衡中押题密卷—理科数学2
2020届河北省衡中同卷新高考原创精准模拟考试(二)理科数学试卷
2020届河北省衡中同卷新高考原创精准模拟考试(二)理科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则=( )A. B. C. D.【答案】B【解析】【分析】由集合的交集运算得解【详解】,由此,故选B。
【点睛】本题考查集合的基本运算,属于基础题。
2.若复数满足 (是虚数单位),则( )A. B. C. D.【答案】A【解析】【分析】【详解】,故选A。
【点睛】本题考查复数的除法运算,属于基础题。
3.若向量, 且,则实数的值为( )A. B. C. D.【答案】A【解析】【分析】根据题意列出方程,求解即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选A【点睛】本题主要考查向量数量积的坐标运算,熟记公式即可,属于基础题型.4.去年年底甲、乙、丙、丁四个县人口总数为万,各县人口占比如图.其中丙县人口为70万.则去年年底甲县的人口为( )A. 162万B. 176万C. 182万D. 186万【答案】C【解析】【分析】根据统计图得到丙县人口所占百分比,求出四个县的总人口,进而可求出结果.【详解】由统计图可得,丙县人口占四个县总人口的,又丙县人口为70万,所以四个县总人口为万,因甲县人口占四个县总人口的,所以甲县的人口为万.故选C【点睛】本题主要考查扇形统计图,会分析统计图即可,属于基础题型.5.已知双曲线的一个焦点为(2,0),则双曲线的渐近线方程为()A. B. C. D.【答案】C【解析】【分析】先由双曲线的一个焦点坐标为(2,0),可求出双曲线的方程,进而可得其渐近线方程. 【详解】因为双曲线的一个焦点为(2,0),所以,故,因此双曲线的方程为,所以其渐近线方程为.故选C【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.6.已知数列満足: ,,则=( )A. 0B. 1C. 2D. 6【答案】B【分析】由,可得,以此类推,即可得出结果.【详解】因为,,所以,以此类推可得,,,.故选B【点睛】本题主要考查数列的递推公式,由题意逐步计算即可,属于基础题型.7.巳知将函数的图象向左平移个単位长度后.得到函数的图象.若是偶函数.则=( )A. B. C. D.【答案】A【解析】【分析】先由题意写出,根据是偶函数求出,即可得出结果.【详解】由题意可得:,因为是偶函数,所以,即,又,所以,解得,所以,故;所以.故选A【点睛】本题主要考查三角函数的图像变换与三角函数的性质,熟记性质即可,属于常考题型.8.已知满足条件若的最小值为0,则=( )A. 1B. 2C. 3D. 4【答案】B【解析】根据约束条件作出可行域,将目标函数化为,结合图像以及的最小值,即可求出结果.【详解】由约束条件作出可行域,又目标函数表示直线在轴截距的二倍,因此截距越小,就越小;由图像可得,当直线过点时,在轴截距最小;由解得,所以,又的最小值为0,所以,解得.故选B【点睛】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.9.曲线与直线围成的平面图形的面积为()A. B. C. D.【答案】D【解析】【分析】先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【点睛】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.10.已知抛物线的准线方程为,的顶点在抛物线上,,两点在直线上,若,则面积的最小值为( )A. 5B. 4C.D. 1【答案】D【解析】【分析】准线方程为,得抛物线方程,根据弦长公式解得BC,将面积的最小值转化为A 点到直线的距离的最值问题。
2020届河北衡水金卷新高考原创押题考试(二)理科数学
2020届河北衡水金卷新高考原创押题考试(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={|ln(1)x y x =-},集合N={|,x y y e x R =∈},(e 为自然对数的底数)则M N ⋂=( ) A. {|1x x <} B. {1x x }C. {|01x x <<}D. ∅【答案】C 【解析】 试题分析:{|ln(1)}{|1}x y x x x =-=<,,故=.考点:集合的运算.2.已知直线,m n 分别在两个不同的平面,αβ内,则“m n ⊥”是“αβ⊥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】D 【解析】 【分析】将直线,m n 放入正方体1111ABCD A B C D -中,进而判断即可.【详解】在正方体1111ABCD A B C D -中,设1m AD =,n AB =,若m n ⊥,即1AD AB ⊥, 但平面1ABD 和平面ABCD 不垂直,即α与β不垂直,故充分性不成立 ;设m BC =,11n A D =,若αβ⊥,则平面ABCD ⊥平面11A ADD ,但BC 和11A D 不垂直,即m 与n 不垂直,故必要性不成立. 故选:D.【点睛】本题考查两命题的充分性和必要性的判断,考查直线间,平面间的空间的位置关系.3.已知向量,a b r r不共线,若()()3//a b ka b +-r r r r ,则实数k =( )A. 13-B. 12-C.13D.12【分析】由向量共线的性质得()3ka b a b λ-=+r r r r,由此能求出实数k 的值.【详解】由于()()3//a b ka b +-r r r r ,所以存在实数λ,使得()3ka b a b λ-=+r r r r,因此k λ=且31λ=-,解得13k =-. 故选:A【点睛】本题考查实数值的求法,考查向量共线的性质等基础知识,考查运算求解能力,是基础题. 4.一个简单几何体的三视图如图所示,则该几何体的体积为( )A. 9636π+B. 7248π+C. 4896π+D. 2448π+【答案】D 【解析】 【分析】该几何体是由两部分组成的,左半部分是四分之一圆锥,右半部分是三棱锥,运用锥体体积公式可以求解.. 【详解】该几何体是由左右两部分组成的锥体,左半部分是四分之一圆锥,其体积V 左=211π6843⨯⨯n =24π,右半部分是三棱锥,其体积1166832V =⨯⨯⨯⨯右=48,所以该几何体的体积2448V 总π=+.故选D.【点睛】本题考查了组合体的三视图问题,以及锥体体积公式,需要平常多强化空间想象能力. 5.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是( ) A. 0.3B. 0.4C. 0.6D. 0.7【分析】先求出从五个节日中随机选取两个节日的所有基本事件数,再求出春节和端午节至少有一个被选中的基本事件数,然后根据古典概型概率公式求解即可.【详解】由题意得,从五个节日中随机选取两个节日的所有情况有2510C =种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为123227C C +=.由古典概型概率公式可得12322527()0.710C C P A C +===. 故选D .【点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题. 6.对于函数()21x f x e =+的图象,下列说法正确的是( ) A. 关于点()1,0对称 B. 关于点()0,1对称 C. 关于直线1x =对称 D. 关于直线y x =对称【答案】B 【解析】 【分析】整理()f x 为()111x x e f x e -=++,设()()11xx e g x x R e -=∈+,可判断()g x 是奇函数,进而利用图象变换得到()f x 的图象性质.【详解】∵()2111111xx x e f x e e -=-+=+++,令()()11xx e g x x R e -=∈+,则()()1111x x x xe e g x g x e e -----===-++,∴()g x 为奇函数,则其图象关于原点对称.将其图象向上平移1个单位长度可得()f x 图象,所以()f x 图象关于()0,1对称. 故选:B.【点睛】本题考查函数奇偶性的应用,考查判断函数的对称性.7.设F 为抛物线2:4C y x =的焦点,过F 的直线l 与C 相交于,A B 两点,AB 的中点在直线1y =上,则直线l 的方程为( ) A. 22y x =- B. 1y x =- C. 22y x =-+ D. 1y x =-+【答案】A 【解析】 【分析】由,A B 在抛物线上可得2114y x =①,2224y x =②,由AB 的中点在直线1y =上,可得1212y y +=,利用①-②可得直线AB 的斜率为2,即可设:2AB y x b =+,将焦点坐标代入求解即可.【详解】由题,设()()1122,,,A x y B x y ,则2114y x =①,2224y x =②,且1212y y +=, ①-②得()()()1212124y y y y x x -+=-,即121212124222y y y y x x y y -===+-+, 即直线AB 的斜率为2,设:2AB y x b =+,把()1,0F 代入直线方程得2b =-, ∴直线:22l y x =- 故选:A.【点睛】本题考查直线与抛物线的位置关系的应用,考查求直线方程.8.已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A. 关于点,012π⎛⎫- ⎪⎝⎭对称B. 关于点,012π⎛⎫⎪⎝⎭对称C. 关于直线12x π=-对称D. 关于直线12x π=对称【答案】B 【解析】 【分析】先根据相邻两条对称轴的距离可得周期为T π=,从而2ω=,再根据平移变换得到新图像对应的解析式,根据其对称性可计算φ,从而可确定()f x 图像的对称轴和对称中心,故可得正确答案.【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±,所以2sin 13πφ⎛⎫+=± ⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确. 综上,选D .【点睛】一般地,我们研究()sin y A ωx φ=+的图像和性质时,通常用复合函数的方法来讨论,比如求函数的单调区间时,我们先确定u x ωϕ=+的单调性,再函数的单调性确定外函数sin y u =的单调区间后求出x 的范围即可,比如求函数的对称轴、对称中心时,可以由sin y u =的对称轴或对称中心得到相应的对称轴或对称中心.9.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅u u u r u u u r u u u r u u u r的最小值为( )A. 1B. 2C. -2D. -1【答案】C 【解析】建立如图所示的平面直角坐标系,使得点D 在原点处,点A 在y 轴上,则(0,2)A .设点P 的坐标为(,)x y ,则(,2),(,)PA x y PO x y =--=--u u u v u u u v, 故22()22(2)PA PB PA PC PA PB PC PA PO x y y ⋅+⋅=⋅+=⋅=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222[(1)]22x y =+--≥-,当且仅当0,1x y ==时等号成立.所以PA PB PA PC ⋅+⋅u u u v u u u v u u u v u u u v的最小值为2-.选C .10.已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( )A. 10πB. 4πC. 16πD. 8π【答案】D 【解析】【详解】因为PAD ∆为等腰直角三角形,2PA PD ==,故,则点到平面ABCD 的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形ABCD 的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D .11.设12,F F 分别为双曲线()2222:1,0x y E a b a b-=>左、右焦点,以坐标原点O 为圆心,1OF 为半径的圆与双曲线E 的右支相交于,P Q 两点,与E 的渐近线相交于,,,A B C D 四点,若四边形12PFQF 的面积与四边形,,,A B C D的面积相等,双曲线E的离心率为()【答案】C【解析】【分析】由双曲线的定义和勾股定理可求得2122PF PF b⨯=,从而可得四边形12PFQF的面积,然后求出点圆O与E的渐近线在第一象限的交点为(),a b,可求出四边形ABCD的面积,然后可得答案.【详解】由双曲线的定义及平面几何知识可知122PF PF a-=,①222124PF PF c+=,②2-②①得2122PF PF b⨯=,∴四边形12PFQF的面积为21121222S PF PF b=⨯⨯=,由222x y cby xa⎧+=⎪⎨=⎪⎩,当0,0x y>>,解得,x a y b==,∴圆O与E的渐近线在第一象限的交点为(),a b.∴四边形ABCD的面积24S ab=,∵224b ab=,∴2ba=,即2224,c a cea a-===故选:C【点睛】本题考查双曲线定义渐进性的简单应用,属于中档题.12.对任意实数()222,,22a aa b e b e a a b-+++的最小值是()A.14B.12C.34D. 1【答案】B【解析】【分析】整理条件可得()()()2222222a a a e b e a a b a b e b-+++=-+-,设()(),,,aM a eN b b ,则M 为函数x y e =图象上任意一点,N 为函数y x =图象上任意一点,则()22222a a e b e a a b -+++的最小值等价于2MN 的最小值,进而利用导函数的几何意义求解即可.【详解】由于()()()2222222a a a e b e a a b a b e b -+++=-+-,设()(),,,aM a e N b b ,则M 为函数xy e=图象上任意一点,N 为函数y x =图象上任意一点,则()22222aa eb e a a b -+++的最小值等价于2MN 的最小值,令1x y e '==,∴0x =,因此,点()0,1到直线y x =的距离最小,其值为2,故所求最小值为12.故选:B.【点睛】本题考查曲线上一点到直线上一点的距离最值问题,考查导函数的几何意义的应用,考查转化思想.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.53)x的展开式的常数项为__________. 【答案】15- 【解析】 【分析】在53x ⎫⎪⎭展开式的通项公式中,令x 的幂指数等于零,求出r 的值,即可求出展开式的常数项.【详解】解:由于53x ⎫⎪⎭展开式的通项公式为55415·(1)?3?r r r r r T C x -+=-, 令550r -=,解得1r =,故展开式的常数项是15-, 故答案为15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题. 14.某次考试后,对全班同学数学成绩进行整理,得到表:将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________. 【答案】115 【解析】 【分析】由表格中数据可知各分数段的学生数学成绩的频率,即直方图中每个矩形的面积,而中位数左侧的所有小矩形的面积之和应为0.5,进而求解即可.【详解】由题意可知,直方图每个矩形的面积表示对应的频率,直方图四个矩形的面积从左向右依次为0.1,0.3,0.4,0.2,由于中位数左侧的矩形面积之和为0.5,故中位数位于第3个矩形处,而前2个矩形面积之和为0.4,故第3个矩形在中位数左侧的面积为0.1, 故中位数为区间[)110,130的最靠左的四等分点处,故中位数为115.故答案为:115.【点睛】本题考查利用频率分布直方图求中位数,考查数据处理能力.15.已知直角三角形 ABC 两直角边长之和为3,将ABC ∆绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________. 【答案】 (1). 43π (2). 25π 【解析】 【分析】设直角三角形的两边分别为,a b ,则3a b +=,假设以长度为b 的直角边为轴旋转形成的旋转体,则体积为()2211333V a b a a ππ==-,利用导函数即可求得最值;设外接球的半径为R ,则满足()22212R R =-+,进而求解即可.【详解】设直角三角形的两边分别为,a b ,则3a b +=,以长度为b 的直角边为轴旋转形成的旋转体的体积为()2211333V a b a a ππ==-()03a <<, 则()21633V a a π'=-,令0V '=,解得0a =或2a =,所以当02a <<时,0V '>;当23a <<时,0V '<, 所以当2a =时,体积最大,最大值为43π,此时圆锥的底面半径为2,高为1, 设外接球的半径为R ,则()22212R R =-+,所以外接球的半径为52,其表面积为25π故答案为:43π;25π 【点睛】本题考查旋转体的体积,考查外接球的表面积,考查利用导函数求最值.16.已知变量m 的取值完全由变量a b c d ,,,的取值确定.某同学进行了四次试验,每次试验中他预先设定好a b c d ,,,四个变量的取值,然后记录相应的变量m 的值,得到表:则m 关于a b c d ,,,的表达式可能是______________. 【答案】()2a b m cd +=或()8m a b cd =+或223a b m cd+=或其他符合条件的解析式【解析】 【分析】本题为开放题,答案并不唯一,对比试验数据,进而求解即可.【详解】本题为开放题,答案并不唯一,例如,考生可对比试验①②推断m 与d 成反比, 对比试验②③推断m 与c 成反比,对比③④推断m 与+a b 成反比,由此可得a bm k cd+=, 代入试验①的数据,解得2k =,故()2a b m cd+=是一种可能的表达式, 此外,答案中列举的其他解析式均符合题意,故答案为:()2a b m cd+=或()8m a b cd =+或223a b m cd +=或其他符合条件的解析式. 【点睛】本题考查求解析式,考查数据处理能力.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知n S 是正项数列{}n a 的前n 项和,且对任意n ∈+N ,均有2423n n n S a a =+-.(1)求n a ; (2)求数列(){}1nn a -的前n 项和n T .【答案】(1)21n a n =+;(2)()()111nn T n =-+-【解析】 【分析】(1)由题,当2n ≥时,2111423n n n S a a ---=+-,与条件作差可得2211422n n n n n a a a a a --=-+-,即()()1120n n n n a a a a --+--=,由{}n a 为正项数列知10n n a a ->+,则120n n a a ---=,进而求解即可;(2)利用错位相减法求解即可.【详解】(1)由2423n n n S a a =+-①可知,当2n ≥时,2111423n n n S a a ---=+-②,①-②得,2211422n n n n n a a a a a --=-+-,整理得()()1120n n n n a a a a --+--=,由{}n a 为正项数列知10n n a a ->+,故120n n a a ---=, 故{}n a 是以2为公差的等差数列,又①中,当1n =时,可解得13a =或11a =-(舍), 所以21n a n =+(2)根据题意,()()357121nn T n =-+-++-+L ③③⨯()1-,则()()()()135121121nn n T n n +-=-++--+-+L ④③-④,得()()()1232212121nn n T n +=-+-++---+L ()()()()1113212111n nn ---=-+⨯+-+-- ()()2122nn =-+-+则()()111nn T n =-+-【点睛】本题考查由n a 与n S 的关系求通项公式,考查错位相减法求数列的和,考查运算能力.18.已知12,A A 分别为椭圆222:12x y C b+=的左右顶点,P 为C 上异于12,A A 的点,且直线1PA 与2PA 的斜率乘积为12-. (1)求椭圆C 的方程;(2)若B 为椭圆C 的上顶点,F 为C 的右焦点,PBF ∆的面积为1,求直线PB 的方程.【答案】(1)2212x y +=;(2)0x =或220x y -+=【解析】 【分析】(1)由题可得左右顶点为())12,A A ,设()00,P x y ,则22222x y b -=⋅,利用斜率公式处理1212PA PA k k ⋅=-,可求得2b ,即可求得椭圆方程; (2)分别讨论直线PB 斜率不存在与存在的情况,利用弦长公式和点到直线距离求三角形面积,进而求解即可.【详解】(1)由题意知())12,A A ,设()00,P x y ,则22222x y b -=⋅,因为12220201222PA PA y b k k x ⋅===-=--,解得21b =,故椭圆方程为2212x y +=(2)由题,上顶点为()0,1B ,右焦点为()1,0F ,当直线BP 斜率不存在时,BP 方程为0x =,易知此时BPF ∆面积为1,符合题意; 当直线BP 斜率存在时,设BP 方程为1y kx =+,联立22121x y y kx ⎧+=⎪⎨⎪=+⎩,得()221240k x kx ++=,解得1224,012k x x k =-=+,∴122412k BP x k=-=+,点F 到直线BP,由24112BPF k S k ∆==+,解得12k =, 此时112y x =+,即220x y -+= 故直线BP 的方程为0x =或220x y -+=【点睛】本题考查由椭圆的几何性质求椭圆的方程,考查直线与椭圆的位置关系的应用,考查椭圆内的三角形面积的应用,考查运算能力.19.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AD BC ∥,1AB BC PA ===,2AD =,90PAD DAB ABC ∠=∠=∠=︒,点E 在棱PC上,且CE CP λ=.(Ⅰ)求证:CD AE ⊥;(Ⅱ)是否存在实数λ,使得二面角C AE D --的余弦值为10?若存在,求出实数λ的值;若不存在,请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)10. 【解析】【详解】试题分析:(1)由边长和勾股定理得CD AC ⊥,又平面PAD ⊥平面ABCD ,由定理证得CD ⊥平面PAC CD AE ∴⊥ (2) 建立空间直角坐标系, 得出平面AEC 的一个法向量为()1,1,0n CD u u u v v ==-,设平面AED 的一个法向量为m v,由题意计算得出结果解析:(Ⅰ)过点C 作CF AB ∥交AD 于D ,1AB BC ==Q ,2AD =,90DAB ABC o ∠=∠=四边形ABCF 为正方形,且1AF FD ==,2AC =在Rt CFD △中,2CD =,在ACD V 中,2224CD AC AD +==CD AC ∴⊥ 90,PAD PA AD o Q ∠=∴⊥又平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =PA ∴⊥平面ABCD PA CD ∴⊥ ,PA AC ⊂Q 平面PAC ,且PA AC A =ICD \^平面PAC CD AE ∴⊥(Ⅱ)90PAD PA AD ∠=∴⊥o Q又平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =PA ∴⊥平面ABCD PA CD ∴⊥,PA AB ⊥以点A 为坐标原点,AB 、AD 、AP 所在直线为坐标轴建立空间直角坐标系,()()()()()()0,0,0,0,0,1,1,1,0,0,2,0,1,1,0,0,2,0A P C D CD AD =-=u u u v u u u v假设存在实数λ使得二面角C AE D --的余弦值为10,令CE CP λ=u u u v u u u v Q 点E 在棱PC 上,[]0,1λ∴∈设()()(),,,1,1,1,1,1E x y z CE CP x y z λλ=∴--=--u u u v u u u vQ()1,1,E λλλ∴--则()1,1,AE u u u vλλλ=--,CD ⊥Q 平面PAC ,∴平面AEC 的一个法向量为()1,1,0n CD u u uv v ==-设平面AED 的一个法向量为()111,,m x y z =v由00m AE m AD ⎧⋅=⎨⋅=⎩u u u v v u u u v v 得()()11111100x y z y λλλ⎧-+-+=⎨=⎩令1z =得()1,0,1,0,111m λλλλλ-⎛⎫==-- ⎪--⎝⎭v 取(),0,1m λλ=--v()2210cos ,12m n m n m n λλ⋅∴===+-⨯v vv vv v 化简得23840λλ-+=又[]0,1λ∈ 23λ∴= 存在实数23λ=使得二面角C AE D --的余弦值为10. 20.某人某天的工作是:驾车从A 地出发,到B C 、两地办事,最后返回A 地,,,A B C 三地之间各路段行驶时间及当天降水概率如表:若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案: 方案甲:上午从A 地出发到B 地办事,然后到达C 地,下午在C 地办事后返回A 地; 方案乙:上午从A 地出发到C 地办事,下午从C 地出发到达B 地, 办事后返回A 地.(1)设此人8点从A 地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回A 地的概率;(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回A 地? 【答案】(1)0.598;(2)甲方案 【解析】 【分析】(1)若各路段均不会遇到降水,则返回A 地的时间为17点,则若18点或18点之前能返回A 地的充要条件是降水的路段数不超过1,进而求解即可;(2)设某路段正常行驶时间为x ,降水概率为p ,则()()11EX x p x p x p =-++=+,进而讨论每一路段行驶时间的期望,再得到方案甲、乙的总行驶时间的期望,比较即可.【详解】(1)由题意可知,若各路段均不会遇到降水,则返回A 地的时间为17点, 因此若18点或18点之前能返回A 地的充要条件是降水的路段数不超过1,记事件123,,M M M 分别表示在上午AB 路段降水,上午BC 降水,下午CA 路段降水,则所求概率()()()()123123123123P P M M M P M M M P M M M P M M M =+++0.70.80.10.30.80.10.70.20.10.70.80.90.598=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2)设某路段正常行驶时间为x ,降水概率为p ,则该路段行驶时间X 的分布列为:故()()11EX x p x p x p =-++=+设采用甲、乙两种方案所花费的总行驶时间分别为,Y Z ,则2.3 2.23.98.4EY =++=, 2.6 2.7 3.38.6EZ =++=,8.48.6<,因此采用甲方案更有利于办事之后能更早返回A 地.【点睛】本题考查互斥事件的概率加法公式的应用,考查两点分布的分别列和期望,考查数据处理能力.21.已知函数()()1,ln 1xx e f x g x x x +==-. (1)当1x >时,不等式()f x m >成立,求整数m 的最大值;(参考数据:ln20.693,ln3 1.099≈≈); (2)证明:当1x >时,()()f x g x <. 【答案】(1)最大值为3;(2)见解析 【解析】 【分析】 (1)先求导可得()21ln 1ln x x f x x--'=,设()1ln 1F x x x=--,由()F x '可判断()F x 在()1,+∞上为增函数,由()()453ln 30,4ln 4034F F =-<=->可得()03,4x ∃∈使得()()000F x f x '==,则()()0min f x f x =,进而求解即可;(2)要证()()f x g x <,即证21ln 0xx x e-->,设()21ln x x h x x e -=-,利用导函数判断()h x 的单调性,由()10h =,进而求解即可.【详解】(1)当1x >时,()21ln 1ln x x f x x--'=,令()1ln 1F x x x =--,则()2110F x x x'=+>,因此()F x 在()1,+∞上为增函数, 又()()453ln 30,4ln 4034F F =-<=->, ∴()03,4x ∃∈使得()()000F x f x '==,即001ln 1x x =+, 当01x x <<时,()0f x '<,()f x 为减函数;当0x x >时,()0f x '>,()f x 为增函数;∴()()()0000min 00113,41ln 1x x f x f x x x x ++====∈+,所以整数m 的最大值为3(2)法一:要证()()f x g x <,即证21ln 0xx x e-->, 令()21ln xx h x x e -=-,则()2321212x x xx x e x x xh x x e xe -++--'=-=, 令()322xx e x x x ϕ=+--,则()2341xx e x x ϕ'=+--,()()64,6x xx e x x e ϕϕ'''''=+-=+,∵()0x ϕ'''>,∴()x ϕ''在()1,+∞上为增函数,又()12e ϕ''=-,∴()0x ϕ''>, ∴()x ϕ'在()1,+∞上为增函数,又()12e ϕ'=-,∴()0x ϕ'>,∴()x ϕ在()1,+∞上为增函数,又()12e ϕ=-,∴()0x ϕ>,即()0h x '>, ∴()h x 在()1,+∞上为增函数,∴()()10h x h >=,故()()f x g x <.【点睛】本题考查利用导函数处理函数恒成立问题,考查利用导函数证明不等式,考查利用导函数判断函数的单调性.(二)选考题:共10分22.在极坐标系Ox 中,直线,m n 的方程分别为cos 3,sin 2ρθρθ==,曲线2236:45sin C ρθ=+.以极点O 为坐标原点,极轴为x 轴的正半轴,建立平面直角坐标系. (1)将直线,m n 的方程与曲线C 的方程化成直角坐标方程;(2)过曲线C 上动点P 作直线,m n 的垂线,求由这四条直线围成的矩形面积的最大值.【答案】(1)224936x y +=;(2)max 9S =+【解析】 【分析】(1)由直角坐标方程与极坐标方程的互化的公式,直接得出答案.(2)由条件可设()3cos ,2sin P θθ,则矩形的两边长分别为33cos ,22sin θθ--,然后用换元法可求矩形面积的最大值.【详解】解:(1)由cos ,sin x y ρθρθ==得 直线,m n 的直角坐标方程分别为3,2x y ==, 曲线C 的方程为224936x y +=;(2)由(1)知曲线22:194x y C +=,故可设()3cos ,2sin P θθ,矩形的两边长分别为33cos ,22sin θθ--,∴矩形的面积()()()33cos 22sin 61sin cos sin cos S θθθθθθ=--=--+,令sin cos t θθ⎡+=∈⎣,则21sin cos 2t θθ-=,2363,S t t t ⎡=-+∈⎣,当t =max 9S =+.【点睛】本题考查直角坐标方程与极坐标方程的互化、椭圆的参数方程以及换元法求最值,属于中档题. 23.已知()215f x x ax =-+-(a 是常数,a R ∈). (1)当1a =时,求不等式()0f x ≥的解集;(2)若函数()f x 恰有两个不同的零点,求实数a 的取值范围. 【答案】(1){x |4x ≤-或2x ≥};(2)(2,2)-【解析】【分析】(1)当a=1时,f(x)14,21 36,2 x xx x⎧--<⎪⎪⎨⎪-≥⎪⎩,把1240xx⎧<⎪⎨⎪--≥⎩或12360xx⎧≤⎪⎨⎪-≥⎩的解集取并集,即得所求;②由f(x)=0得|2x﹣1|=﹣ax+5,作出y=|2x﹣1|和y=﹣ax+5 的图象,观察可以知道,当﹣2<a<2时,这两个函数的图象有两个不同的交点,由此得到a的取值范围.【详解】(1)当1a=时,()215f x x ax=-+-=14,2136,2x xx x⎧--<⎪⎪⎨⎪-≥⎪⎩,由()0f x≥,得1240xx⎧<⎪⎨⎪--≥⎩或12360xx⎧≤⎪⎨⎪-≥⎩,解得4x≤-或2x≥,故不等式()0f x≥的解集为{x|4x≤-或2x≥}.(2)令()f x=0,得215x ax-=-,则函数()f x恰有两个不同的零点转化为21y x=-与5y ax=-+的图象有两个不同的交点,在同一平面直角坐标系中作出两函数的图象如图所示,结合图象知当22a-<<时,这两个函数的图象有两个不同的交点,所以当22a-<<时,函数()f x恰有两个不同的零点,故实数a的取值范围为()2,2-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2024年新高考数学押题密卷(二)
2024年新高考数学押题密卷(二)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,0,2A =-,{}2,B y y x x x A ==+∈,{}2Z 60C x x x =∈-≤.则B C ⋂=()A .{}0,2B .{}0,2,6C .{}1,2,0,2-D .{}0,2,6,22.用最小二乘法得到一组数据(),(1,2,3,4,5,6)i i x y i =的线性回归方程为ˆ23yx =+,若6130i i x ==∑,则61i i y ==∑()A .11B .13C .63D .783.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅=()A .16B .16-C .20D .20-4.已知函数22()sin cos (),()f x x x x f x =-∈'R 是()f x 的导数,则以下结论中正确的是()A .函数π2f x ⎛⎫+ ⎪⎝⎭是奇函数B .函数()f x 与()f x '的值域相同C .函数()f x 的图象关于直线4x π=对称D .函数()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递增5.将一个棱长为4的正四面体同一侧面上的各棱中点两两连接,得到一多面体,则这个多面体的外接球的体积为()A .8πB .8π3C D .36.已知集合1111,,,,2,32323A ⎧⎫=--⎨⎬⎩⎭,若,,a b c A ∈且互不相等,则使得指数函数x y a =,对数函数log b y x =,幂函数c y x =中至少有两个函数在(0,)+∞上单调递增的有序数对(,,)a b c 的个数是()A .16B .24C .32D .487.已知数列{}n a 的各项均为正数,记()12n A n a a a =+++ ,()231n B n a a a +=+++ ,()342n C n a a a +=+++ ,*n ∈N ,设甲:{}n a 是公比为q 的等比数列;乙:对任意*n ∈N ,()A n ,()B n ,()C n 三个数是公比为q 的等比数列,则()A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分又不必要条件8.设O 为坐标原点,直线l 过抛物线2:2(0)C x py p =>的焦点10,4F ⎛⎫⎪⎝⎭,且与C 交于,M N 两点,其中M 在第一象限,则下列正确的是()A .C 的准线为14x =-B .1344MF NF MF NF ++⋅的最小值为38C .以MN 为直径的圆与x 轴相切D .若(0,)Q p 且MQ MF =,则180ONQ OMQ ∠+∠>二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,则下列命题正确的是()A .若12=z z ,则12=±z z B .若21z z =,则2121z z z =C .若1z 是非零复数,且2112z z z =,则12z z =D .若1z 是非零复数,则1110z z +≠10.已知函数()()2e xf x x ax b =++,下列结论正确的是()A .若函数()f x 无极值点,则()f x 没有零点B .若函数()f x 无零点,则()f x 没有极值点C .若函数()f x 恰有一个零点,则()f x 可能恰有一个极值点D .若函数()f x 有两个零点,则()f x 一定有两个极值点11.正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当0λ=,1μ=时,AP 与平面ABC 所成角为π4B .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥C .当1λ=,12μ=时,平面1AB P ⊥平面1A ABD .若1AP =,则点P 的轨迹长度为π2第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
2019届河北省衡水中学高考押题试卷(二)理科数学
2019届河北省衡水中学高考押题试卷(二)数学(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集,,,则A.B.C.D.2. 已知复数,在复平面内对应的点分别为,,则A.B.C.D.3. 已知上的奇函数满足:当时,,则()A. B.C. D.4. 某中学有高中生人,初中生人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取女生人,则从初中生中抽取的男生人数是()A. B.C. D.5. 已知等差数列中,,,则A. B.C. D.6. 已知实数,满足,则的最大值与最小值之和为()A. B.C. D.7. 将函数的图象向右平移个单位长度后,再将图象上各点的纵坐标伸长到原来的倍,得到函数的图象,则A.B.C.D.8. 我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:今有人坐一辆车,有辆车是空的;人坐一辆车,有个人需要步行.问人与车各多少?如图是该问题中求人数的程序框图,执行该程序框图,则输出的值为A. B.C. D.9. 如图是某几何体的三视图,则此几何体的表面积为()A.B.C.D.10. 已知三棱锥中,侧面底面,,,,,则三棱锥外接球的体积为()A. B.C. D.11. 已知双曲线的离心率,对称中心为,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,,的面积为,则双曲线的方程为()A.B.C.D.12. 设实数,若对任意的,不等式恒成立,则的最大值是( )A. B.C. D.二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在答题卡中的横线上。
13. 已知非零向量,,若与的夹角等于与的夹角,则________.14.的展开式中不含常数项的所有项的系数之和是________.15. 已知等比数列的前项和为,且,则________,且.16. 已知抛物线:的焦点为,为坐标原点,点,,射线,分别交抛物线于异于点的点,,若,,三点共线,则的值为________.三、解答题:本大题共5小题,共70分。
河北衡水中学2019年高考押题试卷理数(二)(解析版)
河北衡水中学2019年高考押题试卷理数试卷〔二〕第Ⅰ卷一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则〔〕A. B. C. D.【答案】B【解析】由题意可得:,则集合=.此题选择B选项.2.设复数满足,则〔〕A. B. C. D.【答案】C【解析】由题意可得: .3.假设,,则的值为〔〕A. B. C. D.【答案】A【解析】∵,∴∈〔,〕,又因为,∴故sinα=sin[〔〕-]=sin〔〕cos-cos〔〕sin== ,故选A.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差异与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.4.已知直角坐标原点为椭圆:的中心,,为左、右焦点,在区间任取一个数,则事件“以为离心率的椭圆与圆:没有交点”的概率为〔〕A. B. C. D.【答案】A【解析】满足题意时,椭圆上的点到圆心的距离:,整理可得,据此有:,题中事件的概率 .此题选择A选项.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为〔〕A. B. C. D.【答案】D【解析】由题意可得:,设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,则,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.此题选择D选项.6.某几何体的三视图如下图,假设该几何体的体积为,则它的外表积是〔〕A. B.C. D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,,它的外表积是.此题选择A选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.假设相邻两物体的外表相交,外表的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7.函数在区间的图象大致为〔〕A. B.C. D.【答案】A【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:此题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.8.二项式的展开式中只有第项的二项式系数最大,且展开式中的第项的系数是第项的系数的倍,则的值为〔〕A. B. C. D.【答案】B【解析】二项式的展开式中只有第6项的二项式系数最大,则,二项式展开式的通项公式为:,由题意有:,整理可得: .此题选择D选项.点睛:二项式系数与展开式项的系数的异同一是在T r+1=a n-r b r中,是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指,而后者是字母外的部分,前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.9.执行如图的程序框图,假设输入的,,,则输出的的值为〔〕A. B. C. D.【答案】C【解析】依据流程图运行程序,首先初始化数值,x=0,y=1,n=1 ,进入循环体:x=n y=1,y==1,时满足条件y2≥x,执行n=n+1=2 ,进入第二次循环,x=n y=2,y==,时满足条件y2≥x,执行n=n+1=3 ,进入第三次循环,x=n y=2,y==,时不满足条件y2≥x,输出 .10.已知数列,,且,,则的值为〔〕A. B. C. D.【答案】C【解析】由递推公式可得:当为奇数时,,数列是首项为1,公差为4的等差数列,当为偶数时,,数列是首项为2,公差为0的等差数列,此题选择C选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.11.已知函数的图象如下图,令,则以下关于函数的说法中不正确的选项是〔〕A. 函数图象的对称轴方程为B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线:平行D. 方程的两个不同的解分别为,,则最小值为【答案】C【解析】【分析】根据函数f〔x〕的图象求出A、T、ω和的值,写出f〔x〕的解析式,求出f′〔x〕,写出g〔x〕=f〔x〕+f′〔x〕的解析式,再判断题目中的选项是否正确.【详解】根据函数f〔x〕=A sin〔ωx+〕的图象知,A=2,,∴T=2π,ω1;根据五点法画图知,当x时,ωx+,∴,∴f〔x〕=2sin〔x〕;∴f′〔x〕=2cos〔x〕,∴g〔x〕=f〔x〕+f′〔x〕=2sin〔x〕+2cos〔x〕=2sin〔x〕=2sin〔x〕;令x kπ,k∈Z,解得x kπ,k∈Z,∴函数g〔x〕的对称轴方程为x kπ,k∈Z,A正确;当x2kπ,k∈Z时,函数g〔x〕取得最大值2,B正确;g′〔x〕=2cos〔x〕,假设函数g〔x〕的图象上存在点P〔x0,y0〕,使得在P点处的切线与直线l:y=3x﹣1平行,则k=g′〔x0〕=2cos〔x0〕=3,解得cos〔x0〕1,显然不成立,所以假设错误,即C错误;方程g〔x〕=2,则2sin〔x〕=2,∴sin〔x〕,∴x2kπ或x2kπ,k∈Z;∴方程的两个不同的解分别为x1,x2时,|x1﹣x2|的最小值为,D正确.故选:C.【点睛】此题考查了由y=A sin〔ωx+〕的部分图象确定解析式,考查了正弦型函数的性质问题,也考查了导数的几何意义的应用以及命题真假的判断问题,属于难题.12.已知函数,假设存在三个零点,则的取值范围是〔〕A. B. C. D.【答案】D【解析】很明显,由题意可得:,则由可得,由题意得不等式:,即:,综上可得的取值范围是.此题选择D选项.点睛:函数零点的求解与判断(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.第Ⅱ卷二、填空题:本大题共4小题,每题5分,共20分.13.向量,,假设向量,共线,且,则的值为__________.【答案】-8【解析】由题意可得:或,则:或 .14.设点是椭圆上的点,以点为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于不同的两点、,假设为锐角三角形,则椭圆的离心率的取值范围为__________.【答案】【解析】分析:设,由题意,从而可求椭圆的离心率的取值范围.详解:因为圆与轴相切于焦点,所以圆心与的连线必垂直于轴,不妨设,因为在椭圆上,则,所以圆的半径为,由题意,所以,所以.点睛:此题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).15.设,满足约束条件,则的取值范围为__________.【答案】【解析】绘制不等式组表示的可行域如下图,目标函数表示可行域内的点与坐标原点之间连线的斜率,目标函数在点处取得最大值,在点处取得最小值,则的取值范围为.点睛:此题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16.在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为__________.【答案】【解析】由题意可设:,则:,则:当时,面积由最大值;当时,面积由最大值;结合二次函数的性质可得:的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列的前n项和为〔1〕求数列的通项公式;〔2〕记,求的前项和【答案】(1) ;(2) .【解析】试题分析:〔1〕首先利用S n与a n的关系:当n=1时,a1=S1,当n≥2时,a n=S n-S n-1;结合已知条件等式推出数列{a n}是等比数列,由此求得数列{a n}的通项公式;〔2〕,利用裂项求和即可.试题解析:〔1〕当时,由及,得,即,解得.又由,① 可知,②②-①得,即.且时,适合上式,因此数列是以为首项,公比为的等比数列,故.〔2〕由〔1〕及,可知,所以,故.18.如下图的几何体中,底面为菱形,,,与相交于点,四边形为直角梯形,,,,平面底面.〔1〕证明:平面平面;〔2〕求二面角的余弦值.【答案】(1)见解析;〔2〕余弦值为.【解析】【分析】〔1〕先由菱形的性质以及面面垂直的性质证明平面,从而,再利用勾股定理证明,从而可得平面,进而可得结果;〔2〕取中点,可证明平面,又在菱形中,,分别以,,的方向为,,轴正方向建立空间直角坐标,平面的法向量可取为,再利用向量垂直数量积为零列方程求出平面的法向量,利用空间向量夹角余弦公式可得结果.【详解】〔1〕因为底面为菱形,所以,又平面底面,平面平面,因此平面,从而.又,所以平面,由,,,可知,,,,从而,故,又,所以平面.又平面,所以平面平面.〔2〕取中点,由题可知,所以平面,又在菱形中,,分别以,,的方向为,,轴正方向建立空间直角坐标系〔如图示〕,则,,,,.所以,,.由〔1〕可知平面,所以平面的法向量可取为,设平面的法向量为,则,即,即,令,得,所以.从而.由图可知,所求二面角的大小为锐角,故所求的二面角的余弦值为.法二:此题也可以连接,,即为所求的二面角的平面角.【点睛】此题主要考查面面垂直的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:〔1〕观察图形,建立恰当的空间直角坐标系;〔2〕写出相应点的坐标,求出相应直线的方向向量;〔3〕设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;〔4〕将空间位置关系转化为向量关系;〔5〕根据定理结论求出相应的角和距离.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级名学生中随机抽取名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如下图〔视频率为概率〕,根据以上抽样调查数据,答复以下问题:〔1〕试估算该校高三年级学生获得成绩为的人数;〔2〕假设等级、、、、分别对应分、分、分、分、分,学校要求平均分达分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?〔3〕为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取个学生样本,再从中任意选取个学生样本分析,求这个样本为级的个数的分布列与数学期望.【答案】(1) 等级为的概率为,成绩为的人数约有;(2)见解析;〔3〕见解析.【解析】试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为的人数为448;(2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关.(3)的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为 .试题解析:〔1〕从条形图中可知这100人中,有56名学生成绩等级为,所以可以估计该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩为的人数约有.〔2〕这100名学生成绩的平均分为,因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.〔3〕由题可知用分层抽样的方法抽取11个学生样本,其中级4个,级7个,从而任意选取3个,这3个为级的个数的可能值为0,1,2,3.则,,,.因此可得的分布列为:则.20.已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且〔为坐标原点〕.〔1〕求椭圆的方程;〔2〕讨论是否为定值?假设为定值,求出该定值,假设不是请说明理由.【答案】(1);(2)2.【解析】试题分析:(1)由题意求得,,故所求的椭圆方程为.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值.试题解析:〔1〕由题意可知,所以,即,①又点在椭圆上,所以有,②由①②联立,解得,,故所求的椭圆方程为.〔2〕设,由,可知.联立方程组消去化简整理得,由,得,所以,,③又由题知,即,整理为.将③代入上式,得.化简整理得,从而得到.21.设函数.〔1〕试讨论函数的单调性;〔2〕设,记,当时,假设方程有两个不相等的实根,,证明.【答案】〔1〕见解析;〔2〕见解析.【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①假设时,当时,函数单调递减,当时,函数单调递增;②假设时,函数单调递增;③假设时,当时,函数单调递减,当时,函数单调递增.(2)构造新函数,结合新函数的性质即可证得题中的不等式. 试题解析:〔1〕由,可知.因为函数的定义域为,所以,①假设时,当时,,函数单调递减,当时,,函数单调递增;②假设时,当在内恒成立,函数单调递增;③假设时,当时,,函数单调递减,当时,,函数单调递增. 〔2〕证明:由题可知,所以.所以当时,;当时,;当时,.欲证,只需证,又,即单调递增,故只需证明.设,是方程的两个不相等的实根,不妨设为,则两式相减并整理得,从而,故只需证明,即.因为,所以〔*〕式可化为,即.因为,所以,不妨令,所以得到,.记,,所以,当且仅当时,等号成立,因此在单调递增.又,因此,,故,得证,从而得证.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号. 22.在直角坐标系中,曲线:〔为参数,〕,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.〔1〕试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;〔2〕当时,两曲线相交于,两点,求.【答案】〔1〕的取值范围为;〔2〕.【解析】试题分析:(1)由题意计算可得曲线与化为直角坐标系中的普通方程为,;的取值范围是;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得.试题解析:〔1〕曲线:消去参数可得普通方程为.曲线:,两边同乘.可得普通方程为.把代入曲线的普通方程得:,而对有,即,所以故当两曲线有公共点时,的取值范围为.〔2〕当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.23.已知函数.〔1〕在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;〔2〕假设函数的最小值记为,设,且有,试证明:.【答案】〔1〕解集为;〔2〕见解析见解析.【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:〔1〕因为所以作出图象如下图,并从图可知满足不等式的解集为.〔2〕证明:由图可知函数的最小值为,即.所以,从而,从而. 当且仅当时,等号成立,即,时,有最小值,所以得证.。
2023年河北省衡水中学高考数学押题卷(理科)(金卷二)(解析版)
2023年河北省衡水中学高考数学押题卷(理科)(金卷二) 一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.23.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,96.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤08.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.412.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=_______.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=_______.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为_______.16.将三项式(x 2+x +1)n 展开,当n=0,1,2,3,…时,得到以下等式:(x 2+x +1)0=1(x 2+x +1)1=x 2+x +1(x 2+x +1)2=x 4+2x 3+3x 2+2x +1(x 2+x +1)3=x 6+3x 5+6x 4+7x 3+6x 2+3x +1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k 行共有2k +1个数.若在(1+ax )(x 2+x +1)5地展开式中,x 7项地系数为75,则实数a 地值为_______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC 地个内角A 、B 、C 对应地三条边分别为a 、b 、c,且角A 、B 、C 成等差数列,a=2,线段AC 地垂直平分线分别交线段AB 、AC 于D 、E 两点.(1)若△BCD 地面积为,求线段CD 地长;(2)若DE=,求角A 地值.18.如图,已知三棱柱ABC ﹣A 1B 1C 1中,CA=CB,侧面AA 1B 1B 是菱形,且∠ABB 1=60°.(I )求证:AB ⊥B 1C ;(Ⅱ)若AB=B 1C=2,BC=,求二面角B ﹣AB 1﹣C 1地正弦值.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号28问3577110771024778957755卷得分62806028040880457385(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i )求每次抽取1人,抽到"持赞同态度"居民地概率;(ii )若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E (ξ)及其方差D (ξ).20.已知点M 是抛物线C 1:y 2=2px (p >0)地准线与x 轴地交点,点P 是抛物线C 1上地动点,点A 、B 在y 轴上,△APB 地内切圆为圆C 2,(x 一1)2+y 2=1,且|MC 2|=3|OM |为坐标原点.(I )求抛物线C 1地标准方程;(Ⅱ)求△APB 面积地最小值.21.已知函数f (x )=x 3﹣x 2+ax +2,g (x )=lnx ﹣bx,且曲线y=f (x )在点(0,2)处地切线与x 轴地交点地横坐标为﹣2.(Ⅰ)求a 地值;(Ⅱ)若m 、n 是函数g (x )地两个不同零点,求证:f (mn )>f (e 2)(其中e 为自然对数地底数).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC 并延长,交圆于点A,弦BC 和AD 相交于点F .(I )求证:AB •FC=AC •FB ;(Ⅱ)若D 、E 、C 、F 四点共圆,且∠ABC=∠CAB,求∠BAC .[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,直线l地参数方程为(t为参数,φ∈[0,]),以坐标原点O为极点,x轴地非负半轴为极轴建立极坐标系,已知圆C地圆心C地极坐标为(2,),半径为2,直线l与圆C相交于M,N两点.(I)求圆C地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN|地取值范围.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣2|+|x﹣a|.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.2023年河北省衡水中学高考数学押题卷(理科)(金卷二)参考解析与试卷解析一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)【考点】交、并、补集地混合运算.【分析】先化简集合M,根据N={x|x=2n﹣1,n∈Z},和{1,3,5,7}可得解析.【解答】解:∵x2﹣8x>0,解得x<0或x>8,∴M=(﹣∞,0)∪(8,+∞),∴∁R M=[0,8],∵N={x|x=2n﹣1,n∈Z},∴(∁R M)∩N={1,3,5,7}.故选:B.2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.2【考点】复数求模.【分析】把已知等式变形,利用复数代数形式地乘除运算求得,再由求得解析.【解答】解:由(+2i﹣3)(4+3i)=3﹣4i,得=,∴.故选:C.3.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)地图象变换.【分析】利用两角差地正弦函数公式可求f(x)=2sin(2x﹣),根据函数y=Asin(ωx+φ)地图象变换规律可得g(x)=2sin(2x+),利用正弦函数地对称性即可得解.【解答】解:f(x)=sin2x﹣cos2x=2sin(2x﹣),将函数地图象向左平移个单位得到函数g(x)=2sin[2(x+)﹣]=2sin(2x+),由2x+=kπ+,k∈Z,可得所得地图象地对称轴方程为:x=+,k∈Z,当k=0时,可知函数g(x)图象关于直线x=对称.故选:B.4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.【考点】数列地求和.【分析】由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,a=4.于是S n=4n2+4n.=.利用"裂项求和"方法即可得出.【解答】解:由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,解得a=4.∴S n=4n2+4n.∴=.∴T10=+…+==.故选:D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,9【考点】程序框图.【分析】由已知中地程序框图可知:该程序地功能是利用循环结构计算并输出变量s地值,模拟程序地运行过程,分析循环中各变量值地变化情况,可得解析.【解答】解:模拟执行程序,可得s=1,k=0执行循环体,s=2,k=2不满足条件2>n,执行循环体,s=6,k=4不满足条件4>n,执行循环体,s=22,k=6不满足条件6>n,执行循环体,s=86,k=8此时,应该满足条件8>n,执行循环体,退出循环,输出s地值为86,所以,判断框内n地值满足条件:6≤n<8,则判断框内地正整数n地所有可能地值为6,7.故选:B.6.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]【考点】平面向量数量积地运算.【分析】由向量垂直地条件可得•=0,运用向量地平方即为模地平方,可得|+|=2,再化简运用向量地数量积地定义,结合余弦函数地值域,即可得到所求最大值,进而得到所求范围.【解答】解:由题意可得•=0,可得|+|==2,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<+,>=0,即为||=2cos<+,>,当cos<+,>=1即+,同向时,||地最大值是2.则||地取值范围为[0,2].故选:B.7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤0【考点】简单线性规划.【分析】由题意作平面区域,化z=ax+y为y=﹣ax+z,从而可得﹣a<﹣1,从而解得.【解答】解:由题意作平面区域如下,,z=ax+y可化为y=﹣ax+z,∵z=ax+y仅在点P(﹣,)处取得最小值,∴﹣a<﹣1,∴a>1,故选:B.8.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x【考点】双曲线地简单性质.【分析】根据双曲线地定义结合直角三角形地边角关系进行求解即可.【解答】解:设双曲线地右焦点为F2,则由对称性知,|P0F2|=|PF1|=a,则|P0F1|﹣|P0F2|=2a,即|P0F1|=3a,∵=0,∴P0F1⊥PF1,即P0F1⊥P0F2,则4c2=(3a)2+a2=10a2=4(a2+b2)即3a2=4b2,则,即=,即双曲线地渐近线方程为y=x,故选:C.9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e【考点】函数地图象.【分析】根据函数地单调性地定义可得g(x)在(﹣∞,0]内单调递增,根据题意作出函数f (x)地简图,利用树形结合地思想即可求出.【解答】解:对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1),∴[g(x2)﹣g(x1)](x2﹣x1)>0,∴g(x)在(﹣∞,0]内单调递增,根据题意作出函数f(x)地简图,如图所述,令f(x)≤1,由f(x)地图象可知x≤e,若f(x﹣a)≤1,则x≤e+a,∴D=(﹣∞,e+a],又2e∈D,∴2e≤a+e,∴a≥e,则a地最小值是e,故选:C.10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.【考点】由三视图求面积、体积.【分析】由三视图知几何体是直三棱柱ABC﹣DEF为长方体一部分,画出直观图求出几何体地棱,结合几何体地体积和柱体地体积公式列出方程,求出x即可.【解答】解:根据三视图知几何体是:直三棱柱ABC﹣DEF为长方体一部分,直观图如下图所示:其中AB=x,且BC=2,长方体底面地宽是,∵该几何体地体积为,∴=,解得x=,故选:D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.4【考点】数列递推式.【分析】先由递推公式得到数列{a n}是以2为首项吗,以1为公差地等差数列,再求出b n,分别计算前4项和,5﹣8项和,9﹣12项和,找到规律得到T4n递减,当n=2时,满足,问题得以解决.【解答】解:由题意可得,当n=2时, +=1,∴=1,即a22﹣a2﹣6=0,解得a2=3或a2=﹣2(舍去),当n≥2, +=1,∴2(S n+1)+S n﹣1•a n=a n(S n+1),∴2(S n+1)+(S n﹣a n)a n=a n(S n+1),∴2S n+2=a n2+a n,当n≥3时,2S n﹣1+2=a n﹣12+an﹣1,两式相减得2a n=a n2+a n﹣a n﹣12﹣an﹣1,∴a n+a n﹣1=a n2﹣a n﹣12,∵正项数列{a n},∴a n﹣a n﹣1=1,(n≥3),∵a2﹣a1=1,∴数列{a n}是以2为首项吗,以1为公差地等差数列,∴a n=2+(n﹣1)=n+1,∴b n=(n+1)2sin,∴当n=1时,sin=1,n=2时,sinπ=0,n=3时,sin=﹣1,n=4时,sin2π=0,∴b1+b2+b3+b4=4+0﹣16+0=﹣12,b5+b6+b7+b8=36+0﹣64+0=﹣28,b9+b10+b11+b12=102+0﹣122+0=﹣44,…b4n﹣3+b4n﹣2+b4n﹣1+b n=(4n﹣2)2﹣(4n)2=﹣2(8n﹣2)=4﹣16n<0,∴T4n递减,当n=2时,满足,故选:B12.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】设公切线与f(x)、g(x)地切点坐标,由导数几何意义、斜率公式列出方程化简,分离出a后构造函数,利用导数求出函数地单调区间、最值,即可求出实数a地取值范围.【解答】解:设公切线与f(x)=x2+1地图象切于点(x1,),与曲线C:g(x)=ae x+1切于点(x2,),∴2x1===,化简可得,2x1=,得x1=0或2x2=x1+2,∵2x1=,且a>0,∴x1>0,则2x2=x1+2>2,即x2>1,由2x1=得a==,设h(x)=(x>1),则h′(x)=,∴h(x)在(1,2)上递增,在(2,+∞)上递减,∴h(x)max=h(2)=,∴实数a地取值范围为(0,],故选:A.二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=3n.【考点】数列递推式.【分析】由a n+1=2S n(n≥1),可得S n+1﹣S n=2S n,即S n+1=3S n利用等比数列地通项公式即可得出.【解答】解:∵a n+1=2S n(n≥1),∴S n+1﹣S n=2S n,即S n+1=3S n,∴数列{S n}是等比数列,首项为S1=3,公比为q=3,∴S n=3•3n﹣1=3n.故解析为:3n.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=.【考点】三角函数中地恒等变换应用.【分析】由同角三角函数关系得sin(α+)=,由二倍角公式得tan[2(α+)]=,由两角差地正切公式得结果.【解答】解:∵cos(α+)=,α∈(0,),∵cos2(α+)+sin2(α+)=1,α+∈(,)∴sin(α+)=,∴tan(α+)=,∴tan[2(α+)]==,∴tan(2α+)=tan(2α+﹣)=tan[2(α+)﹣]=.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为=1.【考点】椭圆地简单性质;椭圆地标准方程.【分析】如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,解得m.又|OT|=2,可得b2=2+m2.c2=9m2﹣b2=12.可得a2=b2+c2,即可得出.【解答】解:如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,∴4=2m2,解得m=.又|OT|=2,∴b2=2+22=6.c2=9m2﹣b2=12.∴a2=b2+c2=18.∴椭圆C地标准方程为=1.故解析为:=1.16.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5地展开式中,x7项地系数为75,则实数a 地值为1.【考点】归纳推理.【分析】由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,即可求出实数a地值.【解答】解:由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,所以a=1.故解析为:1.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC地个内角A、B、C对应地三条边分别为a、b、c,且角A、B、C成等差数列,a=2,线段AC地垂直平分线分别交线段AB、AC于D、E两点.(1)若△BCD地面积为,求线段CD地长;(2)若DE=,求角A地值.【考点】正弦定理;余弦定理.【分析】(1)先根据三角形地内角A,B,C成等差数列,求出B地度数,再根据三角地面积公式求出BD,再根据余弦定理即可求出,(2)根据垂直平分线地性质得到AC=2AE=,再根据正弦定理,即可求出解析.【解答】解:(1)三角形地内角A,B,C成等差数列,则有2B=A+C.又A+B+C=180°,∴B=60°,∵△BCD地面积为,a=2∴BD•BC•sin60°=,∴BD=,由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=+4+2××2×=,∴CD=,(2)∵线段AC地垂直平分线分别交线段AB、AC于D、E两点,DE=,∴AE=,∴AC=2AE=2×=,由正弦定理可得=,即=,∴cosA=,∵0<A<180°,∴A=45°18.如图,已知三棱柱ABC﹣A1B1C1中,CA=CB,侧面AA1B1B是菱形,且∠ABB1=60°.(I)求证:AB⊥B1C;(Ⅱ)若AB=B1C=2,BC=,求二面角B﹣AB1﹣C1地正弦值.【考点】二面角地平面角及求法;直线与平面垂直地性质.【分析】(1)取AB中点,连接OC,OB1,证明AB⊥平面OCB1,即可证明.AB⊥B1C;(2)建立空间坐标系,求出平面地法向量,利用向量法先求出二面角地余弦值,然后求正弦值即可.【解答】解:(1)∵四边形AA1B1B是菱形,且∠ABB1=60°.∴△ABB1是等边三角形,取AB中点,连接OC,OB1,则AB⊥OB1,∵CA=CB,∴AB⊥OC,∵OC∩OB1=O,OB1,OC⊂平面OB1C,∴AB⊥平面OCB1,∴AB⊥B1C;(2)∵△ABB1是等边三角形,AB=2,∴OB1=,∵在△ABC中,AB=2,BC=AC=,O为AB地中点,∴OC=1,∵B1C=2,0B1=,∴OB12+OC2=B1C2,∴OB1⊥OC,∵OB1⊥AB,∴OB1⊥平面ABC,以O为坐标原点,OB,OC,OB1地方向为x,y,z轴地正向,建立如下图所示地坐标系,可得A(﹣1,0,0),B1(0,0,),B(1,0,0),C(0,1,0),则=+=+=(﹣1,1,),则C(﹣1,1,),=(1,0,),=(0,1,),则平面BAB1地一个法向量为=(0,1,0),设=(x,y,z)为平面AB1C1地法向量,则:•=x+z=0,•=y+z=0,令z=﹣1,则x=y=,可得=(,,﹣1),故cos<,>==,则sin<,>==,即二面角B﹣AB1﹣C1地正弦值是.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号2 8问卷得分3652787161072781024478788945577735 855(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i)求每次抽取1人,抽到"持赞同态度"居民地概率;(ii)若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E(ξ)及其方差D(ξ).【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生地概率;离散型随机变量地期望与方差.【分析】(Ⅰ)数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,即可求出解析;(Ⅱ)根据茎叶图和平均数中位数即可判断农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,即可求出解析,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,根据数学期望和方差地计算公式计算即可.【解答】解:(Ⅰ)记数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,公差d=10,且a3=28,得到为100分地居民编号分别对应为a6,a9,则a6=a3+3d=58,a9=a3+6d=88,所以得分为100分地居民编号分别为58,88,(Ⅱ)通过茎叶图可以看出,该地区农村居民问卷得分地平均值明显高于城市居民问卷得分地平均值,农村居民问卷得分地中位数为(94+96)=95,城市居民问卷得分地中位数为(72+73)=72.5,农村居民问卷得分地中位数明显高于城市居民问卷得分地中位数,所以农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,每次抽到"持赞同态度"居民地概率为=,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,ξ01234PE(ξ)=4×=所以D(ξ)=np(1﹣p)=4××=20.已知点M是抛物线C1:y2=2px(p>0)地准线与x轴地交点,点P是抛物线C1上地动点,点A、B在y轴上,△APB地内切圆为圆C2,(x一1)2+y2=1,且|MC2|=3|OM|为坐标原点.(I)求抛物线C1地标准方程;(Ⅱ)求△APB面积地最小值.【考点】抛物线地简单性质;抛物线地标准方程.【分析】(I)求出M(﹣,0),可得=,即可求抛物线C1地标准方程;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),求得直线PA地方程,运用直线和圆相切地条件:d=r,求得b,c地关系,求得△PAB地面积,结合基本不等式,即可得到最小值.【解答】解:(I)由题意,C2(1,0),∵|MC2|=3|OM|,∴M(﹣,0),∴=,∴p=1,∴抛物线C1地标准方程是y2=2x;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),直线PA地方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PA地距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0地两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PAB面积最小值为8.21.已知函数f(x)=x3﹣x2+ax+2,g(x)=lnx﹣bx,且曲线y=f(x)在点(0,2)处地切线与x轴地交点地横坐标为﹣2.(Ⅰ)求a地值;(Ⅱ)若m、n是函数g(x)地两个不同零点,求证:f(mn)>f(e2)(其中e为自然对数地底数).【考点】利用导数研究曲线上某点切线方程;函数零点地判定定理.【分析】(Ⅰ)求出f(x)地导数,可得切线地斜率,运用两点地斜率公式可得a=3:(Ⅱ)求出f(x)地导数,可得f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相加减,可得ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,只需证得当t>1时,h(t)>2.设φ(t)=lnt+﹣2,求得导数,判断单调性,即可得证.【解答】解:(Ⅰ)函数f(x)=x3﹣x2+ax+2地导数为f′(x)=x2﹣2x+a,可得曲线y=f(x)在点(0,2)处地切线斜率为k=a,由两点地斜率可得=a,解得a=3;(Ⅱ)证明:f(x)=x3﹣x2+x+2地导数为f′(x)=x2﹣2x+1=(x﹣1)2≥0,即有f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相减可得lnm﹣lnn=b(m﹣n),相加可得lnm+lnn=b(m+n),可得b==,即有ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,下证当t>1时,h(t)>2.即当t>1时,lnt•>2,即lnt>=2(1﹣),只需证t>1时,lnt+﹣2>0,设φ(t)=lnt+﹣2,则φ′(t)=﹣=>0,即φ(t)在(1,+∞)递增,可得φ(t)>φ(1)=0,即ln(mn)>2,故f(mn)>f(e2).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC并延长,交圆于点A,弦BC和AD 相交于点F.(I)求证:AB•FC=AC•FB;(Ⅱ)若D、E、C、F四点共圆,且∠ABC=∠CAB,求∠BAC.【考点】与圆有关地比例线段;圆內接多边形地性质与判定.【分析】(I)连接CD,证明:△CFD∽△ACD,得到,即可证明AB•FC=AC•FB;(Ⅱ)证明∠ACF=∠CFA.∠EAD=∠DAB,即可求∠BAC.【解答】(I)证明:连接CD,∵直线ED与圆相切于点D,∴∠EDC=∠EAD,∵ED∥BC,∴∠EDC=∠DCB,∴∠EAD=∠DCB,∴∠CAD=∠DCF,∵∠CDF=∠ADC,∴△CFD∽△ACD,∴,∴AB•FC=AC•FB;(Ⅱ)解:∵D、E、C、F四点共圆,∴∠CFA=∠CED,∵ED∥BC,∴∠ACF=∠CED,∴∠ACF=∠CFA.由(I)可知∠EAD=∠DCB,∠DCB=∠DAB,∴∠EAD=∠DAB,设∠EAD=∠DAB=x,则∠ABC=∠CAB=2x,∴∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,∠CFA+∠ACF+∠CAF=π=7x,∴x=∴∠BAC=2x=.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy 中,直线l 地参数方程为(t 为参数,φ∈[0,]),以坐标原点O 为极点,x 轴地非负半轴为极轴建立极坐标系,已知圆C 地圆心C 地极坐标为(2,),半径为2,直线l 与圆C 相交于M,N 两点.(I )求圆C 地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN |地取值范围.【考点】参数方程化成普通方程;简单曲线地极坐标方程.【分析】(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为: =4,展开 利用互化公式即可化为极坐标方程.(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,利用根与系数地关系可得:|MN |=|t 1﹣t 2|=,再利用三角函数地单调性与值域即可得出.【解答】解:(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为:=4,展开可得:x 2+y 2﹣2x ﹣2y=0,化为极坐标方程:ρ2﹣2ρcos θ﹣2ρsin θ=0,即ρ=2cos θ+2sin θ=4cos .(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,∴t 1+t 2=﹣2cos φ,t 1t 2=﹣3.∴|MN |=|t 1﹣t 2|==2,∵φ∈[0,],∴cos φ∈,cos 2φ∈.∴|MN |∈.[选修4-5:不等式选讲]24.已知函数f (x )=|x ﹣1|+|x ﹣2|+|x ﹣a |.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.【考点】绝对值三角不等式;绝对值不等式地解法.【分析】(Ⅰ)a=1时,通过讨论x地范围,求出各个区间上地不等式地解集,取并集即可;(Ⅱ)a=3时,通过讨论x地范围,求出f(x)地最小值,从而求出m地范围即可.【解答】解:(Ⅰ)a=1时,f(x)=2|x﹣1|+|x﹣2|=,x≤1时,4﹣3x≤2,解得:≤x≤1,1<x<2时,x≤2,∴1<x<2,x≥2时,3x﹣4≤2,∴x=2,综上,不等式地解集是{x|≤x≤2};(Ⅱ)a=3时,f(x)=,x≤1时,6﹣3x≥3,∴f(x)≥3,1<x≤2时,2≤4﹣x<3,∴2≤f(x)<3,2<x≤3时,2<f(x)≤3,x>3时,3x﹣6>3,∴f(x)>3,综上,x=2时,f(x)地最小值是2,若f(x)≥m恒成立,则m≤2,故实数m地范围是(﹣∞,2].2023年9月8日。
2023年河北省衡水中学高考数学猜题卷(理科)(解析版)
2023年河北省衡水中学高考数学猜题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件地集合P地个数是( )A.3B.4C.7D.82.已知i是虚数单位,复数地虚部为( )A.﹣1B.1C.﹣i D.i3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本地平均值为1,则样本方差为( )A.2B.C.D.4.双曲线C:﹣=1(a>0,b>0)地离心率为2,焦点到渐近线地距离为,则C地焦距等于( )A.2B.2C.4D.45.若不等式组表示地平面区域是一个直角三角形,则该直角三角形地面积是( )A.B.C.D.或6.已知,则tan2α=( )A.B.C.D.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学地智慧,其中第六章"均输"中,有一竹节容量问题,某教师根据这一问题地思想设计了如下图所示地程序框图,若输出地m地值为35,则输入地a地值为( )A.4B.5C.7D.118.如下图所示,过抛物线y2=2px(p>0)地焦点F地直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线地方程为( )A.y2=9x B.y2=6x C.y2=3x D.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥地三视图是( )A.B.C.D.10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA地值所在区间为( )A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)地大致图象是( )A.B.C.D.12.已知函数f(x)=﹣,若对任意地x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f (x2)|](x1﹣x2)>0,则实数a地取值范围为( )A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣e2,e2]二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知,则地值是 .14.已知一个公园地形状如下图所示,现有3种不同地植物要种在此公园地A,B,C,D,E这五个区域内,要求有公共边界地两块相邻区域种不同地植物,则不同地种法共有 种.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f (x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m)﹣f(x m)|=12(m≥2,m∈﹣1N*),则m地最小值为 .16.已知等腰直角△ABC地斜边BC=2,沿斜边地高线AD将△ABC折起,使二面角B﹣AD﹣C为,则四面体ABCD地外接球地表面积为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}地公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}地通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}地前n项和T n.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF地中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角地余弦角.19.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格地花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观地大展示.该景区自2023年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客地具体情形以及采集旅客对园区地建议,特别在2023年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)100.155[10,20)①②③④[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555(1)完成表格一中地空位①﹣④,并在答题卡中补全频率分布直方图,并估计2023年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查地100位游客中地10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)地人数为ξ,求ξ地分布列(表二)50岁以上50岁以下合计男生 女生 合计 P (K 2≥k )0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:k 2=,其中n=a +b +c +d )20.给定椭圆C:=1(a>b>0),称圆心在原点O,半径为地圆是椭圆C地"准圆".若椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.(Ⅰ)求椭圆C地方程和其"准圆"方程;(Ⅱ)点P是椭圆C地"准圆"上地动点,过点P作椭圆地切线l1,l2交"准圆"于点M,N.(ⅰ)当点P为"准圆"与y轴正半轴地交点时,求直线l1,l2地方程并证明l1⊥l2;(ⅱ)求证:线段MN地长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处地切线方程为y=x+b,求a,b地值;(2)讨论方程f(x)=0解地个数,并说明理由.[选修4-4:坐标系与参数方程]22.已知曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴地正半轴建立平面直角坐标系,直线l地参数方程为(t为参数).(I)写出直线l地一般方程与曲线C地直角坐标方程,并判断它们地位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求地取值范围.[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m 地取值范围.2023年河北省衡水中学高考数学猜题卷(理科)参考解析与试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件地集合P地个数是( )A.3B.4C.7D.8【考点】18:集合地包含关系判断及应用.【分析】解出集合Q,再根据P⊆Q,根据子集地性质,求出子集地个数即为集合P 地个数;【解答】解:集合Q={x|2x2﹣5x≤0,x∈N},∴Q={0,1,2},共有三个元素,∵P⊆Q,又Q地子集地个数为23=8,∴P地个数为8,故选D;2.已知i是虚数单位,复数地虚部为( )A.﹣1B.1C.﹣i D.i【考点】A5:复数代数形式地乘除运算.【分析】利用复数地运算法则、虚部地定义即可得出.【解答】解:复数==i﹣2地虚部为1.故选:B.3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本地平均值为1,则样本方差为( )A.2B.C.D.【考点】BC:极差、方差与标准差.【分析】根据平均数公式先求出a,再计算它们地方差.【解答】解:设丢失地数据为a,则这组数据地平均数是×(a+0+1+2+3)=1,解得a=﹣1,根据方差计算公式得s2=×[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2.故选:A.4.双曲线C:﹣=1(a>0,b>0)地离心率为2,焦点到渐近线地距离为,则C地焦距等于( )A.2B.2C.4D.4【考点】KC:双曲线地简单性质.【分析】根据双曲线地离心率以及焦点到直线地距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)地离心率为2,∴e=,双曲线地渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0地距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C5.若不等式组表示地平面区域是一个直角三角形,则该直角三角形地面积是( )A.B.C.D.或【考点】7C:简单线性规划.【分析】依题意,三条直线围成一个直角三角形,可能会有两种情形,分别计算两种情形下三角形地顶点坐标,利用三角形面积公式计算面积即可.【解答】解:有两种情形:(1)由y=2x与kx﹣y+1=0垂直,则k=﹣,三角形地三个顶点为(0,0),(0,1),(,),三角形地面积为s=×1×=;(2)由x=0与kx﹣y+1=0形垂直,则k=0,三角形地三个顶点为(0.0),(0,1),(,1),三角形地面积为s=×1×=.∴该三角形地面积为或.故选:D.6.已知,则tan2α=( )A.B.C.D.【考点】GU:二倍角地正切.【分析】将已知等式两边平方,利用二倍角公式,同角三角函数基本关系式即可化简求值得解.【解答】解:∵,∴,化简得4sin2α=3cos2α,∴,故选:C.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学地智慧,其中第六章"均输"中,有一竹节容量问题,某教师根据这一问题地思想设计了如下图所示地程序框图,若输出地m地值为35,则输入地a地值为( )A.4B.5C.7D.11【考点】EF:程序框图.【分析】模拟程序框图地运行过程,求出运算结果即可.【解答】解:起始阶段有m=2a﹣3,i=1,第一次循环后m=2(2a﹣3)﹣3=4a﹣9,i=2,第二次循环后m=2(4a﹣9)﹣3=8a﹣21,i=3,第三次循环后m=2(8a﹣21)﹣3=16a﹣45,i=4,第四次循环后m=2(16a﹣45)﹣3=32a﹣93,跳出循环,输出m=32a﹣93=35,解得a=4,故选:A8.如下图所示,过抛物线y2=2px(p>0)地焦点F地直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线地方程为( )A.y2=9x B.y2=6x C.y2=3x D.【考点】K8:抛物线地简单性质.【分析】分别过点A,B作准线地垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD地值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段地性质可求得p,则抛物线方程可得.【解答】解:如图分别过点A,B作准线地垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.故选C.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥地三视图是( )A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由已知中地四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误地,根据A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A,C均正确,而根据AC可判断B正确,D错误.【解答】解:三棱锥地三视图均为三角形,四个解析均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2地棱锥A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥设A中观察地正方向为标准正方向,以C表示从后面观察该棱锥B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥故选D10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA地值所在区间为( )A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)【考点】HR:余弦定理;HP:正弦定理.【分析】由题意求得cosA=﹣,再由余弦定理,得出关于﹣地方程,构造函数,利用函数零点地判断方法得出cosA地取值范围.【解答】解:△ABC中,AB=AC=2,BC•cos(π﹣A)=1,∴c=b=2,﹣acosA=1,cosA=﹣<0,且4>a>2;由余弦定理得,cosA==,∴﹣=,化为:8•﹣8•+1=0,令﹣=x∈(﹣,﹣),则f(x)=8x3﹣8x2+1=0,∵f(﹣0.4)=﹣1.4×1.28+1<0,f(﹣0.3)=0.064>0,∴cosA∈(﹣0.4,﹣0.3).故选:A.11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)地大致图象是( )A.B.C.D.【考点】3O:函数地图象.【分析】构造函数f(x)=x3﹣3x2+x+1,可整理得f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),利用排除法即可得到解析.【解答】解:令f(x)=x3﹣3x2+x+1,则f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),∴f(,1)=0,f(1﹣)=0,f(1+)=0,∵sgn(x)=,∴sgn(f(1))=0,可排除A,B;又sgn(f(1﹣))=0,sgn(f(1﹣))=0,可排除C,故选D.12.已知函数f(x)=﹣,若对任意地x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f (x2)|](x1﹣x2)>0,则实数a地取值范围为( )A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣e2,e2]【考点】6B:利用导数研究函数地单调性.【分析】由题意可知函数y=丨f(x)丨单调递增,分类讨论,根据函数地性质及对勾函数地性质,即可求得实数a地取值范围.【解答】解:由任意地x1,x2∈[1,2],且x1<x2,由[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则函数y=丨f(x)丨单调递增,当a≥0,f(x)在[1,2]上是增函数,则f(1)≥0,解得:0≤a≤,当a<0时,丨f(x)丨=f(x),令=﹣,解得:x=ln,由对勾函数地单调递增区间为[ln,+∞),故ln≤1,解得:﹣≤a<0,综上可知:a地取值范围为[﹣,],故选B.二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知,则地值是 ()2018 .【考点】DB:二项式系数地性质.【分析】利用二项式定理,对等式中地x赋值﹣2,可求得a0=0,再令x=,即可求出解析.【解答】解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=﹣2,得a0=0再令x=﹣,得到a0+=(﹣+1)2(﹣+2)2016=()2018,∴=,故解析为:()2018,14.已知一个公园地形状如下图所示,现有3种不同地植物要种在此公园地A,B,C,D,E这五个区域内,要求有公共边界地两块相邻区域种不同地植物,则不同地种法共有 18 种.【考点】D8:排列、组合地实际应用.【分析】根据题意,分2步进行分析:①、对于A、B、C区域,将3种不同地植物全排列,安排在A、B、C区域,由排列数公式可得其排法数目,②、对于D、E区域,分2种情况讨论:若A,E种地植物相同,若A,E种地植物不同;由加法原理可得D、E 区域地排法数目,进而由分步计数原理计算可得解析.【解答】解:根据题意,分2步进行分析:①、对于A、B、C区域,三个区域两两相邻,种地植物都不能相同,将3种不同地植物全排列,安排在A、B、C区域,有A33=6种情况,②、对于D、E区域,分2种情况讨论:若A,E种地植物相同,则D有2种种法,若A,E种地植物不同,则E有1种情况,D也有1种种法,则D、E区域共有2+1=3种不同情况,则不同地种法共有6×3=18种;故解析为:18.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f)﹣f(x m)|=12(m≥2,m∈(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1N*),则m地最小值为 8 .【考点】H2:正弦函数地图象.【分析】由正弦函数地有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f (x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件地最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m)﹣1﹣f(x m)|=12,按下图取值即可满足条件,∴m地最小值为8.故解析为:8.16.已知等腰直角△ABC地斜边BC=2,沿斜边地高线AD将△ABC折起,使二面角B﹣AD﹣C为,则四面体ABCD地外接球地表面积为 .【考点】LG:球地体积和表面积.【分析】由题意,△BCD是等边三角形,边长为1,外接圆地半径为,AD=1,可得四面体ABCD地外接球地半径==,即可求出四面体ABCD地外接球地表面积.【解答】解:由题意,△BCD是等边三角形,边长为1,外接圆地半径为,∵AD=1,∴四面体ABCD地外接球地半径==,∴四面体ABCD地外接球地表面积为=,故解析为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}地公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}地通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}地前n项和T n.【考点】8E:数列地求和;82:数列地函数特性;8H:数列递推式.【分析】(Ⅰ)利用等差数列与等比数列地通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论"裂项求和"即可得出.【解答】解:(Ⅰ)∵等差数列{a n}地公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+ =1+=.∴Tn=.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF地中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角地余弦角.【考点】MT:二面角地平面角及求法;LS:直线与平面平行地判定.【分析】(1)连接BD和AC交于点O,连接OF,证明OF∥BE.然后证明BE∥平面ACF.(II)以D为原点,以DE所在直线为x轴建立如下图所示地空间直角坐标系,求出相关点地坐标,求出平面BEF地一个法向量,平面BCF地一个法向量,设平面BCF 与平面BEF所成地锐二面角为θ,利用数量积求解即可.【解答】解:(1)连接BD和AC交于点O,连接OF,因为四边形ABCD为正方形,所以O为BD地中点.因为F为DE地中点,所以OF∥BE.因为BE⊄平面ACF,OF⊂平面AFC,所以BE∥平面ACF.(II)因为AE⊥平面CDE,CD⊂平面CDE,所以AE⊥CD.因为ABCD为正方形,所以CD⊥AD.因为AE∩AD=A,AD,AE⊂平面DAE,所以CD⊥平面DAE.因为DE⊂平面DAE,所以DE⊥CD.所以以D为原点,以DE所在直线为x轴建立如下图所示地空间直角坐标系,则E(2,0,0),F(1,0,0),A(2,0,2),D(0,0,0).因为AE⊥平面CDE,DE⊂平面CDE,所以AE⊥CD.因为AE=DE=2,所以.因为四边形ABCD为正方形,所以,所以.由四边形ABCD为正方形,得==(2,2,2),所以.设平面BEF地一个法向量为=(x1,y1,z1),又知=(0,﹣2,﹣2),=(1,0,0),由,可得,令y1=1,得,所以.设平面BCF地一个法向量为=(x2,y2,z2),又知=(﹣2,0,﹣2),=(1,﹣2,0),由,即:.令y2=1,得,所以.设平面BCF与平面BEF所成地锐二面角为θ,又cos===.则.所以平面BCF与平面BEF所成地锐二面角地余弦值为.19.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格地花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观地大展示.该景区自2023年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客地具体情形以及采集旅客对园区地建议,特别在2023年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)100.155[10,20)①②③④[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555(1)完成表格一中地空位①﹣④,并在答题卡中补全频率分布直方图,并估计2023年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查地100位游客中地10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)地人数为ξ,求ξ地分布列(表二)50岁以上50岁以下合计男生 5 40 45 女生 15 40 55 合计 20 80 100 P (K 2≥k )0.150.100.050.0250.0100.0050.001k2.0722.7063.841 5.024 6.6357.87910.828(参考公式:k 2=,其中n=a +b +c +d )【考点】CG:离散型随机变量及其分布列;BL:独立性检验.【分析】(1)由频率分布表地性质能完成表(一),从而能完成频率分布直方图,进而求出30岁以下频率,由此以频率作为概率,能估计2023年7月1日当日接待游客中30岁以下人数.(2)完成表格,求出K 2=≈4.04<5.024,从而得到没有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ地取值可能0,1,2,分别求出相应地概率,由此能求出ξ地分布列.【解答】解:(1)完成表(一),如下表:年龄频数频率男女[0,10)100.155[10,20)150.1578[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555完成频率分布直方图如下:30岁以下频率为:0.1+0.15+0.25=0.5,以频率作为概率,估计2023年7月1日当日接待游客中30岁以下人数为:12000×0.5=6000.(2)完成表格,如下:50岁以上50岁以下合计男生54045女生154055合计2080100K2==≈4.04<5.024,所以没有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ地取值可能0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.∴ξ地分布列为:ξ012P20.给定椭圆C:=1(a>b>0),称圆心在原点O,半径为地圆是椭圆C地"准圆".若椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.(Ⅰ)求椭圆C地方程和其"准圆"方程;(Ⅱ)点P是椭圆C地"准圆"上地动点,过点P作椭圆地切线l1,l2交"准圆"于点M,N.(ⅰ)当点P为"准圆"与y轴正半轴地交点时,求直线l1,l2地方程并证明l1⊥l2;(ⅱ)求证:线段MN地长为定值.【考点】KH:直线与圆锥曲线地综合问题.【分析】(Ⅰ)利用已知椭圆地标准方程及其即可得出;(Ⅱ)(i)把直线方程代入椭圆方程转化为关于x地一元二次方程,利用直线与椭圆相切⇔△=0,即可解得k地值,进而利用垂直与斜率地关系即可证明;(ii)分类讨论:l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,无论两条直线中地斜率是否存在,都有l1,l2垂直.即可得出线段MN为准圆x2+y2=4地直径.【解答】(Ⅰ)解:∵椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴地交点为P(0,2),设过点P(0,2)且与椭圆相切地直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切地直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2地斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4地直径,|MN|=4,∴线段MN地长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处地切线方程为y=x+b,求a,b地值;(2)讨论方程f(x)=0解地个数,并说明理由.【考点】6K:导数在最大值、最小值问题中地应用;54:根地存在性及根地个数判断;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出导函数,利用f(x)在x=2处地切线方程为y=x+b,列出方程组求解a,b.(2)通过a=0,a<0,判断方程地解.a>0,求出函数地导数判断函数地单调性,求出极小值,分析出当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a >e时方程有两解.【解答】解:(1)因为:(x>0),又f(x)在x=2处地切线方程为y=x+b所以解得:a=2,b=﹣2ln2…(2)当a=0时,f(x)在定义域(0,+∞)上恒大于0,此时方程无解;…当a<0时,在(0,+∞)上恒成立,所以f(x)在定义域(0,+∞)上为增函数.∵,,所以方程有惟一解.…当a>0时,因为当时,f'(x)>0,f(x)在内为减函数;当时,f(x)在内为增函数.所以当时,有极小值即为最小值…当a∈(0,e)时,,此方程无解;当a=e时,.此方程有惟一解.当a∈(e,+∞)时,,因为且,所以方程f(x)=0在区间上有惟一解,因为当x>1时,(x﹣lnx)'>0,所以x﹣lnx>1,所以,,因为,所以,所以方程f(x)=0在区间上有惟一解.所以方程f(x)=0在区间(e,+∞)上有惟两解.…综上所述:当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a>e时方程有两解.…[选修4-4:坐标系与参数方程]22.已知曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴地正半轴建立平面直角坐标系,直线l地参数方程为(t为参数).(I)写出直线l地一般方程与曲线C地直角坐标方程,并判断它们地位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求地取值范围.【考点】Q4:简单曲线地极坐标方程;O7:伸缩变换.【分析】(I)直线l地参数方程消去数t,能求出直线l地一般方程,由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,能求出曲线C地直角坐标方程,由圆心(2,3)到直线l地距离d=r,得到直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E地方程为,从而点M地参数方程为(θ为参数),由此能求出地取值范围.【解答】解:(I)∵直线l地参数方程为(t为参数).∴消去数t,得直线l地一般方程为,∵曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得曲线C地直角坐标方程为(x﹣2)2+(y﹣3)2=1.∵圆心(2,3)到直线l地距离d==r,∴直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E地方程为,则点M地参数方程为(θ为参数),∴,∴地取值范围为[﹣2,2].[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m 地取值范围.【考点】R2:绝对值不等式.【分析】(Ⅰ)将a=5代入解析式,然后解绝对值不等式,根据绝对值不等式地解法解之即可;(Ⅱ)先利用根据绝对值不等式地解法去绝对值,然后利用图象研究函数地最小值,使得1﹣2m大于等于不等式左侧地最小值即可.【解答】解:(I)a=5时原不等式等价于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,∴解集为{x|2≤x≤8};(II)当a=1时,f(x)=|x﹣1|,令,由图象知:当时,g(x)取得最小值,由题意知:,∴实数m地取值范围为.2023年7月23日31。
2024年新高考数学押题卷(二)(后附参考答案与解析)
2024 年新高考数学押题密卷(二)注意事项:1.答卷前,考生务必要填涂答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动、先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁,考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,则在复平面内对应的点位于( )i 52i z ⋅=-z A .第一象限B .第二象限C .第三象限D .第四象限2.设,,且, 则的取值范围为( ){}23A x x =∈-<<Z {}40B x x a =-≥{}12A B = ,a A .B .C .D .(]0,1()0,1(]0,4()0,43.为了了解小学生的体能情况,抽取了某小学四年级100名学生进行一分钟跳绳次数测试,将所得数据整理后,绘制如下频率分布直方图.根据此图,下列结论中错误的是( )A .0.015x =B .估计该小学四年级学生的一分钟跳绳的平均次数超过125 C .估计该小学四年级学生的一分钟跳绳次数的中位数约为119D .四年级学生一分钟跳绳超过125次以上优秀,则估计该小学四年级优秀率为35% 4.若,且,则( )ππ,24α⎛⎫∈-- ⎪⎝⎭23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭tan α=A .B .C .D .2-3--5.设,为双曲线C :的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当1F 2F 2213xy -=1QF PQ+取最小值时,的值为( ) 2QFA B CD22+6.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )A .B .C .D .153103256257.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样{}n a M n n a M ≤{}n a 的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是( ) M {}n a {}n a n n S A .若,则数列是无界的 B .若,则数列是有界的 1n a n={}n a sin n a n n ={}n a C .若,则数列是有界的D .若,则数列是有界的 ()1nn a =-{}n S 212n a n =+{}n S8.如图,中,,为的中点,将沿折叠成三棱锥ABC A 90BAC ∠=︒AB AC ==D BC ABC A AD ,则当该三棱锥体积最大时它的外接球的表面积为( )A BCD -A .B .C .D .π2π3π4π二、选择题:本题共4小题,每小题5分,共20分。
河北衡水中学2019年高考押题试卷理科数学试题参考答案评分标准
AC ( 3a,0,0) ( 3a,0,0) (2 3a,0,0) , EF (0, a, 2a) (0, a, 2 2a)
(0, 2a, 2a) .
由(1)可知 EF 平面 AFC ,所以平面 AFC 的法向量可取为 EF (0, 2a, 2a) .
设平面 AEC 的法向量为 n (x, y, z) ,
3 4b2
1 ,②
由①②联立,解得 b2 1, a2 2 ,
故所求的椭圆方程为 x2 y2 1. 2
(2)设 A(x1, y1) , B(x2 , y2 ) ,由 OA OB 0 ,
可知 x1x2 y1y2 0 .
y kx m
联立方程组
x
2
2
y2
,
1
消去 y 化简整理得 (1 2k2)x2 4kmx 2m2 2 0 ,
OA OB ,所以分别以 OA , OB , OG 的方向为 x , y , z 轴正方向建立空间直角坐标
系 O xyz (如图示),
则 O(0, 0, 0) , A( 3a,0,0) , C( 3a,0,0) , E(0, a, 2 2a) , F(0, a, 2a) ,
所以 AE (0, a, 2 2a) ( 3a,0,0) ( 3a, a, 2 2a) ,
100 25 则该校高三年级学生获得成绩为 B 的人数约有 800 14 448 .
25 (2)这100 名学生成绩的平均分为 1 (32100 5690 780 3 70 2 60) 91.3,
100 因为 91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关.
(3)由题可知用分层抽样的方法抽取11个学生样本,其中 A 级 4 个, B 级 7 个,从而任意
2020届河北省衡水密卷新高考押题模拟考试(二)理科数学
2020届河北省衡水密卷新高考押题模拟考试(二)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合{|110}A x x =-<„,集合{|lg 1}B x x =„,则A B =I ( ) A. {|110}x x -≤< B. {|110}x x -≤≤ C. {|010}x x << D. {|010}x x <≤【答案】C 【解析】 【分析】对集合B 内的不等式进行计算,然后根据交集运算得到答案. 【详解】集合B 中,解不等式1lg x ≤,得010x <≤, 所以集合{}=010B x x <≤ 而集合{|110}A x x =-<„ 所以A B =I {|010}x x <<, 故选C 项.【点睛】本题考查对数不等式的计算,集合交集的运算,属于简单题.2.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案. 【详解】由(1)4z i -=,得4221z i i==+- 所以z 在复平面对应的点为()2,2,所以对应的点在第一象限. 故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.3.已知两个单位向量a r 和b r 的夹角为120︒,k ∈R ,则||ka b +r r 的最小值为( )A.34B.2C. 1D.32【答案】B 【解析】 【分析】对||ka b +r r平方,然后将单位向量a r 和b r的模长和夹角带入,得到关于k 的函数,然后得到其最小值,从而得到答案.【详解】()2222||=2ka b k a a b b ++⋅+r r r r r r因为a r 和b r是单位向量,且夹角为120︒所以()2222||=2ka b k a ka b b ++⋅+r r r r r r2222cos ,a a b b a k k b =++r r r r r r21k k =-+21324k ⎛⎫=-+ ⎪⎝⎭34≥,所以||ka b +r r2≥,所以||ka b +r r 【点睛】本题考查向量模长的表示,求模长的最小值,属于简单题,4.已知tan α=2παπ<<,则sin cos αα-=( )A.12 B.12- C.12-+ D.12- 【答案】A 【解析】∵tan 2πααπ=<<∴23πα=∴1sin 2αα==-∴sin cos αα-=故选A5.已知:6log 5a =,0.3b π=,1ln 2c =,则下列结论正确的是( ) A. a b c << B. b a c <<C. c b a <<D. c a b <<【答案】D 【解析】 【分析】分别将,,a b c 与特殊值0,1进行比较,然后判断出其大小关系,得到答案.【详解】因为()6log 501a =∈,,()0.31+b π=∈∞,,()1ln ,02c =∈-∞所以c a b <<, 故选D 项.【点睛】本题考查比较指数值和对数值的大小,属于简单题.6.执行如图所示程序框图,若输入的4k =,则输出的s =( )A.34B.45C.56D.67【答案】C 【解析】 【分析】根据程序框图的要求,得到每次循环对应的,s n 的值,再根据判断语句,结束循环,输出s 的值,得到答案. 【详解】根据程序框图的循环语句可知第一次循环,4,0,0k n s ===,此时n k ≤,1n =,112s =⨯; 第二次循环,14,1,12k n s ===⨯,此时n k ≤,2n =,11+1223s =⨯⨯;第三次循环,114,2,+1223k n s ===⨯⨯,此时n k ≤,3n =,111++122334s =⨯⨯⨯;第四次循环,1114,3,++122334k n s ===⨯⨯⨯,此时n k ≤,4n =,1111+++12233445s =⨯⨯⨯⨯; 第五次循环,11114,3,+++12233445k n s ===⨯⨯⨯⨯,此时n k ≤,5n =,11111++++1223344556s =⨯⨯⨯⨯⨯;第六次循环,4,5k n ==,不满足n k ≤,循环停止, 输出11111++++1223344556s =⨯⨯⨯⨯⨯ 11111111111223344556=-+-+-+-+- 5=6故选C 项.【点睛】本题考查根据输入值求程序框图的输出值,裂项相消求数列的和,属于简单题.7.已知函数()sin f x x x =-,则不等式2(1)(33)0f x f x -++>的解集是 A. (,4)(1,)-∞-+∞U B. (,1)(4,)-∞-+∞U C. (1,4)- D. (4,1)- 【答案】C 【解析】 【分析】由题意,根据函数的解析式,求解函数()f x 是定义域上的单调递增函数,且为奇函数,把不等式转化为21(33)x x ->-+,进而借助一元二次不等式的解法,即可求解.【详解】由题意,函数()sin f x x x =-,则()1cos 0f x x '=-≥,所以函数()f x 是定义域上的单调递增函数,又由()()sin()(sin )f x x x x x f x -=---=--=-,即函数()f x 定义域上的奇函数, 又由不等式2(1)(33)0f x f x -++>可转化为 2(1)(33)[(33)]f x f x f x ->-+=-+即21(33)x x ->-+,即2340x x --<,解得14x -<<, 即不等式的解集为(1,4)-,故选C.【点睛】本题主要考查了函数的单调性和奇偶性的应用问题,其中解答中根据函数的解析式利用导数求得函数的单调性和奇偶性,把不等式转化为一元二次不等式2340x x --<是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力,属于基础题.8.如图,在正方形区域内任取一点,则此点取自阴影部分的概率是( )A.21B.()2421π-C.)2421π+D.16【答案】B 【解析】 【分析】利用定积分先求出阴影部分的面积,再由几何概型的计算公式计算即可.【详解】阴影部分的面积()()440cos sin sin cos 21S x x dx x x ππ=-=+=⎰,正方形面积为24π,所以所求概率为)22421214ππ=.【点睛】本题主要考查与面积有关的几何概型.9.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是 A. 函数()f x 的值域与()g x 的值域相同B. 若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C. 把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像 D. 函数()f x 和()g x 在区间(,4π-)4π上都是增函数【答案】C 【解析】 【分析】先求出()f x 的导数,结合解析式的特点来判断.【详解】()sin g x cosx x =+,所以选项A 正确;由极值点定义可知选项B 正确;把()f x 的图像向右平移2π个单位,得到()sin()sin cos 22y cos x x x x ππ=-+-=-与()g x 不相等;故选C. 【点睛】本题主要考查三角函数的图像和性质.三角函数的图像变换主要平移方向和系数的影响.10.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列。
2021届河北衡水中学新高三原创预测试卷(二)理科数学
2021届河北衡水中学新高三原创预测试卷(二)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,),(22=+=y x y x y x A 为实数,且,{}x y y x y x B ==为实数,且,),(,则B A 的子集的个数为( )A .2B .3C .4D .52.命题“对任意R x ∈,都有02≥x ”的否定为( )A .对任意R x ∈,都有02<xB .不存在R x ∈,使得02<xC .存在R x ∈︒,使得02≥︒x D .存在R x ∈︒,使得02<x3.下列函数中为偶函数的是( )A .x x y cos =B .x x y sin 3=C .|ln |x y =D .x y -=24. 若函数m x x x f +-=2)(2,若))(()(2121x x x f x f ≠=,则)2(21x x f +的值为( ) A .1 B .2 C .1-m D .m5.要得到函数sin 2y x =的图象,只需将函数)322sin(π+=x y 的图象( ) A .向右平移3π个单位长度 B .向左平移3π个单位长度 C .向右平移32π个单位长度 D .向左平移32π个单位长度 6.若实数y x ,满足⎪⎩⎪⎨⎧≥+≤≤132y x y x ,则y x z -=3的最大值为( )A .2B .3C .5D .77.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .b c a << B .a c b << C .b a c << D .a b c <<8. 已知函数2()f x x bx =-的图像在点))1(,1(f A 处的切线l 与直线023=+-y x 平行,若数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2019S 的值为( )A .20202019 B .20192018 C .20182017 D .20172018 9.在我国古代数学著作《九章算术》中有“竹九节”问题:现有一根九节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )A .3337升 B .4447升 C .6667升 D .1升 10.已知平面向量PA ,PB 满足1||||==,21-=⋅PB PA ,若1||=,则||的最大值为( )A .15+B .13-C .12+D .13+11.已知二面角βα--l 的大小为︒60,n m ,为异面直线,且α⊥m ,β⊥n ,则n m ,所成的角为( )A .︒30B .︒60C .︒90 D .︒12012.已知)(x f 是可导的函数,且)()(x f x f <'对于R x ∈恒成立,则( )A .)0()1(),0()2019(2019ef f f e f <>B .)0()1(),0()2019(2019ef f f e f >>C .)0()1(),0()2019(2019ef f f e f ><D .)0()1(),0()2019(2019ef f f e f <<第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.若点)sin ,(cos ααP 在直线x y 2-=上,则)4tan(πα+= ______.14. 已知(1,1)A -,(1,2)B , (2,1)C --,(3,4)D ,则向量AB 在CD 方向上的投影为_____.15.设函数()1sin 20191)(22+++=x x x x f 的最大值为M ,最小值为m ,则=+m M ________.16. 不等式[][]m m a b a b -≥--+--222)1(ln )2(对任意R a b ∈>,0恒成立,则实数m的取值范围是_________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)已知等比数列{n a }的公比是2,且22+a 是1a 与3a 的等差中项. (Ⅰ)求数列{n a }的通项公式;(Ⅱ)若n b =17+212log n a ,求数列{n b }的前n 项和n S .18.(本题满分12分)已知(3sin ,cos sin )a x x x =+,(2cos ,sin cos )b x x x =-,()f x a b =⋅.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)当55,2412x ππ⎡⎤∈⎢⎥⎣⎦时,对任意t R ∈,不等式23()mt mt f x ++≥恒成立,求实数的m 取值范围.19.(本题满分12分)已知a b c ,,分别为△ABC 的三个内角C B A ,,的对边,(sin ,1),(cos ,3)==m A n A ,且//m n .(Ⅰ)求角A 的大小;(Ⅱ)若2,22==a b ,求△ABC 的面积. 20. (本题满分12分)如图,四棱锥ABCD P -的底面ABCD 为平行四边形,.BP BA DP DA ==,(Ⅰ)求证:BD PA ⊥;(Ⅱ)若2,60,====∠⊥︒BD BP BA ABP DP DA , 求二面角B PC D --的正弦值. 21.(本题满分12分)已知数列}{n a 是首项11=a 的等比数列,且0>n a ,}{n b 是首项为1的等差数列,又2135=+b a ,1353=+b a .(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)求数列}2{nna b 的前n 项和n S . 22.(本题满分12分) 已知函数xmmx x x f -+-=1ln )((R m ∈). (Ⅰ)当2=m 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(Ⅱ)设n x x x g +-=2)(2,当121=m 时,若对任意)2,0(1∈x ,存在]2,1[2∈x ,使)()(21x g x f ≥,求实数n 的取值范围.数学试卷(理科) 参考答案与评分细则一、选择题:1—4 CDBC 5—8 ADCA 9—12 CDBD二、填空题: 13. 31- 14.223 15. 2 16.12m -≤≤16题解答:222[(2)][ln (1)]b a b a m m --+--≥-恒成立,左端为点(),ln P b b 与点 (2,1)Q a a --距离平方,因为,P Q 分别在曲线:ln C y x =及直线:1l y x =+上,由11y x'==得1x =,故与l 平行且与:ln C y x =相切的切点为(1,0)所以PQ 最小值d ==22m m -≤,解得12m -≤≤。
河北衡水中学2019年高考押题试卷理数(二)及解析
○…………外………○…………内………河北衡水中学2019年高考押题试卷理数(二)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设复数z 满足1+z1+i=2−i ,则|1z|=( )A. √5B. 15C. √55 D. √5252.若1cos 43πα⎛⎫+= ⎪⎝⎭, 0,2πα⎛⎫∈ ⎪⎝⎭,则sin α的值为( ) C. 7183.已知直角坐标原点O 为椭圆2222:1(0)x y C a b a b+=>>的中心, 1F , 2F 为左、右焦点,在区间()0,2任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O : 2222x y a b +=-没有交点”的概率为( )A.4 B. 44- C. 2 D. 22-4.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率e ⎤∈⎦时,对应双曲线的渐近线的夹角的取值范围为( ) A. 0,6π⎡⎤⎢⎥⎣⎦ B. ,63ππ⎡⎤⎢⎥⎣⎦ C. ,43ππ⎡⎤⎢⎥⎣⎦ D. ,32ππ⎡⎤⎢⎥⎣⎦5.某几何体的三视图如图所示,若该几何体的体积为3π+2,则它的表面积是( )答案第2页,总18页……外…………○……○…………订…………○…………线※※※装※※订※线※※内※※答※※题※※……内…………○……○…………订…………○…………线A. (3√132+3)π+√22+2 B. (3√134+32)π+√22+2C. √132π+√22 D.√134π+√226.函数y =sinx +ln |x |在区间[−3,3]的图象大致为( )A. B.C. D.7.执行下图的程序框图,若输入的0x =, 1y =, 1n =,则输出的p 的值为( )A. 81B.812 C. 814 D. 8188.已知数列11a =, 22a =,且()2221nn n a a +-=--, *n N ∈,则2017S 的值为( ) A. 201610101⨯- B. 10092017⨯ C. 201710101⨯- D. 10092016⨯ 9.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,令g(x)=f(x)+f′(x),则下列关于函数g(x)的说法中不正确的是( )A. 函数g(x)图象的对称轴方程为x =kπ−π12(k ∈Z)B. 函数g(x)的最大值为2√2○…………外…○…………内… C. 函数g(x)的图象上存在点P ,使得在P 点处的切线与直线l :y =3x −1平行D. 方程g(x)=2的两个不同的解分别为x 1,x 2,则|x 1−x 2|最小值为π210.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A. (),2-∞- B. ()2,2- C. ()2,+∞ D. ()()2,00,2-⋃第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.向量(),a m n =, ()1,2b =-,若向量a , b 共线,且2a b =,则mn 的值为_________.12.设点M 是椭圆x 2a 2+y 2b2=1(a >b >0)上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若ΔPMQ 为锐角三角形,则椭圆的离心率的取值范围为__________.13.设x , y 满足约束条件230,{220,220,x y x y x y +-≥-+≥--≤则yx的取值范围为__________.14.在平面五边形ABCDE 中,已知120A ∠=︒, 90B ∠=︒, 120C ∠=︒, 90E ∠=︒, 3AB =,3AE =,当五边形ABCDE 的面积S ⎡∈⎣时,则BC 的取值范围为__________.三、解答题(题型注释)15.已知数列{}n a 的前n 项和为n S , 112a =, ()*1212,n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记()*12log n n b a n N =∈求11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .16.如图所示的几何体ABCDEF 中,底面ABCD 为菱形, 2AB a =, 120ABC ∠=︒, AC 与BD 相交于O 点,四边形BDEF 为直角梯形, //DE BF , BD DE ⊥, 2DE BF ==,平面BDEF ⊥底面ABCD .答案第4页,总18页…○…………线…※※…○…………线…(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.17.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.18.已知椭圆C : 22221(0)x y a b a b +=>>的离心率为2,且过点2P ⎛ ⎝⎭,动直线l : y kx m-+交椭圆C 于不同的两点A , B ,且0OA OB ⋅=(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 19.设函数()()22ln f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设()()22ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x , 2x ,证明12'02x x h +⎛⎫> ⎪⎝⎭. 20.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C : 3,{2x cost y sintαα=+=+(t 为参数, 0a >),在以坐标原点为极点, x 轴的非负半轴为极轴的极坐标系中,曲线2C : 4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;……○…………线_______……○…………线(2)当3a =时,两曲线相交于A , B 两点,求AB . 21.选修4-5:不等式选讲. 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.答案第6页,总18页参数答案1.C【解析】1.由题意可得: 1+z=(2−i)(1+i)=3+i,∴z =2+i,|1z|=|12+i|=|1||2+i|=√55.2.A【解析】2.由题意可得: 3,,sin 4444ππππαα⎛⎫⎛⎫+∈∴+== ⎪ ⎪⎝⎭⎝⎭ , 结合两角和差正余弦公式有:sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ . 本题选择A 选项.3.A【解析】3.满足题意时,椭圆上的点()cos ,sin Pa b θθ 到圆心()0,0O 的距离:()()222222cos 0sin 0d a b r a b θθ=-+->=+ ,整理可得2222222222sin sin 11,111sin 1sin 1sin 2b b e a a θθθθθ>∴=-<-=<+++ , 据此有: 21,02e e <<<, 题中事件的概率0220p -==- .本题选择A 选项.4.D【解析】4.由题意可得: [][]222222212,4,1,3c b b e a a a==+∈∴∈ ,设双曲线的渐近线与x 轴的夹角为θ , 双曲线的渐近线为b y x a =±,则,46ππθ⎡⎤∈⎢⎥⎣⎦,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦. 本题选择D 选项. 5.A【解析】5.由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:V 圆锥=34×13×πa 2×3=34πa 2,V 三棱锥=12a 2×3×13=12a 2 由题意:34πa 2+12a 2=3π+2,∴a =2 ,据此可知:S 底=2aπ×34+12×2×2=3π+2 ,S 圆锥侧=34π×√13×2=3√132π ,S 棱锥侧=12×2√2×√11=√22 ,它的表面积是 (3√132+3)π+√22+2.本题选择A 选项.6.A【解析】6.分析:判断f (x )的奇偶性,在(0,1)上的单调性,计算f (1)的值,结合选项即可得出答案. 详解:设f (x )=sinx +ln |x |,当x >0 时,f (x )=sinx +lnx ⇒f ′(x )=cosx +1x,当x∈(0,1)时,f ′(x )>0,即函数f (x )在(0,1)上为单调递增函数,排除B ; 由当x=1时,f (1)=sin1>0,排除D ;因为f (−x )=sin(−x)+ln |−x |=f (x )=−sinx +ln |x |≠±f (x ),所以函数f (x )为非奇非偶函数,排除C ,故选A. 7.C【解析】7.依据流程图运行程序,首先 初始化数值, 0,1,1x y n === ,进入循环体:1,12y y nx n y +====,时满足条件2y x ≥ ,执行12n n =+= ,进入第二次循环, 32,22y y n x n y +====,时满足条件2y x ≥ ,执行13n n =+= ,进入第三次循环,99,y y n x n y +====,时不满足条件2y x ≥ ,输出81p xy == .答案第8页,总18页本题选择C 选项. 8.C【解析】8.由递推公式可得:当n 为奇数时, 24n n a a +-= ,数列{}21n a - 是首项为1,公差为4的等差数列, 当n 为偶数时, 20n n a a +-= ,数列{}21n a - 是首项为2,公差为0的等差数列,()()20171320172420161100910091008410082220171010 1.S a a a a a a =+++++++=+⨯⨯⨯+⨯=⨯-本题选择C 选项. 9.C【解析】9.根据函数f (x )的图象求出A 、T 、ω和φ的值,写出f (x )的解析式,求出f ′(x ),写出g (x )=f (x )+f ′(x )的解析式,再判断题目中的选项是否正确. 根据函数f (x )=A sin (ωx +φ)的图象知,A =2,T 4=2π3−π6=π2,∴T =2π,ω=2πT=1;根据五点法画图知, 当x =π6时,ωx +φ=π6+φ=π2,∴φ=π3,∴f (x )=2sin (x +π3); ∴f ′(x )=2cos (x +π3),∴g (x )=f (x )+f ′(x ) =2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4)=2√2sin (x +7π12);令x +7π12=π2+k π,k ∈Z,解得x =−π12+k π,k ∈Z,∴函数g (x )的对称轴方程为x =−π12+k π,k ∈Z,A 正确;当x +7π12=π2+2k π,k ∈Z 时,函数g (x )取得最大值2√2,B 正确;g ′(x )=2√2cos (x +7π12),假设函数g (x )的图象上存在点P (x 0,y 0),使得在P 点处的切线与直线l :y =3x ﹣1平行, 则k =g ′(x 0)=2√2cos (x 0+7π12)=3,解得cos (x 0+7π12)=2√21,显然不成立,所以假设错误,即C 错误; 方程g (x )=2,则2√2sin (x +7π12)=2,∴sin(x +7π12)=√22,∴x +7π12=π4+2k π或x +7π12=3π4+2k π,k ∈Z;∴方程的两个不同的解分别为x 1,x 2时, |x 1﹣x 2|的最小值为π2,D 正确. 故选:C . 10.D【解析】10.很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==, 由题意得不等式: ()()122281210f x f x a a=-+< ,即: 2241,4,22a a a><-<< ,综上可得a 的取值范围是 ()()2,00,2-⋃. 本题选择D 选项. 11.-8【解析】11.由题意可得: ()22,4a b ==- 或()22,4a b =-=- ,答案第10页,总18页…○…………外…………○…………装※※请※※不※※要…○…………内…………○…………装则: ()248mn =-⨯=- 或()248mn =⨯-=- . 12.√6−√22<e <√5−12【解析】12.分析:设M(c,y),由题意y >c >√22y,y =±b 2a,从而可求椭圆的离心率的取值范围.详解:因为圆M 与x 轴相切于焦点F ,所以圆心与F 的连线必垂直于x 轴,不妨设M(c,y), 因为M(c,y)在椭圆上,则y =±b 2a(a 2=b 2+c2),所以圆的半径为b 2a, 由题意y>c >√22y ,所以c 2<(1−e 2)2<2e 2,所以√6−√22<e <√5−12.13.27,54⎡⎤⎢⎥⎣⎦【解析】13.绘制不等式组表示的可行域如图所示,目标函数yx表示可行域内的点(),x y 与坐标原点()0,0 之间连线的斜率,目标函数在点47,55A ⎛⎫⎪⎝⎭处取得最大值74 ,在点51,42⎛⎫⎪⎝⎭处取得最小值25 , 230,220,220,x y x y x y +-≥-+≥--≤则y x 的取值范围为27,54⎡⎤⎢⎥⎣⎦.14.【解析】14.由题意可设:BC DE a==,则:()211189222244ABCDES a a a a⎡=⨯⨯+⨯⨯=-∈⎣,则:当a=时,面积由最大值;当a=时,面积由最大值;结合二次函数的性质可得:BC的取值范围为.15.(1)()*12n na n N=∈;(2)1nn+.【解析】15.试题分析:(1)由题意可得数列{}n a是以12为首项,12为公比的等比数列,12n na=()*n N∈.(2)裂项求和,11111n nb b n n+=-+,故1nnTn=+.试题解析:(1)当2n=时,由121n nS S-=+及112a=,得2121S S=+,即121221a a a+=+,解得214a=.又由121n nS S-=+,①可知121n nS S+=+,②②-①得12n na a+=,即()1122nnana+=≥.且1n=时,2112aa=适合上式,因此数列{}n a是以12为首项,12为公比的等比数列,故12n na= ()*n N∈.(2)由(1)及12logn nb a=()*n N∈,可知121log2nnb n⎛⎫==⎪⎝⎭,答案第12页,总18页所以()1111111n n b b n n n n +==-++, 故2231111n n n nT b b b b b b +=+++= 1111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++-= ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦1111n n n -=++. 16.(1)见解析;(2)3.【解析】16.试题分析:(1)利用题意证得EF ⊥平面AFC .由面面垂直的判断定理可得平面AEF ⊥平面AFC .(2)结合(1)的结论和题意建立空间直角坐标系,由平面的法向量可得二面角E AC F --试题解析:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF ⋂平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =, 2DE BF ==, 120ABC ∠=︒, 可知AF =, 2BD a =,EF==,AE=,从而222AF FE AE +=,故EF AF⊥.又AF AC A ⋂=,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF⊥平面AFC . (2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD中, OA OB ⊥,所以分别以OA , OB , OG 的方向为x , y , z 轴正方向建立空间直角坐标系O xyz -(如图示),则()0,0,0O , ),0,0A, (),0,0C ,()0,E a -, ()0,F a ,所以())0,,0,0AE a =--= (),a -, ()),0,0,0,0AC =--=(),0,0-, ()()0,0,EF a a =-- ()0,2,a =.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为()0,2,EF a =.设平面AEC 的法向量为(),,n x y z =,…订…………○…_____考号:___________…订…………○…则0,{0,n AE n AC ⋅=⋅=即0,{0,y x -+==即,{0,y x ==令z =4y =,所以(0,4,2n =. 从而cos ,n EF =363n EF n EF⋅==⋅. 故所求的二面角E AC F --17.(1)448;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3)见解析.【解析】17.试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为B 的人数为448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3) ξ的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为1211. 试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯ 91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个, B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则()03473117033C C P C ξ===, ()124731128155C C P C ξ===, ()214731114255C C P C ξ===, ()304731143165C C P C ξ===. 因此可得ξ的分布列为:………○………○则()7281440123335555165Eξ=⨯+⨯+⨯+⨯1211=.18.(1)2212xy+=;(2)22322m k-=.【解析】18.试题分析:(1)由题意求得21b=,22a=,故所求的椭圆方程为2212xy+=.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得22322m k-=为定值.试题解析:(1)由题意可知2ca=,所以()222222a c a b==-,即222a b=,①又点2P⎛⎝⎭在椭圆上,所以有2223144a b+=,②由①②联立,解得21b=,22a=,故所求的椭圆方程为2212xy+=.(2)设()()1122,,,A x yB x y,由0OA OB⋅=,可知1212x x y y+=.联立方程组22,{1,2y kx mxy=++=消去y化简整理得()222124220k x kmx m+++-=,由()()22221681120k m m k∆=--+>,得2212k m+>,所以122412kmx xk+=-+,21222212mx xk-=+,③又由题知1212x x y y+=,即()()1212x x kx m kx m+++=,答案第14页,总18页整理为()()22121210k x x km x x m ++++=. 将③代入上式,得()22222224101212m kmkkm m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 19.(1)见解析;(2)见解析.【解析】19.试题分析:(1)求解函数的导函数,分类讨论可得:①若0a >时,当()0,x a ∈时,函数()f x 单调递减,当(),x a ∈+∞时,函数()f x 单调递增; ②若0a =时,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,函数()f x 单调递增. (2)构造新函数()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,结合新函数的性质即可证得题中的不等式.试题解析:(1)由()22ln f x a x x ax =-+-,可知()2'2a f x x a x =-+-= ()()2222x a x a x ax a x x+---=. 因为函数()f x 的定义域为()0,+∞,所以,①若0a >时,当()0,x a ∈时, ()'0f x <,函数()f x 单调递减,当(),x a ∈+∞时, ()'0f x >,函数()f x 单调递增;②若0a =时,当()'20f x x =>在()0,x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈- ⎪⎝⎭时, ()'0f x <,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时, ()'0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,所以()()'22a h x x a x=+--= ()()()22221x a x a x a x x x +---+=.答案第16页,总18页所以当0,2a x ⎛⎫∈ ⎪⎝⎭时, ()'0h x <;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时, ()'0h x >;当2a x =时, '02a h ⎛⎫= ⎪⎝⎭. 欲证12'02x x h +⎛⎫>⎪⎝⎭,只需证12''22x x a h h +⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又()2''20a h x x =+>,即()'h x 单调递增,故只需证明1222x x a+>. 设1x , 2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则()()211122222,{2,x a x alnx m x a x alnx m +--=+--=两式相减并整理得()1212ln ln a x x x x -+-= 22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明()2212121212122222ln ln x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以(*)式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+, ()0,1t ∈. 记()22ln 1t R t t t -=-+, ()0,1t ∈,所以()()()()222114'011t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在()0,1单调递增.又()10R =,因此()0R t <, ()0,1t ∈, 故22ln 1t t t -<+, ()0,1t ∈得证, 从而12'02x x h +⎛⎫>⎪⎝⎭得证. 20.(1)1C , ()()22232x y a -+-=, 2C : ()2224x y +-=; []1,5;(2)3.【解析】20.试题分析:(1)由题意计算可得曲线1C 与2C 化为直角坐标系xOy 中的普通方程为()()22232x y a -+-=,()2224x y +-=; a 的取值范围是[]1,5;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得AB =. 试题解析: (1)曲线1C : 3,{2,x cost y sint αα=+=+消去参数t 可得普通方程为()()22232x y a -+-=.曲线2C : 4sin ρθ=,两边同乘ρ.可得普通方程为()2224x y +-=.把()2224y x -=-代入曲线1C 的普通方程得: ()22234136a x x x =-+-=-,而对2C 有()22224x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时, a 的取值范围为[]1,5.(2)当3a =时,曲线1C : ()()22329x y -+-=,两曲线交点A , B 所在直线方程为23x =. 曲线()2224x y +-=的圆心到直线23x =的距离为23d =,所以3AB ==. 21.(1)[]1,1-;图见解析(2)见解析.○…………订………※※订※※线※※内※※答※※题○…………订………(1)将函数写成分段函数的形式解不等式可得解集为[]1,1-.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1)因为()211f x x x=-++=3,1,1{2,1,213,.2x xx xx x-<--+-≤≤>所以作出图象如图所示,并从图可知满足不等式()3f x≤的解集为[]1,1-.(2)证明:由图可知函数()y f x=的最小值为32,即32m=.所以2232a b+=,从而227112a b+++=,从而221411a b+=++()()22222141171a ba a b⎛⎫⎡⎤++++=⎪⎣⎦++⎝⎭()222241215711aba b⎡⎤⎛⎫++⎢⎥⎪++≥⎪++⎢⎥⎝⎭⎣⎦218577⎡⎢+=⎢⎣.当且仅当()222241111aba b++=++时,等号成立,即216a=,243b=时,有最小值,所以221418117a b+≥++得证.答案第18页,总18页。
河北省衡水中学高三高考押题(二)理数试题及答案
河北衡水中学高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B I =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{1,0,1,2}- 2.设复数z 满足121z i i +=-+,则1||z=( )A .15C .5D .253.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A.46- B .46+ C.718D .3 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4 B .44- C.2 D .22- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.313(3)2222π+++ B .3133()22242π+++ C.13222π+ D .13224π+ 7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D . 8.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯ 11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为22C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A .(,2)-∞- B .(2,2)- C.(2,)+∞D .(2,0)(0,2)-U第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =r ,(1,2)b =-r ,若向量a r ,b r 共线,且||2||a b =r r,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a=,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关? (3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=u u u r u u u r(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数22()ln f x a x x ax =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求||AB .23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.参考答案及解析一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题e << 15.27[,]5416. 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =.又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈,可知121log ()2nn b n ==,所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=L 11111[(1)()()]2231n n -+-++-=+L 1111n n n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF I 平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DE BF ==,120ABC ∠=︒,可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥. 又AF AC A =I ,所以EF ⊥平面AFC . 又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA u u u r ,OB uuu r ,OG u u u r的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a ,所以(0,,22)(3,0,0)AE a a a =--=u u u r(3,,22)a a a --,(3,0,0)(3,0,0)AC a a =--=u u u r (23,0,0)a -,(0,,2)(0,,22)EF a a a a =--u u u r(0,2,2)a a =-. 由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-u u u r. 设平面AEC 的法向量为(,,)n x y z =r,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r即3220,0,x y z x ⎧--+=⎪⎨=⎪⎩即22,0,y z x ⎧=⎪⎨=⎪⎩令2z =,得4y =, 所以(0,4,2)n =r.从而cos ,n EF <>=r u u u r 3||||63n EF n EF a⋅==⋅r u u u rr u u u r . 故所求的二面角E AC F --的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,① 又点23,22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=u u u r u u u r,可知12120x x y y +=.联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412kmx x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m km k km m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x--+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >,所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=.所以当(0,)2ax ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02ah =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20ah x x=+>,即'()h x 单调递增,故只需证明1222x x a+>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证.22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以482||2493AB =-=. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=. 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。
衡水中学中考数学押题试卷
1衡水中学中考押题试卷(二)一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)每小题给出的四个选项中,只有一项是符合题目要求的A . 2B . ﹣2C .D .27000000 个,将这个数用科学记数法表示为( )A . 2.7×105B . 2.7×106C . 2.7×107D . 2.7×108A .B .C .D .OA=1,BC=6,则⊙O 的半径为( )A .B .C .D . 3A . 4.8,6,6B . 5,5,5C . 4.8,6,5D . 5,6,6C .D .m=10A . m=5B . m=4是()A. B.4 C.或4 D.4 或﹣A.x<2 B.x>﹣1 C.x<1 或x>2 D.﹣1<x<2 A. B. C. D.二、填空题(本大题共4 小题,每小题4 分,共16 分)的解集为.⊙O 于点C,且CD=1,则弦AB 的长是.三、解答题(本大题共6 小题,共44 分)和60 度.如果这时气球的高度CD 为90 米.且点A、D、B 在同一直线上,求建筑物A、B 间的距离.A,C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3 交AB,BC 于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.DCE=90°,AB 与CE 交于F,ED 与AB,BC,分别交于M,H.(1)求证:CF=CH;四、填空题(每小题4 分,共20 分)为.轴,C、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.五、解答题(本大题共3 小题,共30 分)设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;A B成本(元/瓶)50 35利润(元/瓶)20 15(1)当AC=2 时,求⊙O 的半径;(2)设AC=x,⊙O 的半径为y,求y 与x 的函数关系式.(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c 的值;(2)在抛物线上求一点D,使得四边形BDCE 是以BC 为对角线的菱形;衡水中学中考押题试卷(二)参考答案与试题解析一、选择题(本大题共10 小题,每小题4 分,共40 分)每小题给出的四个选项中,只有一项是符合题目要求的A.2 B.﹣2 C. D.考点:相反数.分析:根据相反数的定义求解即可.解答:解:2 的相反数为:﹣2.故选:B.点评:本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选A点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.27000000 个,将这个数用科学记数法表示为()A.2.7×105 B.2.7×106 C.2.7×107 D. 2.7×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将27 000 000 用科学记数法表示为 2.7×107.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值.A. B. C. D.考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.OA=1,BC=6,则⊙O 的半径为()A. B. C. D. 3考点:垂径定理;勾股定理;等腰直角三角形.分析:根据等腰三角形三线合一的性质知:若过A 作BC 的垂线,设垂足为D,则AD 必垂直平分BC;由垂径定理可知,AD 必过圆心O;根据等腰直角三角形的性质,易求出BD、AD 的长,进而可求出OD 的值;连接OB 根据勾股定理即可求出⊙O 的半径.解答:解:过A 作AD⊥BC,由题意可知AD 必过点O,连接OB;∵△BAC 是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD 中,根据勾股定理,得:OB==.故选C.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.A.4.8,6,6 B.5,5,5 C. 4.8,6,5 D.5,6,6考点:众数;算术平均数;中位数.分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.解答:解:在这一组数据中 6 是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选:C.点评:此题主要考查了平均数,众数,中位数的概念.要掌握这些基本概念才能熟练解题.C. D.m=10考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质求出△OCD∽△OEB,再根据相似三角形的性质解答即可.解答:解:∵AB∥CD,∴△OCD∽△OEB,又∵E 是AB 的中点,∴2EB=AB=CD,A.m=5 B.m=4∴)2,=()2,解得.故选B.点评:本题考查的是相似三角形的判定与性质,涉及到平行四边形的性质等知识,难度适中.A. B.4 C.或4 D.4 或﹣考点:函数值.专题:计算题.分析:把y=8 直接代入函数即可求出自变量的值.解答:解:把y=8 代入函数,先代入上边的方程得x= ,∵x≤2,x=不合题意舍去,故;再代入下边的方程x=4,∵x>2,故x=4,综上,x 的值为4 或.故选:D.点评:本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.A.x<2 B.x>﹣1 C.x<1 或x>2 D.﹣1<x<2考点:一次函数与一元一次不等式.专题:数形结合.分析:由于直线y=kx+b 经过A(2,1),B(﹣1,﹣2)两点,那么把A、B 两点的坐标代入y=kx+b,用待定系数法求出k、b 的值,然后解不等式x>kx+b>﹣2,即可求出解集.解答:解:把A(2,1),B(﹣1,﹣2)两点的坐标代入y=kx+b,得:,解得:.解不等式组x>x﹣1>﹣2,得:﹣1<x<2.故选D.点评:本题考查了用待定系数法求一次函数的解析式及一元一次不等式组的解法.本题中正确地求出k 与 b 的值是解题的关键.A. B. C. D.考点:概率公式;分式的定义.专题:应用题.分析:列举出所有情况,看能组成分式的情况占所有情况的多少即为所求的概率.解答:解:分母含有字母的式子是分式,整式a+1,a+2,2 中,抽到a+1,a+2 做分母时组成的都是分式,共有3×2=6 种情况,其中a+1,a+2 为分母的情况有4 种,所以能组成分式的概率=.故选B.点评:用到的知识点为:概率等于所求情况数与总情况数之比.二、填空题(本大题共4 小题,每小题4 分,共16 分)考点:提公因式法与公式法的综合运用.分析:应先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).点评:本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.4).考点:坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.解答:解:原来点的横坐标是2,纵坐标是1,向上平移3 个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).故答案填:(2,4).点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.的解集为x>﹣2 .考点:一次函数与一元一次不等式.专题:压轴题;数形结合.分析:一次函数的y=kx+b 图象经过点(﹣2,0),由函数表达式可得,kx+b>0 其实就是一次函数的函数值y>0,结合图象可以看出答案.解答:解:由图可知:当x>﹣2 时,y>0,即kx+b>0;因此kx+b>0 的解集为:x>﹣2.点评:本题考查了数形结合的数学思想,即学生利用图象解决问题的方法,这也是一元一次不等式与一次函数知识的具体应用.易错易混点:学生往往由于不理解不等式与一次函数的关系或者不会应用数形结合,盲目答题,造成错误.⊙O 于点C,且CD=1,则弦AB 的长是6 .考点:垂径定理;勾股定理.分析:连接AO,得到直角三角形,再求出OD 的长,就可以利用勾股定理求解.解答:解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB 的长是6.点评:解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.三、解答题(本大题共6 小题,共44 分)考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据绝对值的概念、零指数幂、负整数指数幂的法则,以及特殊三角函数值计算即可.解答:解:原式= = +3﹣=3.点评:本题考查了实数的运算,解题的关键是掌握有关运算的法则.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:将不等式组的两不等式分别记作①和②,由不等式①移项,将x 的系数化为1,求出x 的范围,由不等式②左边去括号后,移项并将x 的系数化为1 求出解集,找出两解集的公共部分,确定出原不等式组的解集,并将此解集表示在数轴上即可.解答:解:,由不等式①移项得:4x+x>1﹣6,整理得:5x>﹣5,解得:x>﹣1,…(1 分)由不等式②去括号得:3x﹣3≤x+5,移项得:3x﹣x≤5+3,合并得:2x≤8,解得:x≤4,…(2 分)则不等式组的解集为﹣1<x≤4.…(4 分)在数轴上表示不等式组的解集如图所示,…(6 分)点评:此题考查了一元一出不等式组的解法,以及在数轴上表示不等式的解集,分别求出不等式组中两不等式的解集,然后利用取解集的方法(同大取大,同小取小,大小小大取中间,大大小小无解)来找出不等式组的解集.考点:分式的化简求值.专题:计算题.分析:首先将分式的分母分解因式,然后再约分、化简,最后将x、y 的关系式代入化简后的式子中进行计算即可.解答:解 =(2 分)=;(4 分)当x﹣3y=0 时,x=3y;(6 分)原式=.(8 分)点评:分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.考点:解直角三角形的应用-仰角俯角问题.专题:计算题;压轴题.分析:在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB 于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD 中,∴AD= =90 .在Rt△BCD 中,∴DB==30 .∴AB=AD+BD=90+30=120.答:建筑物A、B 间的距离为米.点评:解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长.A,C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3 交AB,BC 于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)求出OA=BC=2,将y=2 代入x+3 求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案;(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.解答:解:(1)∵B(4,2),四边形OABC 是矩形,∴OA=BC=2,将y=2 代入x+3 得:x=2,∴M(2,2),把M 的坐标代入得:k=4,∴反比例函数的解析式是;(2)把x=4 代入得:y=1,即CN=1,∵S 四边形BMON=S 矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4,由题意得|OP|×AO=4,∵AO=2,∴|OP|=4,∴点P 的坐标是(4,0)或(﹣4,0).点评:本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,三角形的面积,矩形的性质等知识点的应用,主要考查学生应用性质进行计算的能力,题目比较好,难度适中DCE=90°,AB 与CE 交于F,ED 与AB,BC,分别交于M,H.(1)求证:CF=CH;考点:菱形的判定;全等三角形的判定与性质.专题:几何综合题.分析:(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;(2)根据△EDC 绕点C 旋转到∠BCE=45°,推出四边形ACDM 是平行四边形,由AC=CD 判断出四边形ACDM 是菱形.解答:(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF 和△ECH 中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM 是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM 是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM 是菱形.点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.四、填空题(每小题4 分,共20 分)分析:首先根据分式值为零的条件,可得;然后根据因式分解法解一元二次方程的步骤,求出x 的值为多少即可.解答:解:∵分的值为0,∴解得x=3,即x 的值为3.故答案为:3.点评:(1)此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.(2)此题还考查了因式分解法解一元二次方程问题,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.考点:反比例函数系数k 的几何意义.分析:由于点P(2,3)在双曲线(k≠0)上,首先利用待定系数法求出k 的值,得到反比例函数的解析式,把y=2 代入,求出a 的值,得到点M 的坐标,然后利用待定系数法求出直线OM 的解析式,把x=2 代入,求出对应的y 值即为点C 的纵坐标,最后根据三角形的面积公式求出△OAC 的面积.解答:解:∵点P(2,3)在双曲线(k≠0)上,∴k=2×3=6,∴y=,当y=2 时,x=3,即M(3,2).∴直线OM 的解析式为x,当x=2 时,即).∴△OAC 的面积×2×=.故答案为.点评:本题考查了反比例函数系数k 的几何意义,解题的关键是了解:在反比例函数y=xk图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积,且保持不变.考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0 得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015 代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,故答案为:2015.点评:本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.考点:直线与圆的位置关系;勾股定理;垂径定理.专题:计算题.分析:解决此题首先要弄清楚AB 在什么时候最大,什么时候最小.当AB 与小圆相切时有一个公共点,此时可知AB 最小;当AB 经过同心圆的圆心时,弦AB 最大且与小圆相交有两个公共点,此时AB 最大,由此可以确定所以AB 的取值范围.解答:解:如图,当AB 与小圆相切时有一个公共点D,连接OA,OD,可得OD⊥AB,∴D 为AB 的中点,即AD=BD,在Rt△ADO 中,OD=3,OA=5,∴AD=4,∴AB=2AD=8;当AB 经过同心圆的圆心时,弦AB 最大且与小圆相交有两个公共点,此时AB=10,所以AB 的取值范围是8<AB≤10.故答案为:8<AB≤10点评:此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,以及切线的性质,其中解题的关键是抓住两个关键点:1、当弦AB 与小圆相切时最短;2、当AB 过圆心O 时最长.轴,C、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为2 .考点:反比例函数系数k 的几何意义.专题:压轴题.分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S 的关系S=|k|即可判断.解答:解:过A 点作AE⊥y 轴,垂足为E,∵点A 在双曲上,∴四边形AEOD 的面积为1,∵点B 在双曲线上,且AB∥x 轴,∴四边形BEOC 的面积为3,∴四边形ABCD 为矩形,则它的面积为3﹣1=2.故答案为:2.点评:本题主要考查了反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.五、解答题(本大题共3 小题,共30 分)设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;A B成本(元/瓶)50 35利润(元/瓶)20 15考点:一次函数的应用.专题:图表型.分析:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600﹣x)瓶;利润=A 种品牌白酒瓶数×A 种品牌白酒一瓶的利润+B 种品牌白酒瓶数×B 种品牌白酒一瓶的利润,列出函数关系式;(2)A 种品牌白酒x 瓶,则B 种品牌白酒(600﹣x)瓶;成本=A 种品牌白酒瓶数×A 种品牌白酒一瓶的成本+B 种品牌白酒瓶数×B 种品牌白酒一瓶的成本,列出方程,求x 的值,再代入(1)求利润.解答:解:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A 种品牌白酒x 瓶,则B 种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)=26400,解得x=360,∴每天至少获利y=5x+9000=10800.点评:根据题意,列出利润的函数关系式及成本的关系式,固定成本,可求A 种品牌酒的瓶数,再求利润.(1)当AC=2 时,求⊙O 的半径;(2)设AC=x,⊙O 的半径为y,求y 与x 的函数关系式.考点:切线的性质;三角形的面积.专题:压轴题.分析:(1)连接OD,OE,由△ABC 是直角三角形,以O 为圆心的⊙O 分别与AC,BC 相切于点D,E,可知OD∥BC,在△ADO 中,解得半径.(2)由题意可知,OD∥BC,∠AOD=∠B,则两角正切值相等,进而列出关系式.解答:解:(1)连接OE,OD,在△ABC 中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O 为圆心的⊙O 分别与AC,BC 相切于点D,E,∴四边形OECD 是正方形,tan∠B=tan∠AOD===,解得,∴圆的半径;(2)∵AC=x,BC=8﹣x,在直角三角形ABC 中=,∵以O 为圆心的⊙O 分别与AC,BC 相切于点D,E,∴四边形OECD 是正方形.tan∠AOD=tanB===,解得y=﹣x2+x.点评:本题主要考查切线的性质和解三角形的相关知识点,不是很难.(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c 的值;(2)在抛物线上求一点D,使得四边形BDCE 是以BC 为对角线的菱形;考点:二次函数综合题.分析:(1)把A(0,﹣4)代入可求c,运用两根关系及|x2﹣x1|=5,对式子合理变形,求b;(2)因为菱形的对角线互相垂直平分,故菱形的另外一条对角线必在抛物线的对称轴上,满足条件的D 点,就是抛物线的顶点;(3)由四边形BPOH 是以OB 为对角线的菱形,可得PH 垂直平分OB,求出OB 的中点坐标,代入抛物线解析式即可,再根据所求点的坐标与线段OB 的长度关系,判断是否为正方形即可.解答:解:(1)∵抛物线y=﹣x2+bx+c,经过点A(0,﹣4),∴c=﹣4又∵由题意可知,x1、x2 是方程x2+bx﹣4=0 的两个根,∴x1+x2=b,x1x2=6由已知得(x2﹣x1)2=25又∵(x2﹣x1)2=(x2+x1)2﹣4x1x2= b2﹣24∴b2﹣24=25解得,当时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b=﹣.(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,又x2﹣x﹣4=﹣(x+)2+,∴抛物线的顶点,)即为所求的点D.(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(﹣6,0),根据菱形的性质,点P 必是直线x=﹣3 与抛物线x2﹣x﹣4 的交点,∴当x=﹣3 时×(﹣3)2﹣×(﹣3)﹣4=4,∴在抛物线上存在一点P(﹣3,4),使得四边形BPOH 为菱形.四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(﹣3,3),但这一点不在抛物线上点评:本题考查了抛物线解析式的求法,根据菱形,正方形的性质求抛物线上符合条件的点的方法.。