1-1初等函数
1-2基本初等函数,常用经济函数
成本函数
成本是生产一定数量产品所需要的
各种生产要素投入的价格或费用总额,
y x 1.幂函数
(是常数)
y
y x2
1
(1,1)
y x
y x
o
1 y x
1
x
• 指数函数
年复利率5.5%,投资100元 1年后,100•1.055 2年后,100•(1.055) … …
n x 2
n年后, 100•(1.055)
复利提供了指数函数的一个例子y=P•a
y a x (a 0 且 a 1 )
3. 对数函数 (logarithmic function)
y loga x (a 0, a 1)
y ln x
y log a x
(1,0)
(a 1)
y log 1 x
a
• 对数函数的性质
a e
log a x
x, log a a x
x x
ln x
x, ln e x
4. 三角函数
正弦函数
y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
y cot x
• 恒等式
cos2 sin 2 1
cos( A B) cos A cos B sin A sin B sin( A B) sin A cos B cos A sin B
1-1函数的概念 初等函数
•函数的有界性举例 f(x)=sin x在(−∞, +∞)上是有界的: |sin x|≤1.
1 函 f (x)= 在 区 (0, 1)内 无 界 . 数 开 间 是 上 的 x 1 <1 这 因 , 对 任 M>1, 总 x1 : 0<x1< 是 为 于 一 有 , 使 M f (x1)= 1 >M , x1 所以函数无上界. 1 (1 函 f (x)= 在 , 2)内 有 的 数 是 界 . x
复合函数合成与分解 合成与分解
1: 合成
2.分解
四.初等函数 1.基本初等函数 幂函数: y=x µ (µ∈R是常数); 指数函数: y=a x(a>0且a≠1); 对数函数: y=loga x (a>0且a≠1), 特别当a=e时, 记为y=ln x; 三角函数: y=sin x, y=cos x, y=tan x, y=cot x, y=sec x, y=csc x; 反三角函数: y=arcsin x, y=arccos x, y=arctan x, y=arccot x . >>>
数集{ x x − a < δ }称为点a的δ邻域 ,
点a叫做这邻域的中心 , δ 叫做这邻域的半径 .
U δ (a ) = { x a − δ < x < a + δ }.
δ
δ
x
a a−δ a+δ 0 点a的去心的 δ邻域 , 记作 U δ (a ).
U δ (a ) = { x 0 < x − a < δ }.
双曲函数与反双曲函数 •反双曲函数 双曲函数 y=sh x, y=ch x, y=th x的反函数依次记为 反双曲正弦: y=arsh x, 反双曲余弦: y=arch x, 反双曲正切: y=arth x. 可以证明
数学:3.2.2基本初等函数的导数公式及导数的运算法则课件(新人教A版选修1-1)
金太阳新课标资源网
1 4 t 4
2与S :y=-(x-2)2,若直线l与S ,S 均 金太阳新课标资源网 例4. 已知曲线S1:y=x 2 1 2 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
y′=-1/2cosx.
例3.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
1 4 9 -4x -9x =- 2- 3- 4. x x x
-3 -4
金太阳新课标资源网
金太阳新课标资源网
xsinx-2 xsinx 2 (4)y′= cosx -cosx′= ′ cosx
第一章函数与极限1-1(试用版)
y
y x
2
1
则 f ( 5 ) 3 ( 5 ) 15
f (2) 2 1 5
f (0) 2
y 3x
2
0
x
首页
上页
返回
下页
结束
铃
4、函数的特性(重点): (1).函数的有界性:
若X D, M 0, x X , 有 f ( x ) M 成立,
(
y
f ( x0 )
) 因变量
成品
原料
加工厂
x
f
y f (x)
首页
上页
返回
下页
结束
铃
判断两个函数是否是同一函数的方法:
定义域和对应法则是否相同
比如: 3 ln x 和 y 6 ln x y
2
y x和 y
x
2
( x 0)
首页
上页
返回
下页
结束
铃
2、定义域约定:
自然定义域:定义域是自变量所能取的使算
1
x
(a 0, a 1)
y( ) a
x
ya
x
(a 1)
( 0 ,1 )
ye
x
首页
上页
返回
下页
结束
铃
y (4)、对数函数: log a x
(a 0, a 1)
y log a x
(1 ,0 )
(a 1)
y log 1 x
a
y ln x
首页 上页 返回 下页 结束 铃
则称函数 f ( x )在区间 I上是单调减少的;
y
届数学一轮复习第二章函数概念及基本初等函数Ⅰ第3节函数的奇偶性与周期性教学案含解析
第3节函数的奇偶性与周期性考试要求1。
结合具体函数,了解函数奇偶性的含义;2。
会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.知识梳理1。
函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2。
函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期。
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。
[常用结论与微点提醒]1。
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).2。
奇函数在两个关于原点对称的区间上具有相同的单调性;偶函数在两个关于原点对称的区间上具有相反的单调性.3。
函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=错误!,则T=2a(a>0)。
(3)若f(x+a)=-错误!,则T=2a(a〉0).(4)若f(x+a)+f(x)=c,则T=2a(a〉0,c为常数).4。
对称性的三个常用结论(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a +x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.诊断自测1。
C1-1函数及其性质
15
例2 分别指出下列函数是由哪些简单函数复 合而成的.
(1)
y sin(5 x 2);
解 该函数由 y sin u, u 5 x 2 复合而成.
(2)
ye
cos
1 x
u
1 解 该函数由 y e , u cos v , v x 复合而成. (3) y ln2 (2 x 1)
第一章 函数的极限与连续
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
1
第一章
第一节 函数及其性质
一、函数的概念
二、函数的性质 三、建立函数关系举例
2
一、 函数的概念
(一) 集合、区间与邻域:
定义 具有某种特定性质的事物的总体称为集合. 组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 . 元素 a 属于集合 M , 记作 a M . 元素 a 不属于集合 M , 记作 a M ( 或 a M ) . 注: M 为数集
任意 x R,
e e e e x 1, f ( x) x x x e e e e
x x
x
x
所以函数 f (x)在R上是有界的; (2) 讨论奇偶性 任意 x R,
e e f ( x ) x x f ( x ), e e
x
25
x
所以函数f (x) 在R上是奇函数;
f (x)定义域 D [0, ) , f (x)值域 f ( D) [0, ) .
19
x 2 , 1 x 0,
例4 求 y ln x ,
(新)高中数学第二章基本初等函数Ⅰ2_1_1指数与指数幂的运算教材梳理素材新人教A版必修11
2.1.1 指数与指数幂的运算疱丁巧解牛知识·巧学·升华指数与指数幂的运算 1.整数指数幂 (1)正整数指数幂正整数指数幂a m(a >0,m ∈N *)事实上是一种缩写,即 个m ma a a a .=⋅⋅⋅•.根据缩写的这种意义可以得到如下的性质:(1)a m×a n=a m+n;(2)a m÷a n=a m-n;(3)(a m )n=a mn;(4)a n b n=(ab)n;(5)(ba )n =n nb a (b ≠0).(2)负整数指数幂 ∵a n·a -n=a n-n=a 0=1,∴a -n=na 1. 这一规定把除法与乘法统一起来了,a n÷b m=m n ba =a n ·b -m.由于a 0与a -n(n ∈N *)都是由数学式子中除数a n产生的,根据0作除数无意义,所以规定a 0与a -n 的同时,必须有a n≠0即a ≠0,这样的规定才与已往有的除法运算相一致.就这样,正整数指数幂推广到了整数指数幂.要点提示 整数指数幂的底数应使等号两边都有意义.正整数指数幂的底数是a ∈R ;零指数和负整数指数幂的底数a ∈R 且a ≠0.指数可以是任意整数. 2.根式(1)平方根:如果x 2=a ,则x 叫做a 的平方根(或二次方根),其中a 叫做被开方数,次数2叫做根指数,x 叫做a 的平方根.当a >0时,它有两个互为相反数的平方根,记作:a ,-a ;当a=0时,0=0;当a <0时,在实数范围内没有平方根.例如:x 2=9,则x=±9=±3是9的平方根,若x 2=-4<0,则在实数范围内-4没有平方根. 或者平方根可由二次函数y=x 2的图象与性质去理解.要点提示 平方根存在与否以及平方根的个数仅仅与被开方数有关.(2)立方根:如果x 3=a ,则x 叫做a 的立方根(或三次方根).它的被开方数、根指数、根分别是a 、3、x.在实数范围内,对任意a ∈R ,它都有唯一的立方根3a ,其中3a 叫做根式.(3)n 次方根:如果存在实数x ,使得x n=a (a ∈R ,n >1,n ∈N ),则x 叫做a 的n 次方根. 如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,即±n a ;当a=0时,n 0=0;当a <0时,在实数范围内无偶次方根.如果n 是奇数,它同立方根一样,对任意a ∈R ,它都有唯一的n 次方根n a .要点提示 (1)只有当n a 有意义时,才能称为根式.n 次方根是平方根和立方根的推广.根指数是大于1的整数.(2)无论根指数是大于1的偶数还是奇数,当被开方数是0时,它的n 次方根是0. 3.方根性质(1)n 次方根的性质x=⎪⎩⎪⎨⎧=±+=kn a k n a n n 2,12,(k ∈N *,n>1,n ∈N )式子n a 叫做根式,n 叫做根指数,a 叫做被开方数. 由n 次方根的定义,我们可以得到根式的运算性质. (2)根式的运算性质①nn a )(=a (n >1,n ∈N )理解这一性质的关键是紧扣n 次方根的定义,如果x n=a(n>1,且n ∈N )有意义,则无论n是奇数或偶数,x=n a 一定是它的一个n 次方根,所以n n a )(=a 恒成立.例如:44)3(=3,33)5(-=-5.记忆要诀 先开方,再乘方(同次),结果为被开方数. 当n 为奇数时,a ∈R ,由n 次方根的定义可得n n a =a 恒成立,当n 为偶数时,a ∈R ,a n≥0,nn a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a.例如443=3,40=0;如果a <0,那么n n a =|a|=-a ,如2)3(-=23=3.从而归纳得到以下根式的性质:②⎪⎩⎪⎨⎧⎩⎨⎧<-≥==.,0,,0,||,,为偶数为奇数n a a a a a n a a nn利用根式的运算性质对根式的化简的过程中,根指数n 为奇数的题目较易处理,而例题侧重于根指数n 为偶数的运算.记忆要诀 先奇次乘方,再开方(同次),结果为被开方数;先偶次乘方,再开方(同次),结果为被开方数的绝对值. 4.分数指数幂(1)根式与分数指数幂的转化为了使同底数幂的运算变成指数的简单运算,有必要对分数指数幂规定为:n mnma a =(a ≥0,n 、m ∈N *,n ≥2),nm nm aa1=(a >0,n 、m ∈N *,n ≥2).分数指数幂是根式的另一种写法,这种写法更便于指数运算.同0指数幂、负整数指数幂一样,负分数指数幂中,nm a ≠0,即a ≠0.指数的概念在引入了0指数、负整数指数、分数指数以后,指数的概念就实现了由整数到有理数的扩充,扩充后同底数的有理次幂的乘法、除法、开方都可以化为指数的运算,为化简根式带来了很大的方便.要点提示 (1){有理数}={分数}=Q .(2)零的正分数次幂为零,零的负分数次幂无意义.(3)对分数指数幂和根式的互化,要紧扣方根的定义. (2)分数指数幂的运算法则设a >0,b >0,α、β∈Q ,则 ①a α·a β=a α+β;②(a α)β=a αβ;③(ab )α=a α·b α.分数指数幂的运算法则同整数指数幂一样,a α是一个确定的实数. 根式n m a 化成分数指数幂nm a 的形式,若对nm约分,有时会改变a 的范围.例如:214242)2()2()2(-≠-=-.所以考虑清楚a 的范围后再化简nm . 要点提示 化简代数式的关键是把问题化归成我们熟悉的、已知其运算法则的分数指数幂的形式,利用其法则去计算;对于代数式的化简结果,可用根式或分数指数幂中的一种形式,但不能同时出现根式和分数指数幂的形式,也不能既有分母,又有负指数. 5.无理指数幂无理指数幂教材中没有给出严格的定义,可阅读教材61页,通过计算器计算,体会“有理数逼近无理数”的思想,感受一下它的逼近程度.一般地,当a >0,α为无理数时,a α也是一个确定的实数.整数指数幂的运算法则就推广到了实数范围内,也就是说,设a >0,b >0,α、β∈R ,则(1)a α·a β=a α+β;(2)(a α)β=a αβ;(3)(ab )α=a α·b α.恒成立. 问题·思路·探究问题 为什么正数的偶次方根有两个并且互为相反数,而负数没有偶次方根? 思路:根据方根的定义,考虑偶次方与偶次方根的联系.探究:根据方根定义,若x 是a(a>0)的n 次方根(n 为偶数),则x n =a ,这时(-x )n=a ,即-x 也是a(a>0)的n 次方根.假设x 是a(a<0)的n 次方根(n 为偶数),则x n =a .因为x n≥0,a<0,所以x n=a 不成立,与方根定义矛盾. 典题·热题·新题例1 下列命题中,错误的是( )A.当n 为奇数时,n n x =xB.当n 为偶数时,n n x =xC.当n 为奇数时,n n x )(=xD.当n 为偶数时,n n x )(=x思路解析:由对根式性质中奇偶条件限制的理解,很容易知道选B. 答案:B深化升华 当n 是奇数时,n n n n a a =)(=a.例2 已知函数y=n m x 的定义域为R ,则下列给出的n, m 中,不能取的一对值是( ) A.n=3,m=7 B.n=2,m=4 C.n=4,m=3 D.n=3,m=4 思路解析:如果n 是奇数,对任意a ∈R ,它都有唯一的n 次方根n a ;故A 、D 项符合要求.如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,当a=0时,n 0=0,当a <0时,在实数范围内无偶次方根,B 项中x 4符合要求,而C 项中x 3未必为非负数,如x=-1就不行. 答案:C误区警示 当a <0时,在实数范围内a 无偶次方根,容易忽视. 例3 利用函数计算器计算(精确到0.001). (1)0.32.1;(2)3.14-3;(3)431.3;(4)33.思路解析:对于(1),可先按底数0.3,再按 2.1,最后按□=,即可求得它的值;对于(2),先按底数3.14,再按□-键,再按3,最后按□=即可;对于(3),先按底数3.1,再按3□÷4,最后按□=即可.对于(4),这种无理指数幂,可先按底数3,其次按3,最后按□=键.有时也可按.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)431.3≈2.336;(4)33≈6.705.深化升华 熟练掌握用计算器计算幂的值的方法与步骤,感受一下现代技术的威力,逐步把自己融入现代信息社会.用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例4 比较55,33,2的大小.思路解析:底数不同根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的数再作比较.解:61613218)2(22===,616123139)3(33===,而8<9, ∴36161398<<,10110152132)2(22===,1012515)5(55==,而25<32.∴55<2.总之,55<2<33.拓展延伸 比较幂值的大小,如果底数与指数都不相同时,能化为同底,则先化为同底,不能化为同底,就化为同指数,这些都是通过代数变形转化的方法来实现的.转化是解题的万能钥匙.例5 已知x+x -1=3,求下列各式的值. (1)2121-+xx ;(2)2323-+xx思路解析:(1)题若平方则可出现已知形式,但开方时应注意正负的讨论;(2)题若立方则可出现(1)题形式与已知条件,需将已知条件与(1)题结论综合;或者可仿照(1)题作平方处理,进而利用立方和公式展开. ∵221212122122121)(2)()(---+•+=+x xx x x x =x+x -1+2=3+2=5,∴2121-+xx =±5.又由x+x -1=3得x>0,所以52121=+-x x .(2)解法一:3213212323)()(--+=+x x x x=])())[((22121212212121---+•-+x x x x x x=)(2121-+xx (x-1+x -1)=)13(5-=52 解法二:22323][-+x x=2232323223)(2)(--+•+x xx x=x 3+x -3+2而x 3+x -3=(x+x -1)(x 2-1+x -2)=(x+x -1)[(x+x -1)2-3]=3×(32-3)=18 ∴22323][-+xx =20.又由x+x -1=3,得x>0, ∴52202323==+-xx .误区警示 (1)题注重了已知条件与所求问题之间的内在联系,但开方时正负的取舍容易被学生忽视,应强调以引起学生注意.拓展延伸 (2)题解法一注意了(1)题结论的应用,显得颇为简捷,解法二注重的是与已知条件的联系,体现了对立方和公式、平方和公式的灵活运用,而且具有一定的层次,需看透问题实质方可解决得彻底,否则可能半途而废.另外,(2)题也体现了一题多解. 深化升华 条件代数式的化简遵循以下三个原则.(1)若条件复杂,结论简单,可把条件化简成结论的形式.(2)若结论复杂,条件简单,可把结论化简成条件的形式.(3)若条件结论均复杂,可同时化简它们,直到找到它们之间的联系为止.。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
1 ,可以转化为y=
x3
x
2 3
,y=x-3
后再求导.
(4)对解析式较复杂的,要先化简解析式,再选择公式进行求
导,化简时注意化简的等价性.
【典例训练】
1.若y=10x,则y′|x=1=_________.
2.求下列函数的导数:
(1)y=x7;(2)y=
1 x2
;(3)y=
3 x;
(4)y=2sin
题目类型三、导数的综合应用 【技法点拨】
导数的综合应用的解题技巧 (1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很 多综合问题我们可以数形结合,巧妙利用导数的几何意义,即 切线的斜率建立相应的未知参数的方程来解决,往往这是解决 问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、 不等式等知识结合出现综合大题.遇到解决一些与距离、面积 相关的最值、不等式恒成立等问题.可以结合导数的几何意义 分析.
【解析】1.依题意,y′|x=x1=
,1
2 x1
∵n与m垂直,
(6)若f(x)=ex,则f′(x)=_ex_;
(7)若f(x)=logax,则f′(x)=
1 (a>0且a≠1);
xlna
(8)若f(x)=lnx,则f′(x)= 1 .
x
1.利用导数的定义求导与导数公式求导的区别 导函数定义本身就是函数求导的最基本方法,但导函数是由极 限定义的,所以函数求导总是要归结为求极限,这在运算上很 麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与 基本初等函数公式后,求函数的导函数就可以用公式直接求导 了,简洁迅速.
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
基本初等函数知识点(一轮复习)
基本初等函数中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。
什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。
力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。
一、一次函数初中的一个函数,Primary基本、简单而又很重要。
解析式:y=kx+b或y=ax+b,通常我们会这样设。
那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下……画出以下解析式的图像:要求快(1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x根据以下条件,设出一次函数的解析式:(1)直线经过(1,2)点(2)直线的斜率是2总结:两个参数主宰斜率和与y轴的交点位置。
因为两个参数,所以要有两个条件才能解得解析式。
二、二次函数二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。
十分重要的内容,属于幂函数中最重要的一类。
二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质.1、二次函数的三种表示形式(1)一般式:y=ax2+bx+c,(a≠0);(2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k));(3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0))求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式.Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1.∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a.∵x21+x22=7 即(x1+x2)2-2x1x2=7∴4-2(15+a)a=7,∴a =-6.2、二次函数在特定区间上的最值问题EX :函数y=x 2+4x+3在[-1,0]上的最大值是________,最小值是________.解析:y=x 2+4x+3=(x+2)2-1,对称轴x=-2,在[-1,0]的左侧,所以在[-1,0]上单调递增.故当x=0时,f(x)取最大值f(0)=3;当x=-1时,f(x)取最小值f(-1)=0. 答案:3 0进阶Eg :(建议一做):已知函数f(x)=-x 2+2mx+1-m 在0≤x ≤1时有最大值2, 求m 的值 (1)若(2b x a =-<=0) (2)若(0<2b x a =-<1) (3)若(2bx a=->=1) key:m=-1 or m=2 解析:每种情况分别画出草图。
初等函数的基本不等式
nn
n
n
于是 f (n) f (n -1) ... f (1) 1 0.
例 5.
已知 x, y 0, 求证 x2 y2
x
y
x xy y xy
x2 y2
.
x y
2
(这是二元反调和平均不等式)
证明:先证明右边.考虑到不等式的齐次对称性不妨设 x 1 y,
x
不等式转化为 x x1
x2 1, 即 f (x)
x ln x 1 ln ( x2 1) 0,x 1.
2
x 1
2
2
而
f
' (x)
ln x (x 1)2
1 x 1
x x2 1
0
ln
x
x x
2 2
1 1
,x
1.
由不等式
2(1)有 ln (1
x)
x 1 x
2x 2 x
,
x
0,
2
于是 ln
x
1 ln x2 2
1 2(x2 1) 2 2 (x2 1)
1 t2 1 ( arctan t)2
1 2(arctan t)2
知
1 2t 2
( g(t)
1 2t 2
,t 0单调增),
1 (arctan t)2 1 t 2
1 t2
1 t2
于是只需
1 2t 2 , 平方整理为 5t 6 3t 4 0,
1t2 1t2
于是 f ' (x) 0, f (x) f (0) 0, 不等式 x 1 x2 arcsin tan x,0 x 成立. 4
x
y
右边的另一证明:由赫尔德不等式知 x x y y x y
高中数学人教A版选修1-1课件:3.2.2《基本初等函数的导数公式及导数的运算法则》
1.知识:基本初等函数的导数公式及导数运算法则; 2.思想:数形结合思想、归纳思想、分层思想.
(一)书面作业 必做题 P18 习题1.2
A组 5,6,7题
B组 2题
选做题 1.y cos x 的导数是 _________;
x 2.函数y ax2 1的图象与直线y x相切,则a= ______; 3.已知函数y x ln x. (1)求这个函数的导数; (2)求这个函数在点x 1处得切线方程.
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力-含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学习方式
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必备习惯
我们遇到的许多函数都可以看成是由两个函数经过
"复合"得到的,例如,函数y 2x 32由y u2和u 2x 3
"复合"而成, 等等.
一般地, 对于两个函数y f u和u gx,如果通过变量u, y可以表示成x的函数, 那么称这个函数为函数y f u和 u gx的复合函数(composite functio#39; x
ln
u ' 3x
2'
1 u
3
3 3x
2
.
例4 求下列函数的导数
1 y 2x 32 ; 2 y e0.05x1 ;
3 y sinx 其中 ,均为常数 .
解 1函数y 2x 32可以看作函数y u3和
u 2x 3的复合函数.
苏教版高中数学选修1-1:常见函数的导数
1
1
(3)(logax)′=__x_lo_g_a_e_=__x_ln_a___(a>0,
且 a≠1);
(4)(ex)′=_e_x_;
1 (5)(lnx)′=__x_;
(6)(sinx)′=_c_o_s_x_;
(7)(cosx)′=_-__s_in__x_.
问题探究 下面的计算过程正确吗?
(sinπ4)′=cosπ4=
可分解为(x-1)(x2+x-2)=0,解得 x1=1,
x2=-2.
∴ 切 线 3x - y - 2 = 0 与 曲 线 C 的 公 共 点 为 (1,1),(-2,-8),这说明切线与曲线C的 公共点除了切点外,还有另外的点.
【名师点评】 曲线的切线与曲线的交点不 一定惟一,可从本例题得证.
自我挑战1 抛物线y=x2在哪一点处的切线 平行于直线y=4x-5? 解:设切点为(x0,x20), ∵y′=2x,y′|x=x0=2x0=4,∴x0=2.
例1 求下列函数的导数:
(1)y=x x;(2)y=x14;(3)y=5 x3;
(4)y=log2x2-log2x;(5)y=-2sinx2(1-2cos2 x4). 【思路点拨】 熟练掌握导数基本公式,
并灵活运用对数性质及三角变换公式,转化 为基本初等函数的导数.
【解】 (1)y′=(x x)′=(x32)′=32x32-1=32 x. (2)y′=x14′=(x-4)′=-4x-4-1=-4x-5=-x45.
导数的运算
常见函数的导数
学习目标 1.能根据定义求函数 y=kx+b,y=c,y
=x,y=x2,y=1x的导数.
2.掌握常见的基本初等函数的导数公式, 并能求简单函数的导数.
高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修
某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。
高等数学 第六版 1-1函数
x1 , x2 R ,
f ( x1 ) f ( x1 x2 ) < x1 x1 x2 f ( x2 ) f ( x1 x2 ) < x2 x1 x2
f ( x) L.
注:(1)界是不惟一的; (2)上述定义中的“≤”与“≥”可去掉等号. (3)可定义函数在定义域D的某子集上有(无)界的定义.
1 1 例4. 证明函数 f ( x) sin 在(0,1]上无界. (P42第7题) x x 1 证: M 0, 取 x , (M ] 1 2 [ ) 而 f ( x) [ M ] 1 >M , 所以f (x)在(0,1]上无界. ( ) 2
狄里克雷函数
1, 0,
x 为有理数 x 为无理数
例6. 证明函数f(x)=xcosx不是周期函数. (P22 13(4)) 证: 设T(>0)是函数的周期, 则f(x+T)= f(x)
即(x+T)cos(x+T) =xcosx 令x=0得, TcosT=0,得cosT=0.矛盾,所以f(x)不是周期函数.
(1) (2)
即
f ( x1 )( x1 x2 )< x1 f ( x1 x2 )
(1)′
(2)′ f ( x2 )( x1 x2 )< x2 f ( x1 x2 ) 两式相加得 [ f ( x1 ) f ( x2 )]( x1 x2 )< ( x1 x2 ) f ( x1 x2 ) 约去 x1 x2 得: f ( x1 ) f ( x2 )< f ( x1 x2 ). (3) 奇偶性 (定义略) 例5. 证明定义在(-a,a)上的函数f(x),必定可以表示为奇函 数与偶函数的和. 证: 设 f ( x) 表示成(-a,a)上的奇函数g(x)与偶函数h(x)的和 即 f ( x) g ( x) h( x) 解得 h( x) 1 [ f ( x) f ( x)]
第一章 初等函数
第一章初等函数参考学时:4学时主要内容:函数的定义,定义域;分段函数、复合函数的意义;函数的基本特性;初等函数的定义。
教学目的:理解函数的定义,会求函数的定义域;理解分段函数、复合函数的意义;掌握函数的基本特性;理解初等函数的意义,会建立函数关系式。
重点:函数、复合函数、求定义域、建模。
难点:复和函数、建模。
教学过程§1.1变量与函数一、常量与变量1.定义 在过程进行中始终保持不变的量叫常量;在过程进行中可以取不同数值的量叫变量。
常量一般用a ,、b 、c 、α,β ……等字母表示;变量一般用x 、y 、z 、u 、v 、w ……等字母表示。
二、区间与邻域1.区间区间是介于两个实数间的所有实数的集合。
设有两个实数a b ,数集{|}x a x b 称为开区间,记作(a ,b ),即(a ,b )=}|{b x a x数集称为}|{b x a x ≤≤闭区间,记作[a ,b ],即[a ,b]= }|{b x a x ≤≤,这里a 、b 为端点,].,[,),,(),,(a b a b a b a b b a ∈∉∉但。
类似地可定义:[a , b]= }|{b x a x ≤ (a ,b]= }|{b x a x ≤称之为半开半闭区间.称b-a 为区间长度,以上区间长度有限,称为有限区间,否则为无限区间:,[a -∞)=}a |{≥x x (a ,+ ∞)= }a |{ x x(-∞,b )= }|{b x x ≤ (-∞,b )={x | x< b}(-∞, + ∞)= R |{∈x } 图示(教材第2页图1-1、1-2)探究:有穷区间与无穷区间是否都是无限集?2.邻域设a ,δ>0为两个实数,数集{x| |x-a|<δ}=(a-δ,a+δ)称为点a 的δ邻域,记为∪(a ,δ),即∪(a ,δ)={x | |x - a| <δ}.数集{x | 0<| x- a|<δ}=(a-δ,0∪(0,a+δ)称为点a 的去心δ邻域,记作∪0(a ,δ)={x | 0< | x – a | <δ}.图示(教材第3页图1-3)二、函数1.函数的定义(略)函数一般用f (x ),g (x ),φ(x )等表示2.函数的二大要素——定义域、对应法则注:对应法则“f ”是确定函数的的核心要求,对应法则确定了,函数就确定了,与自变量、因变量的符号无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x u , u cos v , v . 2
由常数和基本初等函数经过有限次四则运 算和有限次的函数复合步骤所构成并可用一个式 子表示的函数,称为初等函数.
3.对数函数
y log a x ( a 0, a 1)
y ln x
y log a x
(1,0)
(a 1)
y log 1 x
a
对数函数都过点(1,0) ,当底数大于1时单增,底数 小于1时单减.
4.三角函数 正弦函数 y sin x
正弦函数是以 2为周期的周期函数 ,
f ( x1 )
f ( x2 )
o
I
x
3.函数的奇偶性
设D关于原点对称, 对于x D, 有
f ( x ) f ( x ), 称 f ( x )为偶函数;
y
y f ( x)
f ( x )
-x o
偶函数
f ( x)
x x
注 偶函数的图形关于 轴是对称的 y .
设D关于原点对称, 对于x D, 有
f ( x ) f ( x ),
称 f ( x )为奇函数;
y
y f ( x)
f ( x)
-x o x x
f ( x )
奇函数
注 奇函数的图形关于原点 是对称的.
4.函数的周期性
设函数f ( x )的定义域为D,如果存在一个不为零 的 数l , 使得对于任一x D, ( x l ) D, 且f ( x l ) f ( x ) 恒成立.则称f ( x )为周期函数,l 称为f ( x )的周期.( 通 常说周期函数的周期是 指其最小正周期).
欢迎同学们来到湖南石化职院学习, 希望大家顺利通过高等数学课程
湖南石油化工职业技术学院 基础课部数理教研室
引
言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 , 有了变数 , 微分和积分也就立刻成
解
f [ g ( x )]=[ g ( x )] =( 2 ) = 4 , g [ f ( x )] = 2
2
x 2
x
f ( x)
= 2 .
x2
注意: 1.不是任何两个函数都可以复合成一个复 合函数的; 例如 y arcsin u, u 2 x 2 ; y arcsin( 2 x 2 ). 2.复合函数可以由两个以上的函数经过复 合构成.
集.如果对于每个数 x D,变量 y按照一定的法则总 有确定的数值和它对应 ,则称 y是 x的函数,记作 y f ( x ).数集 D叫做这个函数的定义域 x叫做自变 , 量,y叫做因变量.
y f ( x)
因变量 自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x ), x D} 称为函数的值域 .
D ( , ), W 1,1 .
余弦函数 y cos x
D ( , ), W 1,1 .
余弦函数是以 2为周期的周期函数 ,
正切函数 y tan x
y tan x
正切函数是以 为周期的周期函数 ,它是奇函数 .
D x : x R, x n 2 , n Z .
a
点a 叫做这邻域的中心, 叫做这邻域的半径.
a
点a的去心的邻域, 记作U (a , ).
a
x
U (a , ) { x 0 x a }.
二、函数概念
引例 汽车以60千米/小时的速度匀速行驶,那么行 驶里程与时间有什么关系? 解析:
定义 设 x和 y是两个变量,D是一个给定的数
[a, ) { x a x }, ( , b ) { x x b}.
o
a o
b
x x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域:
设a与是两个实数 , 且 0,
数集{ x x a }称为点a的邻域 ,
U (a , ) { x a x a }.
故 D [ 3, 1].
0 x 3 1, 1 x 3 2. 3 x 2, 2 x 1.
三、函数的特性
1.函数的有界性
若X D, M 0, x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界.否则称无界.
a , b R, 且a b.
{ x a x b} 称为开区间, 记作 (a , b)
o
a
b
x
{ x a x b} 称为闭区间, 记作 [a , b]
o
a
b
x
{ x a x b} { x a x b}
称为半开区间, 记作 [a , b). 称为半开区间, 记作 (a , b]. 有限区间 无限区间
反正切函数 y arctan x
y arctan x
D ( , ) , W ( 2 , 2 ) .
反余切函数 y arc cot x
y arc cot x
D ( , ) , W (0, ) .
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.(简称:幂、 指、对、三、反。)
函数的两要素: 定义域与对应法则.
x
D
f f ( x)
W
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x 2 , 1 例如, y , 2 1 x
D [1,1],
D (1,1).
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 W y 数叫做单值函数,否 则叫做多值函数.
四、反函数
y
函数 y f ( x )
y0
y
反函数 x ( y )
y0
W
W
o
x0
x
o
x0
x
D
D
y 反函数 y ( x )
Q ( b, a ) P (a , b)
直接函数y f ( x )
x
o
直接函数与反函数的图形关于直线 y x对称.
四 、 初等函数
1、基本初等函数
函数名称
y
y f (x)
f ( x2 )
f ( x1 )
o
I
x
设函数 f ( x )的定义域为D, 区间I D,
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 ( 2) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
y
y f (x)
2.复合函数
初等函数
定义 若函数y f ( u)的定义域为D1 ,函数u ( x ) 的定义域为D2 , 值域为W2 , 并且W2 D1 , 那么对于 每个数值 x D2 , 有确定的数值 u W2与之对应.由 于W2 D1 , 这个值 u 也属于 y f ( u)的定义域 D1 , 因此有确定的值 y与值 u对应.这样,对于每个数 值x D2 , 通过 u有确定的数值 y与之对应,从而 得到一个以 x为自变量、y为因变量的函数,这 个函数称为由函数 y f ( u)及u ( x )复合而成 的复合函数,记作 y f ( x ) , u称为中间变量 .
2
1
(0, )上单增. y x 1的图象过点(1,1),在(0, ) 上单减.
2.指数函数 y a ( a 0, a 1)
x
ye
xyeBiblioteka x1 x y( ) a
y ax
(a 1)
(0,1)
y a x过点(0,1),当a 1 时单增,当0 a 1 时单减 .
y x2 1
x 0, 的定义域和值域. x 0.
y 2x 1
解: D ( , ),
W 1, .
1 sin , x 0 例2 求函数y x 的定义域和值域. 0, x 0
解 显然该函数的定义域为R .
1 又因为 sin 1, x
y
M y=f(x) o -M 有界 M
y
x
X
x0
o -M 无界 X
x
2.函数的单调性
设函数 f ( x )的定义域为D, 区间I D,
如果对于区间I 上任意两点x1及 x2 , 当x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调增加的;
例2
分析下列复合函数的结构:
⑴ y=
x cot 2
;
⑵ ye
x v . 2
sin x 2 1
.
解 ⑴ y = u , u cot v ,
⑵ y= e ,
u
2
u sin v ,
x
v t ,
t x 1.
2
例 3 设 f ( x) x , g ( x) 2 , 求 f g (x), g f (x) .
反三角函数 y = arcsin x , y arccotx
y arccos x ,
y arctan x
基本初等函数
1.幂函数 y x ( 是常数)