2.11 导数在研究函数中的应用

合集下载

导数在研究函数中的应用教案

导数在研究函数中的应用教案

1.3导数在研究函数中的应用教案一、教学目标:知识与技能:1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.会求函数的单调区间(其中多项式函数一般不超过三次).过程与方法:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:掌握函数的单调性与导数的关系.难点:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程(一)温故知新以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小.但在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.本节我们就来研究这个问题.解析:请同学思考并回顾以前所学知识并积极回答之.(二)新知探究探究点一函数的单调性与导函数正负的关系思考1 观察高台跳水运动员的高度h随时间t变化的函数h(t)=-4.9t2+6.5t+10的图象,及运动员的速度v随时间t变化的函数v(t)=h′(t)=-9.8t+6.5的图象,思考运动员从起跳到最高点,从最高点到入水的运动状态有什么区别.思考2 观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?答(1)在区间(-∞,+∞)内,y′=1>0,y是增函数;(2)在区间(-∞,0)内,y′=2x<0,y是减函数;在区间(0,+∞)内,y′=2x>0,y是增函数;(3)在区间(-∞,+∞)内,y′=3x2≥0,y是增函数;(4)在区间(-∞,0),(0,+∞)内,y′=-1x2<0,y是减函数.小结一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.思考3 若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?答不一定.由思考2中(3)知f′(x)≥0恒成立.思考4 (1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出思考2中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1 已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4,或x<1时,f′(x)<0;当x=4,或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.解当1<x<4时,f′(x)>0,可知f(x)在此区间内单调递增;当x>4,或x<1时,f′(x)<0,可知f(x)在这两个区间内单调递减;当x=4,或x=1时,f′(x)=0,这两点比较特殊,我们称它们为“临界点”.综上,函数f(x)图象的大致形状如图所示.反思与感悟本题具有一定的开放性,图象不唯一,只要能抓住问题的本质,即在相应区间上的单调性符合题意就可以了.跟踪训练1 函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.解f′(x)图象的大致形状如下图:注:图象形状不唯一.例2 求下列函数的单调区间:(1)f(x)=2x3+3x2-36x+1;(2)f(x)=sin x-x(0<x<π);(3)f(x)=3x2-2ln x;(4)f(x)=3tx-x3单调递减区间是(-3,2).(2)f′(x)=cos x-1≤0恒成立,故函数f(x)的单调递减区间为(0,π)(3)函数的定义域为(0,+∞),f′(x)=6x-2x=2·3x2-1x.令f′(x)>0,即2·3x2-1x>0,解得-33<x<0或x>33.又∵x>0,∴x>33.令f′(x)<0,即2·3x2-1x<0,解得x<-33或0<x<33.又∵x>0,∴0<x<33.∴f(x)的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3t-3x2.令f′(x)≥0时,得3t-3x2≥0,即t≥x2,∴当t≤0时,无解;当t>0时,函数的单调递增区间是[-t,t].令f′(x)≤0时,得3t-3x2≤0,即t≤x2,当t≤0时,f′(x)≤0恒成立,函数的单调递减区间是(-∞,+∞);当t >0时,函数的单调递减区间是(-∞,-t ],[t ,+∞).综上所述,当t ≤0时,函数的单调减区间是(-∞,+∞),无单调增区间;当t >0时,函数的单调增区间是[-t ,t ],单调减区间是(-∞,-t ],[t ,+∞). 反思与感悟 求函数的单调区间的具体步骤是(1)优先确定f (x )的定义域;(2)计算导数f ′(x );(3)解f ′(x )>0和f ′(x )<0;(4)定义域内满足f ′(x )>0的区间为增区间,定义域内满足f ′(x )<0的区间为减区间. 跟踪训练2 求下列函数的单调区间: (1)f (x )=x 2-ln x ;(2)f (x )=x 3-x 2-x .又∵x >0,∴x >22,∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫22,+∞;由f ′(x )<0得x <-22或0<x <22,又∵x >0,∴0<x <22, ∴函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,22.(2)f ′(x )=3x 2-2x -1=(3x +1)(x -1).由f ′(x )>0得x <-13或x >1;由f ′(x )<0得-13<x <1,故函数f (x )的单调递增区间为(-∞,-13)和(1,+∞),单调递减区间为(-13,1).探究点二 函数的变化快慢与导数的关系思考 我们知道导数的符号反映函数y =f (x )的增减情况,怎样反映函数y =f (x )增减的快慢呢?能否从导数的角度解释变化的快慢呢?例3 如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.解(1)→B,(2)→A,(3)→D,(4)→C.反思与感悟通过函数图象,不仅可以看出函数的增减,还可以看出函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢后,我们就能根据函数图象大致画出导函数的图象,反之也可行.跟踪训练3 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是( )【答案】 D(三)当堂达标1.函数f (x )=x +ln x 在(0,6)上是( )A .单调增函数B .单调减函数C .在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D .在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数【答案】 A【解析】 ∵f ′(x )=1+1x>0,∴函数在(0,6)上单调递增.2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【答案】 D【解析】 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 3.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】 A【解析】 f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.4.函数y =12x 2-ln x 的单调递减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)【答案】 A5.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为 6x -y +7=0.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.【解析】 (1)由y =f (x )的图象经过点P (0,2),知d =2, ∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c . 由在点M (-1,f (-1))处的切线方程为6x -y +7=0, 知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0.解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2. 故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).6.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性.(2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x ) <0,解得-1<x <3. 所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数. 五、小结(1)函数导数与单调性的关系:0)(>'x f 时,增函数;0)(<'x f 时,减函数.用导数去研究函数的单调性比用定义法更为简便.(2)本节课中,用导数方法去研究函数单调性问题是中心,灵活应用导数法去解题是目的,适当的见识与练习是达到目的最佳手段,数形结合是应使学生养成的良好思维习惯. 六、作业。

导数在研究函数中的应用与拓展

导数在研究函数中的应用与拓展
(Ⅱ)设 a 1 ,函数
g ( x) x 3 3a 2 x 2a, x [0,1].若对于任意 x1 [0,1],总存在x0 [0,1],
使得 g ( x0 ) f ( x1 ) 成立,求 a 的取值范围.
解析:(I)对函数 f ( x) 求导,得
4 x 2 16x 7 (2 x 1)(2 x 7) f ( x) 2 ( 2 x) ( 2 x) 2 1 7 令 f ( x) 0 解得 x 或x . 2 2
3 . 2
变式训练:已知两个函数
f ( x) 8x 2 16x k,g ( x) 2x 3 5x 2 4x ,其中 k 为实数. (Ⅰ)若对任意的 x 3, 3,都有 f ( x) g ( x) 成立,求 k 的取值范围; (Ⅱ)若对任意的 x1、x2 3, 3 ,都有 f ( x1 ) g ( x2 ) ,求 k 的取值范
一、利用导数研究函数的单调性
1.利用导数求单调区间 2.已知单调性求参数范围
单调性
ff′ ((x ′ x)) 0 0 ff′ ((x ′ x)) 0 0
二、极值/最值问题
1.求函数极值
求导,f ( x) 0 列表, 下结论
检验等号是否成立 定义域 ①求极值②求端点处函 数值
③比大小④下结论
解法二:分离变量法: ∵ 当 当 时, 时, 恒成立, 恒成立
等价于
的最大值(
)恒成立,


)是增函数,则
(2)∵当 则等价于当
时 时
在区间
上都为“凸函数” 恒成立
解法三:变更主元法 再等价于 在 恒成立(视为关于 m 的一次函数最值问题)
题型二 导函数与不等关系

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。

例谈导数在研究函数中的应用

例谈导数在研究函数中的应用

( 若x 2[ , , 3 l E- 对 求证: ) , 1 x
I 睾 ≤
解 ()‘ 函数刷 图象关于原点对称 ' 对V R 都有/ =f ) 1 . 。 . 1 . , 卜 - x i .


性质 、 方程 、 不等 式、 数列等 问题 的方法 , 这类 问题用传统教材无法解决; 此 外, 4还说 明了一点 : 例 欲用导数 , 得先构造函数。 小结: 深刻理解导数作为~类特殊函数 , 其几何意义所在, 熟练掌握利用
点题型 .下面选解评析几例. 例 1 已知函数fx- ̄a23 , . ( . 一 x+x 若 ) )x - 既有极大值又有极 小值 , 则实数 a 的取值范围是 。
例 3 己知数 列 各项 均为正数 , 为其前 n项和, . 对Vne 卑, Ⅳ 都有
4 ( l . s a
极小值也是最小值 点, 又
tl le
, 得 = 为 数 争的 易 函
¨ ‘
J ) 时, 取极小值一 。
’ J
() n6 cd的值 ; 1求 、 、、
ห้องสมุดไป่ตู้
< t z n
() 2 当 ∈ ,, 图象上是否存在两点, 时, 使得过此两点 的切线 互相垂 直 ?试证 明你的结论;
最 值 问题 。
数的增减性等 ; 第三层次是综合考查 , 包括解决 应用问题 , 导数内容和传 将 统 内容中有关不等式、 数列和 函数 的单调性等有机 地结合在一起 , 知识 在“ 网络交汇点 ’ . 处设计综合题 , 通过将 新课程 内容和传 统 内容相 结合 , 强了 加 能力考察力度, 使试题具有更广泛的实际意义 , 更体现 了导数作为工具分析 和解 决一些 函数性质 问题的方法, 这类 问题用传统教材是无法解决的 这个 新增 内容已成为高中数学的重点 内容与主干知识 ,也是今后 高考 考查的热

高考数学2.11导数在研究函数中的应用+函数y=Asin(ωx+φ)的图象及三角函数模型的应用

高考数学2.11导数在研究函数中的应用+函数y=Asin(ωx+φ)的图象及三角函数模型的应用

(2)由于a=1, 所以(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1. 故当x>0时,(x-k)f′(x)+x+1>0等价于
k<exx+-11+x(x>0).

令g(x)=exx+-11+x,
则g′(x)=(-exx-ex-1)12+1=ex((eexx--x1-)22).
由 (2 在 (0 , + ∞ ) 上 单 调 递 增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零 点,故g′(x)在(0,+∞)上存在唯一的零点.设此零点为α, 则α∈(1,2).
当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0. 所以g(x)在(0,+∞)上的最小值为g(α). 又由g′(α)=0,可得eα=α+2, 所以g(α)=α+1∈(2,3). 由于①式等价于k<g(α), 故整数k的最大值为2.
1.解答本题(2)时,关键是分离参数k,把所求问题转化 为求函数的最小值问题.
【答案】 A
3.函数f(x)=12x2-ln x的最小值(
)
A.12 B.1 C.不存在 D.0 【解析】 f′(x)=x-1x=x2-x 1,且x>0,
令f′(x)>0,得x>1;
令f′(x)<0,得0<x<1.
∴f(x)在x=1时取最小值f(1)=12-ln 1=12.
【答案】 A
4.(2012·陕西高考)设函数f(x)=xex,则( ) A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点
2.函数的极值与导数
(1)函数的极小值与极小值点

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

2.11 导数在研究函数中的应用(一)[重点保分 两级优选练]A 级一、选择题1.(2017·某某模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞) D.(-∞,-1)∪(1,+∞) 答案 B解析 函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2 答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x,令f ′(x )<0,∴-2<x <2, 即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.故选D.3.函数f (x )=(x -1)(x -2)2在[0,3]上的最小值为( ) A .-8 B .-4 C .0 D.427答案 B解析 f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合单调性,只要比较f (0)与f (2)即可.f (0)=-4,f (2)=0.故f (x )在[0,3]上的最小值为f (0)=-4.故选B.4.(2017·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞) 答案 A 解析 设g (x )=f xe2x,则g ′(x )=f ′x -2f xe2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.故选A.5.(2017·某某某某一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值X 围为( )A .a <1B .a ≤1 C.a <2 D .a ≤2 答案 D解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, ∵x ∈(1,+∞)时,2x 2>2,∴a ≤2.故选D.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a 答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0.即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即c <a <b .故选B. 7.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x=e -x⎝ ⎛⎭⎪⎫-x +12x =e -x ·1-2x 2x. 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f ⎝ ⎛⎭⎪⎫12=1e·12=12e.故选B. 8.已知函数f (x )=ax-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值X 围是( )A .a >2B .a <3C .a ≤1 D.a ≥3 答案 C解析 函数f (x )的定义域是(0,+∞),不等式a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解,令h (x )=x -x ln x ,可得h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,可得x =1,当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.故选C.9.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值X 围为( )A .[2,+∞) B.[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝⎛⎭⎪⎫x +1a ⎝ ⎛⎭⎪⎫x -1a ,f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且 f ⎝ ⎛⎭⎪⎫1a =-2a+1≥0, 解得a =4.综上所述,a =4.故选C.10.(2018·某某一模)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值X 围是( )A.⎝⎛⎦⎥⎤-∞,2e B.⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0) 答案 B解析 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值X 围是⎝⎛⎭⎪⎫-∞,2e .故选B.二、填空题11.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值X 围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.12.(2017·西工大附中质检)已知f (x )是奇函数,且当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值是1,则a =________.答案 1解析 由题意,得x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12有最大值-1,f ′(x )=1x -a ,由f ′(x )=0,得x =1a ∈(0,2),且x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0,f (x )单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=-1,解得a =1.13.(2018·东北三校联考)已知定义在R 上的奇函数f (x )的图象为一条连续不断的曲线,f (1+x )=f (1-x ),f (1)=a ,且当0<x <1时,f (x )的导函数f ′(x )满足f ′(x )<f (x ),则f (x )在[2017,2018]上的最小值为________.答案 a解析 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2017,2018]上的图象与[1,2]上的图象形状完全相同.令g (x )=f xex,则g ′(x )=f ′x -f xex<0,函数g (x )在(0,1)上递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由函数的对称性质可得f (x )在(1,2)上单调递增,则f (x )在[2017,2018]上的最小值为f (2017)=f (1)=a .14.(2018·启东中学调研)已知函数f (x )=e x+a ln x 的定义域是D ,关于函数f (x )给出下列命题:①对于任意a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意a ∈(-∞,0),函数f (x )存在最小值;③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; ④存在a ∈(-∞,0),使得函数f (x )有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号) 答案 ②④解析 由f (x )=e x+a ln x ,可得f ′(x )=e x +a x,若a >0,则f ′(x )>0,得函数f (x )是D 上的增函数,存在x ∈(0,1),使得f (x )<0即得命题①③不正确;若a <0,设e x+a x=0的根为m ,则在(0,m )上f ′(x )<0,在(m ,+∞)上f ′(x )>0,所以函数f (x )存在最小值f (m ),即命题②正确;若f (m )<0,则函数f (x )有两个零点,即命题④正确.综上可得,正确命题的序号为②④.B 级三、解答题15.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a.当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.综上得,当a ≤0时,f (x )的单调递增区间为(0,+∞),无递减区间;当a >0时,f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,f (x )的最小值是f (1)=-a ;当ln 2≤a <1时,f (x )的最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . 16.(2017·某某某某联考)已知函数f (x )=e x-ax ,a >0. (1)记f (x )的极小值为g (a ),求g (a )的最大值; (2)若对任意实数x 恒有f (x )≥0,求a 的取值X 围.解 (1)函数f (x )的定义域是(-∞,+∞),f ′(x )=e x-a ,令f ′(x )>0,得x >ln a , 所以f (x )的单调递增区间是(ln a ,+∞); 令f ′(x )<0,得x <ln a ,所以f (x )的单调递减区间是(-∞,ln a ), 函数f (x )在x =ln a 处取极小值,g (a )=f (x )极小值=f (ln a )=e ln a -a ln a =a -a ln a . g ′(a )=1-(1+ln a )=-ln a ,当0<a <1时,g ′(a )>0,g (a )在(0,1)上单调递增; 当a >1时,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1是函数g (a )在(0,+∞)上唯一的极大值点,也是最大值点,所以g (a )max =g (1)=1.(2)当x ≤0时,a >0,e x-ax ≥0恒成立, 当x >0时,f (x )≥0,即e x-ax ≥0,即a ≤e xx.令h (x )=e x x ,x ∈(0,+∞),h ′(x )=e x x -e x x2=exx -1x 2, 当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,故h (x )的最小值为h (1)=e , 所以a ≤e,故实数a 的取值X 围是(0,e].17.(2017·某某湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0,故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x1-ln x2=x1-x2.亦即x2-1x2-2ln x2=0(x2>1).(*)再由(1)知,函数h(t)=t-1t-2ln t在(0,+∞)上单调递增,而x2>1,所以x2-1x2-2ln x2>1-11-2ln 1=0.这与(*)式矛盾.故不存在a,使得k=2-a.。

《导数在研究函数中的应用——单调性》教学反思-杨进禄

《导数在研究函数中的应用——单调性》教学反思-杨进禄

《导数在研究函数中的应用——单调性》教学反思数学组杨进禄本节课是一节新授课,课本所提供的信息很简单,如果直接得出结论学生也能接受。

可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。

设计思路如下以便教会学生会思考解决问题。

1、首先研究从熟悉的二次函数入手,简单复习回顾以前的方法。

从不熟悉的三次函数入手使学生体会到以前的知识已不能解决,必须寻求一个新的解决办法,产生认知冲突。

认识到再次研究单调性的必要性。

2、从简单的熟悉的函数图象入手引导学生从函数的切线斜率变化观察函数单调性的变化,再与新学的导数联系起来形成结论。

另外,也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。

3、应用中重点指导学生的解题步骤,避免考试中隐性失分。

4、数形结合:数形结合不是光口头去说,而是利用一切机会去实施,在例1的教学中,我让学生先熟练法则,再从形上分析,加深印象,这样在后面紧接的高考题中(没有给解析式),学生会迎刃而解。

5、铺垫:在引入部分,我涉及到了一个三次的函数,而例1就是此题,这样既可以在开始引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾呼应。

但是,本节课对学生还放的不够开,还不能算一节高效课堂。

在今后的教学中,应注重高效课堂的探索和实践,老师尽可能少讲,让学生动起来,引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。

让学生分组讨论,合作交流,共同探讨问题。

真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力。

在今后的教学中,应注重学生的参与,引发认知冲突,教会学生思考问题。

加强教案设计的合理性,语言做到准确、简练。

节奏要把握好。

高考数学 2.11 导数在研究函数中的应用

高考数学 2.11 导数在研究函数中的应用

(2)函数的极值与导数: ①函数的极小值与极小值点: 若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数 值_都__小__,且f′(a)=0,而且在x=a附近的左侧_f_′__(_x_)_<_0_,右侧_f_′__(_x_)_ _>_0_,则a点叫做函数的极小值点,f(a)叫做函数的极小值; ②函数的极大值与极大值点: 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值 ___都__大,且f′(b)=0,而且在x=b附近的左侧___f_′__(_x_)_>,0右侧___f_′__(_x) _<_0_,则b点叫做函数的极大值点,f(b)叫做函数的极大值.
2.必备结论 教材提炼 记一记 (1)可导函数f(x)在[a,b]上是增函数,则有_f_′__(_x_)_≥__0_在[a,b]上恒 成立. (2)可导函数f(x)在[a,b]上是减函数,则有_f_′__(_x_)_≤__0_在[a,b]上恒 成立.
3.必用技法 核心总结 看一看 (1)常用方法:利用导数判断单调性的方法,利用导数求极值、最值的 方法. (2)数学思想:分类讨论、数形结合. (3)记忆口诀:导数应用比较广,单调极值及最值;
第十一节 导数在研究函数中的应用
【知识梳理】 1.必会知识 教材回扣 填一填 (1)函数的导数与单调性的关系: 函数y=f(x)在某个区间内可导: ①若f′(x)>0,则f(x)在这个区间内_单__调__递__增__; ②若f′(x)<0,则f(x)在这个区间内_单__调__递__减__; ③若f′(x)=0,则f(x)在这个区间内是_常__数__函__数__.
导数恒正单调增,导数恒负当然减; 求出导数为零点,左增右减极大值; 左减右增是极小,同增同减非极值; 若是加上端点值,最大最小皆晓得.

导数在研究函数中的应用单调性教案

导数在研究函数中的应用单调性教案

导数在研究函数中的应用——单调性教学目标:①能探索并应用函数的单调性与导数的关系;②求一些简单的非初等函数的单调区间;③能由函数的单调性绘制函数图象.教学重点:利用导数研究函数的单调性,会求一些简单的非初等函数的单调区间.教学难点:导数与单调性之间的联系,利用导数绘制函数的大致图象.教学设计:一、问题情境问题一 求函数342+-=x x y 的单调区间.问题二 判断或证明函数的单调性常用方法有那些?问题三 你能确定函数762)(23+-=x x x f 的单调区间吗?问题四 除了单调性是对函数变化趋势(上升或下降的陡峭程度)的刻画,还有什么知识也刻画了函数变化的趋势?设计意图:以问题形式复习相关的旧知识,同时引出新问题:三次函数或非初等函数判断单调性,在用定义法、图象法很不方便时,如何思考、化未知为已知,让学生积极主动地参与到学习中来.二、数学建构问题五 能不能利用导数研究函数的单调性呢?问题六 导数与单调性有何联系?如何寻找?导数与函数的单调性的关系一般地, 对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的增函数;如果在某区间上f ′(x )<0,那么f (x )为该区间上的减函数.设计意图:通过观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.三、数学应用例1.确定下列函数的单调区间:(1)x x y ln -= (2)xx y ln =(3)x xe y =总结利用导数讨论函数单调性的步骤:①求函数的定义域;②求函数f (x )的导数f ′(x );③令f ′(x )>0解不等式,得x 的范围就是递增区间.令f ′(x )<0解不等式,得x 的范围,就是递减区间.④书写答案注意连接词.问题六 确定函数762)(23+-=x x x f 的单调区间,并作出草图.问题七 画出下列函数的草图①71862)(23++-=x x x x f ②7662)(23++-=x x x x f设计意图:通过具有开放性问题的设计,可以拓展学生思维,有利于学生对函数单调性与导数关系的更深层次的理解,进一步培养学生作函数图象与使用数形结合解决问题的意识.课后思考题 ①求函数xa x y +=)(R a ∈的单调区间. ②画出3x y =的图象,试问导函数0)(>'x f 是函数)(x f y =单调递增的 的条件.设计意图:这个问题是个难点,课上如果讲是讲不透的,课后让学生思考,可以有足够的时间去理解.另外,在给定函数下思考,可以使得问题的针对性更强,否则学生不知如何入手.对由已知单调增(减)的导数应该大于(小于)或等于零这个结论,只要让学生通过实例感受到为什么,在以后的使用中不漏解即可,而不必要做理论上的论证.四、课堂小结;通过本节课的学习,你学到了哪些新知识?能解决哪些问题?本节课我们用到了哪些数学思想方法?设计意图:通过小结,培养学生学习——总结——反思的良好习惯,使学习更上一个台阶.五、课堂练习1.确定下列函数的单调区间(1)2x x y -= (2)3x y -=2.讨论函数的单调性(1)b kx y += (2)xk y =(3))0(2≠++=a c bx ax y 3.用导数证明:(1)x e x f =)(在区间()+∞∞-,上是增函数; (2)x e x f x-=)(在区间()0,∞-上是减函数.。

导数在研究函数中的应用与生活中的优化问题举例

导数在研究函数中的应用与生活中的优化问题举例

导数在研究函数图像中的应用
总结词
通过求导可以绘制函数的图像,并分析函数的形态和变化趋势。
详细描述
利用导数可以求出函数的拐点、凹凸区间、切线斜率等性质,这些性质有助于绘制函数的图像。通过分析导数的 正负和变化趋势,可以确定函数在不同区间的增减性和变化速率,进而绘制出精确的函数图像。
02 导数在解决生活中的优化 问题举例
导数在最大利润问题中的应用
总结词
导数在解决最大利润问题中起到关键作 用,通过求导数找到利润函数的极值点 ,从而确定最大利润。
VS
详细描述
在商业、金融、投资等领域中,最大利润 问题是一个核心问题。导数可以帮助我们 找到利润函数的极值点,从而确定在什么 情况下能够获得最大利润。例如,在投资 组合优化中,通过求导数可以找到最大化 收益的投资组合。
03 导数的实际应用案例分析
导数在物理学中的应用
速度与加速度
导数可以用来描述物体的速度和加速度,例如在研究物体 的运动轨迹时,通过求导数可以得到物体在任意时刻的速 度和加速度。
热传导
在研究热传导问题时,导数可以用来描述温度随时间的变 化率,通过求解导数方程,可以得到温度分布的规律。
弹性力学
在弹性力学中,导数可以用来描述应力和应变的关系,通 过求解导数方程,可以得到物体的变形和受力情况。
导数在最小成本问题中的应用
总结词
导数在最小成本问题中扮演着重要角色,通过求导数找到成本函数的极值点,从而确定 最小成本。
详细描述
在生产、运输、工程等领域中,最小成本问题是一个常见的问题。导数可以帮助我们找 到成本函数的极值点,从而确定在什么情况下成本最低。例如,在生产过程中,通过求
导数可以找到生产某一产品的最低成本方案。

高考数学一轮复习 第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理-人教版高三全

高考数学一轮复习 第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理-人教版高三全

第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理[A 组·基础达标练]1.函数f (x )=x 4-4x 3+4x 2的极值点是( ) A .x =0 B .x =1C .x =2D .x =0,x =1和x =2 答案 D解析 f ′(x )=4x 3-12x 2+8x =4x (x 2-3x +2)=4x (x -1)(x -2),则结合列表可得f (x )的极值点为x =0,x =1和x =2.2.[2015·某某一检]已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示.则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞) 答案 B解析 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5),选B.3.[2016·某某师大附中月考]若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞) 答案 C解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.4.[2013·某某高考]已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12答案 D解析 f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2. 即曲线y 1=1+ln x 与y 2=2ax 有两个不同交点,如图.由直线y =x 是曲线y =1+ln x 的切线,可知:0<2a <1,且0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12. 由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, 当x 1<x <x 2时,f ′(x )>0, 当x >x 2时,f ′(x )<0,∴f (x 2)>f (1)=-a >-12,故选D.5.[2015·某某一模]若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式f (x )>3ex +1(e 为自然对数的底数)的解集为( )A .(0,+∞) B.(-∞,0)∪(3,+∞) C .(-∞,0)∪(0,+∞) D.(3,+∞) 答案 A解析 由f (x )>3ex +1得,e x f (x )>3+e x ,构造函数F (x )=e x f (x )-e x-3,对F (x )求导得F ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1].由f (x )+f ′(x )>1,e x >0,可知F ′(x )>0,即F (x )在R 上单调递增,又因为F (0)=e 0f (0)-e 0-3=f (0)-4=0,所以F (x )>0的解集为(0,+∞),所以选A.6.[2013·某某高考]已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x-1,f ′(1)≠0,故A ,B 错;当k =2时,f (x )=(e x-1)(x -1)2,f ′(x )=(x 2-1)e x -2x +2=(x -1)[(x +1)e x-2],故f ′(x )=0有一根为x 1=1,另一根x 2∈(0,1).当x ∈(x 2,1)时,f ′(x )<0,f (x )递减;当x∈(1,+∞)时,f ′(x )>0,f (x )递增,∴f (x )在x =1处取得极小值,故选C.7.[2016·东北八校月考]已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.答案 4解析 ∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧f ′2=3×22+6a ×2+3b =0,f ′1=3×12+6a ×1+3b =-3,⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值X 围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -1x -3x,由f ′(x )=0得函数f (x )的两个极值点为1,3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.9.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.答案 -13解析 f ′(x )=-3x 2+2ax , 根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13. 10.[2015·某某一检]已知函数f (x )=ln x -x1+2x .(1)求证:f (x )在区间(0,+∞)上单调递增; (2)若f [x (3x -2)]<-13,某某数x 的取值X 围.解 (1)证明:由已知得f (x )的定义域为(0,+∞). ∵f (x )=ln x -x1+2x, ∴f ′(x )=1x -1+2x -2x 1+2x 2=4x 2+3x +1x 1+2x 2. ∵x >0,∴4x 2+3x +1>0,x (1+2x )2>0. ∴当x >0时,f ′(x )>0. ∴f (x )在(0,+∞)上单调递增.(2)∵f (x )=ln x -x 1+2x ,∴f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x 3x -2>0x3x -2<1,解得-13<x <0或23<x <1.综上所述,x 的取值X 围是⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫23,1.11.[2015·某某一检]已知函数f (x )=x ·ln x ,g (x )=ax 3-12x -23e .(1)求f (x )的单调递增区间和最小值;(2)若函数y =f (x )与函数y =g (x )的图象在交点处存在公共切线,某某数a 的值. 解 (1)∵f ′(x )=ln x +1,由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 又当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,则f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫1e =-1e .(2)∵f ′(x )=ln x +1,g ′(x )=3ax 2-12,设公切点的横坐标为x 0,则与f (x )的图象相切的直线方程为:y =(ln x 0+1)x -x 0, 与g (x )的图象相切的直线方程为:y =⎝⎛⎭⎪⎫3ax 20-12x -2ax 30-23e ,∴⎩⎪⎨⎪⎧ln x 0+1=3ax 2-12,-x 0=-2ax 30-23e解之得x 0ln x 0=-1e ,由(1)知x 0=1e ,∴a =e26.12.[2016·某某检测]已知f (x )=e x(x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,求m 的取值X 围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2),其定义域为(-∞,+∞).则f ′(x )=e x(x 3-2x 2-2x +2)+e x (3x 2-4x -2)=x e x (x 2+x -6)=(x +3)x (x -2)e x, ∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0;f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增; 在(0,2)上单调递减,在(2,+∞)上单调递增, ∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值, ∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2, f (x )极大值=f (0)=2.(2)f ′(x )=e x(x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2]. ∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又∵当x ∈[-2,-1]时,x e x<0, ∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0,∴⎩⎪⎨⎪⎧f ′-2=-22-2m +3+2m -2≤0,f ′-1=-12-m +3+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增.[B 组·能力提升练]1.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值X 围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-5,-2] 答案 C解析 f ′(x )=3x 2-3=0,得x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值, 则函数f (x )极小值点必在区间(a,6-a 2)内, 即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2. 解a <1<6-a 2,得-5<a <1, 不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,即a 3-1-3(a -1)≥0, 即(a -1)(a 2+a -2)≥0, 即(a -1)2(a +2)≥0, 即a ≥-2.故实数a 的取值X 围是[-2,1). 故选C.2.[2016·某某调研]已知函数f (x )=ln x +1ln x ,则下列结论中正确的是( )A .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是增函数B .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是减函数C .∀x >0,且x ≠1,f (x )≥2D .∃x 0>0,f (x )在(x 0,+∞)内是增函数 答案 D解析 由已知得,f ′(x )=1x ·ln 2x -1ln 2x(x >0且x ≠1),令f ′(x )=0,得ln x =±1,得x =e 或x =1e.当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫1e,1,x ∈(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.故x =1e和x =e 分别是函数f (x )的极大值点和极小值点,但是由函数的定义域可知x ≠1,故函数f (x )在x ∈⎝ ⎛⎭⎪⎫1e ,e 内不是单调的,所以A ,B 错;当0<x <1时,ln x <0,此时f (x )<0,C 错;只要x 0≥e,则f (x )在(x 0,+∞)内是增函数,D 正确.3.[2015·某某高考]已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =f x 1-f x 2x 1-x 2,n =g x 1-g x 2x 1-x 2.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号). 答案 ①④解析 ①f (x )=2x是增函数,∴对任意不相等的实数x 1,x 2,都有f x 1-f x 2x 1-x 2>0,即m >0,∴①成立.②由g (x )=x 2+ax 图象可知,当x ∈⎝⎛⎭⎪⎫-∞,-a 2时,g (x )是减函数,∴当不相等的实数x 1、x 2∈⎝⎛⎭⎪⎫-∞,-a 2时,g x 1-g x 2x 1-x 2<0,即n <0,∴②不成立. ③若m =n ,则有f x 1-f x 2x 1-x 2=g x 1-g x 2x 1-x 2,即f (x 1)-f (x 2)=g (x 1)-g (x 2),f (x 1)-g (x 1)=f (x 2)-g (x 2),令h (x )=f (x )-g (x ), 则h (x )=2x-x 2-ax ,h ′(x )=2x ln 2-2x -a ,令h ′(x )=2xln 2-2x -a =0, 得2xln 2=2x +a .由y =2x ln 2与y =2x +a 的图象知, 存在a 使对任意x ∈R 恒有2xln 2>2x +a , 此时h (x )在R 上是增函数. 若h (x 1)=h (x 2),则x 1=x 2, ∴③不成立. ④若m =-n ,则有f x 1-f x 2x 1-x 2=-g x 1-g x 2x 1-x 2,f (x 1)+g (x 1)=f (x 2)+g (x 2),令φ(x )=f (x )+g (x ), 则φ(x )=2x+x 2+ax ,φ′(x )=2x ln 2+2x +a .令φ′(x )=0,得2xln 2+2x +a =0, 即2xln 2=-2x -a .由y 1=2xln 2与y 2=-2x -a 的图象可知,对任意的a ,存在x 0,使x >x 0时y 1>y 2,x <x 0时y 1<y 2,故对任意的a ,存在x 0,使x >x 0时,φ′(x )>0,x <x 0时φ′(x )<0, 故对任意的a ,φ(x )在R 上不是单调函数.故对任意的a ,存在不相等的实数x 1,x 2,使m =-n , ∴④成立. 综上,①④正确.4.已知函数f (x )=e x-ln (x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0. 解 (1)f ′(x )=e x-1x +m. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x-ln (x +1),x ∈(-1,+∞). 函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m ≤2,x ∈(-m ,+∞)时,ln (x +m )≤ln (x +2),故只需证当m =2时f (x )>0. 当m =2时,f ′(x )=e x-1x +2在(-2,+∞)上单调递增. 又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一的解x 0,且x 0∈(-1,0). 当x ∈(-2,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0. 故当x =x 0时,f (x )取极小值. 故f ′(x )=0得e x 0=1x 0+2,ln (x 0+2)=-x 0. 故f (x )≥f (x 0)=1x 0+2+x 0=x 0+12x 0+2>0.综上所述,当m ≤2时,f (x )>0.。

导数在研究函数中的应用教学设计

导数在研究函数中的应用教学设计

课题:利用导数判断函数的单调性(第一课时)一.指导思想与理论依据导数概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一.导数准确的揭示了自变量变化对相应函数值变化的影响,是对函数关系作为一种特殊对应关系认识的提升,“它的发展和广泛应用,开创了近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.导数概念是微积分的核心概念之一,具有丰富的实际背景和广泛的应用。

在本模块中,学生将通过大量实例,经历..由平均变化率到瞬时变化率刻画现实问题的过程,理解..导数在研究函数的单调性、极值等性质中的作用。

..导数概念,了解《数学课程标准》指出“学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”,教材对这部分内容的形式化程度得到很好的体现,突出了对数学概念本质理解的“返璞归真”,体现了“把数学的学术形态转化为学生易于接受的教育形态”的思想,从而有利于学生摆脱符号的束缚,以便充分发挥他们的思维潜能。

单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性。

那为什么还要用导数研究函数的单调性?能不能用导数研究函数的单调性?怎样用导数研究函数的单调性?循着这样的思路,结合最近发展区理论,整个教学过程,从提出问题、寻找工具分析问题、发现工具选择问题、验证工具演绎推理、论述工具处理存疑、使用工具,五个方面入手,层层递进,螺旋上升。

二.教学背景分析1.学习内容分析(1)单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性。

《导数在研究函数中的应用》教学设计

《导数在研究函数中的应用》教学设计

《导数在研究函数中的应用》教学设计一、学情分析我校高二学生在经历了一年多的高中学习,抽象思维能力有所提高,但对于形象的事物则更容易理解并掌握。

在前一个月,不断地通过数形结合的方式,引导学生认识、掌握、运用导数。

目前,学生对于导数的基础知识较好的掌握。

然而,学习若只停留在“被动接受”的阶段,而没有“主动出击”的经历,那么,学习便无乐趣,学生便无能力。

如何激发学生的自主探究的激情,明确探究的内容,制定探究的方案,越过探究的难点,享受成功的喜乐。

这对于教师来说,是一个大挑战。

在较好掌握一阶导数在函数单调性中的应用后,学生自然而然会产生一种纵向挖掘导数新知的欲望,那就是探究二阶导数的相关知识。

(也可能是横向挖掘:探究导数在奇偶性、周期性等方面的应用)这为本节课的学习提供了情感基础。

二、教学思路【教材地位和作用】本节课是属于导数知识的拓展课。

凹凸性是一个重要的函数性质,虽不在高中学习的范畴内,但在高等数学中有着重要的地位(与拉格朗里定理,柯西不等式都有着重要的联系)。

并且也常有以二阶导数为背景的高考题目。

因此,本节课既着眼于提高学生的探究能力,也在一定程度上拓宽了学生的数学知识、素养。

【教学重、难点以及突破】重难点:(1)如何引出猜想(即[f'(x)]'决定f(x)的凹凸性)(2)面队大量的素材,如何有效的分析(3)解释结论突破:(1)如何引出猜想?突破方法:通过对汽车启动和刹车时的s(t)图形特点的思考,从而引导学生从“加速度对s(t) 图形的影响”联想到“[f'(x)]'对f(x)图形的影响。

(2)通过计算具体函数的[f'(x)]',并画出f(x),[f'(x)]'的图形。

在面对纷繁杂乱的素材时,如何才能高效地处理素材,提取出有效的信息,用于验证猜想?突破方法:将图形按照[f'(x)]'的符号来分类,通过分析同一类的f(x)图形共性,不断地验证猜想,并加强对“凹凸”的直观感知。

导数在研究函数中的应用

导数在研究函数中的应用
导数在研究函数中的应用
摘 要
导数是研究函数性质的一个重要工具,我们可以利用导数来求函数的单调性,极值点,最值点,另外可以利用导数找函数的零点和构造简单的函数。函数是描述客观世界变化规律的重要数学模型。研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的。通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解。下面,我们运用导数研究函数的性质,通过对函数的单调性与导数的关系的研究、如何利用导数来求函数的极值与函数的最大值和最小值的一般方法、导数与函数的零点以及利用导数研究任意性、存在性以及参数的取值问题,我们可以从中体会导数在研究函数中的应用。通过对导数在研究函数中的应用的学习,为我们学习和研究函数奠定了良好的基础。
y- =f’( )(x- )
例1:曲线y=x(3 )在点(1,1)处的切线方程为:y=4x-3
解析:第一步,首先求函数y=x(3 )的导函数y’
y’=3 ,接下来把 =1代入y’,有f’ )= y’( =1)=4,从而可知在 =1处切线方程的斜率为4,最后将斜率f’ )和点(1,1)代入切线方程y- =f’( )(x- )
f’(xo)= = 。
从导数的这一定义出发,我们知道导数f’(xo)表示
函数f(x)在x=xo处的瞬时变化率,反映了函数f(x)在x=xo附近的变化情况,接着可以明确导数的几何意义:
曲线y= f(x)在点(xo,f(xo))处切线的斜率。
二、导数的性质
通过对导数相关定义和几何意义出发研究导数的性质。
二、函数的单调性与导数
判断函数f(x)的单调性时,常常借助f’(x)的符号来判断
一般地,函数的单调性与其导函数的正负有如下关系:
在某个区间(a,b)内,如果f’(x)>0,那么函数y=f(x)在这个区间内単调递増;如果f’(x)<0,那么函数y= f(X)在这个区间内单调递減.

导数在研究函数中的应用 精品教案

导数在研究函数中的应用 精品教案

《导数在研究函数中的应用》【教材分析】导数及其应用内容分为三部分:1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数。

在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法。

【考纲解读】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极值,会求闭区间上函数的最值。

3.会利用导数解决某些实际问题。

【教学目标】1.能熟练应用导数的几何意义求解切线方程2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学重点】理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学难点】原函数和导函数的图像“互译”,解决一些恒成立问题【学 法】本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。

在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。

【教 法】数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。

【授课类型】复习课【教学过程】一、要点梳理温馨提醒:若函数y =f (x )在(a ,b )内单调递增,则f ′(x )≥0,而f ′(x )>0是y =f (x )1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下的关系: 如果__________,那么函数y =f (x )在这个区间单调递增;如果____________,那么函数y =f (x )在这个区间单调递减; f ′(x )>0 f ′(x )<0在(a ,b )内单调递增的充分不必要条件.2.函数的极值与导数函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧___f ′(x )<0_______,右侧__ f ′(x )>0_____,则点a 叫做函数y =f (x )的__极小值点___,f (a )叫函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧__ f ′(x )>0_____,右侧___f ′(x )<0_______,则点b 叫做函数y =f (x )的极大值点,f (b )叫函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.温馨提醒:导数为0的点不一定是极值点,只有在该点两侧导数的符号相反,即函数在该点两侧的单调性相反时,该 点 才是函数的极值点,另一方面,极值点处的导数 也不一定 为0,还要考察函数在该点处的导数是否存在.3.函数的最值与导数假设函数y =f(x)在闭区间[a ,b]上的图象是一条_连续不间断的曲线,则该函数在[a ,b]上一定能够取得最大值与最小值.若函数在(a ,b)内是可导 的,该函数的 最 值必在极值点或区间端点处取得.温馨提醒:最值与极值的区别与联系:(1)“极值”是个局部概念,是一些较邻近的点之间的函数值 大小的比较,具有相对性;“最值”是个整体概念,是整个 定 义域上的最大值和最小值,具有绝对性.(2)最值和极值都不一定存在,若存在,函数在其定义域上 的最值是唯一的,而极值不一定唯一.二、课前热身1.(2012·高考陕西卷)设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.(2012·高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1]C .[1,+∞)D .(0,+∞)3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( )A .11或18B .11C .18D .17或184.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 5.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 答案:1.D; 2.B; 3.C; 4.-173 5.3 三、例题讲解考点一:利用导数研究函数的单调性例1、已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R.(1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当t >0时,求f (x )的单调区间.【解】(1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6.所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x .(2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t 2. 方法感悟:(1)导数法证明函数f (x )在(a ,b )内的单调性的步骤:①求f ′(x );②确认f ′(x )在(a ,b )内的符号;③作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.(2)导数法求函数单调区间的一般步骤:①确定函数f (x )的定义域;②求导数f ′(x );③在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;④根据(3)的结果确定函数f (x )的单调区间.考点二:由函数的单调性求参数的取值范围因为t >0,则-t <t 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间是(-∞,-t ),⎝⎛⎭⎫t 2,+∞;f (x )的单调递减区间是⎝⎛⎭⎫-t ,t 2.例2、(2014·安徽合肥市质量检测)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数,求实数a 的取值范围.【解】(1)设f (x )图象上任一点的坐标为P (x ,y ),点P 关于点A(0,1)的对称点P ′(-x ,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x. (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,方法感悟:函数单调性确定参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.考点三:利用导数研究函数的极值(最值)例3、(2013·高考福建卷)已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.【解】函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A(1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. 又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 对任意的x ∈[1,2]恒成立. 注意到函数r (x )=3x +1x 在[1,2]上单调递增, 故r (x )min =r (1)=4. 于是2a ≤4,a ≤2.即实数a 的取值范围是(-∞,2].(2)由f′(x)=1-ax=x-ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.方法感悟:(1)求函数f(x)极值的步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)求函数f(x)在[a,b]上的最大值和最小值的步骤:①求函数在(a,b)内的极值;②求函数在区间端点的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【课堂小结】1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数【布置作业】练习册60练 p19【板书设计】课题一、要点梳理三、例题讲解二、课前热身四、课堂小结【教学反思】以题目引导教学,让学生先有所思,思有所获,获有所感。

导数在函数中的作用

导数在函数中的作用

导数在函数中的作用导数是微积分中的一个重要概念,广泛应用于数学、物理学、经济学等领域。

在函数中,导数可以告诉我们函数在其中一点上的变化率,以及函数在该点上的斜率。

一、导数的定义和概念在一个函数中,导数描述了函数曲线在其中一点上的切线的斜率,也可以理解为函数在该点附近的局部线性逼近。

设函数y=f(x),如果函数在点x处的导数存在,则函数在该点处可导,导数记为f'(x),数学符号表示为:f'(x) = lim(h→0) [f(x+h)-f(x)]/h其中lim表示极限,h表示一个趋近于0的数。

该定义实质上是求一个极限值,表示的是函数在该点处的瞬时变化率。

导数与函数的变化速度有直接关系,导数大,则说明函数的变化速度快。

二、导数的计算公式对于大多数常见函数,存在一系列的计算导数的公式,这些公式可以帮助我们快速计算函数的导数。

以下是一些常用的导数计算公式:1.常数函数导数:如果f(x)=c,其中c是常数,则f'(x)=0。

2. 幂函数导数:如果f(x) = x^n,其中n是正整数,则f'(x) = nx^(n-1)。

3.指数函数导数:如果f(x)=e^x,则f'(x)=e^x。

4. 对数函数导数:如果f(x) = ln(x),则f'(x) = 1/x。

5.基本四则运算导数法则:如果f(x)和g(x)在点x处可导,则有以下公式:a. 导数的线性性质:[af(x)]' = af'(x),其中a是常数;b.和差的导数规则:[f(x)±g(x)]'=f'(x)±g'(x);c.乘积的导数规则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);d.商的导数规则:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/g(x)^26.复合函数的导数:如果函数y=g(u)和u=f(x)都可导,则复合函数y=f(g(x))在x处可导,且有以下公式:[f(g(x))]'=f'(g(x))*g'(x)以上是一些常见的导数计算公式,可以用于计算各种复杂函数的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a-2 a-2
高考第一轮复习用书· 数学(理科)
a-2
第二章 2.11 导数在研究函数中的应用
现在的问题是当(4-a)e =3时是否a=3? 解方程(4-a)e =3,得(4-a)e -3=0,即e (4-a-3e )=0.(*) 设g(a)=4-a-3e (a<2),则g'(a)=-1+3e >0, 所以,g(a)在(-∞,2)上单调递增,则有g(a)<g(2)=-1,此时方程(*)
出实际问题中变量之间的函数关系y=f(x)(注意函数的实际
需要的限制);
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
②求函数的导数f'(x),解方程f'(x)=0; ③比较函数在定义域的区间端点和使f'(x)=0的点的函数值 的大小,其中最大的为最大值,最小的为最小值.
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
1.函数f(x)=x+ln x的单调增区间为 ( (A)(-1,0). (C)(1,2). (B)(0,+∞). (D)(0,e).
)
1 【解析】因为函数f(x)的定义域为(0,+∞),则f'(x)=1+ >0的解 x
为(0,+∞),所以其单调增区间为(0,+∞). 【答案】B
1 a
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
题型2 利用导数研究函数的极值或最值
例2 已知函数f(x)=e +2x -3x.
(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点; (2)当x≥ 时,若关于x的不等式f(x)≥ x +(a-3)· x+1恒成立,求
高考第一轮复习用书· 数学(理科)
1 即ax≤e - x -1,∵x≥ ,∴a≤ 2 2
x 1 2
第二章 2.11 导数在研究函数中的应用
ex
1 2 x 1 2 x
,
1 2 x 1 2 令g(x)= , x 1 e x ( x 1) x 2 1 2 则g‘(x)= 2 x ex
1 2 5 2
2
x
2
实数a的取值范围. 【分析】根据极值点存在性可转化为存在唯一的零点来处
理,恒成立问题可以转化为求函数的最值问题来处理. 【解析】(1)f‘(x)=e +4x-3,∵f '(0)=e -3=-2<0,f'(1)=e+1>0,
x 0
高考第一轮复习用书· 数学(理科)
x
第二章 2.11 导数在研究函数中的应用
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
2.函数y= -2sin x的图象大致是 (
x 2
)
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
1 2 1 时x满足的区间原函数是增函数;令y'= 2 -2cos
【解析】因为y'= -2cos x,所以令y'= -2cos x>0,得cos x< ,此 x<0,得cos
第二章 2.11 导数在研究函数中的应用
题型1 利用导数研究函数的单调性
例1
1 2 (1)若f(x)=- x +bln(x+2)在(-1,+∞)上是减函数, 2
则b的取值范围是 ( (A)[-1,+∞).
) (B)(-1,+∞).
(C)(-∞,-1].
(D)(-∞,-1).
x
(2)函数y=sin 2x+e 在x∈[1,+∞)上 ( (A)为增函数. (C)先增后减. (B)为减函数. (D)先减后增.
-x 2 -x -x
①当a=2时,f'(x)=-x e ≤0,f(x)单调递减,函数f(x)无极值,与题
意不符,故a≠2;
2 -x
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
②当a>2时,x=2-a为极小值点. 故f(x)极小值=f(2-a)=(4-a)e ,当极小值为0时,a=4; ③当a<2时,同理可得f(x)极小值=f(0)=a,当极小值为0时,a=0. 由①②③知:a=0或a=4. (2)由(1)知:当a>2时,f(x)在x=0处取极大值f(0)=a,当a=3时,f(x) 的极大值为3; 当a<2时,f(x)在x=2-a处取极大值f(2-a)=(4-a)e .
(B)(-1,0). (D)(0,+∞).
【解析】由题意知:a≠0,①当-1<a<0时,显然满足题意;当②a
>0时,显然不满足题意;③当a≤-1时,显然不满足题意. 【答案】B
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
核心突围
技能聚合
高考第一轮复习用书· 数学(理科)
与最小值,求最值的步骤如下:
(1)求函数f(x)在[a,b]内的极值;
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
(2)求函数f(x)在区间端点的值f(a)、f(b); (3)将函数f(x)的各极值与f(a)、f(b)比较,其中最大的是最大 值,最小的是最小值. 2.利用导数研究实际问题的最值,其一般步骤为: ①分析实际问题中各量之间的关系,找出对应的数学模型,写
,
令φ(x)=e
x
x 1 2 (x-1)- x +1,则φ'(x)=x(e -1). 2
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
1 1 ∵x≥ ,∴φ'(x)>0,∴φ(x)在[ ,+∞)上单调递增, 2 2
∴φ(x)≥φ( )= - >0. e
1 因此g'(x)>0,故g(x)在[ ,+∞)上单调递增, 2
1 x> 4 ,
1 2
1 4
此时x满足的区间原函数是减函数,又原函数为奇函数,可得 选C正确. 【答案】C
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
3.已知函数f(x)的导数f'(x)=a(x+1)(x-a),若f(x)在x=a处取到极 大值,则a的取值范围是 ( (A)(-∞,1). (C)(0,1). )
第二章 2.11 导数在研究函数中的应用
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求费用最小时的r. 【分析】本题根据题意可建立函数关系式,再利用导数的知 识便可得到最优解.
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
§2.11 导数在研究函数中的应用
知识诠释
思维发散
一、利用导数判断函数的单调性
一般地,设函数y=f(x)在某个区间内可导.如果f'(x)>0,那么f(x)
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
1 )= 则g(x)≥g( 2
1 2
7 8
1 2
1 e 1 8 1 2
1
=2
e
-
9 , 4
∵a≤g(x)恒成立时,a≤g(x)min,
9 ∴a的取值范围是(-∞,2 e - ]. 4
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
【点评】函数的最值可以通过求导,判断函数的单调性,从而 确定最值的大小,或根据最值出现在极值点和端点处来确定.
2
2
)
(2)已知函数f(x)=ln(x+a)-x -x的单调递增区间为(-1,0),单调递
减区间为(0,+∞),则a的值为 (
(A)-1. (B)0. (C)1.
)
(D)2.
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
【解析】(1)由f'(x)>0解得:x>3或x<1,且1、3是f(x)的极值点, 则f(x+1)的极值点为0、2,所以函数的单调递减区间是(0,2). (2)由题意可知f'(0)=0,即 -1=0,解得a=1. 【答案】(1)A (2)C
0)是极小值.
四、求可导函数f(x)的极值的步骤 1.求导数f'(x); 2.求出方程f'(x)=0的根;
高考第一轮复习用书· 数学(理科)
第二章 2.11 导数在研究函数中的应用
3.检查在方程的根左、右f'(x)的值的符号.如果左正右负,那 么在这个根处取得极大值;如果左负右正,那么在这个根处取 得极小值;如果左右符号相同,那么这个根不是极值点. 五、利用导数求函数的最值 1.一般地,在区间[a,b]上连续的函数f(x)在[a,b]上必有最大值
高考第一轮复习用书· 数学(理科)
2 -x
第二章 2.11 导数在研究函数中的应用
变式训练2 设函数f(x)=(x +ax+a)e 有极值. (1)若极小值是0,试确定a的值; (2)证明:当极大值为3时,只限于a=3的情况. 【解析】(1)f'(x)=(2x+a)e -(x +ax+a)e =-x(x+a-2)e , 由f'(x)=0得x=0或x=2-a.
x x x
2
出函数的定义域,然后再求导判断符号,以避免不该出现的失
相关文档
最新文档