期中测试卷
人教版数学七年级下学期《期中检测试卷》有答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
人教版八年级下册数学《期中检测试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
期中测试卷
期中测试卷班级 _____________ 姓名_______________一、单项选择题(下列各小题的四个选项中,只有一个是符合题意要求的,请将正确选项前的英文字母填在题后括号内,每小题2分,共24分)1、主要人种相同的地区有下述的()A、东亚与西亚B、中亚与东亚C、西亚与北非D、东南亚与中亚2、中亚盛产棉花的“白金之国”是()A、哈萨克斯坦B、土库曼斯坦C、乌兹别克斯坦D、塔吉克斯坦3、中亚干旱的温带大陆性气候形成的根本原因是()A、降水稀少B、高原沙漠广布C、植被以草原、荒漠为主D、深居亚欧大陆内部4、欧洲西部的大西洋沿岸属于()A、温带大陆性气候B、温带海洋性气候C、地中海气候D、亚热带湿润气候5、撒哈拉以南的非洲与北非相比()A、地势低,平原面积较大B、沙漠所占陆地面积大C、年降水量丰富得多D、石油资源储量更丰富6、水能丰富的河流是下述中的()A、莱茵河B、刚果河C、阿姆河D、幼发拉底河7、欧洲西部的居民主要人种及欧洲西部的人口密度特点是()A、以混血人种为主,人口稠密B、以白种人为主,人口稀疏C、以黑种人为主,人口稀疏D、以白种人为主,人口稠密8、欧洲西部海岸线的特点是()A、十分曲折B、比较曲折C、十分平直D、比较平直9、出产铝土最多的国家是()A、尼日利亚B、几内亚C、赞比亚D、南非10、撒哈拉以南的非洲()A、西濒大西洋、东临红海B、西濒大西洋、东临印度洋C、东濒大西洋、西临印度洋D、东濒太平洋11、法国盛产葡萄的地区是()A、巴黎盆地B、西南部和地中海沿岸C、东部地区D、东南部地区12、欧洲南部的三大半岛,自西向东排列为()A、巴尔干半岛、亚平宁半岛、伊比利亚半岛B、亚平宁半岛、巴尔干半岛、伊比利亚半岛C、伊比利亚半岛、亚平宁半岛、巴尔干半岛D、亚平宁半岛、伊比利亚半岛、巴尔干半岛二、双项选择(下列各小题的四个选项中,只有二个是符合题意要求的,请将正确选项前的英文字母填在题后括号内,每小题3分,共30分)1、德国发展工业的有利条件有()A、德国有丰富的煤炭、石油B、便利的水陆交通条件C、雄厚的科技力量D、众多的劳动力2、北非重要的石油生产国和出口国有下述中的()A、埃及B、摩洛哥C、利比亚D、突尼斯3、水位季节变化小的河流有()A、尼罗河B、恒河C、莱茵河D、刚果河4、德国濒临的海有()A、北海B、比斯开湾C、挪威海D、波罗的海5、中亚、西亚、与北非、撒哈拉以南的非洲、欧洲西部相比较()A、撒哈拉以南的非洲人口自然增长率最高B、西亚与北非城市人口占总人口的比重最低C、欧洲西部城市人口占总人口的比重最高D、中亚人口自然增长率最低6、尼罗河流程与泛滥的正确叙述有()A、尼罗河的流程为6400多千米,是世界第二长河;B、尼罗河的流程为6600多千米,是世界第一长河;C、尼罗河每年6至10月定期泛滥D、尼罗河每年11月至次年4月定期泛滥7、欧洲西部北海沿岸的港口有()A、圣彼得堡B、马骞C、鹿特丹D、伦敦8、东非大裂谷经过的地形区有()A、刚果盆地B、东非高原C、埃塞俄比亚高原D、南非高原9、下列国家主要盛产农畜业的是()A、乌兹别克斯坦盛产棉花B、土耳其盛产长绒棉C、摩洛哥盛产油橄榄D、埃及盛产羊毛10、法国的小麦产量、粮食出口量在欧洲、世界所占的地位是()A、小麦产量居欧洲首位B、是世界最大的农产品出口国C、小麦产量居欧洲前列D、是世界重要的农产品出口国三、填空题(每空1分,共14分)1、欧洲经济实力最强的国家是_________,它最大的港口是_____________。
人教版数学七年级下册《期中检测试卷》及答案解析
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1的值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件的k 的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析]分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析]分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查的是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数的混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率是(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 的度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。
2024-2025学年广西高二数学上学期期中调研测试卷附答案解析
2024-2025学年广西高二数学上学期期中调研测试卷一、单选题(本大题共8小题)1.直线40x +=的倾斜角为()A .30︒B .60︒C .120︒D .150︒2.椭圆22154x y +=的焦距为()A .1B .2C .3D .43.已知12(1,(,2,n x n x ==-分别是平面,αβ的法向量,若αβ⊥,则x =()A .1B .7C .2-D .24.已知直线1:20l x my ++=和直线2:(23)20l mx m y ++-=平行,则m 的值为()A .3B .3或1-C .1-D .3-5.如图,在四面体ABCD 中,E 为DC 的中点,F 为BE 的中点,设,,AB a AC b AD c === ,则AF =()A .111422a b c-++ B .111244a b c ++C .111242a b c+- D .111442a b c++ 6.已知,A B 是抛物线22y x =上的两点,且线段AB 的中点为(1,1),则直线AB 的方程为()A .210x y --=B .10x y +-=C .0x y -=D .210x y -+=7.图1为一种卫星接收天线,其曲面与轴截面的交线为拋物线的一部分,已知该卫星接收天线的口径AB =1MO =,信号处理中心F 位于焦点处,以顶点O 为坐标原点,建立如图2所示的平面直角坐标系xOy ,若P 是该抛物线上一点,点Q 是圆22(3)(2)1x y -+-=上一点,则||||PF PQ +的最小值为()A .4B .3C .5D .58.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别12,.F F A 是C 上的一点(在第一象限),直线2AF 与y 轴交于点B ,若11AF BF ⊥,且2232AF F B =,则C 的离心率为()A .305B .32C .6D .355二、多选题(本大题共3小题)9.已知圆22:(6)16C x y ++=,设点(,)P x y 为圆上的动点,则下列选项正确的是()A .点P 到原点O 的距离的最小值为2B .过点(3,0)A -的直线与圆C 截得的最短弦长为6C .yx的最大值为1D .过点(1,0)B -作圆的切线有2条10.如图,在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,则下列四个结论正确的有()A .1BC 与AC 所成角为60oB .三棱锥1A D PC -的体积不变C .//DP 平面11ABD D .1DP BC ^11.已知12,F F 分别为椭圆22:143x yC +=的左、右焦点,若点12,A A 分别为椭圆C 的左、右顶点,P是椭圆C 上一动点,下列结论中正确的有()A .12PF PF ⋅的范围为[2,3]B .若12F F P 为直角三角形,则12F F P 的面积为3C .若点(1,1)B,则2PB PF +的最大值为4D .直线12,PA PA 的斜率之积为34-三、填空题(本大题共3小题)12.若直线220mx y +-=经过两直线53170x y --=和50x y --=的交点,则m =.13.已知直线:0l x y --=,点P 为椭圆22:14y C x +=上的一个动点,则点P 到直线l 的距离的最小值为.14.一动圆与圆221:10240C x y y +++=和222:10240C x y y +--=都外切,则动圆的圆心的轨迹方程为.四、解答题(本大题共5小题)15.已知抛物线2:2(0)C y px p =>的焦点与双曲线222:1(0)4x y E a a -=>的右焦点重合,双曲线E 的渐近线方程为20x =.(1)求抛物线C 的标准方程和双曲线E 的标准方程;(2)若斜率为2且纵截距为1的直线l 与抛物线C 交于M ,N 两点,F 为抛物线C 的焦点,求FMN 的面积.16.为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄的分组区间是:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45].(1)求图中x 的值并根据频率分布直方图估计这500名志愿者中年龄在[30,35)的人数;(2)估计抽出的100名志愿者年龄的第61百分位数;(3)若在抽出的第1组、第2组和第4组志愿者中,采用按比例分配分层抽样的方法抽取6名志愿者参加中心广场的宣传活动,再从这6名中采用简单随机抽样方法选取2名志愿者担任主要负责人.求抽取的2名志愿者中恰好来自不同一组的概率.17.在ABC V 中,内角A B C ,,的对边分别为a b c ,,,且ABC V 的外接圆半径R 满足sin cos (cos cos )R A A c B b C =+.(1)求角A ;(2)若a =ABC V 面积的最大值.18.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,AB AD ⊥,PA PD =,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PA 与平面PCD 所成角的余弦值;(3)在棱PB 上是否存在点M ,使得//AM 平面PCD ?若存在,求出BMBP的值;若不存在,请说明理由.19.在平面直角坐标系xOy 中,若在曲线1E 的方程0(),F x y =中,以(,)x y λλ(λ为非零的正实数)代替(,)x y 得到曲线2E 的方程(,)0F x y λλ=,则称曲线12E E 、关于原点“伸缩”,变换(,)(,)x y x y λλ→称为“伸缩变换”,λ称为伸缩比.如果曲线221:243E x y +=经“伸缩变换”后得到曲线2E ,射线1(0)2y x x =>与12E E 、分别交于两点A ,B 且||2AB =.(1)求2E 的方程;(2)若M ,N 在2E 上,,,BM BN BD MN D ⊥⊥为垂足,求证:存在定点Q ,使得|DQ |为定值.2024-2025学年广西高二数学上学期期中调研测试卷1.【答案】A【详解】40x +=的斜率为3,故倾斜角为30︒,故选:A 2.【答案】B【详解】由题意得1c ==,则其焦距为2.故选:B.3.【答案】D【详解】由于αβ⊥,所以12n n ⊥ ,故12260n n x x ⋅=+-=,解得2x =,故选:D 4.【答案】A 【详解】由题意可得12232m m m =≠+-,则223m m +=,2230m m --=,即()()310m m -+=,解得3m =或1-,当3m =时,132392=≠-,显然成立,符合题意;当1m =-时,112112-==--,不符合题意.故选:A.5.【答案】B【详解】由F 是BE 的中点,则12BF BE = ,由E 为CD 的中点,则12DE DC = ,在ABD △中,BD AD AB =-,在ACD 中,DC AC AD =- ,()11112222AF AB BF AB BE AB BD DE AB AD AB DC ⎛⎫=+=+=++=+-+ ⎪⎝⎭()111111111224244244AB AD AC AD AB AD AC a b c =++-=++=++.故选:B.6.【答案】C【详解】设1,1,2,2,则2211222,2y x y x ==,故221212121212222y y y x x x x y y y --=-⇒=-+,由于AB 的中点为(1,1),故122y y +=,因此12121221AB y y k x x y y -===-+,故直线方程为11y x =-+,即0x y -=,经检验,直线0x y -=与抛物线相交,满足条件.故选:C 7.【答案】A【详解】由题意设抛物线的方程为22(0)y px p =>,因为AB =,1MO =,所以点(1,B -在抛物线上,将B 的坐标代入到抛物线的方程中,可得82p =,故4p =,所以抛物线的方程为28y x =,所以抛物线的焦点F 的坐标为(2,0),准线方程为2x =-,圆22(3)(2)1x y -+-=的圆心位()3,2H ,半径位1R =,可知圆在抛物线内部,如图:如图,过点P 作PP '与准线垂直,P '为垂足,点H 作HN 与准线垂直,N 为垂足,则||||PF PP '=,所以3214PF PQ PP PQ P Q NH R +=+≥≥-='+-=',当且仅当P ,H ,P '三点共线时,所以||||PF PQ +的最小值为4.故选:A8.【答案】D【详解】设1BF m =,如下图所示:由题意可得2BF m =,2122,233AF m AF m a ==+;又22AF F AB B =+,由11AF BF ⊥可得22211AF BF AB +=,即22222233m a m m m ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,解得3m a =;所以2112,4,3AF a AF a BF a ===;因为111190,90AF O BF O BF O F BO ∠+∠=∠+∠=,所以11AF O F BO ∠=∠;即11cos cos AFO F BO ∠=∠,可得222112211212AF F F AF OB AF F F BF +-=,即22216442423a c a a c a+-=⨯⨯,解得c a =故选:D9.【答案】AD【详解】由题意可知:圆22:(6)16C x y ++=的圆心为()6,0-,半径4r =,对于选项A :点P 到原点O 的距离的最小值为2PO r -=,故A 正确;对于选项B :因为3CA r =<,可知点(3,0)A -在圆C 内,所以最短弦长为=B 错误;对于选项C :因为yx表示直线OP 的斜率,当OP 与圆C 相切时,此时OP =,yx取到最大值255r OP ==,故C 错误;对于选项D :因为5CB r =>,可知点B 在圆C 外,所以过点(1,0)B -作圆的切线有2条,故D 正确;故选:AD.10.【答案】ABC【详解】对于A 选项,连接AC 、11AC 、1A B ,则1111A B A C BC ==,所以,11A BC V 是等边三角形,所以1160A C B ∠=,因为11//AA CC ,11AA CC =,所以,四边形11AAC C 为平形四边形,所以,11//AC AC ,所以,异面直线1BC 与AC 所成的角等于1160A C B ∠=,A 对;对于B 选项,因为11//AB C D ,11AB C D =,所以,四边形11ABC D 为平行四边形,所以,11//BC AD ,因为1BC ⊄平面1ACD ,1AD ⊂平面1ACD ,所以,1//BC 平面1ACD ,因为1P BC ∈,所以,点P 到平面1ACD 的距离等于点B 到平面1ACD 的距离,为定值,又因为1ACD △的面积为定值,故三棱锥1P ACD -的体积为定值,B 对;对于C 选项,由B 选项可知,11//BC AD ,因为1BC ⊄平面11AB D ,1AD ⊂平面11AB D ,所以,1//BC 平面11AB D ,同理可证//BD 平面11AB D ,因为1BC BD B = ,1BC 、BD ⊂平面1BC D ,所以,平面1//BC D 平面11AB D ,因为DP ⊂平面1BC D ,所以,//DP 平面11AB D ,C 对;对于D 选项,若1DP B C ⊥,且四边形11BB C C 为正方形,则11B C BC ⊥,因为1DP BC P = ,DP 、1BC ⊂平面1BC D ,则1B C ⊥平面1BC D ,又因为AB ⊥平面11BB C C ,1B C ⊂平面11BB C C ,则1B C AB ⊥,因为11B C BC ⊥,1AB BC B =I ,AB 、1BC ⊂平面11ABC D ,所以,1B C ⊥平面11ABC D ,又因为过点P 有且只有一个平面与直线1B C 垂直,矛盾,假设不成立,D 错.故选:ABC.11.【答案】ACD【详解】对于A ,()()121,0,1,0F F -,设()00,P x y ,2200143x y +=,则22003(4)4y x =-,故()()2222212000000000311,1,1(4)1244PF PF x y x y y x x x x ⋅=---⋅--=+-=-+-=+ ,由于2004x ≤≤,故[]2120122,34PF PF x ⋅=+∈ ,A 正确,对于B ,当212PF F F ⊥时,此时31,2P ⎛⎫± ⎪⎝⎭,故12F F P 的面积为12113322222P F F y =⨯⨯=,故B 错误,对于C ,由于1(1,0)F -,又(1,1)B ,所以1||BF =所以21114444PB PF PB PF PB PF BF +=+-=+-≤+=+当且仅当1,,P B F 三点共线时,且1F 在,P B 之间时取等号,故C 正确.对于D ,由椭圆22:143x y C +=,得()12(2,0),2,0A A -,设()00,P x y ,则1220002000224PA PA y y y k k x x x =⨯=+--,又2200143x y +=,则22003(4)4y x =-,所以12220022003(4)34444PA PAx y k k x x -===---,故D 正确;故选:ACD12.【答案】10【详解】联立5317050x y x y --=⎧⎨--=⎩,解得14x y =⎧⎨=-⎩,将点()1,4-代入到直线220mx y +-=,得820m --=,故10m =.故答案为:10.13.【答案】【详解】由点P 在椭圆22:14y C x +=上,设(cos ,2sin ),R P θθθ∈,则点P 到直线l的距离d =,其中锐角ϕ由1tan 2ϕ=确定,而1sin()1θϕ--≤≤,则当sin()1θϕ-=-时,min d =所以点P 到直线l的距离的最小值为故答案为:14.【答案】221(0)916y x y -=<【详解】圆221:(5)1C x y ++=的圆心1(0,5)C -,半径11r =,圆222:(5)49C x y +-=的圆心2(0,5)C ,半径27r =,设动圆的圆心(,)P x y ,半径为r ,依题意,1217PC rPC r ⎧=+⎪⎨=+⎪⎩,则2112||||610||PC PC C C -=<=,因此动圆的圆心P 的轨迹是以12,C C 为焦点,实轴长为6的双曲线下支,实半轴长3a =,半焦距5c =,虚半轴长4b ==,方程为221(0)916y x y -=<.故答案为:221(0)916y x y -=<15.【答案】(1)212y x =,22154x y -=;.【详解】(1)双曲线222:1(0)4x y E a a -=>的渐近线方程为20x ay ±=,而双曲线E的渐近线方程为20x =,则a =,双曲线E 的方程为22154x y -=,双曲线E 的右焦点坐标为(3,0),而抛物线2:2(0)C y px p =>的焦点为(,0)2p,于是32p=,解得6p =,所以抛物线C 的标准方程为212y x =.(2)直线l 的方程为21y x =+,由22112y x y x=+⎧⎨=⎩消去x 得2660y y -+=,2646120∆=-⨯=>,设1122(,),(,)M x y N x y ,则12126,6y y y y +==,12||y y -==令直线l 与x 轴的交点为A ,1(,0)2A -,由(1)知(3,0)F ,所以FMN的面积12117||||2222FMN S AF y y =-=⨯⨯=.16.【答案】(1)0.07x =,175(2)33(3)1115【详解】(1)()0.020.060.040.0151x ++++⨯=,解得0.07x =,5000.075175⨯⨯=,估计这500名志愿者中年龄在[30,35)的人数为175.(2)设第61百分位数为y ,由()0.020.060.0750.750.61++⨯=>,()0.020.0650.40.61+⨯=<,则[)30,35y ∈,可得()()0.020.0650.07300.61y +⨯+⨯-=,解得33y =.(3)第1组、第2组和第4组的人数之比为0.02:0.06:0.041:3:2=,抽取的6人中第1组、第2组和第4组的人数分别为1,3,2,从这6名中抽取的2名志愿者中恰好来自不同一组的概率111111133212222666C C C C C C 11++C C C 15P ==.17.【答案】(1)π3A =;(2)334.【详解】(1)在ABC V 中,由正弦定理2sin sin sin a b c R A B C ===及sin cos (cos cos )R A A c B b C =+,得()()1sin cos cos cos 2cos sin cos sin cos 2a R A A c Bb C R C C B B C ==+=+()2cos sin 2cos sin cos R A B C R A A a A =+==,解得1cos 2A =,又0πA <<,所以π3A =.(2)由(1)知,π3A =,a =由余弦定理得2222232cos a b c bc A b c bc bc ==+-=+-≥,当且仅当b c ==因此1333sin 244ABC S bc A ==≤ ,所以ABC V 面积的最大值为334.18.【答案】(1)证明见解析(2)13(3)存在,且13BM BP =【详解】(1)证明:因为平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =,且AB AD ⊥,AB ⊂平面ABCD ,所以,AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以,AB PD ⊥,因为PD PA ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以,PD ⊥平面PAB .(2)解:取AD 中点为O ,连接OC 、OP ,又因为PA PD =,则PO AD ⊥,则1AO PO ==,因为AC CD ==,则OC AD ⊥,则2CO =,在平面ABCD 内,因为OC AD ⊥,AB AD ⊥,则//OC AB ,因为AB ⊥平面PAD ,则OC ⊥平面PAD ,以点O 为坐标原点,OC 、OA 、OP 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系O xyz -,则0,0,1、()1,1,0B 、()0,1,0D -、()0,1,0A 、()2,0,0C ,则()0,1,1PA =- ,()0,1,1DP = ,()2,1,0DC = ,设平面PCD 的法向量为(),,n x y z = ,则020n DP y z n DC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取1x =,可得()1,2,2n =- ,设PA 与平面PCD 的夹角为θ,则sin cos ,3n PA n PA n PA θ⋅====⋅ ,则1cos 3θ==,所以,直线PA 与平面PCD 所成角的余弦值为13.(3)解:设()()1,1,1,,BM BP λλλλλ==-=- ,其中01λ≤≤,则()()()1,0,0,,1,,AM AB BM λλλλλλ=+=+-=+- ,因为//AM 平面PCD ,则122130AM n λλλλ⋅=+--=-= ,解得13λ=,因此,在棱PB 上存在点M ,使得//AM 平面PCD ,且13BM BP =.19.【答案】(1)22163x y +=(2)详见解析.【详解】(1)解:设伸缩比为λ,则曲线2E 的方程为2222243x y +=λλ.由221,(0)2243y x x x y ⎧=>⎪⎨⎪+=⎩解得112x y =⎧⎪⎨=⎪⎩,即1(1,)2A ,由22221,(0)2243y x x x y λλ⎧=>⎪⎨⎪+=⎩解得112x y λλ⎧=⎪⎪⎨⎪=⎪⎩,即11(,)2B λλ,因为||AB =224111(1)()225-+-=λλ,解之得12λ=,所以曲线2E 的方程为22163x y +=(2)证明:当直线MN 的斜率存在且不为0时,设直线MN 方程为y kx m =+(k 为斜率),联立方程得22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得,222(12)4260k x kmx m +++-=,直线MN 与椭圆交于两点1122(,),(,)M x y N x y ,所以0∆>,即228(63)0k m -+>,由韦达定理可得,122412km x x k -+=+,21222612m x x k -=+,因为(2,1)B 且BM BN ⊥,所以0BM BN ⋅= ,则1212(2)(2)(1)(1)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,其中22121212()y y k x x km x x m =+++,1212()2y y k x x m +=++,所以221212(1)(2)()250k x x km k x x m m ++--++-+=,于是可得22222264(1)()(2)()2501212m km k km k m m k k --++--+-+=++化简整理可得22483210k km m m ++--=,即(231)(21)0k m k m +++-=.所以2310k m ++=或210k m +-=,经检验两式均能使0∆>.当2310k m ++=时,直线MN 方程为3312y kx k =--,则直线BD 方程为1(2)1y x k =--+,设点D 的坐标为(,)x y ,则由33121(2)1y kx ky x k =--⎧⎪⎨=--+⎪⎩消去参数k ,可得22338230x y x y +--+=,即22418()()339x y -+-=,此时存在定点41(,)33Q 使得|DQ |为定值3;当210k m +-=时,直线MN 方程为12y kx k =+-,则直线BD 方程为1(2)1y x k =--+,设点D 的坐标为(,)x y ,则由121(2)1y kx ky x k =+-⎧⎪⎨=--+⎪⎩消去参数k ,可得224250x y x y +--+=,即22(2)(1)0x y -+-=,所以点(2,1)D 与点(2,1)B 重合,不符合题意,故舍去.当0k =时,可由2310k m ++=求得,13m =-,所以1(2,)3D -,可验证点1(2,)3D -在圆22418()()339x y -+-=上,此时存在定点41(,)33Q 使|DQ |为定值当直线MN 的斜率不存在时,不妨设直线MN 方程为x n =,由22260x nx y =⎧⎨+-=⎩可解得点(M n,(,N n ,由0BM BN ⋅= 可得:(2)(2)1)(1)0n n --+=,解之得23n =(2n =舍去),所以点2(,1)3D ,可验证点2(,1)3D 在圆22418()()339x y -+-=上,此时存在定点41(,)33Q 使|DQ |为定值3.综上所述,存在定点41(,)33Q 使|DQ |为定值.。
初中数学期中测试卷及答案
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 1/32. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 1, 2, 34. 若x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 1或45. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x - 1C. y = 3x³ - 2x² + 4D. y = 4x - 56. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)7. 下列各式中,分式有最简形式的是()A. 3/6B. 5/10C. 7/14D. 8/168. 若sinθ = 1/2,则θ的度数是()A. 30°B. 45°C. 60°D. 90°9. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 菱形D. 以上都是10. 若a、b、c是等差数列的前三项,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 20二、填空题(每题2分,共20分)11. 若x² - 4x + 4 = 0,则x的值为__________。
12. 下列各数中,绝对值最小的是__________。
13. 在直角三角形ABC中,∠C = 90°,AC = 3,BC = 4,则AB的长度为__________。
14. 若sinθ = 3/5,则cosθ的值为__________。
学习资料小学语文四年级上册学霸期中测试综合卷两篇
期中综合测试卷(一)一、看拼音,写字词。
(10分)1. nuǎn yáng yáng ()的阳光穿过树叶间的缝 xì(), yóu rú()洒下点点金箔,让人感到 shū shì()和 yú kuài ()。
2.张老师十分jìngyè()。
在课上,为了让我们láogù()地掌握知识,她会nài xīn ()地教导我们。
课下,她还会shèn zhòng ()地完成各项工作,经常累得 jīng pí lì jié()。
二、选择题。
(12分)1.下列加点字的读音和词语书写完全正确的一项是A.吟唱(yíng)内脏(zāng)把柄僵硬原子核B.稻穗(suì)芦苇(wěi)茂盛滋润瞧不起C.潜入(qián)氛围(fēn)逊色洋溢眼挣挣D.逃窜(cuàn)花圃(pǔ)四肢庄嫁鹅卵石2.下列加点字词含义相同的一项是A.题西林壁题写对联 B .但闻人语响这朵花真好闻C.故为精卫神话故事D.炎帝之少女十三岁的少女3.下列加点词语运用有误的一项是A.这件事处理得很不公正,大家都憤憤不平。
B.在庐山上游览,常常会有一种腾云驾雾、飘飘欲仙的感觉。
C.学校正在举办运动会,整个操场人声鼎沸,热闹极了。
D.他就是这样一个随遇而安的人,凡事总想争个高下。
4.下列句子运用的修辞手法不同于其他的一项是A.阳春三月,沉睡了一冬的梨树被蒙蒙细雨淋醒了。
B.那瀑布的声势,如同千军万马奔腾而来,令人叹为观止。
C.我仿佛看见那些星星在对我眨眼,我仿佛听见它们在小声说话。
D.豆花盛开的季节,蝈蝈儿穿着小绿褂,蹲在豆叶上,不停地歌唱。
三、按要求完成句子练习。
(7分)1.由词语“人山人海”,我想到了国庆当天,广场上人头攒动、热闹非凡的情景。
小学六年级期中测试卷【含答案】
小学六年级期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 地球绕太阳转的方向是?A. 自东向西B. 自西向东C. 自南向北D. 自北向南3. 下列哪个动物属于哺乳动物?A. 青蛙B. 老虎C. 鳄鱼D. 鸟类4. 下列哪个季节是一年中最热的?A. 春季B. 夏季C. 秋季D. 冬季5. 下列哪个水果富含维生素C?A. 苹果B. 香蕉C. 橙子D. 西瓜二、判断题(每题1分,共5分)1. 鸟类可以在水下呼吸。
()2. 地球是太阳系中的第五颗行星。
()3. 长江是中国最长的河流。
()4. 人类的大脑皮层中有100亿个神经元。
()5. 蝴蝶在变成成虫之前是卵。
()三、填空题(每题1分,共5分)1. 地球上最大的动物是______。
2. 人体内最多的成分是______。
3. 世界上最长的河流是______。
4. 中国的首都是______。
5. 人类用______呼吸。
四、简答题(每题2分,共10分)1. 请简述光合作用的基本过程。
2. 请简述地球自转和公转的区别。
3. 请简述人体免疫系统的基本功能。
4. 请简述水的三态变化及其条件。
5. 请简述人类大脑的基本结构。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。
2. 小明从家里出发,以每分钟80米的速度走了10分钟,然后又以每分钟100米的速度走了5分钟,请问小明一共走了多少米?3. 一个班级有40名学生,其中有20名男生,求班级中女生的比例。
4. 一个等腰三角形的底边长为10cm,腰长为12cm,求这个三角形的面积。
5. 小华的年龄是小李年龄的2倍,5年后小华的年龄是小李年龄的1.5倍,请问小华和小李现在各是多少岁?六、分析题(每题5分,共10分)1. 请分析一下为什么地球上的生物需要水。
2. 请分析一下为什么人类需要睡眠。
部编版四年级上册语文期中考试测试卷(含答案)
部编版四年级上学期语文期中考试试卷一、积累与运用(47分)1.书法秀。
默写《雪梅》的后两句诗,比一比谁的字写得最漂亮。
2.看拼音写词语。
zhù míng jià shǐkuān kuòào mìkòng xìcéng jīng zhé xuébēi cǎn zī rùn mào shèng3.下列加点字的读音不正确的一组是()。
A.下降.(jiàng)悄.(qiǎo)无声息B.少.(shào)女系.(jì)绳子C.薄.(báo)雾弯弯曲.(qū)曲D.肮脏.(zāng)家雀.(qiǎo)儿4.补充成语,再填空。
(1)把下面的四字词语补充完整。
力竭耳欲聋腾云雾雀无声而安山崩地三头六横七八(2)其中,和是一对反义词;一词让我想到了神话故事中的哪吒;蟋蟀常常慎重地选择住址,不肯。
5.按要求写句子。
(1)仿写句子,用上相同的修辞手法。
①稻田像一块月光镀亮的银毯。
②是谁来呼风唤雨呢?当然是人类。
(2)天空里悬着星。
(扩句)(3)京山是个美丽的季节,既然是冬天,也有迷人的景色。
(用修改符号修改病句)6.根据学过的内容填空。
(1)浪潮越来越近,白色战马,浩浩荡荡地。
(2)哟,有多少可爱的小水塘啊,每个小水塘!(3)女娃游于东海,,故为,常,以堙于东海。
(4)“,”这两句诗道出了一个朴素的道理:当人没有跳出局部从整体观察时,就很难认清事物的真相和全貌。
(5)《暮江吟》中写日暮时分,夕阳与江水相映成趣的句子是:,。
(6)人非者,孰能?二、阅读与理解(23分)课内阅读。
得知普罗米修斯从天上取走火种的消息,众神的领袖宙斯______________,决定给普罗米修斯以最严厉的惩罚,吩咐火神立即执行。
火神赫淮斯托斯很敬佩普罗米修斯,悄悄对他说:“只要你向宙斯承认错误,归还火种,我一定请求他饶恕你。
部编版四年级上册语文《期中》测试卷【带答案】
部编版四年级上册语文《期中》测试卷【带答案】班级:姓名:满分:100分考试时间:90分钟题序一二三四五六七八九总分得分一、看拼音,写词语。
zhú jiàn fān shēn shū shìɡǎi shànjūn yún shèn zhònɡzī rùn wéi kànɡ二、用“√”为加点字选择正确的读音。
好似.(shìsì)困窘.(jiǒnɡjǔn)迸.出(bènɡ bìnɡ)应.声(yìnɡ yīnɡ)家禽.(qín qínɡ)歼.灭(qiān jiān)三、辨字组词。
姆(_________)潦(_________)嗫(_________)嚅(_________)拇(_________)嚓(_________)蹑(_________)濡(_________)靡(_________)沮(_________)徽(_________)螺(_________)糜(_________)诅(_________)微(_________)骡(_________)四、把下列成语补充完整,并选择其中的一个成语造句。
(____)向荣万(____)千(____)柳(____)花(____)生机(____)草(____)莺(____)五彩(____)(____)______________________________________________五、选词填空。
果然居然1.天气预报说今天有小雨,傍晚(______)下起了小雨。
2.这道题这么难,小俊(______)很快就做对了。
无可奈何无所适从3.这个人说这样做,那个人说那样做,把他弄得(______),不知道怎么办。
4.时间的流逝令人(______),所以我们要珍惜时间,做一些有意义的事。
六、按要求完成句子练习。
2024-2025学年四川省巴中市南江中学初中教育集团八年级上学期期中测试物理试题
2024-2025学年四川省巴中市南江中学初中教育集团八年级上学期期中测试物理试题1.下列对物理量大小的估测符合实际的是()A.一张纸的厚度大约为1mmB.乒乓球的直径约为6cmC.中学生立定跳远的距离约为5mD.教室门的高度约为2.2m2.用厚刻度尺测量木块的长度,如图所示的四种方法中,操作正确的是()A.B.C.D.3.某同学用同一把刻度尺对同一物体的长度进行了5次测量,结果如下:12.44cm、12.46m、12.45cm、12.46cm、12.54cm,则该物体的长度应记为()A.12.45cm B.12.47cm C.12.4525cm D.12.46cm4.关于误差,下列的说法正确的是()A.误差是由于测量时粗心大意造成的,是可以避免的B.选用精确度高的测量仪器,就可以减小误差C.多次测量取平均值,就可以避免误差D.误差就是错误5.炎热的夏天,小伟发现穿黑色的衣服走在阳光下很热,而穿白色的衣服却较凉爽一些。
思考后他认为:不同颜色吸收太阳光热量的能力不同。
则小伟的“认为”属于科学探究环节中的()A.提出问题B.进行实验与收C.猜想与假设D.分析与论证集证据6.关于声音的产生和传播的说法正确的是()A.声音的传播不需要介质B.只要物体振动,我们就能听见声音C.物体的振动一旦停止,发声也随之停止D.声音在空气中传播最快7.小明利用搜狗输入法的变声功能,把自己的声音变成了小猪佩奇的声音,给朋友发了一条语音。
这里的变声主要指的是改变了自己声音的()A.响度B.音色C.音调D.声速8.关于声现象的描述,下列说法错误的是()A.图甲中,用相同的力拨动橡皮筋,绷得越紧,发出声音的响度越大B.图乙中,保持钢尺伸出长度不变,轻拨与重拨钢尺,发声响度不同C.图丙中,根据蝙蝠靠超声波发现昆虫的原理,科学家发明了声呐D.图丁中,禁止鸣笛是从“防止噪声产生”的方面控制噪声9.关于光现象的描述,下列说法正确的是()A.光不能在真空中传播B.光源发光时发出的是光线C.月亮是自然光源D.光在同种均匀介质中沿直线传播10.我国2000多年前的《墨经》就记载有小孔成像实验。
人教版数学八年级下册《期中检测试卷》(含答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。
期中测试卷
期中测试卷一、选择题(每题2分,共30分)1.硫代硫酸钠晶体是一种恒温保温瓶的填充物,硫代硫酸钠(Na2S2O3)属于( ) A.氧化物B.酸C.碱D.盐2.实验室中装有浓硫酸的试剂瓶应贴有的图标是( )3.下列选项中物质的名称、俗称、化学式不完全一致的是( )A.氢氧化钠、烧碱、NaOHB.二氧化碳、干冰、CO2C.碳酸钠、纯碱、Na2CO3D.氢氧化钙、生石灰、Ca(OH)24.人体中几种体液的正常pH范围如下表:所列体液中碱性最强的是( )A.唾液B.血液C.胆汁D.小肠液5.豆腐不可与菠菜一起煮,原因是菠菜中含有丰富的草酸、草酸钠,豆腐中含有较多的硫酸钙等钙盐,相互反应生成草酸钙沉淀等物质。
其中发生的反应属于( )A.化合反应B.分解反应 C.置换反应 D.复分解反应6.分析推理是化学学习中常用的思维方法。
下列说法正确的是( )A.酸性溶液能使紫色石蕊试液变红,所以能使紫色石蕊试液变红的溶液一定呈酸性B.溶液具有均一、稳定的特征,所以均一、稳定的物质一定是溶液C.单质是由同种元素组成的,所以由同种元素组成的物质一定是单质D.复分解反应中有沉淀、气体或水生成,所以有上述物质生成的反应就是复分解反应7.下列括号中是除去少量杂质所用的方法或试剂,其中错误的是( )A.CaO中的CaCO3(高温煅烧)B.CO2中的CO(点燃)C.N2中的O2(灼热铜丝)D.Na2SO4溶液中的NaOH(H2SO4)8.右图表示M、N两种固体物质的溶解度曲线,下列对图示信息的描述正确的是( )A.30℃时M的溶解度小于N的溶解度B.P点表示t℃时M、N的溶解度相等C.M、N都是难溶物质D.阴影处各点对应的溶液(不包含曲线上的点)是M的不饱和溶液,N的饱和溶液9.下列物质在水溶液中能大量共存的是A.HCl、Ca(OH)2、NaNO3B.NaCl、K2CO3、H2SO4C.HCl、BaCl2、CuSO4D.KNO3、NaOH、Na2CO310.用水和适量洗涤剂或在油渍处涂抹汽油,均可去除衣服上沾有的油渍,原因是( )A.加入洗涤剂后,使油渍溶于水B.加入洗涤剂后,发生乳化,使油渍均匀地分散在水中C.涂抹汽油后,吸附了油渍D.涂抹汽油后,使油渍和汽油充分反应,瓦解油渍11.实验室发现一瓶标签脱落的固体试剂,小王分别取少量的该固体进行了下列实验。
期中测试卷
期中测试卷(测试时间150分钟,试卷满分150分)第Ⅰ卷(共70分)一、基础知识(共15小题,每题2分,共30分)1.下列加点字注音正确的一组是()A.媲.美(pì) 娇妍.(yàn) 伫.立(zhù) 岩.层(yán)B.开绽.(zhàn) 蹊.径(xī) 矿脉.(mò) 褐.色(hè)C.坐贾.(gǔ) 跻.身(jī) 契.约(qì) 驯.化(xùn)D.泥.古(ní) 嘲.笑(cháo) 体恤.(xù) 啃噬.(shì)2.下列句子中没有错别字的一项是()A.但我却选了另外一条路,它荒草凄凄,十分幽寂。
B.虽然不同于企业激励机制的做法不同,但核心都是把员工的业绩与利益联系在一起,实现按贡献付酬。
C.历史的发展也证明了,由工商精神促成的工业革命,竞具有改变一个传统国家思想文化、社会结构的巨大力量。
D.更有甚者,一些政治骗子出于小集团的利益,把某些人和事吹得神乎奇神,愚弄天下,尤其可恶。
3.下列对词语的解释有错误的一项是()A.以暴制暴.(暴力)名副.其实(相符)锱铢..必较(古代很小的长度单位) B.长治.久安(太平)横征暴敛.(搜刮)不拘一格.(规格,方式)C.不拘.小节(拘泥)海纳.百川(容纳,包容)相得益彰.(显著)D.不可端倪..(捉摸)神乎其.神(那样) 殚.精竭虑(竭尽)4.下列各句中,加点的成语运用恰当的一句是()A.在演出市场低迷的情况下,她知难而上,变本加厉....,一心扑在舞台上。
B.用心观察,你就会发现平凡的生活能为我们提供巧夺天工....的作文素材。
C.他最近的状态一直不佳,接连几次考试都不理想,屡试不爽....,心情糟透了。
D.只作一些小修小补,甚至墨守成规....,一成不变,那是很难改变这种不正常的市场关系的。
5.填入横线上的关联词恰当的一组是()________企业领导人的这种作用并不说明他的爱好是企业文化,________在于他应该根据企业的具体情况,有意识地引导一种文化的形成。
人教版语文四年级(下)期中素质测试卷1(附答案)
四年级(下)期中评价测试卷(考查范围:第一~四单元时间:80分钟满分:100分)一、积累与运用。
(33分)1.下列加点字的注音有误的一项是( )。
(3分)A.慰藉.(jiè) 开辟.(qī)B.胆怯.(qiè) 遭殃.(yāng)C. 执着.(zhuó) 乒乓.(pāng)D.澎湃.(pài) 敏捷.(jié)2.下列词语书写有误的一项是( )。
(3分)A.屋檐扫荡淹没B.蝙蝠蹲着疏菜C.繁星呼唤实践D.跌倒譬如脾气3.下列各项中,与例句修辞手法相同的一项是( )。
(3分)例句:弯弯的月儿,小小的船。
A.花儿绽开了笑脸。
B.露似真珠月似弓。
C.蜜蜂给我们引路。
D.星星眨着明亮的眼睛。
4.下列句子中加点的词语运用不正确的一项是( )。
(3分)A.西湖公园里的菊花开了,让看的人应接不暇....。
B.周一晨会上校长发表了热情周到....的讲话。
C.小明胸有成竹....地站起来回答老师的问题。
D.所有的父母都有望子成龙....、望女成凤的心愿。
5.下列词语中加点字的意思与其他三个不同的一项是( )。
(3分)A.不胜.其烦B.不胜.枚举C.美不胜.收D.数不胜.数6.下列句子排列顺序正确的一项是( )。
(3分)①拾级而上,便到了龙亭殿前。
②走进龙亭公园,穿过一丛丛争奇斗艳的鲜花,便到了龙亭。
③一天,我和妈妈一起去游览龙亭。
④我们步入大殿,看到四壁雕刻着的飞龙光彩夺目,金碧辉煌。
A.③②①④B.②③①④C.③④①②D.④③①②7.下列句子中没有语病的一项是( )。
(3分)A.这是高傲的一只白鹅。
B.我看到了孩子们幸福的笑脸和欢快的笑声。
C.它伟大,因为它是母亲。
D.读了《纳米技术就在我们身边》这一课,深受启发。
8.下列诗句与其作者对应有误的一项是( )。
(3分)A.日长篱落无人过,惟有蜻蜓蛱蝶飞。
——[宋]范成大B.桃花一簇开无主,可爱深红爱浅红?——[唐]杜甫C.儿童急走追黄蝶,飞入菜花无处寻。
河北省邢台市2023-2024学年四年级上学期语文期中测试试卷
河北省邢台市2023-2024学年四年级上学期语文期中测试试卷一、积累与运用(45分)1.圈出每小题中加点字的错误读音,并改正在后面的横线上。
(1)昂.首(yáng)俗.语(sú)揭.开(jiē)牡.丹(mǔ)(2)障碍.(ài)获.得(kuò)屋檐.(yán)培.养(péi)(3)蜗.牛(wō)谨慎.(shèn)浑浊.(zhuó)逊.色(shùn)2.读句子,看拼音,写生字。
(1)这条路拓宽之后,dǔ车的情况得到了huǎn解。
(2)表哥céng经送给过我一把玩具qiāng。
(3)有的叶子没有叶bǐng,叶片直接和jīng连接。
3.选词填空。
严厉严禁严格(1)对违规者惩罚才是对守法者的保护。
(2)课堂纪律是每个学生都应该遵守的。
(3)库房重地,烟火。
4.先把下列四字词语补充完整,再按要求填空。
(1)山地裂横七八呼风雨三六臂随遇而精疲力流不息愤不平(2)以上四字词语中,可以用来形容极度疲乏。
(3)“三六臂”让我们想到了这一神话人物。
5.读句子,完成词语练习。
(1)给句子加上合适的关联词语填在括号里。
江潮还没有来,海塘大堤上早已人山人海。
(2)词语“早已“写出了入们的心情。
(3)句子中形容人多的四字词语是,它的反义词是。
6.按要求完成句子练习。
(1)蟋蟀有特别好的工具吗?没有。
(仿写设问句)(2)普罗米修斯说:“我可以忍受各种痛苦,但决不会承认错误,更不会归还火种!”(改成转述句)(3)写出你读完“一道残阳铺水中,半江瑟瑟半江红”想到的景象。
7.日积月累填一填。
(1)返景入深林,。
(2)智能之士,不学不成,。
(3),长河渐落晓星沉。
(4)俗话说,“当局者迷,旁观者清”。
正如苏轼在诗中所写:,只缘身在此山中。
(5)通过这段时间的学习,我们领略了钱塘江大潮的,认识了的盘古和的精卫。
8.口语交际。
四(1)班开展了一场关于“如何保护环境”的讨论会,同学们都踊跃发言。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中检测卷时间:120分钟 满分:120分题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1.若分式x -32x -5的值为0,则x 的值为( )A .-3B .-52C.52D .3 2.如图,线段AD ,AE ,AF 分别为△ABC 的中线、角平分线和高线,其中能把△ABC 分成两个面积相等的三角形的线段是( )A .ADB .AEC .AFD .无第2题图3.用反证法证明“a >b ”时,一般应先假设( ) A .a >b B .a <b C .a =b D .a ≤b4.下列式子中计算结果与(-a )2相同的是( )A .(a 2)-1B .a 2·a -4C .a -2÷a 4D .a 4·(-a )-25.如图,若△ABC ≌△DEF ,∠A =45°,∠F =35°,则∠E 的度数为( ) A .35° B .45° C .60° D .100°第5题图6.在等腰三角形ABC 中,它的两边长分别为8cm 和4cm ,则它的周长为( ) A .10cm B .12cmC .20cm 或16cmD .20cm 7.化简⎝⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3)的结果是( )A .2 B.2x -1C.2x -3 D.x -4x -18.如图,在△ABE 中,∠A =105°,AE 的垂直平分线MN 交BE 于点C ,且AB +BC =BE ,则∠B 的度数是( )A .45°B .60°C .50°D .55°第8题图 第10题图9.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A.106960x +500-50760x =20B.50760x -106960x +500=20C.106960x +20-50760x =500D.50760x -106960x +20=50010.如图,在△ABC 中,AB =AC ,点D 是底边BC 上异于BC 中点的一个点,∠ADE=∠DAC ,DE =AC .运用以上条件(不添加辅助线)可以说明下列结论错误的是( )A .△ADE ≌△DACB .AF =DFC .AF =CFD .∠B =∠E二、填空题(每小题3分,共24分) 11.计算:2x 2y 3÷xy 2=________.12.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示为____________.13.如图,AB =AD ,要判定△ABC ≌△ADC ,还需添加一个条件是____________.第13题图14.方程2x =3x +1的根是________.15.如图,AB =AC ,D 为BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,图中全等三角形共有________对.第15题图 第16题图16.如图,△ABC 是等边三角形,∠CBD =90°,BD =BC ,则∠1的度数是________. 17.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,DE =1.7cm ,则BE =________.第17题图 第18题图18.如图,已知AB =DC ,AD =BC ,E ,F 是BD 上的两点,且BE =DF ,若∠AEB =100°,∠ADB =30°,则∠BCF =________.三、解答题(共66分)19.(8分)解方程:(1)3+x 4-x =12; (2)x x -1-2x -1x 2-1=1.20.(7分)已知a =-3,b =2,求代数式⎝⎛⎭⎫1a +1b ÷a 2+2ab +b2a +b 的值21.(7分)如图,在△ABC 中,AB =AC ,DE 垂直平分AB ,交AB 于D ,交AC 于E ,若BE =BC ,求∠A 的度数.22.(10分)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,BE 与CD 相交于点O .现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD .(1)请你选出两个条件作为题设,余下的作为结论,写一个正确的命题:命题的条件是______和______,命题的结论是______和______(均填序号);(2)证明你写的命题.23.(10分)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE,BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.24.(10分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗,还可以通过运动做公益(如图).对比手机数据发现小明步行12000步与小红步行9000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红,小明每消耗1千卡能量各需要行走多少步.25.(14分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE ,AD ,BE 有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与解析1.D 2.A 3.D 4.D 5.D 6.D 7.B 8.C 9.A10.C 解析:由条件DE =AC ,∠ADE =∠DAC ,AD =DA ,可证△ADE ≌△DAC .由∠ADE =∠DAC ,可得AF =DF .由△ADE ≌△DAC ,可得∠E =∠C .又因为AB =AC ,所以∠B =∠C =∠E .故选C.11.2xy 12.8.35×10-9 13.BC =CD (答案不唯一) 14.x =2 15.3 16.75° 17.0.8cm 18.70°19.解:(1)方程两边同乘最简公分母2(4-x ),得2(3+x )=4-x ,(1分)去括号、移项,得2x +x =4-6,合并同类项,得3x =-2,系数化为1,得x =-23.(3分)经检验,x =-23是原分式方程的解.(4分)(2)方程两边同乘最简公分母x 2-1,(5分)得x (x +1)-(2x -1)=x 2-1,解得x =2.(7分)经检验,x =2是原方程的解.(8分)20.解:原式=a +b ab ·a +b (a +b )2=1ab .(4分)∵a =-3,b =2,∴原式=-16.(7分) 21.解:设∠A =α.(1分)∵DE 垂直平分AB ,∴∠ABE =∠A =α,∴∠BEC =2α.(3分)∵BE =BC ,∴∠C =∠BEC =2α.∵AB =AC ,∴∠ABC =∠C =2α.(5分)由三角形内角和为180°知α+2α+2α=180°,得∠A =α=36°.(7分)22.(1)解:① ③ ② ④(答案不唯一)(4分)(2)证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧∠A =∠A ,AB =AC ,∠ABE =∠ACD ,∴△ABE ≌△ACD (ASA),∴BE =CD .(7分)∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC-∠ABE =∠ACB -∠ACD ,即∠OBC =∠OCB ,∴OB =OC .(10分)23.(1)证明:∵△ABC 是等边三角形,∴BC =AB ,∠A =∠EBC =60°.(2分)在△BCE和△ABF 中,⎩⎪⎨⎪⎧BC =AB ,∠EBC =∠A ,BE =AF ,∴△BCE ≌△ABF (SAS).∴CE =BF .(6分)(2)解:由(1)知△BCE ≌△ABF ,∴∠BCE =∠ABF .(8分)∴∠BPE =∠PBC +∠PCB =∠PBC +∠ABF =∠ABC =60°,∴∠BPC =180°-∠BPE =180°-60°=120°.(10分)24.解:设小红每消耗1千卡能量需要行走x 步,则小明每消耗1千卡能量需要行走(x +10)步.(2分)根据题意得12000x +10=9000x ,解得x =30.(6分)经检验:x =30是原方程的解.所以x +10=40.(9分)答:小红,小明每消耗1千卡能量各需要行走30步、40步.(10分) 25.(1)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠ACD +∠CAD =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .(2分)在△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠CAD =∠BCE ,AC =CB ,∴△ACD ≌△CBE (AAS),∴DC =EB ,AD =CE ,∴DE =CE +DC=AD +BE .(5分)(2)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠ACD +∠CAD =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .在△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠CAD =∠BCE ,AC =CB ,∴△ACD ≌△CBE (AAS),(8分)∴CD =BE ,AD =CE ,∴DE =CE -CD =AD -BE .(10分)(3)解:DE =BE -AD .(11分)证明如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠ACD +∠CAD =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .在△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠CAD =∠BCE ,AC =CB ,∴△ACD ≌△CBE (AAS).∴CD =BE ,AD =CE ,∴DE =CD -CE =BE -AD .(14分)。