tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin专题典型题考法及解析【例题1】(2019•湖北省鄂州市)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P 点是直线l上一点,当△APB为直角三角形时,则BP=.【答案】2或2或2.【解析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.【例题2】(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【答案】D【解析】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.【例题3】(2019•江苏连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)【答案】(1)观察哨所A与走私船所在的位置C的距离为15海里;(2)当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.【解析】(1)先根据三角形内角和定理求出∠ACB=90°,再解Rt△ABC,利用正弦函数定义得出AC即可;在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sinB=,∴AC=AB•sin37°=25×=15(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,易知,D.C.M在一条直线上.解Rt△AMC,求出CM、AM.解Rt△AMD中,求出DM、AD,得出C D.设缉私艇的速度为x海里/小时,根据走私船行驶CD所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.过点C作CM⊥AB于点M,由题意易知,D.C.M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=15×=12,AM=AC•cos∠CAM=15×=9.在Rt△AMD中,tan∠DAM=,∴DM=AM•tan76°=9×4=36,∴AD===9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.专题典型训练题一、选择题1.(2019•渝北区)如果下列各组数是三角形的三边,则能组成直角三角形的是()A.1,,2 B.1,3,4 C.2,3,6 D.4,5,6【答案】A.【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.A.12+()2=22,故是直角三角形,故此选项正确;B.12+32≠42,故不是直角三角形,故此选项错误;C.22+32≠62,故不是直角三角形,故此选项错误;D.42+52≠62,故不是直角三角形,故此选项错误.2.(2019•巴南区)下列各组数据中,能够成为直角三角形三条边长的一组数据是()A .,,B.32,42,52C .D.0.3,0.4,0.5【答案】D.【解析】先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.A.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;B.(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;C.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;D.0.032+0.042=0.052,即三角形是直角三角形,故本选项符合题意。

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。

11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。

中考解直角三角形知识点复习

中考解直角三角形知识点复习

中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。

中考专题复习解直角三角形(含答案)

中考专题复习解直角三角形(含答案)

中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。

2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。

4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。

5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。

7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。

第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。

依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。

2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。

(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。

⽤字母表⽰,即。

坡度⼀般写成的形式,如等。

把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。

【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。

2023年中考数学专题20 解直角三角形(原卷版)

2023年中考数学专题20 解直角三角形(原卷版)

专题20 解直角三角形一、锐角三角函数的定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,正弦:sin A=∠的对边=斜边A ac;余弦:cos A=∠的邻边=斜边A bc;正切:tan A=∠的对边=邻边A ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.二、特殊角的三角函数值αsinαcosαtanα30°12323345°2222160°32123三、解直角三角形1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠A+∠B=90°;3)边与角关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab;4)sin2A+cos2A=1.3.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.四、解直角三角形的应用1).仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.2).坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=hl.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.3).方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.5.解直角三角形实际应用的一般步骤1)弄清题中名词、术语,根据题意画出图形,建立数学模型;2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;3)选择合适的边角关系式,使运算简便、准确;4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.考向一求三角函数的值1.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为()A.B.C.D.2.△ABC在网格中的位置如图,则cos B的值为()A.B.C.D.23.如图,△ABC的顶点都是正方形网格中的格点,则tan∠ACB等于.4.如图,在正方形网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOC的正弦值是.考向二利用特殊角的三角函数值求值5.tan30°的值等于()A.B.C.D.6.在△ABC中,∠A=105°,∠B=45°,tan C的值是()A.B.C.1D.7.已知α是锐角,sin(α+15°)=,则cosα=.8.若,那么△ABC的形状是.考向三解直角三角形的应用—坡角(堤坝)问题9.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是()A.5米B.6米C.6.5米D.7米10.小明沿着坡度为1:2的山坡向上走了1 000m,则他升高了()A.200m B.500m C.500m D.1 000m11.如图是一斜坡的横截面,某人沿着坡度为i=1:的斜坡从点A向上走了5米到点B处,则此时人离水平面的垂直高度为.12.如图,小李从西边山脚的点A走了300m后到达山顶C,已知∠A=30°,东边山坡的坡度tan B=.(1)求山顶C离地面的高度.(2)求B、C的距离.考向四解直角三角形的应用—仰角俯角问题13.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15D.15﹣514.如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角α为30°,看这栋楼底部C处的俯角β为60°,热气球与楼的水平距离AD为90米,则这栋楼的高度BC为()A.米B.90米C.120米D.225 米15.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为米.16.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为260米,在坡顶A处的同一水平面有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)考向五解直角三角形的应用—方位角问题17.如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为()千米.A.4B.4C.2D.618.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.3019.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为海里.20.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的A处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向B移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响.(1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈,cos42°≈,tan42°≈)考向六解直角三角形的应用—其他问题21.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点D到OB的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x22.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6米C.3米D.2米23.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片平方米(结果保留π).24.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).25.图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为70°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=60厘米,DC=40厘米,求点D'到BC的距离.(参考数据:sin70°≈0.94,cos70°≈0.34)一.选择题1.cos30°的值是()A.B.C.D.2.在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.3B.C.D.3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.2+B.2C.3+D.34.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.5.如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()海里.A.15+15B.30+30C.45+15D.606.如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A.55m B.60m C.65m D.70m二.填空题7.计算:=.8.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为.9.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是50m,则甲楼的高AB是m(结果保留根号).10.如图,一根竖直的木杆在离地面2.1m处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为m.(结果保留一位小数)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)三.解答题11.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.12.如图,AB、CD为两个建筑物,建筑物AB的高度为100米,从建筑物AB的顶点A处测得建筑物CD 的顶部C处的俯角∠EAC为30°,测得建筑物CD的底部D处的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).13.如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时10千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?14.如图,在一段观景斜坡DE上种有若干棵树,小明测得斜坡上铅直的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°);(2)若这段斜坡用厚度为15cm的长方体台阶来铺,需要铺几级台阶?(最后一个高不足15cm时,按一个台阶计算)(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)。

数学中考模块-解直角三角形

数学中考模块-解直角三角形

名名师师考考点点精精讲讲
中考真题再现
-24-
考点扫描 备课资料
考点1 考点2 考点3 考点4
【答案】如图,过点A作AD⊥BC,交BC的延长线于点D, ∵∠B=30°, ∴∠BAD=60°, 又∵∠BAC=15°, ∴∠CAD=45°, 在Rt△ACD中,∵AC=200米,
第二章
2.4 解直角三角形
安徽五年探究
名名师师考考点点精精讲讲
中考真题再现
-17-
考点扫描 备课资料
考点1 考点2 考点3 考点4
(2)∵∠ABE=90°,AB=6,sin A=
,
∴设 BE=4x,则 AE=5x,得 AB=3x, ∴3x=6,得 x=2, ∴BE=8,AE=10,
∴tan E=
,
坡度 (坡比)、 坡角
坡面的铅直高度 h 与水平宽度 l 的比, 叫做坡度(或坡比),用字母 i 表示;坡面 与水平面的 夹角 叫做坡角,所以有
i=tan α=
图形
第二章
2.4 解直角三角形
安徽五年探究
名名师师考考点点精精讲讲
中考真题再现
-19-
考点扫描
备课资料
概念
方向角
考点1 考点2 考点3 考点4
(1)假设∠A=60°,求BC的长; (2)假设sin A= ,求AD的长. (注意:此题中的计算过程和结果均保存根号)
第二章
考点扫描 备课资料
2.4 解直角三角形
安徽五年探究
名名师师考考点点精精讲讲
考点1 考点2 考点3 考点4
中考真题再现
-16-
【答案】 (1)∵∠A=60°,∠ABE=90°,AB=6,tan A= , ∴∠E=30°,BE=6·tan 60°=6 , 又∵∠CDE=90°,CD=4,sin E= ,∠E=30°, ∴CE= =8, ∴BC=BE-CE=6 -8.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第7题图)
30°(
C
A
B
P
中考数学分类 解直角三角形
(福州市)Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( )
A.cos sin a A b B +
B.sin sin a A b B +
C.sin sin a b A B +
D.cos sin a b
A B
+
(贵阳市)如图,ABC ∆中,
90=∠C ,3=AC ,
30=∠B ,点P 在BC 边上的动点,则AP 长不.可能..
是 (A )3.5 (B )4.2 (C )5.8 (D )7
(昆明市)如图,在Rt△ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin∠CAD=( ) A 、
1
4
B 、
1
3
C 、154
D 、
15
15
答案:A
(兰州市)如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC B ''则tan B '的值为 A. 12 B. 13 C. 1
4
D. 24
(荆门市)在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( ▲ )
A.
51714 B.35 C.217 D.21
14
(绵阳市)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α 为45︒,小丽站在B 处(A 、B 与塔的轴心共线)测得她看塔顶的仰角β 为30︒.她们又测出A 、B 两点的距离为30米.假设她们的眼睛离头
顶都为10 cm ,则可计算出塔高约为(结果精确到0.01,参考数据:2≈1.414,3≈1.732)( ).
A .36.21米
B .37.71米
C .40.98米
D .42.48米
β
α
B
A
(连云港)△ABC 的顶点都在方格纸的格点上,则sin A =_ ▲ .
(连云港)如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一知输水管道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东24.5°方向,前行1200m ,到达点Q 处,测得A 位于北偏东49°方向,B 位于南偏西41°方向. (1)线段BQ 与PQ 是否相等?请说明理由; (2)求A ,B 间的距离.(参考数据cos41°=0.75) 【答案】解:(1)相等
由图易知,∠QPB =65.5°,∠PQB =49°,∠AQP =41°,
∴∠PBQ =180°-65.5°-49°=65.5°.∴∠PBQ =∠BPQ . ∴BQ =PQ
(2)由(1)得,BQ =PQ =1200 m .
在Rt △APQ 中,AQ =PQ cos ∠AQP =1200
0.75 =1600(m ).
又∵∠AQB =∠AQP +∠PQB =90°,
∴Rt △AQB 中,AB =AQ 2
+BQ 2
=16002
+12002
=2000(m ).
答:A ,B 间的距离是2000 m .
【考点】等腰三角形的判定,用三角函数解直角三角形,勾股定理。

(内江市)放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°. 为了便于观察.小明迅速向前边移动边收线到达了离A 处7米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,2≈1.414,3≈1.732.最后结果精确到1米)
(南京市)如图,某数学课外活动小组测量电视塔AB 的
C
B
A
高度,他们借助一个高度为30m 的建筑物CD 进行测量,在点C 处塔顶B 的仰角为45°,在点E 处测得B 的
仰角为37°(B 、D 、E 三点在一条直线上).求电视塔的高度h . (参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75) 【答案】解:在Rt ECD ∆中,tan DEC ∠=
DC
EC
. ∴EC =tan DC DEC ∠≈30
400.75
=(m )
. 在Rt BAC ∆中,∠BCA =45°,∴BA CA =
在Rt BAE ∆中,tan BEA ∠=BA EA .∴0.7540
h
h =+.
∴120h =(m ). 答:电视塔高度约为120m .
【考点】解直角三角形。

【分析】欲求AB, 由045BCA ∠=只要求出CA, 在Rt BAE ∆中,tan BEA ∠=
BA
EA
,故只要求出EC,EC 由EC =
tan DC
DEC
∠求得.
(南昌市)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上。

(1) 求证:⊿ABE ∽⊿DFE (2) 若sin ∠DFE=
3
1
,求tan ∠EBC 的值.
(眉山市)在一次数学课外活动中,一位同学在教学楼的店A 初观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗秆底部C 的俯角为60°,已知点A 距地面的高AD 为15m ,求旗杆的高度。

A
B
D
h 37
45°
(哈尔滨市)已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠ BPC的值是
(海南)如图l0,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
(黄石市)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔。

据黄石地理资料记载:东方山海拔453.20米,月亮山海拔442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方
山山顶D处的俯角为β,如图(7)。

已知
tan0.15987,tan0.15847
αβ
==,若飞机的飞行速度为
180米/秒,则该飞机从A到B处需多少时间?(精确到0.1
秒)
β
α
A B
D
C
(安徽)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 【解】
答:∵OA 35003
3
150030tan 1500=⨯
=⨯=
, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).
答:隧道AB 的长约为635m.
(大连市)如图7,某建筑物BC 上有一旗杆AB ,小明在与BC 相距12m 的F 处,由E 点观测到旗杆顶部A
的仰角为52°、底部B 的仰角为45°,小明的观测点与地面的距离EF 为1.6m . ⑴求建筑物BC 的高度; ⑵求旗杆AB 的高度. (结果精确到0.1m .参考数据:2≈1.41,sin52°≈0.79,tan52°≈1.28)
【答案】
解:(1)过点E 作ED⊥BC 于D ,
由题意知,四边形EFCD 是矩形
∴ED =FC =12,DC =EF =1.6…………………………3分 在Rt △BED 中,∠BED=45°, ∴BD=ED =12,
∴BC=BD +DC =12+1.6=13.6,…………………………5分 答:建筑物BC 的高度为13.6m .…………………………6分 (2)在Rt △AED 中,∠AED=52°,
∴AD=ED•tan52°=12×tan52°…………………………8分
∴AB=AD -BD =12×tan52°-12≈12×1.28-12=15.36-12=3.36≈3.4.………11分 答:旗杆AB 的高度约为3.4m .…………………………12分
第19题图 图7
A B
E。

相关文档
最新文档