高考文科复习题解析正弦定理、余弦定理及应用举例含答案解析
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】
2021届高三高考数学文科一轮复习知识点专题4.6 正弦定理和余弦定理【考情分析】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.【重点知识梳理】知识点一正弦定理和余弦定理1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理公式asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab2.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.3.在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B . 【典型题分析】高频考点一 利用正、余弦定理解三角形【例1】【2020·江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,2,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得2922325b =+-⨯︒=, 所以5b =在ABC △中,由正弦定理sin sin b cB C=, 52, 所以5sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角. 故225cos 1sin C C =-则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以23sin 1cos 5ADC ADC ∠=-∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 【举一反三】(1)(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3【答案】A 【解析】∵a sin A -b sin B =4c sin C , ∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,∴bc =6.故选A 。
正弦定理、余弦定理及其应用-高考数学【解析版】
专题24 正弦定理、余弦定理及其应用近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一)正弦、余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则 定理正弦定理余弦定理内容2sin sin sin a b cR A B C=== a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B , c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C =asin A=2R cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2. 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边、或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B C a A=3.余弦定理的变式应用:公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角 (二)三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).(三)常用结论 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.三角形中的大角对大边在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 5.海伦公式:()()()()1,2S p p a p b p c p a b c =---=++ 6.向量方法:()()2212S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==- ()()221cos 2S ab ab C ∴=-cos a b ab C ⋅=∴ ()()2212S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 7.三角形内角和A B C π++=(两角可表示另一角).()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-8.三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴= EDA DAC ∠=∠ BBEAD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=(四)测量中的几个常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是[0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡度坡面与水平面所成锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平宽度之比叫坡度(坡比),即i =hl=tan θ135°的始边是指北方向线,始边顺时针方向旋转135°得到终边;方向角南偏西30°的始边是指南方向线,向西旋转30°得到终边.【典型考题解析】热点一 利用正、余弦定理解三角形【典例1】(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1 B 2C 5D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【典例2】(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3 B .13- C .3或13-D .-3或13【答案】A 【解析】 【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得22sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.【典例3】(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ;(2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】 【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.【总结提升】1.解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解 2.解三角形的常见题型及求解方法(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.热点二 三角形面积问题【典例4】(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】5(2)22. 【解析】 【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及45a c =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积. (1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为45a c =, 由正弦定理知4sin 5A C ,则55sin A C ==(2)因为45a c =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=. 【典例5】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积; (2)若2sin sin A C =,求b .【答案】2 (2)12 【解析】 【分析】(1)先表示出123,,S S S ,再由1233S S S -+=2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.(1)由题意得222212313333,,2S a S S =⋅===,则2221233333S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则2122cos 13B ⎛⎫=- ⎪⎝⎭132cos ac B ==12sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a c B A C ==,则223294sin sin sin sin sin 42b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==. 【规律方法】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 热点三 三角形的周长问题【典例6】(2022·北京·高考真题)在ABC 中,sin 23C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为3ABC 的周长. 【答案】(1)6π(2)663 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >32sin cos C C C =, 可得3cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 6322ABCSab C a ===3a = 由余弦定理可得22232cos 4836243612c a b ab C =+-=+-⨯=,23c ∴= 所以,ABC 的周长为36a b c ++=.【典例7】(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 【规律方法】求边,就寻求与该边(或两边)有关联的角,利用已知条件列方程求解.【典例7】反映的“整体代换”思想,具有一定的技巧性. 热点四 判断三角形的形状【典例8】(2020·海南·高考真题)在①3ac ①sin 3c A =,①3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理 由sin 3sin AB 可得:3ab=()3,0a m b m m ==>, 则:22222232cos 323c a b ab C m m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2333ac m m m =⨯==1m ∴=,此时1c m ==. 若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:213sin 12A ⎛⎫=-- ⎪⎝⎭3sin 3c A m ==,则:23c m ==若选择条件③: 可得1c mb m==,c b =,与条件3=c b 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B ,得5sin 36B B π⎛⎫-= ⎪⎝⎭,即13cos 32B B B =, 得3tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得3a c =. 解得1,3c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得3c =23b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得36a c ==. 所以,选条件②时问题中的三角形存在,此时23c =.若选择条件③:由于3c b 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.【典例9】(2020·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将3b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①, 又3b c -=②, 将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =, 所以3a c =, 故222b a c =+, 即ABC 是直角三角形. 【总结提升】1.判定三角形形状的两种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 3.确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个.由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个.其原因在于当使用正弦定理求B 时,sin sin sin sin a b b A B A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一.(判定是否唯一可利用三角形大角对大边的特点)热点五 正弦定理、余弦定理实际应用【典例10】(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A.【典例11】(2021·全国·高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-3 1.732≈)( )A .346B .373C .446D .473【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案. 【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【典例12】(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m²) 【答案】(1)23.3m(2)当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 【解析】 【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD ==,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值. (1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯ 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADEDEFS S Sθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan θ=时取得等号,此时315tan 15538.7AE θ===≈ 即当3tan θ=时,梯形AEFD 2253则此时梯形FEBC 的面积有最大值22531530255.14⨯≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 热点五 平面几何中的解三角形问题【典例13】(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =AC =___________,cos MAC ∠=___________. 【答案】 13239【解析】 【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以13AC =在AMC 中,由余弦定理得222239cos 2223213AC AM MC MAC AM AC +-∠=⋅⨯⨯. 故答案为:213239【典例14】(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C (2)2tan 11DAC ∠=.【解析】 【分析】(1)方法一:利用余弦定理求得b ,利用正弦定理求得sin C .(2)方法一:根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值. 【详解】(1)[方法一]:正余弦定理综合法由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b = 由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. [方法二]【最优解】:几何法过点A 作AE BC ⊥,垂足为E .在Rt ABE △中,由2,45c B,可得1AE BE ==,又3a =,所以2EC =.在Rt ACE 中,225AC AE EC =+5sin 5C ==(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =- 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=所以sin 2tan cos 11DAC DAC DAC ∠∠==∠. [方法二]【最优解】:几何法+两角差的正切公式法在(1)的方法二的图中,由4cos 5ADC ∠=-,可得4cos cos()cos 5ADE ADC ADC π∠=-∠=-∠=,从而4sin 4sin cos ,tan 5cos 3DAE DAE ADE DAE DAE ∠∠=∠=∠==∠.又由(1)可得tan 2EC EAC AE ∠==,所以tan tan 2tan tan()1tan tan 11EAC EAD DAC EAC EAD EAC EAD ∠-∠∠=∠-∠==+∠⋅∠.[方法三]:几何法+正弦定理法在(1)的方法二中可得1,2,5AE CE AC === 在Rt ADE △中,45,cos sin 3AE AD ED AD ADE ADE ===∠=∠,所以23CD CE DE =-=. 在ACD △中,由正弦定理可得25sin sin CD DAC C AD ∠=⋅=, 由此可得2tan 11DAC ∠=. [方法四]:构造直角三角形法如图,作AE BC ⊥,垂足为E ,作DG AC ⊥,垂足为点G .在(1)的方法二中可得1,2,5AE CE AC ===由4cos 5ADC ∠=-,可得243cos ,sin 1cos 55ADE ADE ADE ∠=∠=-∠.在Rt ADE △中,22542,,sin 333AE AD DE AD AE CD CE DE ADE ==-==-=∠.由(1)知5sin C =Rt CDG △中,222545sin DG CD C CG CD DG =⋅==-=,从而115AG AC CG =-=在Rt ADG 中,2tan 11DG DAG AG ∠==. 所以211DAC ∠=. 【整体点评】(1)方法一:使用余弦定理求得5b =sin C ;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得DAC ∠的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得DAC ∠的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有DAC ∠的直角三角形,进而求解,也是很优美的方法. 【典例15】(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC 的周长为423+ 条件③:ABC 33【答案】(1)6π;(2)答案不唯一,具体见解析. 【解析】 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 23sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得3sin 231sin 2c Cb B=== 与2c b =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin33c R R π=, 则周长23423a b c R R ++==+ 解得2R =,则2,23a c ==由余弦定理可得BC 边上的中线的长度为:()222312231cos76π+-⨯⨯⨯若选择③:由(1)可得6A π=,即a b =,则211333sin 22ABCSab C a ===,解得3a = 则由余弦定理可得BC 边上的中线的长度为:22233212cos 3322342a a b b π⎛⎫+-⨯⨯⨯++⨯= ⎪⎝⎭【总结提升】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系. 具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.【精选精练】一、单选题1.(2022·贵州贵阳·高三开学考试(文))“云楼”是白云区泉湖公园的标志性建筑,也是来到这里必打卡的项目之一,它端坐于公园的礼仪之轴,建筑外形主体木质结构,造型独特精巧,是泉湖公园的“阵眼”和“灵魂”,同时也是泉湖历史与发展变化的资料展示馆.小张同学为测量云楼的高度,如图,选取了与云楼底部D 在同一水平面上的A ,B 两点,在A 点和B 点测得C 点的仰角分别为45°和30°,测得257AB =150ADB ∠=︒,则云楼的高度CD 为( )A .20米B .25米C .7D .257【答案】B【分析】设CD x =,由锐角三角函数得到AD x =,3BD x =,再在ABD △中利用余弦定理求出x ,即可得解.【详解】解:依题意45CAD ︒∠=,30CBD ︒∠=, 设CD x =,在Rt ACD △、Rt BCD 中,tan 1CD CAD AD∠==,3tan 3CD CBD BD ∠==,所以AD x =,3BD x =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB =+-⋅∠, 即()()22232573232x x x x ⎛⎫=+-⋅⋅- ⎪ ⎪⎝⎭,解得25x =或25x =-(舍去), 所以云楼的高度CD 为25米; 故选:B2.(2022·河南·郑州四中高三阶段练习(文))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos ,,cos 22B C n b p c ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭共线,则ABC 的形状为( )A .等边三角形B .钝角三角形C .有一个角是6π的直角三角形 D .等腰直角三角形【答案】A【分析】由向量共线的坐标运算可得cos cos 22B Aa b =,利用正弦定理化边为角,再展开二倍角公式整理可得sinsin 22A B=,结合角的范围求得A B =,同理可得B C =,则答案可求. 【详解】向量(,cos )2A m a =,(,cos )2B n b =共线,cos cos 22B A a b ∴=,由正弦定理得:sin cos sin cos 22B A A B =, 2sincos cos 2sin cos cos 222222A A B B B A ∴=,则sin sin 22A B=, 022A π<<,022B π<<,∴22A B =,即A B =.同理可得B C =.ABC ∴形状为等边三角形.故选:A .3.(2022·安徽蚌埠·一模)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即ABC ∠)约为33.65,夏至正午太阳高度角(即ADC ∠)约为80.51.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为( )(已知229tan33.65,tan80.5135≈≈)A .4.36米B .4.83米C .5.27米D .5.41米【答案】C【分析】由题意可求出35,229BC AC CD AC ==,再由BD 的长为7米,求出AC ,即可得出答案. 【详解】由图可知229tan33.65,tan80.5135AC AC BC CD =≈=≈, 所以35,229BC AC CD AC ==, 得3577587 5.272295811BD AC AC AC ⎛⎫=-==⇒=≈ ⎪⎝⎭. 故选:C. 二、多选题4.(2022·吉林·延边第一中学高一期中)下列命题错误的是( ) A .三角形中三边之比等于相应的三个内角之比 B .在ABC 中,若sin sin A B >,则A B >C .在ABC 的三边三角共6个量中,知道任意三个,均可求出剩余三个D .当2220b c a +->时,ABC 为锐角三角形;当2220b c a +-=时,ABC 为直角三角形;当2220b c a +-<时,ABC 为钝角三角形 【答案】ACD【分析】对于ACD ,举例判断,对于B ,利用正弦定理结果合三角形的性质判断.【详解】对于A ,等腰直角三角形的三边比为1:1:2,而三个内角的比为1:1:2,所以A 错误, 对于B ,在ABC 中,当sin sin A B >时,由正弦定理可得a b >,因为在三角形中大边对大角,所以A B >,所以B 正确,对于C ,在ABC 中,若三个角,,A B C 确定,则这样的三角形三边无法确定,这样的三角形有无数个,所以C 错误,对于D ,在ABC 中,2220b c a +->时,由余弦定理可知角A 为锐角,而角,B C 的大小无法判断,所以三角形的形状无法判断,所以D 错误, 故选:ACD5.(2021·黑龙江黑河·高二阶段练习)在ABC 中,已知2,3,AB AC AD ==是角A 的平分线,则AD 的长度可能为( ) A .2.1 B .2.2 C .2.3 D .2.4【答案】ABC【分析】过C 作//CE AB 交AD 延长线于E ,由题设可得3AC EC ==且ADB EDC ,进而有23AD ED =,令2AD x =并在ACE 中应用余弦定理求x 范围,即可得AD 范围. 【详解】过C 作//CE AB 交AD 延长线于E ,又AD 是角A 的平分线,得CAE BAE E ∠=∠=∠,故3AC EC ==, 而ADB EDC ,则23AD AB ED EC ==, 令2AD x =,则5AE x =,在ACE 中,22221825cos (1,1)218AC EC AE x ACE AC EC +--∠==∈-⋅, 可得605x <<,则122(0,)5AD x =∈,故A 、B 、C 满足要求.故选:ABC6.(2022·吉林·长春市第二实验中学高一期末)中国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦S 为三角形的面积,a 、b 、c 为三角形的三边).现有ABC 满足::2:7a b c =ABC 的面积63ABC S =△列结论正确的是( ) A .ABC 的最短边长是2 B .ABC 的三个内角满足2A B C +=C .ABC 221D .ABC 的中线CD 的长为32【答案】BC【分析】依题意设2a t =,3b t =,7c t =(0t >),利用面积公式求出t ,即可求出边长,从而判断A ,再由余弦定理求出C ,即可判断B ,利用正弦定理求出外接圆的半径,即可判断C ,最后由数量积的运算律求出中线CD ,即可判断D.【详解】解:由::2:3:7a b c =,设2a t =,3b t =,7c t =(0t >),因为63ABC S =△,所以2222221749637442t t t t t ⎡⎤⎛⎫+-=+-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,解得2t =,则4a =,6b =,27c =,故A 错误;因为2221636281cos 22462a b c C ab +-+-===⨯⨯,所以π3C =,π2ππ233A B C +=-==,故B 正确; 因为π3C =,所以3sin 2C =,由正弦定理得4212sin 3c R C ==,2213R =,故C 正确; ()12CD CA CB =+,所以()22111361624619442CD CA CB ⎛⎫=+=⨯++⨯⨯⨯= ⎪⎝⎭,故19CD =,故D 错误.故选:BC . 三、填空题7.(2022·贵州·贵阳乐湾国际实验学校高三开学考试(理))在ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且42c =B =4π,若ABC 的面积S =2,则b =___________. 【答案】5【分析】先由面积公式计算1a =,再利用余弦定理计算5b =. 【详解】由三角形面积公式,1sin 22S ac B ==, 所以,1a =.由余弦定理,2222cos 25b a c ac B =+-=.所以,5b =. 故答案为:5.8.(2022·全国·高三专题练习)在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________. 【答案】等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】由余弦定理,222222cos 2cos 2b c a A bbc a c b B aac+-==+-,化简得22222()()0a b c a b ---=, ∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形. 故答案为:等腰三角形或直角三角形 四、解答题9.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3sin cos 0a B b A -=.(1)求A ; (2)若3c =3a =ABC 的面积. 【答案】(1)6A π=(2)338【分析】(1)由正弦定理将已知式子统一成角的形式,然后化简可求出角A ; (2)利用余弦定理求出b ,再利用三角形的面积公式可求得结果. (1)因为3sin cos 0a B b A -=所以由正弦定理得3sin sin sin cos A B B A =, 因为()0,B π∈,所以sin 0B ≠, 所以3sin cos A A =,即3tan 3A =, 又因为()0,A π∈,所以6A π=.(2)。
高三数学余弦定理试题答案及解析
高三数学余弦定理试题答案及解析1.在中,内角所对的边分别是.已知,,则的值为 .【答案】.【解析】∵,由正弦定理可知,,又∵,∴,∴.【考点】正余弦定理解三角形.2.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.【答案】(1)(2)≤b<1【解析】(1)由已知得-cos(A+B)+cos Acos B-sin A cos B=0,即有sin Asin B-sin Acos B=0.因为sin A≠0,所以sin B-cos B=0.又cos B≠0,所以tan B=.又0<B<π,所以B=.(2)由余弦定理,有b2=a2+c2-2accos B.因为a+c=1,cos B=,有b2=32+.又0<a<1,于是有≤b2<1,即有≤b<1.3.在中,内角A,B,C所对应的边分别为,若则的面积()A.3B.C.D.【答案】C【解析】因为所以由余弦定理得:,即,因此的面积为选C.【考点】余弦定理4.(12分)(2011•陕西)叙述并证明余弦定理.【答案】见解析【解析】先利用数学语言准确叙述出余弦定理的内容,并画出图形,写出已知与求证,然后开始证明.方法一:采用向量法证明,由a的平方等于的平方,利用向量的三角形法则,由﹣表示出,然后利用平面向量的数量积的运算法则化简后,即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;方法二:采用坐标法证明,方法是以A为原点,AB所在的直线为x轴建立平面直角坐标系,表示出点C和点B的坐标,利用两点间的距离公式表示出|BC|的平方,化简后即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.解:余弦定理:三角形任何一边的平方等于其他两遍平方的和减去这两边与它们夹角的余弦之积的两倍;或在△ABC中,a,b,c为A,B,C的对边,有a2=b2+c2﹣2bccosA,b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.证法一:如图,====b2﹣2bccosA+c2即a2=b2+c2﹣2bccosA同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;证法二:已知△ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴建立直角坐标系,则C(bcosA,bsinA),B(c,0),∴a2=|BC|2=(bcosA﹣c)2+(bsinA)2=b2cos2A﹣2bccosA+c2+b2sin2A=b2+c2﹣2bccosA,同理可证b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.点评:此题考查学生会利用向量法和坐标法证明余弦定理,以及对命题形式出现的证明题,要写出已知求证再进行证明,是一道基础题.5.如图所示,位于东海某岛的雷达观测站A,发现其北偏东,与观测站A距离海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北的C处,且,已知A、C两处的距离为10海里,则该货船的船速为海里/小时___________.【答案】【解析】由已知,所以,,由余弦定理得,,故(海里),该货船的船速为海里/小时.【考点】三角函数同角公式,两角和与差的三角函数,余弦定理的应用.6.△各角的对应边分别为,满足,则角的范围是( )A.B.C.D.【答案】A【解析】由得:,化简得:,同除以得,,即,所以,故选.【考点】余弦定理.7.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是( )A.2B.3C.4D.4【答案】C【解析】由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc bc≤16,∴S=bcsinA≤×16×sin=4.8.在中,角,,所对的边分别为为,,,且(1)求角;(2)若,,求,的值.【答案】(1);(2)【解析】(1)将已知利用正弦二倍角公式展开,因为,约去,得的值,进而求;(2)已知三角形的面积和,不难想到,得,又根据余弦定理得,联立求即可.试题解析:(1)由已知,∴,∵,∴,∴.(2)由余弦定理,又, 10分由解得 13分【考点】1、正弦二倍角公式;2、三角形面积公式;3、余弦定理.9.已知外接圆的半径为,且.,从圆内随机取一个点,若点取自内的概率恰为,则的形状为( )A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】由题意得所以.在三角形AOB中,由于,所以由余弦定理得,即,所以,的形状为等边三角形.【考点】几何概型概率,余弦定理10.在△ABC中,角A,B,C的对边分别为a,b,c.已知(1)求角A的大小;(2)若,△ABC的面积为,求.【答案】(1);(2)【解析】(1)三角恒等变换是以三角基本关系式,诱导公式,和、差、倍角等公式为基础的,三角变换的常见策略有:(1)发现差异;(2)寻找联系;(3)合理转化、概括.由题知,将展开,得,移项合并得,注意到,可求,进而求角A的大小;(2)由(1)知,结合△ABC的面积为,不难想到①,得关系;又根据,利用余弦定理得②,联立求.试题解析:(1)∵,∴可得,∴. 4分∵,可得.∴. 7分=∴,解得bc=8.① 10分(2)由(1)得.∵S△ABC由余弦定理,得, 12分即.②将①代入②,可得. 14分【考点】1、两角差的余弦公式;2、诱导公式;3、余弦定理.11.已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角C=,求△ABC的面积.【答案】(1)见解析(2)【解析】(1)证明:∵m∥n,∴asinA=bsinB,即a·=b·,其中R是△ABC外接圆半径,∴a=b.∴△ABC为等腰三角形.(2)解:由题意可知m·p=0,即a(b-2)+b(a-2)=0.∴a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,∴ab=4(舍去ab=-1),∴S=absinC=×4×sin=.12.△ABC中,角A,B,C所对的边分别为a,b,c,若C=,3a=2c=6,则b的值为( ) A.B.C.-1D.1+【答案】D【解析】因为3a=2c=6,所以a=2,c=3,由余弦定理知cos C=,即cos===,得b=1+.13.如果一个钝角三角形的边长是三个连续自然数,那么最长边的长度为()A.3B.4C.6D.7【答案】B【解析】设出三边的长度,然后由余弦定理,使其最长边所对的角的余弦值小于0即可得到边长的取值范围,再结合边长是自然数得到解.设三角形的三边长分别为n-1,n,n+1(n>1),则n+1对的角θ为钝角,由余弦定理得cosθ= ,所以(n-1)2+n2<(n+1)2,解得0<n<4,所以n=2,3.当n=2时,三边长为1,2,3,1+2=3,不符合题意.当n=3时,三边长为2,3,4,符合题意.故最长边的长度为4.14.已知函数的图像经过点.(1)求的值;(2)在中,、、所对的边分别为、、,若,且.求.【答案】(1)(2)sinB=【解析】(1)f(x)的图像经过点,带入函数得到关于的三角等式,再利用常见三角函数值与的范围即可求出的值.(2)利用三角形关于C角的余弦定理与题目已知式子结合即可得出C角的余弦值,进而得到C角的正弦值(三角形内角的正弦值都为正数),再把带入函数解析式即可得到A角的余弦,利用余弦与正弦的关系得到A角的正弦值,而三角形三个角和为180度,则B角的正弦利用和差角公式即可用A,C两个角的正余弦值来表示,进而得到B角的余弦值.试题解析:(1)由题意可得,即. 2分,,,. 5分(2),, 7分. 8分由(1)知,.,, 10分又,. 12分【考点】三角函数的图象与性质,三角恒等变换余弦定理15.在△ABC中,AB=5,AC=3,BC=7,则∠BAC=( )A.B.C.D.【答案】C【解析】由余弦定理有:.所以.【考点】余弦定理.16.在△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为________.【答案】-【解析】根据三角形的性质:大边对大角,由此可知角A最大,由余弦定理得cos A==-17.已知的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴.【考点】1.向量的运算;2.余弦定理.18.在△ABC中,∠ACB=60°,sin A∶sin B=8∶5,则以A,B为焦点且过点C的椭圆的离心率为________.【答案】【解析】设BC=m,AC=n,则=,m+n=2a,(2c)2=m2+n2-2mn cos 60°,先求得m=a,n=a,代入得4c2=a2,e=.19.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且23cos2A+cos 2A=0,a=7,c=6,则b=________.【答案】5【解析】由23cos2A+cos 2A=23cos2A+2cos2A-1=0,∴cos2A=,则cos A=.由a2=b2+c2-2bc cos A,得:72=b2+62-12b×,解之得b=5(舍去负值).20.在△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为().A.-B.-C.D.【答案】A【解析】根据三角形的性质:大边对大角,由此可知角A最大,由余弦定理得cos A===-.21.在△中,,,,则△的面积等于()A.B.C.或D.或【答案】D【解析】由余弦定理,代入各值整理可得,解得,三角形面积,所以面积为或【考点】1.余弦定理;2.三角形的面积公式。
高考数学复习、高中数学 正弦定理和余弦定理附答案解析
并可由此计算 R、r.
5.在△ABC 中,已知 a,b 和 A 时,解的情况如下:
A 为锐角
A 为钝角或直角
图形
关系式 a=bsinA
bsinA<a<b
a≥b
a>b
解的 个数
[微点提醒]
1.由正弦定理可以变形为: (1)a:b:c=_______:_______:_______;
(2)a=2RsinA,b=2RsinB,c=__________;
2.在△ ABC 中中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cos C
.
2 3.△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 a= 5,c=2,cosA= ,则 b=
3 ( ).
A. 2 B. 3 C.2 D.3
a
b
(3)sinA= ,sinB= ,sinC=______等形式,以解决不同的三角形问题.
2R
2R
2.余弦定理可以变形为:
b2+c2-a2
cosA=
,cosB=______________,cosC=______________.
2bc
abc 1
3.
S△ABC=
4R
= (a+b+c)·r(r 2
是三角形内切圆的半径),并可由此计算
则A
.
6.△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 2bcosB=acosC+ccosA,则 B= ________.
考点 1 应用正弦、余弦定理解三角形 2
【例 1】已知△ ABC 的面积为 S ,且 BC CA CB 2S .
(1)求 B 的大小;
第7节 余弦定理、正弦定理应用举例--2025年高考数学复习讲义及练习解析
第七节余弦定理、正弦定理应用举例测量中的几个有关术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线01上方的叫做仰角,目标视线在水平视线02下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成的锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平长度之比叫坡比(坡度),即i =hl=tan θ解三角形应用问题的步骤:1.概念辨析(正确的打“√”,错误的打“×”)(1)东南方向与南偏东45°方向相同.()(2)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)俯角是铅垂线与目标视线所成的角,其范围为0,π2.()(5)在方向角中,始边一定是南或北,旋转方向一定是顺时针.()答案(1)√(2)√(3)√(4)×(5)×2.小题热身(1)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点间的距离为()A.502m B.503m C.252m D.2522m 答案A解析在△ABC中,由正弦定理得ABsin∠ACB=ACsin∠CBA,又∠CBA=180°-45°-105°=30°,所以AB=AC sin∠ACBsin∠CBA=50×2212=502(m).故选A.(2)(人教A必修第二册6.4.3例10改编)如图所示,为测量某树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60m,则树的高度为()A.(303+30)m B.(153+30)m C.(303+15)m D.(153+15)m 答案A解析在△ABP中,∠APB=45°-30°,所以sin∠APB=sin(45°-30°)=22×32-22×12=6-24,由正弦定理得PB=AB sin30°sin∠APB=60×126-24=30(6+2),所以该树的高度为30(6+2)sin45°=303+30(m).故选A.(3)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2min,从D沿着DC走到C用了3min.若此人步行的速度为每分钟50m,则该扇形的半径为________m.答案507解析连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17500,解得OC =507.则该扇形的半径为507m.考点探究——提素养考点一测量距离问题例1(2024·重庆模拟)一个骑行爱好者从A 地出发,向西骑行了2km 到达B 地,然后再由B地向北偏西60°骑行了23km 到达C 地,再从C 地向南偏西30°骑行了5km 到达D 地,则A 地到D 地的直线距离是()A .8kmB .37kmC .33kmD .5km答案B解析如图,在△ABC 中,∠ABC =150°,AB =2,BC =23,依题意,∠BCD =90°,在△ABC中,由余弦定理得AC =AB 2+BC 2-2AB ·BC cos ∠ABC =4+12+83×32=27,由正弦定理得sin ∠ACB =AB sin ∠ABC AC=714,在△ACD 中,cos ∠ACD =cos(90°+∠ACB )=-sin ∠ACB =-714,由余弦定理得AD =AC 2+CD 2-2AC ·CD cos ∠ACD =28+25+2×27×5×714=37.所以A 地到D 地的直线距离是37km.故选B.【通性通法】距离问题的类型及解法(1)类型:①两点间既不可达也不可视;②两点间可视但不可达;③两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.【巩固迁移】1.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.(1)计算渔政船C与渔港O的距离;(2)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,sin63.43°≈0.89,tan63.43°≈2.00,11≈3.32,13≈3.61)解(1)∵AO⊥OB,∠OBA=68.20°,OB=160,∴AO=OB tan∠OBA≈160×2.50=400,∵AO⊥OC,∠OCA=63.43°,∴OC=OAtan63.43°≈4002.00=200.即渔政船C与渔港O的距离为200海里.(2)由题意知∠OBC=60°+60°=120°,在△OBC中,由余弦定理得OC2=OB2+BC2-2OB·BC cos∠OBC,即40000=25600+BC2+160BC,解得BC=-80-4013(舍去)或BC=-80+4013,即BC≈-80+40×3.61=64.4,∵64.425=2.576<3,∴渔政船以每小时25海里的速度直线行驶,能在3小时内赶到出事地点.考点二测量高度问题例2(1)(2024·江苏南通调研)湖北宜昌三峡大瀑布是国家4A 级景区,也是神农架探秘的必经之地,为了测量湖北宜昌三峡大瀑布的某一处实际高度,李华同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成的角为π3,则该瀑布的高度约为()A .60mB .90mC .108mD .120m答案A解析根据题意作出示意图,其中tan α=32,β=θ=π3,AB =20,在Rt △AOH 中,tan α=OHOA,所以OA =23OH .在Rt △BOH 中,tan β=OH OB ,所以OB =33OH .在△AOB 中,由余弦定理,得OB 2=OA 2+AB 2-2OA ·AB cos θ,即13OH 2=49OH 2+202-2×23OH ×20×12,解得OH =60.所以该瀑布的高度约为60m .故选A.(2)(2023·辽宁协作校联考)山东省滨州市的黄河楼位于蒲湖水面内东南方向的东关岛上,渤海五路以西,南环路以北.整个黄河楼颜色质感为灰红,意味黄河楼气势恢宏,更在气势上体现黄河的宏壮.如图,小张为了测量黄河楼的实际高度AB ,选取了与楼底B 在同一水平面内的两个测量基点C ,D ,现测得∠BCD =30°,∠BDC =95°,CD =116m ,在点D 处测得黄河楼顶A 的仰角为45°,求黄河楼的实际高度.(结果精确到0.1m ,取sin55°=0.82)解由题知,∠CBD =180°-∠BCD -∠BDC =55°,在△BCD 中,由正弦定理得BD sin ∠BCD =CDsin ∠CBD ,则BD =CD sin ∠BCD sin ∠CBD=116×sin30°sin55°=580.82≈70.7m ,在△ABD 中,AB ⊥BD ,∠ADB =45°,所以AB =BD tan ∠ADB =BD ≈70.7m.故黄河楼的实际高度约为70.7m.【通性通法】(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图形,一个空间图形,一个平面图形.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.(4)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【巩固迁移】2.(2023·安徽蚌埠模拟)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92°)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即∠ABC )约为33.65°,夏至正午太阳高度角(即∠ADC )约为80.51°.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为()A .cos80.51°7tan46.86°B .7tan46.86°sin33.65°C .7sin33.65°sin80.51°sin46.86°D .sin33.65°7sin80.51°答案C解析由图可知∠BAD =∠ADC -∠ABC =80.51°-33.65°=46.86°.在△ABD 中,BDsin ∠BAD=AD sin ∠ABC ,得AD =7sin33.65°sin46.86°.在△ACD 中,AC =AD sin ∠ADC =7sin33.65°sin80.51°sin46.86°.故选C.考点三测量角度问题例3已知在岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛A 北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5sin38°≈5314,解如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,则BC =0.5x ,AC =5,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos120°,所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD .故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船.【通性通法】(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【巩固迁移】3.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡角为θ,则cos θ=()A .33B .6-2C .3-1D .2-1答案C解析由题意知,∠CAD =15°,∠CBD =45°,所以∠ACB =30°,∠ABC =135°.在△ABC 中,由正弦定理,得AB sin30°=ACsin135°,又AB =100m ,所以AC =1002m .在△ADC 中,∠ADC =90°+θ,CD =50m ,由正弦定理,得AC sin (θ+90°)=CDsin15°,所以cos θ=sin(θ+90°)=AC sin15°CD=3-1.故选C.课时作业一、单项选择题1.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析由已知,得AD =2010m ,AC =305m ,又CD =50m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.故选B.2.如图,设A ,B 两点在河的两岸,在A 所在河岸边选一定点C ,测量AC 的距离为50m ,∠ACB =30°,∠CAB =105°,则A ,B 两点间的距离是()A .252mB .502mC .253mD .503m答案A解析在△ABC 中,∠ACB =30°,∠CAB =105°,所以∠ABC =180°-30°-105°=45°,由正弦定理AC sin ∠ABC =AB sin ∠ACB ,得AB =AC sin ∠ACB sin ∠ABC =50sin30°sin45°=50×1222=252(m).故选A.3.(2023·山东济南模拟)如图,一架飞机从A 地飞往B 地,两地相距500km.飞行员为了避开某一区域的雷雨云层,从A 点起飞以后,就沿与原来的飞行方向AB 成12°角的方向飞行,飞行到中途C 点,再沿与原来的飞行方向AB 成18°角的方向继续飞行到终点B 点.这样飞机的飞行路程比原来的路程500km 大约多飞了(sin12°≈0.21,sin18°≈0.31)()A .10kmB .20kmC .30kmD .40km 答案B 解析在△ABC 中,由A =12°,B =18°,得C =150°,由正弦定理,得500sin150°=BC sin12°=AC sin18°,所以50012≈BC 0.21≈AC 0.31,所以AC ≈310km ,BC ≈210km ,所以AC +BC -AB ≈20(km).故选B.4.(2023·安徽六安一中校考模拟预测)《孔雀东南飞》中曾叙“十三能织素,十四学裁衣,十五弹箜篌,十六诵诗书.”箜篌历史悠久、源远流长,音域宽广、音色柔美清澈,表现力强.如图是箜篌的一种常见的形制,对其进行绘制,发现近似一扇形,在圆弧的两个端点A ,B 处分别作切线相交于点C ,测得AC =100cm ,BC =100cm ,AB =180cm ,根据测量数据可估算出该圆弧所对圆心角的余弦值为()A .0.62B .0.56C .-0.56D .-0.62答案A 解析如图所示,设弧AB 对应的圆心是O ,根据题意可知,OA ⊥AC ,OB ⊥BC ,则∠AOB+∠ACB =π,因为AC =100,BC =100,AB =180,则在△ACB 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =1002+1002-18022×100×100=-0.62,所以cos ∠AOB =cos(π-∠ACB )=-cos ∠ACB =0.62.故选A.5.(2023·山西太原模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,若河流的宽度BC 为60m ,则此时气球的高度为()A .15(3-1)mB .15(3+1)mC .30(3-1)mD .30(3+1)m 答案B 解析在△ABC 中,∠ACB =30°,∠BAC =75°-30°=45°,BC =60m ,则∠ABC =180°-45°-30°=105°.又sin105°=sin(60°+45°)=32×22+12×22=6+24,BC sin ∠BAC =AC sin ∠ABC ,所以AC =60×6+2422=30(3+1)m ,所以气球的高度为AC sin ∠ACB =30(3+1)×12=15(3+1)m .故选B.6.(2023·福州模拟)我国无人机技术处于世界领先水平,并广泛用于抢险救灾、视频拍摄、环保监测等领域.如图,有一个从地面A 处垂直上升的无人机P ,对地面B ,C 两受灾点的视角为∠BPC ,且tan ∠BPC =13.已知地面上三处受灾点B ,C ,D 共线,且∠ADB =90°,BC =CD =DA =1km ,则无人机P 到地面受灾点D 处的遥测距离PD 的长度是()A .2kmB .2kmC .3kmD .4km 答案B 解析解法一:由题意得BD ⊥平面PAD ,∴BD ⊥PD .设PD =x ,∠PBD =α,∠PCD =β,则tanα=x2,tanβ=x,∴tan∠BPC=tan(β-α)=x-x21+x·x2=xx2+2=13,解得x=1或x=2,又在Rt△PDA中有x>1,∴x=2.故选B.解法二:由题意知BD⊥平面PAD,∴BD⊥PD.设PA=x,则PB2=x2+5,PC2=x2+2.由tan∠BPC=13,可得cos∠BPC=31010,在△PBC中,由余弦定理得x2+5+x2+2-1=2x2+5·x2+2·31010,解得x2=3,进而PD=x2+1=2.故选B.7.大型城雕“商”字坐落在商丘市睢阳区神火大道与南京路交汇处,“商”字城雕有着厚重悠久的历史和文化,它时刻撬动着人们认识商丘、走进商丘的欲望.吴斌同学在今年国庆期间到商丘去旅游,经过“商”字城雕时,他想利用解三角形的知识测量一下该雕塑的高度(即图中线段AB的长度).他在该雕塑塔的正东C处沿着南偏西60°的方向前进72米后到达D处(A,C,D三点在同一个水平面内),测得图中线段AB在东北方向,且测得点B的仰角为71.565°,则该雕塑的高度大约是(参考数据:tan71.565°≈3)()A.19米B.20米C.21米D.22米答案C解析在△ACD中,∠CAD=135°,∠ACD=30°,CD=72,由正弦定理得ADsin∠ACD=CDsin∠CAD,所以AD=CD sin∠ACDsin∠CAD=7(米),在Rt△ABD中,∠BDA=71.565°,所以AB=AD tan71.565°≈7×3=21(米).故选C.8.(2023·泸州模拟)如图,航空测量的飞机航线和山顶在同一铅直平面内,已知飞机飞行的海拔高度为10000m,速度为50m/s.某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,则山顶的海拔高度大约为(2≈1.4,3≈1.7)()A.7350m B.2650mC.3650m D.4650m答案B解析如图,设飞机的初始位置为点A,经过420s后的位置为点B,山顶为点C,作CD⊥AB于点D,则∠BAC=15°,∠CBD=45°,所以∠ACB=30°,在△ABC中,AB=50×420=21000(m),由正弦定理得ABsin∠ACB=BCsin∠BAC,则BC=2100012×sin15°=10500(6-2)(m),因为CD⊥AB,所以CD=BC sin45°=10500(6-2)×22=10500(3-1)≈7350(m),所以山顶的海拔高度大约为10000-7350=2650(m).故选B.二、多项选择题9.某人向正东走了x km后向右转了150°,然后沿新方向走了3km,结果离出发点恰好3km,那么x的值是()A.3B.23C.3D.6答案AB解析如图,AB=x,BC=3,AC=3,∠ABC=30°.由余弦定理,得3=x2+9-2×3×x×cos30°,解得x=23或x= 3.故选AB.10.某货轮在A处看灯塔B在货轮的北偏东75°,距离为126n mile;在A处看灯塔C在货轮的北偏西30°,距离为83n mile.货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°,则下列说法正确的是()A.A处与D处之间的距离是24n mileB .灯塔C 与D 处之间的距离是83n mileC .灯塔C 在D 处的南偏西30°D .D 处在灯塔B 的北偏西30°答案ABC 解析在△ABD 中,由已知,得∠ADB =60°,∠DAB =75°,则∠B =45°.由正弦定理,得AD=AB sin B sin ∠ADB =126×2232=24,所以A 处与D 处之间的距离为24n mile ,故A 正确;在△ADC中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC cos30°,又AC =83,所以CD =8 3.所以灯塔C 与D 处之间的距离为83n mile ,故B 正确;因为AC =CD =83,所以∠CDA =∠CAD =30°,所以灯塔C 在D 处的南偏西30°,故C正确;因为灯塔B 在D 处的南偏东60°,所以D 处在灯塔B 的北偏西60°,故D 错误.故选ABC.三、填空题11.神舟载人飞船返回舱成功着陆,标志着返回任务取得圆满成功.假设返回舱D 垂直下落于点C ,某时刻地面上A ,B 两个观测点,观测到点D 的仰角分别为45°,75°,若点A ,B间的距离为10千米(其中向量CA →与CB →同向),估算该时刻返回舱距离地面的距离CD 约为________千米.(结果保留整数,参考数据:3≈1.732)答案14解析在△ABD 中,A =45°,∠ABD =180°-75°=105°,∠ADB =30°,由正弦定理得AB sin30°=AD sin105°,AD =20sin105°=20sin(60°+45°)=5(6+2),所以CD =AD sin A =5(6+2)×22=53+5≈14(千米).12.魏晋南北朝时期,数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,通过多次观测,测量山高谷深等数值,进而使中国的测量学达到登峰造极的地步.关于重差术的注文在唐代成书,因其第一题为测量海岛的高和远的问题,故将《重差》更名为《海岛算经》.受此启发,小明同学依照此法测量泾阳县崇文塔的高度(示意图如图所示),测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表间DF =85.则塔高AB =________米.答案87解析由题意可知,△EFH ∽△ABH ,△CDG ∽△ABG ,所以EF AB =FH BH ,CD AB =DG BG,又EF =CD =2,DG =1,FH =3,DF =85,所以2AB =3BD +88,2AB =1BD +1,则3BD +88=1BD +1,解得BD =852,所以AB =2BD +2=87.13.海面上有相距10n mile 的A ,B 两个小岛,从A 岛望C 岛,和B 岛成60°的视角,从B 岛望C 岛,和A 岛成75°的视角,则B ,C 间的距离为________n mile.答案56解析由题意,知C =45°,A =60°,AB =10.由BC sin A =AB sin C,得BC =56n mile.14.山东省科技馆新馆目前成为济南科教新地标(如图1),其主体建筑采用与地形吻合的矩形设计,将数学符号“∞”完美嵌入其中,寓意无限未知、无限发展、无限可能和无限的科技创新.如图2,为了测量科技馆最高点A 与其附近一建筑物楼顶B 之间的距离,无人机在点C 测得点A 和点B 的俯角分别为75°,30°,随后无人机沿水平方向飞行600米到点D ,此时测得点A 和点B 的俯角分别为45°,60°(A ,B ,C ,D 在同一铅垂面内),则A ,B 两点之间的距离为________米.答案10015解析由题意,∠DCB =30°,∠CDB =60°,所以∠CBD =90°,所以在Rt △CBD 中,BD =12CD =300,BC =32CD =3003,又∠DCA =75°,∠CDA =45°,所以∠CAD =60°,在△ACD 中,由正弦定理,得AC sin45°=CD sin60°,所以AC =60032×22=2006,在△ABC 中,∠ACB =∠ACD -∠BCD =75°-30°=45°,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =(2006)2+(3003)2-2×2006×3003×22=150000,所以AB =10015.四、解答题15.某市广场有一块不规则的绿地,如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC ,△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用更低(请说明理由)?解(1)在△ABC 中,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7.②由∠C =∠D 得cos C =cos D ,解得AB =7,所以AB 的长度为7米.(2)小李的设计使建造费用更低.理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D ,所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用更低.16.一颗人造地球卫星在地球上空1600km 处沿着圆形的轨道运行,每2h 沿轨道绕地球旋转一圈.假设卫星于中午12点正通过卫星跟踪站点A 的正上空,地球半径约为6400km.(1)求人造卫星与卫星跟踪站在12:03时相隔的距离;(2)如果此时卫星跟踪站天线指向人造卫星,那么天线瞄准的方向与水平线的夹角的余弦值是多少?(参考数据:cos9°≈0.988,sin9°≈0.156)解(1)如图所示,设人造卫星在12:03时位于点C ,其中∠AOC =β,则β=360°×3120=9°,在△ACO 中,OA =6400km ,OC =6400+1600=8000(km),β=9°,由余弦定理得AC 2=64002+80002-2×6400×8000cos9°≈3.79×106,解得AC ≈1.95×103,因此在12:03时,人造卫星与卫星跟踪站相距约1950km.(2)如图所示,设此时天线瞄准的方向与水平线的夹角为γ,则∠CAO =γ+90°,由正弦定理得1950sin9°=8000sin (γ+90°),故sin(γ+90°)=80001950·sin9°≈0.64,即cos γ≈0.64,因此,天线瞄准的方向与水平线的夹角的余弦值约为0.64.17.近年来临夏州深入实施生态环境保护和流域综合治理,城区面貌焕然一新.某片水域,如图,OA ,OB 为直线型岸线,OA =200米,OB =400米,∠AOB =π3,该水域的水面边界是某圆的一段弧AB ︵,过弧AB ︵上一点P 按线段PA 和PB 修建垃圾过滤网,已知∠APB =3π4(1)求岸线上点A 与点B 之间的距离;(2)如果线段PA 上的垃圾过滤网每米可为环卫公司节约50元的经济效益,线段PB 上的垃圾过滤网每米可为环卫公司节约402元的经济效益,则这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为多少元?(参考数据:102≈10.1,170≈13.04)解(1)由题意,OA =200米,OB =400米,∠AOB =π3,故AB =OA 2+OB 2-2OA ·OB cos ∠AOB=2002+4002-2×200×400×12=2003(米).(2)设∠PAB =θ,θ则在△PAB 中,ABsin ∠APB =PA =PB sin θ,即2003sin 3π4=PA =PB sin θ,故PA =2006sin PB =2006sin θ,设这两段垃圾过滤网可为环卫公司节约的经济总效益为y 元,则y =50PA +402PB =100006160003sin θ=100006θ-22sin 160003sin θ=60003sin θ+100003cos θ=20003(3sin θ+5cos θ)=2000102sin(θ+φ),其中φ为辅助角,不妨取其为锐角,tan φ=53<3,则φ当θ+φ=π2,即θ=π2-φ时,y 取到最大值2000102,故经济总效益的最大值为2000102≈2000×10.1=20200(元),即这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为20200元.18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 处沿直线步行到C 处,另一种是先从A 处沿索道乘缆车到B 处,然后从B 处沿直线步行到C 处.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min ,在甲出发2min 后,乙从A 处乘缆车到B 处,在B 处停留1min 后,再从B 处匀速步行到C 处.假设缆车匀速直线运行的速度为130m/min ,山路AC 的长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?解(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理得AB =AC sin B ·sin C =12606365×45=1040(m),所以索道AB 的长为1040m.(2)假设乙出发t min 后,甲、乙两游客的距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50)=+6251369.因为0≤t ≤1040130,即0≤t ≤8,所以当t =3537时,甲、乙两游客距离最短,即乙出发3537min 后,乙在缆车上与甲的距离最短.。
正弦定理和余弦定理知识点讲解+例题讲解(含解析)
导数的概念及运算一、知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:4.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.5.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边, A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =23π. 答案 C3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·烟台质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D.2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A.4 2B.30C.29D.25解析 由题意得cos C =2cos 2 C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角, 可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A , 可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7. 答案 7考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4. 答案 (1)75° (2)B (3)C【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)(2019·北京海淀区二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B 2-cos 2C =1,可得2cos 2A +B 2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0,解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3, 所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13.(3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B【训练2】若将本例(2)中条件变为“c-a cos B=(2a-b)cos A”,判断△ABC的形状.解∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.考点三 和三角形面积、周长有关的问题 角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3. 角度2 与三角形周长有关的问题【例3-2】 (2018·上海嘉定区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 解析 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),∴△ABC周长=a+b+c=4+b+c≤12,即最大值为12.答案12【训练3】(2019·潍坊一模)△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B.∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12a a c sin B=12×3×32=334.三、课后练习1.△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,b cos A+a cosB=2,则△ABC的外接圆面积为()A.4πB.8πC.9πD.36π解析由题意及正弦定理得2R sin B cos A+2R sin A cos B=2R sin(A+B)=2(R为△ABC的外接圆半径).即2R sin C=2.又cos C=223及C∈(0,π),知sin C=13.∴2R=2sin C=6,R=3.故△ABC 外接圆面积S =πR 2=9π. 答案 C2.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( ) A.6sin ⎝ ⎛⎭⎪⎫A +π3+3 B.6sin ⎝ ⎛⎭⎪⎫A +π6+3 C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝ ⎛⎭⎪⎫A +π6+3解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A .于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π3+3. 答案 C3.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________. 解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cosC ,所以12b cos A =sin(A +C ),所以12b cos A =sin B , 所以cos A 2=sin Bb , 又sin B b =sin A a ,a =23, 所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3, 由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12(当且仅当b =c =23时取等号), 从而△ABC 面积的最大值为12×12×32=3 3. 答案 334.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin A =a sin B , 又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6, 得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝ ⎛⎭⎪⎫B -π6,可得tan B = 3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37. 因为a <c ,故cos A =27. 因此sin 2A =2sin A cos A =437, cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.5.我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________. 解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案3。
高考复习 第4篇 第6讲 正弦定理和余弦定理知识点+例题+练习 含答案
第6讲正弦定理和余弦定理知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos Ab2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sinB,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sinB∶sin Ccos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.(3)S=12r(a+b+c)(r为△ABC内切圆半径).辨析感悟1.三角形中关系的判断(1)在△ABC中,sin A>sin B的充分不必要条件是A>B.(×)(2)(教材练习改编)在△ABC中,a=3,b=2,B=45°,则A=60°或120°.(√) 2.解三角形(3)(2013·北京卷改编)在△ABC中,a=3,b=5,sin A=13,则sin B=59.(√)(4)(教材习题改编)在△ABC中,a=5,c=4,cos A=916,则b=6.(√)3.三角形形状的判断(5)在△ABC中,若sin A sin B<cos A cos B,则此三角形是钝角三角形.(√)(6)在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.(×)[感悟·提升]一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B,如(1).判断三角形形状的两种途径一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.考点一利用正弦、余弦定理解三角形【例1】(1)(2013·湖南卷改编)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于______.(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=42,B=45°,则sin C=________.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B,∵B 为△ABC 的内角,∴sin B ≠0. ∴sin A =32.又∵△ABC 为锐角三角形, ∴A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5. ∴sin C =C sin B b =42×225=45. 答案 (1)π3 (2)45规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【训练1】 (1)在△ABC 中,a =23,c =22,A =60°,则C =________. (2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =________.解析 (1)由正弦定理,得23sin 60°=22sin C ,解得:sin C =22,又c <a ,所以C <60°,所以C =45°. (2)∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.答案 (1)45° (2)30°考点二 判断三角形的形状【例2】 (2014·临沂一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°. 由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,B =60°.∴A =B =C =60°,△ABC 为等边三角形.规律方法 解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.【训练2】 (1)(2013·山东省实验中学诊断)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 的形状是________三角形.(填“直角”、“钝角”或“锐角”等)(2)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状是________三角形.(填“锐角”、“直角”、“等腰”或“等腰或直角”)解析 (1)由2c 2=2a 2+2b 2+ab ,得a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即△ABC 为钝角三角形. (2)由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B , 即sin 2 B sin A cos B =sin 2 A cos A sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角, 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形. 答案 (1)钝角 (2)等腰或直角考点三 与三角形面积有关的问题【例3】 (2013·浙江卷)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.审题路线 (1)把2a sin B =3b 变形为2a =3b sin B ⇒利用正弦定理a sin A =bsin B ⇒得到sin A =?⇒A 为锐角,得出A =?(2)由(1)知cos A 的值⇒利用余弦定理⇒又b +c =8,求bc 的值⇒利用三角形面积公式S =12bc sin A 求得.解 (1)由2a sin B =3b ,得2a =3bsin B ,又由正弦定理a sin A =b sin B ,得a sin A =2a 3,所以sin A =32,因为A 为锐角,所以A =π3.(2)由(1)及a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =(b +c )2-3bc =36,又b +c =8,所以bc =283,由S =12bc sin A ,得△ABC 的面积为733.规律方法 在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来. 【训练3】 (2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12 bc sin A =12bc ·32=34bc =53,得bc =20. 又b =5,所以c =4.由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21, 故a =21.又由正弦定理,得sin B sin C =b a sin A ·ca sin A =bc a 2sin 2A =2021×34=57.1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解. 2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a 2=b 2+c 2-2bc cos A 可以转化为sin 2 A =sin 2 B +sin 2 C -2sin B sin C cos A ,利用这些变形可进行等式的化简与证明.答题模板6——解三角形问题【典例】 (13分)(2013·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.[规范解答] (1)由余弦定理, 得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32. 又因为0<A <π,所以A =5π6.(4分) (2)由(1)得sin A =12, 又由正弦定理及a =3,得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C ,(6分) 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )= 3cos(B -C ).(9分)所以,当B =C ,即B =π-A 2=π12时, S +3cos B cos C 取最大值3.(13分)[反思感悟] (1)在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.(2)在本题第(2)问中,不会结合正弦定理表达S 的角的形式是失分的主要原因.答题模板 第一步:定已知.即梳理已知条件,确定三角形中已知的边与角;第二步:选定理.即根据已知的边角关系灵活地选用定理和公式;第三步:代入求值. 【自主体验】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A . (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . 解 (1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0, 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.基础巩固题组 (建议用时:40分钟)一、填空题1.(2013·盐城模拟)在△ABC 中,若a 2-c 2+b 2=3ab ,则C =________. 解析 由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°. 答案 30°2.(2014·合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为________.解析 S =12×AB ·AC sin 60°=12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案33.(2013·新课标全国Ⅱ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________. 解析 由正弦定理b sin B =csin C 及已知条件得c =22, 又sin A =sin(B +C )=12×22+32×22=2+64. 从而S △ABC =12bc sin A =12×2×22×2+64=3+1. 答案3+14.(2013·山东卷改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =________.解析 由a sin A =b sin B ,得a sin A =b sin 2A ,所以1sin A =32sin A cos A ,故cos A =32,又A ∈(0,π),所以A =π6,B =π3,C =π2,c =a 2+b 2=12+(3)2=2.答案 25.(2013·陕西卷改编)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形(填“直角”、“锐角”或“钝角”).解析 由正弦定理及已知条件可知sin B cos C +cos B sin C =sin 2 A ,即sin(B +C )=sin 2 A ,而B +C =π-A ,所以sin(B +C )=sin A ,所以sin 2 A =sin A ,又0<A <π,sin A >0,∴sin A =1,即A =π2. 答案 直角6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝ ⎛⎭⎪⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6.答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案154二、解答题9.(2014·扬州质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C . (1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值. 解 (1)由正弦定理,得sin A =12sin C +sin B cos C , 又因为A =π-(B +C ),所以sin A =sin(B +C ), 可得sin B cos C +cos B sin C =12sin C +sin B cos C , 即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4,由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·深圳二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,b =5,c =7.(1)求角C 的大小;(2)求sin ⎝ ⎛⎭⎪⎫B +π3的值. 解 (1)由余弦定理,得cos C =a 2+b 2-c 22ab =32+52-722×3×5=-12.∵0<C <π,∴C =2π3.(2)由正弦定理b sin B =c sin C ,得sin B =b sin C c =5sin 2π37=5314,∵C =2π3,∴B 为锐角, ∴cos B =1-sin 2 B =1-⎝ ⎛⎭⎪⎫53142=1114. ∴sin ⎝ ⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3 =5314×12+1114×32=437.能力提升题组(建议用时:25分钟)一、填空题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则A B →·A C →的最大值为________.解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc≤3,又∵sin A=223,∴cos A=13,所以A B→·A C→=bc cos A=13bc≤1.答案 12.(2013·青岛一中调研)在△ABC中,三边长a,b,c满足a3+b3=c3,那么△ABC的形状为________三角形.(填“锐角”、“钝角”或“直角”).解析由题意可知c>a,c>b,即角C最大,所以a3+b3=a·a2+b·b2<ca2+cb2,即c3<ca2+cb2,所以c2<a2+b2.根据余弦定理,得cos C=a2+b2-c22ab>0,所以0<C<π2,即三角形为锐角三角形.答案锐角3.在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________ .解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C-2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C+α),其中tan α=32,α是第一象限角,由于0°<C<120°,且α是第一象限角,因此AB+2BC有最大值27.答案27二、解答题4.(2013·长沙模拟)在△ABC中,边a,b,c分别是角A,B,C的对边,且满足b cos C=(3a-c)cos B.(1)求cos B;(2)若B C →·B A →=4,b =42,求边a ,c 的值. 解 (1)由正弦定理和b cos C =(3a -c )cos B , 得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B , 即sin(B +C )=3sin A cos B ,故sin A =3sin A cos B ,所以cos B =13.(2)因为B C →·B A →=4,所以B C →·B A →=|B C →|·|B A →|· cos B =4,所以|B C →|·|B A →|=12,即ac =12.①又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎨⎧ a 2+c 2=40,ac =12,解得⎩⎨⎧ a =2,c =6或⎩⎨⎧ a =6,c =2.。
完整版高中数学高考总复习正弦定理与余弦定理应用举例习题及详解
高考总复习高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题在观察,灯塔A与海洋观察站C的距离都等于.(2010·a广东六校km)两座灯塔A 和B1的距离为A与灯塔B在观察站C的南偏东40°,则灯塔站C的北偏东20°,灯塔B) ()km.( B.2a A.aD.3 a C.2aD答案][. =120°][解析依题意得∠ACB由余弦定理222AB+BC-AC=cos120°BC·2AC222AC·BC=AC cos120°+BC-2∴AB1??-2222a -a=a2=3a+??2D.故选=∴AB3a.π3”是“∠A>”的(sin(2.文)(2010·广东佛山顺德区质检)在△ABC中,“A>) 23 B.必要不充分条件.充分不必要条件AD.既不充分也不必要条件C.充要条件A[答案]ππ33,则∠中,若][解析在△ABC sin A>A>,反之∠A>时,不一定有sin A>,如A2332π5π5π1. sin==sin=时,A sin=2666) (Bb=cos”的Aaba,、所对的边长为、角ABC)(理在△中,ABab则“=”是“cos .必要不充分条件B A.充分不必要条件C.既不充分也不必要条件.充要条件DA]答案[ BA时,ba解析[]当==,cos bA cos a∴=B;=Aa当cos Bb cos时,由正弦定理得A cos A sin··B sin=,cos B含详解答案.高考总复习∴sin2sin2,AB=,-2B2B或∴22AA==ππ.=A+B∴A=B或2222.=b或ac+b则a=,cos B”“a cos A=b所以“a=b”?A.b”,故选”?/ “a=“a cos A=b cos B,ABC=120°B、C两地的距离为20km,观测得∠3.已知A、B两地的距离为10km,)(则AC两地的距离为3km B. 10kmA.7kmD C.105km .10D[答案],由余弦20,∠B=120°[解析]如图,△ABC中,AB=10,BC=定理得,222 cos120°AC·=ABBC+BC·-2AB1??-22×=700,=1020+202-×10×??2D.7km.∴选∴AC=10b-cA2的a、b、c分别为角A、B、C的对应边),则△ABC文4.()在△ABC 中,sin(=c22)形状为( .直角三角形BA.正三角形.等腰直角三角形CD.等腰三角形B答案][bAc-1-cos bA2=,cos==,∴A[解析]sin c2c22222a+bc-b222B.b,故选=∴=,∴ac+cbc222的最大值为CB+cos=1,则cos A+在△(理)(2010·河北邯郸)ABC 中,sincos A+cos B)(5 2 B. A. 43 D. C.1 2D答案[]2222B,∴sin,A=sin∵[解析]sin+A cos=B1. A=B,∴AB0<A,<π,∴sin=sin B∵cos2A =cos B+cos故A cos+C2cos-A含详解答案.高考总复习3122,+A+1=-2(cos A-=-2cos)A+2cos22π31.时,取得最大值A=<,∴0<cos A<1,∴cos∵0<A222的对边分别为、CABC的外接圆半径为R,角A、B5.(文)(2010·广东汕头一中)已知△22)(b)sin B,那么角(sin CA-sin C)=的大小为(2a-a、b、c,且2Rππ B. A. 232ππ D. C. 34C][答案222b,=2a[解析]由正弦定理得,ab-c-222ca-+b2 ==,∴cos C22ab π.=,∴C∵0<C<π4122,=AA-cos的对边,且三内角A、B、CA为锐角,若sin理()已知a、b、c是△ABC2)(则B.b+ca≤2a A.b+c<2D .c=2a b+c≥2a+C.b B[答案]1122=-A解析[]∵sincos A-,A=,∴cos222 =为锐角,∴又AA=60°,∴B+C120°,CCB-B+cos2sin22Cb+c+sinsin B∴==Aa2sin23B-C=cos≤1,∴b+c≤2a.253,sin B=,则cos C的值为() cos(2010·6.北京顺义一中月考)在△ABC中,已知A=1355616 A. B.6565161656C.或D.-656565[答案]A 5123[解析]∵cos A=,∴sin A=>=sin B,∴A>B,1313534∵sin B=,∴cos B=,∴cos C=cos[π-(A+B)]55含详解答案.高考总复习16.=A sin BA cos)sincos=-B cos(A=+-B65.B?A>ABC中,有sin A>sin B[点评]在△,又测得塔100m测得一电视塔尖的仰角为45°,再向塔底方向前进7.在地面上一点D).(尖的仰角为60°,则此电视塔高约为________m 227 B.A.237257C.247 D .A][答案=15°,100[解析]如图,∠D=45°,∠ACB=60°,DC=,∠DAC sin45°DC·AC=,∵sin15°·sin60°∴AB=AC sin60°sin45°·100·=sin15°32×100×22A.∴选=≈237.2-64π=成等差数列,且ac、b、c青岛市质检)在△ABC中,∠B=,三边长a.8(文)(2010·3),则b的值是(6 B.3 A.26D. C.5D]答案[22222+122ac=ac4由条件[解析]2b=a+c,∴b+=a,+c+222222b+bcaa+c--1 ,cos又B=,∴=12ac22222,6+∴ab+c=226.,∴b∴4b==18+b,a的对边分别为、Ca、b、c.若、b、c成等比数列,且c=a2、△(理)ABC 的内角AB)cos则B=(31 B.A.4422 C. D. 43B][答案2 2=a成等比数列,∴cb,=ac,又∵c、][解析∵ab、222222ab2a+4a-ca+-322. cos,∴B===a2b∴=42aca×2a2含详解答案.高考总复习在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,[点评]三角函数等内容等比数列等基础知识.同时也体现了数列、集中考查正弦定理、余弦定理、是高考中的热点问题,复习时要注意强化.的双曲线,若△AB、C为焦点,且经过点9.如图所示的曲线是以锐角△ABC的顶点3Ac sin)=,则此双曲线的离心率为ABC(的内角的对边分别为a、b、c,,且a=4b=6,2a7+73-3 B. A. 22 7 .3+7C3D-.D [答案]π3ccc sin A3a[解析]=,因为C为锐角,所以?sin CC==?=,=C3sin a2sin A2321222227c=2×4×6c2=ab+×-2ab cos C=4=+628,∴-由余弦定理知26a7.3+∴e===cb-7-2622yx在双曲P>0)-=1(a>0,的两个焦点,b是双曲线10.(文)(2010·山东济南)设F、F2122ba→→→→)(2ac(c为半焦距)PF线上,若PF·PF=0,||·,则双曲线的离心率为|PF|=2112113+3- A.B. 2215+CD..2 2D][答案22222=-||),根据双曲线定义得:4aPF=(|PF|[解析]由条件知,|PF||+PF|F=|F|2212112222-4ac,4 ac=4-2||PF|·|PF=|FF|c-||PFPF+||222111222=0,+e-ae+ac-c=0,∴1∴5+1. >1,∴e=∵e2C1→→→→→(理)(2010·安徽安庆联考)如图,在△ABC中,tan=,AH·BC=0,AB·(CA +CB)=0,22经过点B以A、H为两焦点的双曲线的离心率为()含详解答案.高考总复习15+1 -B. 5 A. 21-5 D. +1 C.52A]答案[→→BC,·BC=0,∴AH⊥[解析]∵AHC2tan2AH4C1 tan,∴C===,∵tan=CH22C32tan1-2→→→CA0,∴=CB,又∵AB·(CA+CB)=C180°-AHC??=2tan=,=cot=∴tan B??BH223ABa=C=AH=2x,2,由条件知双曲线中CH=BHx,则AH=2x,∴=x,AB=5x2设2 ,(BH=5-1)x-1+52c A.=∴e==,故选2a15-二、填空题CABB和对岸标记物,测得∠C11.如图,为了测定河的宽度,在一岸边选定两点A,________米.45°CBA=,AB=120米,则河的宽度为30°=,∠1)-[答案]60(3=CAB,又∵∠-=,=,则=,设于⊥点作过][解析CCDABDBDxCDxAD120x 30°,含详解答案.高考总复习3x.3-∴1)=,解之得,x=60(3x-120位于A,B,灯塔12.(2010·福建三明一中)如图,海岸线上有相距B5海里的两座灯塔相距A的北偏西75°方向,与灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A则两艘轮船处.5海里的C乙船位于灯塔32海里的D处;B的北偏西60°方向,与B相距海里.之间的距离为________13答案][ AB=BC,60°[解析]如图可知,∠ABC=,45°,60°,从而∠DAC∴AC==5,∠BAC=32又AD=,∴由余弦定理得,2213.2AD·ACCD=AD·cos45°+AC=-,、ca、b、文)(2010·山东日照模拟)在△ABC中,三个内角A、BC所对的边分别是13.(π________.=a+b=已知c=2,C,△ABC的面积等于3,则34[答案]π1 ,ab=4[解析]由条件知,ab sin=3,∴32224-a+bπ∵cos,=ab3222222=16,=+2ab8,∴=8(a+b)a=++ba∴8+b4.+b=∴a1222,a=c10-a若),=caB中,理()在△ABC角A、、C的对边分别为、b、,面积S(b +4 ______.的最大值是则bc250100答案]+[11222,ab=sin由题意得,][解析bcA(+c-)42含详解答案.高考总复习π222,又根据余弦定理得=A,∴∠∴Aa-2bc=sin bA,结合余弦定理得,sin+Ac=cos4100222.100+50≥2bc-2bc,∴bc100=b≤+c=-2bc22-海里的灯塔恰一船向正北匀速行驶,看见正西方两座相距10.14(文)(2010·山东日照)方向上,另一60°好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西小时.海里/灯塔在南偏西75°方向上,则该船的速度是________10[答案]v3 v,=v海里AC/小时,如图由题意知,AD=,[解析]设该船的速度为22tan30°+tan45°,=2+3∵tan75°=tan30°tan45°1-v3+102AB10. ==,解得v又tan75°=,∴2+3vAD2的方位角为M如图,一船在海上自西向东航行,在A处测得某岛(理)(2010·合肥质检)范围已知该岛周围n kmkm后在B处测得该岛的方位角为北偏东β角,北偏东α角,前进m ________时,该船没有触礁危险.当α与β满足条件内(包括边界)有暗礁,现该船继续东行.)-ββ>n sin(α[答案]m cosαcos,∴∠AMB90°-α+∠β=90°-=∠MAB+∠AMB=90°[解析]∠MAB=-α,∠MBC,=α-βAMBαcos BMmm,BM,解得=由题可知,在△ABM中,根据正弦定理得=?-β?-β?sinα?sin?90°-αsin?αβαcos m cosαsin(β>n满足α与βm cosαcos所以=sin(90°要使船没有触礁危险需要BM-β)>n,?α-βsin? )时船没有触礁危险.-β三、解答题A cos bBa所对的边,、、分别是角、、中,在△河北唐山.15(2010·)ABCabcABC且cos+1.=含详解答案.高考总复习c(1);求→→的最大值.3,求CA·(2)CB若tan(A+B)=-=b cos A1及正弦定理得,[解析](1)由a cos B+Bc sin Ac sin cos A=1,·cos B+·C sin C sin )=sin C,∴c sin(A+B C,≠0B)=sin(π-C)=sin又sin(A+1.=∴c2π,A+B=3,0<A+B<π,∴tan((2)∵A+B)=-3π.=A+B)∴C=π-(3 由余弦定理得,22222ab-ab=-ab≥2+b cos-2abC=aab+b1a=1→→→→CB≤,CA·CB,∴CA·=22 =”号.b=1时取“当且仅当a=1→→.CB的最大值是所以,CA·2由于地形的C的距离,如图,要计算西湖岸边两景点B与)16.(文)(2010·广东玉湖中学=BADAB=14km,∠,两点,现测得AD⊥CDAD=10km,限制,需要在岸上选取A和D=3=1.414,C的距离(精确到0.1km).参考数据:2,求两景点60°,∠BCD=135°B与2.236.,1.7325==x,]在△ABD中,设BD[解析222,cos AD·∠=BDAD+BDA-2BD·则BA222·cos60°,+1010-2·x即14=x2 0,10x-96=整理得:x-),舍去x=解之得,x16,=-6(21由正弦定理得,BDBC=,BCD sin∠sin CDB∠含详解答案.高考总复习1611.3(km)≈=82sin30°∴BC=·sin135°11.3km.的距离约为B与C答:两景点经规划调理长沙市某棚户区改造建筑用地平面示意图如图所示.)(2010·湖南十校联考)(是原ABCD研确定,棚改规划建筑用地区域可近似为半径是R的圆面.该圆的内接四边形=2万米.万米,棚户建筑用地,测量可知边界AB=AD=4BC=6万米,CD的面积及圆面的半径R的值;(1)请计算原棚户区建筑用地ABCD可以调整.为了提高、BC(2)因地理条件的限制,边界AD、CD不能变更,而边界AB,使得棚户区改造的新建筑用地上设计一点P棚户区改造建筑用地的利用率,请在ABC的面积最大,并求出其最大值.APCD,由余AC[解析]=(1)因为四边形ABCD内接于圆,所以∠ABC+∠ADC180°,连接弦定理:222ABC +6-2AC×=44×6cos∠22.=4∠+2-2×ADC2×4cos1.60°.∠ABC=∵∠ABC∈(0,π),∴∠ABC=∴cos211 ×6×sin60°+××2×4sin120°S则=×4ABCD四边形22 .=83(万平方米) ABC中,由余弦定理:在△222∠·-2AB·BCACABC=ABBC+cos17.=2×46×=28,故16=+36-AC2×2 由正弦定理得,21212AC274 万米).=,∴R=(=2R=33ABC sin∠32=S+S(2)S,APCAPCDADC△四边形△1S=AD·CD·sin120°=23.ADC△2设AP=x,CP=y,13则S=xy·sin60°=xy.APC△24222-2xyyAC又由余弦定理:=x+cos60°含详解答案.高考总复习2228.xy+=-=xy22.xy≥2-xy∴x=+yxy-xy 28,当且仅当x=y时取等号.∴xy≤33时面积最大,其最大面积y,即当x∴S=23+=28xy≤23+×=93APCD四边形44 万平方米.为93处各有一个C、B17.(2010·上海松江区模拟)、如图所示,在一条海防警戒线上的点A收到发自静止50千米.某时刻,BC水声监测点,B、两点到点A的距离分别为20千米和同时接收到该声波信号,已知声波在水中的传播速度C秒后A、目标P的一个声波信号,8 1.5千米/秒.是P的距离,并求xP(1)设A到的距离为x千米,用x表示B的值.、C到0.01千米.(2)求P到海防警戒线AC的距离)(结果精确到PC=x,解析[](1)依题意,有PA=12. -8=-PB=x1.5x ×20AB=PAB中,在△222222?-PBxx-AB+1220-PA?+=PAB=cos∠20·AB2x2PA·323x+=x550 AC中,AC=同理,在△P222222x-PCxAC-+PA50+25 =,=cos=∠PACx502x·2PA·AC PAC,∠PAB=cos∠cos∵323x+2531. x==∴,解之得,x5x中,,在△AC于DADP(2)作PD⊥25 得,∠PAD=由cos312142=,-cos∠PAD=sin∠PAD131214 千米,18.33=APD=31·421≈∠A=∴PDP sin31 千米.的距离为到海防警戒线答:静止目标PAC18.33含详解答案.高考总复习含详解答案.。
正弦定理和余弦定理专题及解析
正弦定理和余弦定理教学目标掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知识梳理1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理公式错误!=错误!=错误!=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=错误!,sin B=错误!,sin C=错误!;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=错误!;cos B=错误!;cos C=错误!2。
S△ABC=错误!ab sin C=错误!bc sin A=错误!ac sin B=错误!=错误!(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.3。
在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形诊断自测1.判断正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( )(2)在△ABC中,若sin A>sin B,则A〉B。
()(3)在△ABC的六个元素中,已知任意三个元素可求其他元素。
( )(4)当b2+c2-a2〉0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形。
( )(5)在三角形中,已知两边和一角就能求三角形的面积.( )解析(1)三角形中三边之比等于相应的三个内角的正弦值之比.(3)已知三角时,不可求三边.(4)当b2+c2-a2>0时,三角形ABC不一定为锐角三角形.答案(1)×(2)√(3)×(4)×(5)√2。
高中数学高考总复习正弦定理与余弦定理应用举例习题及详解
高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题1.(2010·广东六校)两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )km.( )A .a B.2a C .2aD.3a[答案] D[解析] 依题意得∠ACB =120°.由余弦定理cos120°=AC 2+BC 2-AB 22AC ·BC∴AB 2=AC 2+BC 2-2AC ·BC cos120° =a 2+a 2-2a 2⎝⎛⎭⎫-12=3a 2 ∴AB =3a .故选D.2.(文)(2010·广东佛山顺德区质检)在△ABC 中,“sin A >32”是“∠A >π3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[答案] A[解析] 在△ABC 中,若sin A >32,则∠A >π3,反之∠A >π3时,不一定有sin A >32,如A =5π6时,sin A =sin 5π6=sin π6=12. (理)在△ABC 中,角A 、B 所对的边长为a 、b ,则“a =b ”是“a cos A =b cos B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] 当a =b 时,A =B , ∴a cos A =b cos B ; 当a cos A =b cos B 时, 由正弦定理得 sin A ·cos A =sin B ·cos B ,∴sin2A =sin2B , ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π2.则a =b 或a 2+b 2=c 2.所以“a =b ”⇒“a cos A =b cos B ”, “a cos A =b cos B ”⇒/ “a =b ”,故选A.3.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为( )A .10km B.3kmC .105kmD .107km[答案] D[解析] 如图,△ABC 中,AB =10,BC =20,∠B =120°,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos120° =102+202-2×10×20×⎝⎛⎭⎫-12=700, ∴AC =107km.∴选D.4.(文)在△ABC 中,sin 2A 2=c -b2c (a 、b 、c 分别为角A 、B 、C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形[答案] B[解析] sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =bc ,∴b 2+c 2-a 22bc =bc,∴a 2+b 2=c 2,故选B.(理)(2010·河北邯郸)在△ABC 中,sin 2A +cos 2B =1,则cos A +cos B +cos C 的最大值为( )A.54B. 2 C .1D.32[答案] D[解析] ∵sin 2A +cos 2B =1,∴sin 2A =sin 2B , ∵0<A ,B <π,∴sin A =sin B ,∴A =B . 故cos A +cos B +cos C =2cos A -cos2A=-2cos 2A +2cos A +1=-2(cos A -12)2+32,∵0<A <π2,∴0<cos A <1,∴cos A =12时,取得最大值32.5.(文)(2010·广东汕头一中)已知△ABC 的外接圆半径为R ,角A 、B 、C 的对边分别为a 、b 、c ,且2R (sin 2A -sin 2C )=(2a -b )sin B ,那么角C 的大小为( )A.π3 B.π2 C.π4D.2π3[答案] C[解析] 由正弦定理得,a 2-c 2=2ab -b 2, ∴cos C =a 2+b 2-c 22ab =22,∵0<C <π,∴C =π4.(理)已知a 、b 、c 是△ABC 三内角A 、B 、C 的对边,且A 为锐角,若sin 2A -cos 2A =12,则( )A .b +c <2aB .b +c ≤2aC .b +c =2aD .b +c ≥2a[答案] B[解析] ∵sin 2A -cos 2A =12,∴cos2A =-12,又A 为锐角,∴A =60°,∴B +C =120°, ∴b +c 2a =sin B +sin C2sin A=2sinB +C 2cos B -C23=cos B -C 2≤1,∴b +c ≤2a .6.(2010·北京顺义一中月考)在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为( )A.1665B.5665C.1665或5665D .-1665[答案] A[解析] ∵cos A =513,∴sin A =1213>35=sin B ,∴A >B ,∵sin B =35,∴cos B =45,∴cos C =cos[π-(A +B )]=-cos(A +B )=sin A sin B -cos A cos B =1665.[点评] 在△ABC 中,有sin A >sin B ⇔A >B .7.在地面上一点D 测得一电视塔尖的仰角为45°,再向塔底方向前进100m ,又测得塔尖的仰角为60°,则此电视塔高约为________m .( )A .237B .227C .247D .257[答案] A[解析] 如图,∠D =45°,∠ACB =60°,DC =100,∠DAC =15°, ∵AC =DC ·sin45°sin15°,∴AB =AC ·sin60° =100·sin45°·sin60°sin15°=100×22×326-24≈237.∴选A.8.(文)(2010·青岛市质检)在△ABC 中,∠B =π3,三边长a 、b 、c 成等差数列,且ac =6,则b 的值是( )A. 2B. 3C. 5D. 6[答案] D[解析] 由条件2b =a +c ,∴4b 2=a 2+c 2+2ac =a 2+c 2+12,又cos B =a 2+c 2-b 22ac ,∴12=a 2+c 2-b212,∴a 2+c 2=6+b 2, ∴4b 2=18+b 2,∴b = 6.(理)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a 、b 、c 成等比数列,且c =2a ,则cos B =( )A.14B.34C.24D.23[答案] B[解析] ∵a 、b 、c 成等比数列,∴b 2=ac ,又∵c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.[点评] 在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,集中考查正弦定理、余弦定理、等比数列等基础知识.同时也体现了数列、三角函数等内容是高考中的热点问题,复习时要注意强化.9.如图所示的曲线是以锐角△ABC 的顶点B 、C 为焦点,且经过点A 的双曲线,若△ABC 的内角的对边分别为a 、b 、c ,且a =4,b =6,c sin A a =32,则此双曲线的离心率为( )A.3+72B.3-72C .3-7D .3+7[答案] D [解析]c sin A a =32⇒a sin A =c 32=c sin C⇒sin C =32,因为C 为锐角,所以C =π3, 由余弦定理知c 2=a 2+b 2-2ab cos C =42+62-2×4×6×12=28,∴c =27∴e =a b -c =66-27=3+7.10.(文)(2010·山东济南)设F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 在双曲线上,若PF 1→·PF 2→=0,|PF 1→|·|PF 2→|=2ac (c 为半焦距),则双曲线的离心率为( )A.3-12B.3+12 C .2D.5+12[答案] D[解析] 由条件知,|PF 1|2+|PF 2|2=|F 1F 2|2,根据双曲线定义得:4a 2=(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=|F 1F 2|2-4ac =4c 2-4ac ,∴a 2+ac -c 2=0,∴1+e -e 2=0, ∵e >1,∴e =5+12. (理)(2010·安徽安庆联考)如图,在△ABC 中,tan C 2=12,AH →·BC →=0,AB →·(CA →+CB →)=0,经过点B 以A 、H 为两焦点的双曲线的离心率为( )A.5+12B.5-1C.5+1D.5-12[答案] A[解析] ∵AH →·BC →=0,∴AH ⊥BC , ∵tan C 2=12,∴tan C =2tanC21-tan 2C 2=43=AHCH,又∵AB →·(CA →+CB →)=0,∴CA =CB , ∴tan B =tan ⎝⎛⎭⎫180°-C 2=cot C 2=2=AHBH ,设BH =x ,则AH =2x ,∴CH =32x ,AB =5x ,由条件知双曲线中2C =AH =2x,2a =AB-BH =(5-1)x ,∴e =c a =25-1=5+12,故选A.二、填空题11.如图,为了测定河的宽度,在一岸边选定两点A ,B 和对岸标记物C ,测得∠CAB =30°,∠CBA =45°,AB =120米,则河的宽度为________米.[答案] 60(3-1)[解析] 过C 点作CD ⊥AB 于D ,设BD =x ,则CD =x ,AD =120-x ,又∵∠CAB =30°,∴x 120-x =33,解之得,x =60(3-1). 12.(2010·福建三明一中)如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°方向,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.[答案]13[解析] 如图可知,∠ABC =60°,AB =BC ,∴AC =5,∠BAC =60°,从而∠DAC =45°, 又AD =32,∴由余弦定理得, CD =AD 2+AC 2-2AD ·AC ·cos45°=13.13.(文)(2010·山东日照模拟)在△ABC 中,三个内角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3,△ABC 的面积等于3,则a +b =________.[答案] 4[解析] 由条件知,12ab sin π3=3,∴ab =4,∵cos π3=a 2+b 2-42ab,∴a 2+b 2=8,∴(a +b )2=a 2+b 2+2ab =8+8=16, ∴a +b =4.(理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积S =14(b 2+c 2-a 2),若a =10,则bc 的最大值是______.[答案] 100+50 2[解析] 由题意得,12bc sin A =14(b 2+c 2-a 2),∴a 2=b 2+c 2-2bc sin A ,结合余弦定理得,sin A =cos A ,∴∠A =π4,又根据余弦定理得100=b 2+c 2-2bc ≥2bc -2bc ,∴bc ≤1002-2=100+50 2.14.(文)(2010·山东日照)一船向正北匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是________海里/小时.[答案] 10[解析] 设该船的速度为v 海里/小时,如图由题意知,AD =v 2,AC =32v ,∵tan75°=tan45°+tan30°1-tan45°tan30°=2+3,又tan75°=ABAD,∴2+3=10+3v2v 2,解得v =10. (理)(2010·合肥质检)如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进m km 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险.[答案] m cos αcos β>n sin(α-β)[解析] ∠MAB =90°-α,∠MBC =90°-β=∠MAB +∠AMB =90°-α+∠AMB ,∴∠AMB =α-β,由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β),解得BM =m cos αsin (α-β),要使船没有触礁危险需要BM sin(90°-β)=m cos αcos βsin (α-β)>n ,所以α与β满足m cos αcos β>n sin(α-β)时船没有触礁危险.三、解答题15.(2010·河北唐山)在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,且a cos B +b cos A =1.(1)求c ;(2)若tan(A +B )=-3,求CA →·CB →的最大值. [解析] (1)由a cos B +b cos A =1及正弦定理得, c sin A sin C ·cos B +c sin Bsin C ·cos A =1, ∴c sin(A +B )=sin C ,又sin(A +B )=sin(π-C )=sin C ≠0, ∴c =1.(2)∵tan(A +B )=-3,0<A +B <π,∴A +B =2π3,∴C =π-(A +B )=π3.由余弦定理得,12=a 2+b 2-2ab cos C =a 2+b 2-ab ≥2ab -ab =ab =2CA →·CB →,∴CA →·CB →≤12,当且仅当a =b =1时取“=”号. 所以,CA →·CB →的最大值是12.16.(文)(2010·广东玉湖中学)如图,要计算西湖岸边两景点B 与C 的距离,由于地形的限制,需要在岸上选取A 和D 两点,现测得AD ⊥CD ,AD =10km ,AB =14km ,∠BAD =60°,∠BCD =135°,求两景点B 与C 的距离(精确到0.1km).参考数据:2=1.414,3=1.732,5=2.236.[解析] 在△ABD 中,设BD =x , 则BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA , 即142=x 2+102-2·10x ·cos60°, 整理得:x 2-10x -96=0, 解之得,x 1=16,x 2=-6(舍去), 由正弦定理得, BC sin ∠CDB =BDsin ∠BCD,∴BC =16sin135°·sin30°=82≈11.3(km)答:两景点B 与C 的距离约为11.3km.(理)(2010·湖南十校联考)长沙市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域可近似为半径是R 的圆面.该圆的内接四边形ABCD 是原棚户建筑用地,测量可知边界AB =AD =4万米,BC =6万米,CD =2万米.(1)请计算原棚户区建筑用地ABCD 的面积及圆面的半径R 的值;(2)因地理条件的限制,边界AD 、CD 不能变更,而边界AB 、BC 可以调整.为了提高棚户区改造建筑用地的利用率,请在ABC 上设计一点P ,使得棚户区改造的新建筑用地APCD 的面积最大,并求出其最大值.[解析] (1)因为四边形ABCD 内接于圆,所以∠ABC +∠ADC =180°,连接AC ,由余弦定理:AC 2=42+62-2×4×6cos ∠ABC =42+22-2×2×4cos ∠ADC .∴cos ∠ABC =12.∵∠ABC ∈(0,π),∴∠ABC =60°.则S 四边形ABCD =12×4×6×sin60°+12×2×4×sin120°=83(万平方米). 在△ABC 中,由余弦定理: AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =16+36-2×4×6×12=28,故AC =27.由正弦定理得,2R =AC sin ∠ABC =2732=4213,∴R =2213(万米).(2)S 四边形APCD =S △ADC +S △APC , S △ADC =12AD ·CD ·sin120°=2 3.设AP =x ,CP =y , 则S △APC =12xy ·sin60°=34xy .又由余弦定理:AC 2=x 2+y 2-2xy cos60°=x 2+y 2-xy =28.∴x 2+y 2-xy ≥2xy -xy =xy .∴xy ≤28,当且仅当x =y 时取等号.∴S 四边形APCD =23+34xy ≤23+34×28=93,即当x =y 时面积最大,其最大面积为93万平方米.17.(2010·上海松江区模拟)如图所示,在一条海防警戒线上的点A 、B 、C 处各有一个水声监测点,B 、C 两点到点A 的距离分别为20千米和50千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A 、C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求x 的值.(2)求P 到海防警戒线AC 的距离(结果精确到0.01千米).[解析] (1)依题意,有P A =PC =x ,PB =x -1.5×8=x -12.在△P AB 中,AB =20cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-(x -12)22x ·20=3x +325x同理,在△P AC 中,AC =50cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x, ∵cos ∠P AB =cos ∠P AC ,∴3x +325x =25x,解之得,x =31. (2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠P AD =2531得, sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠APD =31·42131=421≈18.33千米, 答:静止目标P 到海防警戒线AC 的距离为18.33千米.。
高考数学复习、高中数学 正弦定理和余弦定理附答案解析
第6节 正弦定理和余弦定理基础巩固题组(建议用时:40分钟)一、单项选择题1. 在△ABC 中,已知a =5,b =7,c =8,则A +C =( ).A .90°B .120°C .135°D .150°2.在△ABC 中,内角A ,B ,C 所对边分别是a ,b ,c 若sin 2=,则△ABC 的形状一B 2c -a 2c定是( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定3. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =,c =3, 6则A =( ).A .30°B .45°C .60°D .75°4. 在中,角,,的对边分别为a ,b ,c .若为锐角三角形,且满ABC ∆A B C ABC ∆足,则下列等式成立的是( ).sin (12cos )2sin cos cos sin B C A C A C +=+A .2a b = B .2b a = C . D .2A B =2B A =5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为2,则b +c 的值为( ).3A .5 B .6 C .7 D .86.在△ABC 中,A =60°,b =1,S △ABC =,则=( ). 3c sin CA. B. C. D .2 8381239326337二、多项选择题7. 如图,在矩形ABCD 中,边AB =5,AD =1,点P 为边AB 上一动点,当线段AP =( )时,使得∠DPC =.3π4A. B.2 C. D .3 8. 在锐角△ABC 中,BC =1,B =2A ,则AC 的取值可能是( ).A. B. C. +1 D .332二、填空题9. 在△中,若,则的形状一定是 三角形.ABC 2cos sin sin B A C =ABC ∆10.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab , 则角C =________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 若2b cos B =a cos C +c cos A , 则B =________.12.在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连结CD , 则△BDC 的面积是________,cos ∠BDC =________.能力提升题组(建议用时:20分钟)13. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知CD 为△ABC 的角平分线,且AD =2,BD =1,当△ABC 面积最大时,cos C =__________. 14.已知锐角三角形ABC 的外接圆的半径为,tan2C =-,则△ABC 面积的最大值 54247为________.15.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a -2b )cos C +c cos A =0.(1)求角C ;(2)若c =2,求△ABC 周长的最大值.316. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上.(1)求角C 的大小;(2)若△ABC 为锐角三角形且满足=+,求实数m 的最小值. m tan C 1tan A 1tan B第6节 正弦定理和余弦定理1. B .2. B .3. D4. A .5. 7 .6. 23937. BD解析:(法一)判断得点P 的位置关于AB 中点对称!故所有AP 的长和为AB 长。
专题6.4 正弦定理、余弦定理及其应用(讲)(解析版)
专题6.4 正弦定理、余弦定理及其应用【考纲解读与核心素养】1. 掌握正弦定理、余弦定理及其应用.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等.3.高考预测:(1)正弦定理或余弦定理独立命题; (2)正弦定理与余弦定理综合命题; (3)与三角函数的变换结合命题; (4)测量距离问题; (5测量高度问题; (6)测量角度问题.(7)考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、立体几何等结合考查. 4.备考重点:(1)掌握正弦定理、余弦定理; (2)掌握几种常见题型的解法. (3)理解三角形中的有关术语.【知识清单】1.正弦定理 正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为: a ∶b ∶c =sin A ∶sin B ∶sin C ;a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.面积公式S =12ab sin C =12bc sin A =12ac sin B2.余弦定理余弦定理:2222cos a b c ab C +-= , 2222cos b c a ac A +-= , 2222cos c a b ac B +-=.变形公式cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,os C =a 2+b 2-c 22ab3.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). (3)方向角:相对于某一正方向的水平角(如图3) ①北偏东α°即由指北方向顺时针旋转α°到达目标方向. ②北偏西α°即由指北方向逆时针旋转α°到达目标方向. ③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角). ②坡比:坡面的铅直高度与水平长度之比(如图4,i 为坡比).【典例剖析】高频考点一 正弦定理【典例1】(2019·全国高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【典例2】(2018·北京高考真题(理))在△ABC 中,a =7,b =8,cos B = –. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.【答案】(1) ∠A= (2) AC边上的高为【解析】(1)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.【总结提升】已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形b sin A<aa≥b a>b a≤b 关系式a<b sin A a=b sin A<b解的个数无解一解两解一解一解无解【变式探究】1.(2019·北京高考模拟(理))在中,已知BC=6,AC=4,,则∠B=______.【答案】【解析】∵BC=6,AC=4,,由正弦定理,得:sinB=,∵AC<BC ,∴得B 为锐角,所以B=. 故答案为:.2.(2018届浙江省嘉兴市高三上期末)在锐角ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若2C B =,则cb的取值范围是________. 【答案】()2,3【解析】因为2C B =,所以sin sin22sin cos 2cos ,2cos cC B B B c b B B b==∴== 因为锐角ABC ∆,所以0,02,03,222B C B A C B B πππππ<<<=<<=--=-<()23cos ,,2,36422cB B b ππ⎛⎫∴<<∴∈∈ ⎪ ⎪⎝⎭高频考点二 余弦定理【典例3】(2018·全国高考真题(文))的内角的对边分别为,,,若的面积为,则( )A .B .C .D . 【答案】C 【解析】 由题可知所以由余弦定理所以故选C.【典例4】(2019·北京高考真题(文))在△ABC 中,a =3,–2b c =,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值.【答案】(Ⅰ)7,5b c ==;. 【解析】(Ⅰ)由余弦定理可得2221cos 22a cb B ac +-==-,因为3a =,所以22390c b c -++=;因为2b c -=,所以解得75b c =⎧⎨=⎩. (Ⅱ)由(Ⅰ)知3,7,5a b c ===,所以22213cos 214b c a A bc +-==;因为A 为ABC ∆的内角,所以sin A ==.因为sin()sin()sin 14B C A A +=π-==. 【规律方法】应用余弦定理解答两类问题:【变式探究】1.(2018·全国高考真题(理))在中,,BC=1,AC=5,则AB=( )A .B .C .D .【答案】A 【解析】 因为所以,选A.2.(2019·北京高考模拟(理))已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小; (Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】(Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A CB ππ∠+∠=-∠=23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭=22coscos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅+1sin cos 2C C +⋅ =cossin sincos 66C C ππ⋅+⋅=sin 6C π⎛⎫+ ⎪⎝⎭203C π<<5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1【总结提升】已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对边. 高频考点三 正弦定理与余弦定理的综合运用【典例5】(2020·江苏省高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin 5C =;(2)2tan 11DAC ∠=.【解析】(1)由余弦定理得22222cos 9223252b ac ac B =+-=+-⨯⨯⨯=,所以5b =. 由正弦定理得sin 5sin sin sin 5c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin 5C C =-=. 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅3254525555525⎛⎫=⨯+-⨯=⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin 25DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【典例6】(2020·天津高考真题)在中,角所对的边分别为.已知.(Ⅰ)求角的大小;(Ⅱ)求的值;(Ⅲ)求的值.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)在中,由及余弦定理得,又因为,所以;(Ⅱ)在中,由,及正弦定理,可得;(Ⅲ)由知角为锐角,由,可得,进而,所以.【总结提升】应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.【变式探究】1.(2018年浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】(1). (2). 3【解析】由正弦定理得,所以由余弦定理得(负值舍去).2.(2019·全国高考真题(理))ABC的内角A,B,C的对边分别为a,b,c,设22B C A B C-=-.(sin sin)sin sin sin(1)求A;(222+=,求sin C.a b c【答案】(1)3A π=;(2)62sin 4C +=. 【解析】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,πA ∈3Aπ(2)22a b c +=,由正弦定理得:2sin sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=3312cos sin 2sin 222C C C ∴⨯++= 整理可得:3sin 63cos C C -=22sin cos 1C C += ()()223sin 631sin C C ∴-=-解得:62sin 4C +=或624- 因为6sin 2sin 2sin 2sin 02B C A C =-=->所以6sin 4C >,故62sin 4C +=.(2)法二:22a b c +=2sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=3312sin 2sin 2C C C += 整理可得:3sin 63C C =,即3sin 32366C C C π⎛⎫=-= ⎪⎝⎭sin 6C π⎛⎫∴-=⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()464C ππ=+=. 高频考点四 应用正弦定理、余弦定理判定三角形形状【典例7】(2020·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=, 即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+,即ABC 是直角三角形.【规律方法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范对三角函数值的限制. 【变式探究】在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C . ①求角A 的大小;②若sin B +sin C ABC 的形状. 【答案】①A =60°.②△ABC 为等边三角形. 【解析】①由2a sin A =(2b -c )sin B +(2c -b )·sin C 及正弦定理, 得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2,∴2221cos =22b c a A b c +-=⋅,∵0°<A <180°,∴A =60°. ②∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C sin B +sin(120°-B )∴sin B +sin120°cos B -cos120°sin B∴32sin B B ,即sin(B +30°)=1. ∵0°<B <120°, ∴30°<B +30°<150°. ∴B +30°=90°,即B =60°. ∴A =B =C =60°, ∴△ABC 为等边三角形.高频考点五 与三角形面积有关的问题【典例8】(2019·全国高考真题(文))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)(,82. 【解析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=。
完整word版高中数学高考总复习正弦定理与余弦定理应用举例习题及详解
高考总复习高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题在观察,灯塔A与海洋观察站C(2010·广东六校的距离都等于)a两座灯塔km A和1B.的距离为A与灯塔B在观察站C的南偏东40°,则灯塔站C的北偏东20°,灯塔B)()km.( B.2a A.aD.3 a C.2aD答案][. =120°][解析依题意得∠ACB由余弦定理ABBC-+222AC=cos120°BC·2AC AC·BC cos120°-∴AB=AC+BC22221??-a2==3aa+a-2222??2D.故选=∴AB3a.π3”是“∠A>”的(sin(2.文)(2010·广东佛山顺德区质检)在△ABC中,“A>) 23B.必要不充分条件.充分不必要条件AD.既不充分也不必要条件C.充要条件A[答案]ππ33,则∠A>,反之∠A>时,不一定有sin A>,如A=>[解析A中,若在△ABC sin]2332π5π5π1=sinsin A时,sin==. 2666) ”的cos bB(=cos”是“=则“baBA中,在△理()ABC角、所对的边长为、,abaA.必要不充分条件.充分不必要条件A B D C.充要条件.既不充分也不必要条件A]答案[ =A时,=当]解析[abB,cos=A cos∴abB;=cos a当A cos bB时,由正弦定理得A·A sincos·B sin=B cos,含详解答案.高考总复习AB=,∴sin2sin2 2B,或2A∴2=Aπ=-2Bπ=A+B∴A=B或.2c+b=则a=b或a222.B”,cos A=b cos所以“a=b”?“a A.”,故选/ “a=ba“cos A=b cos B”?,=120°C两地的距离为20km,观测得∠ABC.已知A、B两地的距离为10km,B、3)则AC两地的距离为(3km B. A.10km7km5km .10 DC.10D][答案,由余弦定120°ABC[解析]如图,△中,AB=10,BC=20,∠B=理得,=AB+BC-2AB·BC·cos120°222AC1??-×10××2010,=+20-2=70022??2D.∴选=107km.∴ACbc-A2的ABCB、C的对应边),则△在△4.(文)ABC中,sin、=(ab、c分别为角A、c22)形状为(B .直角三角形.正三角形AC.等腰直角三角形D.等腰三角形B [答案]b-cos Ac1-bA=cos A,==,∴2sin[解析]c22c2a+c-222bb B.c,故选,∴a+b=∴=222c2bc22的最大值为cos C+,则cos A+cos B中,河北邯郸(理)(2010·)在△ABC sin+A cos=B1)(5 2 A. B.43 1 D. .C2含详解答案.高考总复习D答案][2222,∴sin BA=sin[解析]∵sin A+cos,B=1. =B sin A=sin B,∴A∵0<A,B<π,∴cos2A cos C =2cos A-故cos A+cos B+31 ,+=-2cos22)2(cos A-1A+2cos A+=-22π31时,取得最大值=0<cos A<1,∴cos A∵0<A<,∴.222的对边分别为C,角A、B、5.(文)(2010·广东汕头一中)已知△ABC的外接圆半径为R22) ,那么角C的大小为()=(2a-b)sin a、b、c,且2R(sin-A sin BCππ B. A. 232ππ C. D. 34C[答案] ,2ab--cb=222a][解析由正弦定理得,c-+b222a2 ,cos C==∴22ab π=,∴C0<C<π∵.4122,cos=A为锐角,若sin AA-Ba、b、c是△ABC三内角A、、C的对边,且(理)已知2)则(B.b+c≤2.b+c<2a a AD .b C.b+c=2a+c≥2aB][答案11 ,=-,∴cos2A22=A][解析∵sin A-cos22 ,120°BA又A为锐角,∴=60°,∴+C=C+BCB-cos2sin C sin Bcb+sin+22=∴=Aa2sin23CB-cos=.≤1,∴a2cb+≤235) .6(2010·cos则,B sin=A已知中,ABC在△)北京顺义一中月考cos,=C(的值为513含详解答案.高考总复习5616 A. B. 6565561616 C. D.-或656565A答案][3512 B,sin B,∴A>=,∴sin A=>∵cos A=[解析]5131343)]+B=cos[π-(AB=,∴cos B=,∴cos C sin∵5516=cos BB-cos A cos(A+B)=sin A sin=-.65.BB?A>A点评]在△ABC中,有sin>sin[,又测得塔100m D测得一电视塔尖的仰角为45°,再向塔底方向前进7.在地面上一点)________m.(尖的仰角为60°,则此电视塔高约为227 .237 B.A257D247 C..A][答案=100,∠DAC=15°,,∠[解析]如图,∠D=45°ACB=60°,DC sin45°DC·=,∵AC sin15°sin60°=AC·AB∴sin60°sin45°100·=sin15°32××10022=A.237.∴选≈26-4π=acb、c成等差数列,且B)在△ABC中,∠=,三边长a、(8.文)(2010·青岛市质检3)b的值是(6,则 B.3 2 A.6C.5D.D][答案a++=ac2ac=+c12+,22222b=ba4,∴+c2解析[]由条件b+c-+cb-222222aa1 =,,∴B又cos=122ac2 ,+=c+∴a6b222含详解答案.高考总复习6.4,∴bb=∴=18+b22,ac=的内角)△ABCA、B、C的对边分别为a、b、、c.若ab2、c成等比数列,且(理)=(则cos B31 B. A. 4422 C. D.43B][答案,2a=ac,又∵c=2bca、b成等比数列,∴、解析[]∵a4a--b+2+c222222aa3==2a,∴cos B==∴b22.42aca×22a在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,[点评]三角函数等内容余弦定理、等比数列等基础知识.同时也体现了数列、集中考查正弦定理、是高考中的热点问题,复习时要注意强化.的双曲线,若△为焦点,且经过点A9.如图所示的曲线是以锐角△ABC的顶点B、C3sin Ac)(=6,=,b、c,且a则此双曲线的离心率为=4,b、ABC的内角的对边分别为a2a773-3+B. A. 22 .3-7 .D3 +7CD ][答案π33accc sin A,为锐角,所以C====,因为C=?[解析]sin C?C23sin Aa2sin3217 228,∴c=×+46-2×46×=cos-a由余弦定理知c=+b2abC=2222226a7.=3+=∴e=7-26b-c22yx在双曲P的两个焦点,b>01(=-是双曲线、F))(2010·(10.文山东济南设Fa,>0)2122ba含详解答案.高考总复习→→→→)(c为半焦距)线上,若,则双曲线的离心率为PF·PF=0,|PF|·|PF|(=2ac212113+3-1 A.B. 221+5 2 D. C .2D答案][=PF(|=|PFF,根据双曲线定义得:4a=+|22222|)|由条件知,|PF|-|F||[解析PF]221112,4ac4-ac=4c-+|PF-2|PF2222|F||F=||·|PF||PF212112,-e==00,∴1+e∴aac+-c2221+5=ee>1,∴∵.21C→→→→→,)=0AB·(CA+CB·安徽安庆联考)如图,在△ABC中,tan=,AHBC=0,(理)(2010·22)(以A、H为两焦点的双曲线的离心率为经过点B15+1 5- A. B. 215- 1 D.C.5 +2A][答案→→,,∴AH⊥BC=0BC∵]AH·[解析C2tan2AH4C1 ==,C∵tan=,∴tan=CH2C322tan1-2→→→CBAB+又∵,CB0,∴CA·(CA=)=??180°-CAHC 2=,=cottan∴B=tan=??BH2??23=CH2x,∴==设BHx,则AHAB=22AHC,由条件知双曲线中5ABx,=x2==x,a2含详解答案.高考总复习1)x,(-5BH-=15+2c A.==,故选∴e=2a15-二、填空题CABC,测得∠.如图,为了测定河的宽度,在一岸边选定两点A,B和对岸标记物11 ________米.AB=120米,则河的宽度为30°=,∠CBA=45°,1)-]答案60(3[ =30°,-=120x,又∵∠CAB则于⊥ABD,设BD=x,CD=x,AD点作][解析过CCD3x 1).=,解之得,x60(3-∴=3x-120位于BA,B,灯塔如图,海岸线上有相距12.(2010·福建三明一中)5海里的两座灯塔相距A的北偏西75°方向,与灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A则两艘轮船处.海里的B相距5C与B海里的32D处;乙船位于灯塔的北偏西60°方向,海里.之间的距离为________13答案][ ,=,=如图可知,∠][解析ABC60°ABBC含详解答案.高考总复习DAC45°BAC∴=AC==60°5,,∠,从而∠AD,∴由余弦定理得,=3又213. ·cos45°2=AD·AC+AC-22AD=CD,、cC所对的边分别是a、b山东日照模拟)在△ABC中,三个内角A、B、文13.()(2010·π________.b=的面积等于3,则a+已知c=2,C=,△ABC34][答案π1 4,3,∴ab==sin由条件知,ab[解析]324-+b22aπ,∵cos=ab23 ,8=16b+2ab =8++a∴+b=8,∴(a+b)=a222224.=a+b∴1222,a=a10),、c,面积S=(bc+若-、)(理在△ABC中,角A、BC的对边分别为a、b4 的最大值是______.则bc2+50[答案]10011ac-+222 )b,bc sin A=([解析]由题意得,42π100又根据余弦定理得A=,sin A =cos A,∴∠bc=∴ab+c-2sin A,结合余弦定理得,22241002.+50,∴bc≤=1002-=b+c2bc≥2bc-bc2222-海里的灯塔恰10)(2010·山东日照)一船向正北匀速行驶,看见正西方两座相距文14.(方向上,另一60°好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西小时.________海里/灯塔在南偏西75°方向上,则该船的速度是10答案][v3=AC,,v=[解析]设该船的速度为v海里AD/小时,如图由题意知,22tan30°tan45°++3,2=∵tan75°=tan30°-1tan45°含详解答案.高考总复习v3+102AB10. ==,解得v tan75°=,∴2+3又vAD2的方位角为A处测得某岛M)(理)(2010·合肥质检如图,一船在海上自西向东航行,在范围n km角,后在B处测得该岛的方位角为北偏东β已知该岛周围北偏东α角,前进m km 时,该船没有触礁危险.α与满足条件β________内(包括边界)有暗礁,现该船继续东行.当)β>n cossin(α-β[答案]m cosαAMBAMB=90°-α+∠AMB-∠MAB=90°α,∠MBC,∴∠=90°-β=∠MAB+∠[解析] =α-β,αBMmm cos,BM=ABM中,根据正弦定理得=,解得由题可知,在△?-βsin?ααsin?90°-α?sin?-β?βαcos m cos=)sin(90°-βBM要使船没有触礁危险需要α>n sin(α>n,所以α与β满足m coscosβ?β?αsin-)-β时船没有触礁危险.三、解答题AB+cos bA、B、C所对的边,且ab15.(2010·河北唐山)在△ABC中,a、、cos c分别是角1.=;求c(1)→→CB的最大值.B)=-3,求CA·+(2)若tan(A 1及正弦定理得,+b cos A=由[解析](1)a cos BB sin cc sin A 1,+·cos A·=cos BC sin C sin ,=sin CB∴c sin(A+) 0,)=sin C≠C)sin(又A +B=sin(π-1.=∴c2π,=A<π+0<3)+tan((2)∵AB=-,AB,∴+B3含详解答案.高考总复习π=B∴)C=π-(A+.3 由余弦定理得,ab-ab≥2ab-ab===a+b-2ab cos Ca+b2222211→→→→,=2CA,∴CA≤·CB·CB2 =1时取“=”号.当且仅当a=b1→→的最大值是CA所以,.·CB2由于地形的C)广东玉湖中学如图,要计算西湖岸边两景点B与16.(的距离,文)(2010·=14km,∠BAD=10km,AB=限制,需要在岸上选取A和⊥D两点,现测得ADCD,AD=,30.1km).参考数据:2=1.414=,∠BCD135°,求两景点B与C的距离(精确到60°2.236.5=1.732,,xABD中,设BD=[解析]在△,cos∠BDAADBD+AD-2BD·则BA=222·cos60°,-x+102·10x14即=222 0,=-10x-96整理得:x2x解之得,),x=-6(舍去16=,21由正弦定理得,BDBC,=BCD∠∠CDB sinsin16=∴BC11.3(km)82≈·sin30°=sin135°11.3km.C的距离约为答:两景点B与经规划调长沙市某棚户区改造建筑用地平面示意图如图所示.理)(2010·湖南十校联考)(是原R的圆面.该圆的内接四边形ABCD研确定,棚改规划建筑用地区域可近似为半径是2CD6BC4ADAB棚户建筑用地,测量可知边界==万米,=万米,=万米.含详解答案.高考总复习R的值;(1)请计算原棚户区建筑用地ABCD的面积及圆面的半径可以调整.为了提高、BC(2)因地理条件的限制,边界AD、CD不能变更,而边界AB,使得棚户区改造的新建筑用地上设计一点P棚户区改造建筑用地的利用率,请在ABC APCD的面积最大,并求出其最大值.,由余弦ACABCD[解析](1)因为四边形内接于圆,所以∠ABC+∠ADC=180°,连接定理:+=46-2×4×6cos∠ABC222AC.=4∠ADC×2×4cos+2-222=∠ABC∴cos.=60°π),∴∠ABC.∵∠ABC∈(0,211=S则×sin60°+sin120°6×4××2×4×ABCD四边形22 =83(万平方米).中,由余弦定理:在△ABC∠ABC·2ABBC·cos AB=+BC-222AC17.=2=28AC,故=16+36-2×4×6×2 由正弦定理得,21212AC724=R==,∴(2R万米=).333ABC sin∠2 =S+S,S(2)APC△APCD△ADC四边形1=3.2CD·sin120°=SAD·ADC△2 =,y,设AP=xCP31则S=xy·sin60°=xy.APC△24又由余弦定理:AC=x+y-2xy cos60°222=x+y-xy=28.22含详解答案.高考总复习.xy-≥2xyxy∴=x+y-xy22时取等号.28,当且仅当x=y∴xy≤33+=23S∴时面积最大,其最大面积y,即当x==xy≤23+×2893APCD四边形44 万平方米.为93处各有一个CB、.17(2010·上海松江区模拟)如图所示,在一条海防警戒线上的点A、收到发自静止B50千米.某时刻,水声监测点,B、两点到点CA的距离分别为20千米和同时接收到该声波信号,已知声波在水中的传播速度CA、目标P的一个声波信号,8秒后秒.千米/是1.5的值.的距离,并求x的距离为(1)设A到Px千米,用x表示B、C到P千米).(2)求P到海防警戒线AC的距离(结果精确到0.01 ,PC=[解析](1)依题意,有PxA=12. =x-1.5PB=x-×820中,=AB在△PAB?12?x+AB-PB+20--222222xAP==P cos AB∠20x2·2PAAB323x+=x550 =AC中,AC同理,在△Px+PC50-+AC-222222xPA25 ==,=AC cos∠Px·50A·AC2x2P,cos∠PACAB∵cos∠P=32+3x2531.x=,解之得,=∴x5x ADP中,⊥AC于D,在△PD(2)作25 得,PAD=∠由cos31214 ,AD∠P =2cos1ADP∠sin=-31含详解答案.高考总复习21431·=421≈∠APD=18.33千米,sin PPD∴=A31答:静止目标P到海防警戒线AC的距离为18.33千米.含详解答案.。
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
2022新高考第一轮复习 考点32 正弦定理、余弦定理的应用(解析版)
考点32 正弦定理、余弦定理的应用【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.【基础知识回顾】1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).3.方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.区分两种角(1)方位角:从正北方向起按顺时针转到目标方向线之间的水平夹角.(2)方向角:正北或正南方向线与目标方向线所成的锐角.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.1.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测量A,B两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°.就可以计算出A ,B 两点的距离为____________.A .20 2 mB .302 mC .402 mD .502 m【答案】:D【解析】:由正弦定理得,则AB =502(m ).2. 如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min .若此人步行的速度为每分钟50 m ,则该扇形的半径为________m .A .503B .505C .507D .5011【答案】:C【解析】连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,解得OC =507(m ).3. 如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile .此船的航速是__________n mile /h .A .16B .32C .64D .128【答案】:B【解析】:设航速为v n mile /h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin30°=12v sin45°, ∴ v =32 n mile /h .4. 某渔轮在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°距离为10海里的C 处,并测得渔轮正沿方位角为105°的方向,以9海里/小时的速度向小岛靠拢,我海军舰艇立即以21海里/小时的速度前去营救,则舰艇靠近渔轮所需的时间为____________小时. A .12 B .23C .34D .1【答案】:B【解析】:如图,设舰艇在B ′处靠近渔轮,所需的时间为t 小时,则AB ′=21t ,CB ′=9t .在△AB ′C 中,根据余弦定理,则有 AB ′2=AC 2+B ′C 2-2AC ·B ′C cos120°, 可得212t 2=102+81t 2+2·10·9t ·12.整理得360t 2-90t -100=0,解得t =23或t =-512(舍去).故舰艇需23小时靠近渔轮.考向一利用正弦、余弦定理解决距离及角度问题例1、某市电力部门需要在A ,B 两地之间架设高压电线,因地理条件限制,不能直接测量A ,B 两地距离. 现测量人员在相距 3 km 的C ,D 两地(假设A ,B ,C ,D 在同一平面上),测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A ,B 距离的43倍,问施工单位至少应该准备多长的电线?【解析】:在△ACD 中,由已知可得∠CAD =30°,所以AC = 3 km .在△BCD 中,由已知可得,∠CBD=60°.sin75°=sin(45°+30°)=6+24. 由正弦定理,BC =3sin75°sin60°=6+22. cos75°=cos(45°+30°)=6-24. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC·BC cos ∠BCA=32+⎝ ⎛⎭⎪⎫6+222-23·6+22·cos75°=5 . 所以AB =5,故施工单位应该准备电线长为43 5 km变式1、如图,有一段河流,河的一侧是以O 为圆心,半径为103 m 的扇形区域OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45°,30°和60°. (1) 求烟囱AB 的高度;(2) 如果要在CE 间修一条直路,求CE 的长.【解析】:(1) 设AB 的高度为h .在△CAB 中,因为∠ACB =45°,所以CB =h .在△OAB 中,因为∠AOB =30°,∠AEB =60°, 所以OB =3h ,EB =33h .由题意得3h -3h3=103,解得h =15. 故烟囱AB 的高度为15 m .(2) 在△OBC 中,cos ∠COB =OC 2+OB 2-BC 22OC ·OB=300+225×3-2252×103×153=56. 所以在△OCE 中,CE 2=OC 2+OE 2-2OC ·OE ·cos ∠COE =300+300-600×56=100.故CE 的长为10 m .变式2、在海岸A 处,发现北偏东45°方向,距离A 为(3-1) nmile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 为2 nmile 的C 处的缉私船奉命以10 3 nmile /h 的速度追截走私船.此时,走私船正以10 nmile /h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【解析】: 如题图所示,注意到最快追上走私船且两船所用时间相等,若在D 处相遇,则可先在△ABC 中求出BC ,再在△BCD 中求∠BCD .设缉私船用t h 在D 处追上走私船,则有CD =103t ,BD =10t ,在△ABC 中, ∵ AB =3-1,AC =2,∠BAC =120°,∴ 由余弦定理得BC 2=AB 2+AC 2-2AB·AC ·cos ∠BAC =(3-1)2+22-2·(3-1)·2·cos120°=6, ∴ BC =6.∵ cos ∠CBA =BC 2+AB 2-AC 22BC·AB =6+(3-1)2-426·(3-1)=22, ∴ ∠CBA =45°,即B 在C 正东.∵ ∠CBD =90°+30°=120°,在△BCD 中,由正弦定理得 sin ∠BCD =BD ·sin ∠CBD CD =10t sin120°103t =12, ∴ ∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.变式3、如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 h 追上,此时到达C 处. (1) 求渔船甲的速度; (2) 求sin α的值.【解析】:(1) 依题意知,∠BAC =120°,AB =12海里,AC =10×2=20海里,∠BCA =α.在△ABC 中,由余弦定理, 得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=122+202-2×12×20×cos120°=784,解得BC =28海里. 所以渔船甲的速度为BC2=14海里/小时.(2) 在△ABC 中,因为AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α, 由正弦定理,得AB sin α=BCsin120°.即sin α=AB ·sin120°BC=12×3228=3314. 方法总结:(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.考向二 正余弦定理在三角形中的运用例2、(2015南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 上的一点.已知∠B =60°,AD =2,AC =10,DC =2,则AB =________.【答案】263【解析】、在△ACD 中,因为AD =2,AC =10,DC =2,所以cos ∠ADC =2+4-102×2×2=-22,从而∠ADC=135°,所以∠ADB =45°.在△ADB 中,AB sin45°=2sin60°,所以AB =2×2232=263变式1、(2015南通、扬州、淮安、连云港二调)如图,在△ABC 中,AB =3,AC =2,BC =4,点D 在边BC 上,∠BAD =45°,则tan ∠CAD 的值为________.【答案】8+157【解析】、 从构造角的角度观察分析,可以从差的角度(∠CAD =∠A -45°),也可以从和的角度(∠A =∠CAD+45°),所以只需从余弦定理入手求出∠A 的正切值,问题就迎刃而解了.解法1 在△ABC 中,AB =3,AC =2,BC =4,由余弦定理可得cos A =32+22-422×3×2=-14,所以tan A =-15,于是tan ∠CAD =tan(A -45°)=tan A -tan45°1+tan A tan45°=8+157.解法 2 由解法1得tan A =-15.由tan(45°+∠CAD )=-15得tan45°+tan ∠CAD1-tan45°tan ∠CAD =-15,即1+tan ∠CAD 1-tan ∠CAD =-15,解得tan ∠CAD =8+157.变式2、(2017徐州、连云港、宿迁三检)如图,在ABC △中,已知点D 在边AB 上,3AD DB =,4cos 5A =,5cos 13ACB ∠=,13BC =. (1)求cos B 的值; (2)求CD 的长.B D解析:(1)在ABC △中,4cos 5A =,(0,π)A ∈,所以3sin 5A ==.同理可得,12sin 13ACB ∠=. 所以cos cos[π()]cos()B A ACB A ACB =-+∠=-+∠sin sin cos cos A ACB A ACB =∠-∠312451651351365=⨯-⨯=. (2)在ABC △中,由正弦定理得,1312sin 203sin 135BC AB ACB A=∠=⨯=. 又3AD DB =,所以154BD AB ==. 在BCD △中,由余弦定理得,CD ===变式3、(2016徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD =1,BD =210,∠CAD =π4,tan ∠ADC =-2.(1) 求CD 的长;(2) 求△BCD 的面积.解析: (1)因为tan ∠ADC =-2,且∠ADC ∈(0,π),所以sin ∠ADC =255,cos ∠ADC =-55.所以sin ∠ACD =sin ⎝⎛⎭⎫π-∠ADC -π4=sin ⎝⎛⎭⎫∠ADC +π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=1010,(6分)在△ADC 中,由正弦定理得CD =AD ·sin ∠DACsin ∠ACD =5(2) 因为AD ∥BC, 所以cos ∠BCD =-cos ∠ADC =55,sin ∠BCD =sin ∠ADC =255 在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD ,得BC 2-2BC -35=0,解得BC =7, (12分)所以S △BCD =12BC ·CD ·sin ∠BCD =12×7×5×255=7.变式4、(2017年苏北四市模拟)如图,在四边形ABCD 中,已知AB =13,AC =10,AD =5,CD =65,AB →·AC →=50.(1) 求cos ∠BAC 的值;(2) 求sin ∠CAD 的值; (3) 求△BAD 的面积.解析: (1) 因为AB →·AC →=||A B →||A C →cos ∠BAC ,所以cos ∠BAC =AB →·AC→||A B →||A C→=5013×10=513.(2) 在△ADC 中,AC =10,AD =5,CD =65.由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =102+52-(65)22×10×5=35. 因为∠CAD ∈(0,π),所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫352=45.(3) 由(1)知,cos ∠BAC =513. 因为∠BAC ∈(0,π),所以sin ∠BAC =1-cos 2∠BAC =1-⎝⎛⎭⎫5132=1213.从而sin ∠BAD =sin(∠BAC +∠CAD )=sin ∠BAC cos ∠CAD +cos ∠BAC sin ∠CAD =1213×35+513×45=5665.所以S △BAD =12AB ·AD ·sin ∠BAD =12×13×5×5665方法总结:正余弦定理主要就是研究三角形综合的边与角的问题,许多题目中往往给出多边形,因此,就要根据题目所给的条件,标出边和角,合理的选择三角形,尽量选择边和角都比较多的条件的三角形,然后运用正余弦定理解决。
高考数学题型全归纳:正余弦定理的应用知识归纳含答案
正余弦定理在解决三角形问题中的应用 知识点概括: 1.正弦定理: 形式一:形式二:a b c 2R ;sin A sin B sin Csin A = a b c ; sin B = ; sin C = ;(角到边的变换)2R 2R 2R形式三: a 2R sin A , b 2R sin B , c 2R sin C ;(边到角的变换)形式四: S 1 ab sin C 1 b c sin A 1 acsin B ;(求三角形的面积)2 2 2解决以下两类问题:1 )、已知两角和任一边,求其余两边和一角; (独一解)2 )、已知两边和此中一边的对角,求另一边的对角(进而进一步求出其余的边和角) 。
若给出 a ,b, A 那么解的个数为: 无解( a b sin A );一解( a b sin A 或许 a b sin A );两解( b sin A a b );2.余弦定理:形式一: a 2 b 2 c 2 2bc cos A , b 2 a 2 c 2 2ac cosB , c 2 a 2 b 2 2ab cos C形式二: cos A b 2 c 2 a 2 ,cosB a 2 c 2 b 2 ,cosC a 2 b 2 c 2 ,(角到边的变换)2bc 2ac 2ab 解决以下两类问题:1)、已知三边,求三个角; (独一解)2)、已知两边和它们得夹角,求第三边和其余两个角; (独一解)3、角均分线定理: AB AD ;此中 BD 为角 B 的角均分线。
BC DC规律方法总结:1、要正确划分两个定理的不一样作用,环绕三角形面积公式及三角形外接圆直径睁开三角形问题的求解。
2、两个定理能够实现将“边、角混淆”的等式转变成“边或角的单调”等式。
3、记着一些结论: A B C , A, B, C 均为正角; S 1 ab sin C 等。
24、余弦定理的数目积表示式: cos A BA CA。
| BA ||CA |5.余弦定理中,波及到四个量,利用方程思想,知道此中的随意三个量可求出第四个量。