锁模激光器

合集下载

npr光纤锁模波长

npr光纤锁模波长

npr光纤锁模波长NPR光纤锁模波长光纤锁模激光器是一种基于光纤技术的激光器,它具有高功率、窄线宽和稳定输出等优点,被广泛应用于光通信、激光雷达和光学测量等领域。

而NPR(Nonlinear Polarization Rotation)光纤锁模波长则是指在光纤锁模激光器中,通过非线性极化旋转技术实现的波长选择。

在传统的光纤锁模激光器中,常使用光纤光栅或其他光谱滤波器来实现波长选择。

然而,这种方式存在着一些限制,比如调谐范围狭窄、调谐精度有限等问题。

而NPR光纤锁模波长则通过利用非线性极化旋转效应,可以实现更宽广的波长选择范围和更高的调谐精度。

NPR光纤锁模波长的实现原理是利用光纤中的非线性极化旋转效应。

当一束光经过一段光纤时,由于光纤的非线性特性,光的偏振状态会发生旋转。

而当光脉冲的功率足够大时,非线性极化旋转效应会引起频率差异,从而实现波长的选择。

具体来说,NPR光纤锁模激光器中通常包含了一个非线性光纤和一个偏振控制器。

非线性光纤用于产生非线性极化旋转效应,而偏振控制器则用于调节光的偏振状态。

通过调节偏振控制器的参数,可以实现对光的偏振状态和频率的调谐,从而选择特定的波长。

NPR光纤锁模激光器在波长选择上具有很大的灵活性和精确性。

它可以实现连续的波长调谐,并且可以选择窄线宽的激光输出。

此外,由于NPR光纤锁模波长的实现是基于非线性效应,因此它对光纤的色散特性不敏感,可以避免由色散引起的波长漂移问题。

NPR光纤锁模波长在光通信领域有着广泛的应用。

它可以用于光纤传输系统中的波长选择和光谱整形,实现高速、高容量的光通信。

同时,NPR光纤锁模波长还可以用于光纤传感器中,实现对光纤中的温度、应力、压力等物理参数的测量。

NPR光纤锁模波长是一种基于非线性极化旋转效应的波长选择技术。

它具有广泛的应用前景,在光通信、光学测量和光学传感等领域都有着重要的作用。

随着光纤技术的不断发展,相信NPR光纤锁模波长会在未来发挥更大的作用,推动光纤激光器的性能和应用的进一步提升。

间距可控的耗散孤子分子锁模光纤激光器

间距可控的耗散孤子分子锁模光纤激光器

间距可控的耗散孤子分子锁模光纤激光器下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!间距可控的耗散孤子分子锁模光纤激光器随着光纤激光器技术的不断进步,间距可控的耗散孤子分子锁模光纤激光器成为当前研究的热点之一。

锁模激光器用途

锁模激光器用途

锁模激光器用途锁模激光器用途一、概述锁模激光器是一种具有高单色性和窄线宽的激光器,广泛应用于科学研究、通信、医疗、材料加工等领域。

本文将从这些方面详细介绍锁模激光器的用途。

二、科学研究1. 光谱学研究锁模激光器具有高单色性和窄线宽的特点,可以提供非常准确的波长和频率。

因此,在光谱学研究中,锁模激光器被广泛应用于吸收光谱、荧光光谱、拉曼光谱等方面。

例如,在生物医学领域中,使用锁模激光器可以实现非常精确的荧光共振能量转移(FRET)测量。

2. 全息术全息术是一种利用相干光的干涉原理制作三维图像的技术。

由于锁模例如,在生物医学领域中,使用锁模激光器可以制作出非常精细的三维细胞图像。

3. 纳米加工纳米加工是一种利用激光器对材料进行微观结构加工的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在纳米加工中也得到了广泛应用。

例如,在半导体制造领域中,使用锁模激光器可以实现非常精确的微观结构刻蚀。

三、通信1. 光纤通信光纤通信是一种利用光学信号传输信息的技术。

由于锁模激光器具有高单色性和窄线宽的特点,因此在光纤通信中也得到了广泛应用。

例如,在长距离通信中,使用锁模激光器可以提供非常稳定和准确的光源。

2. 全息显影全息显影是一种利用相干光制作三维图像的技术。

由于锁模激光器具在全息存储领域中,使用锁模激光器可以实现非常高密度的数据存储。

四、医疗1. 激光治疗激光治疗是一种利用激光对人体进行治疗的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在激光治疗中也得到了广泛应用。

例如,在皮肤科领域中,使用锁模激光器可以实现非常精确的皮肤切割和去除。

2. 全息术全息术是一种利用相干光制作三维图像的技术。

由于锁模激光器具有高单色性和相干性,因此在医学成像中也得到了广泛应用。

例如,在眼科领域中,使用锁模激光器可以制作出非常精细的眼底图像。

五、材料加工1. 激光切割激光切割是一种利用激光对材料进行切割的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在激光切割中也得到了广泛应用。

锁模光纤激光器的光谱

锁模光纤激光器的光谱

锁模光纤激光器的光谱锁模光纤激光器是一种高性能光纤激光器,其光谱具有独特的特点。

锁模光纤激光器通过被动锁模技术实现超短脉冲输出,具有很高的稳定性和可靠性。

其光谱特点主要表现在以下几个方面:1. 光谱宽度:锁模光纤激光器的光谱宽度相对较窄,这是由于被动锁模技术本身的特点决定的。

被动锁模光纤激光器通常采用线性光纤光栅或非线性光纤光栅作为光谱调节元件,通过调节光纤内的增益和损耗来实现光谱的窄化。

2. 光谱形状:锁模光纤激光器的光谱形状通常为高斯型或近高斯型分布。

这种光谱形状有利于实现较高的光束质量和输出功率。

同时,高斯型光谱具有良好的谱线对称性,有利于实现稳定的锁模输出。

3. 输出功率和波长调节:锁模光纤激光器的输出功率和波长可以通过调节泵浦源的功率、光纤激光器的结构以及光谱调节元件来实现优化。

在实际应用中,锁模光纤激光器通常需要具备较高的输出功率,以满足各种应用场景的需求。

4. 光谱稳定性:锁模光纤激光器具有较高的光谱稳定性,这是由于其被动锁模技术的特性所决定的。

在被动锁模光纤激光器中,锁模稳定性主要取决于光纤激光器内部的噪声源和光谱调节元件的稳定性。

通过选用高品质的光谱调节元件和优化光纤激光器结构,可以进一步提高光谱稳定性。

5. 光谱可调性:部分锁模光纤激光器具有光谱可调性,这意味着可以通过调节光谱调节元件或泵浦源来实现光谱的连续调整。

这种可调性有利于满足不同应用场景对光谱的需求。

综上所述,锁模光纤激光器的光谱具有窄宽度、高光束质量、良好的光谱形状、较高的输出功率和光谱稳定性等特点。

通过优化光纤激光器结构和光谱调节元件,可以进一步提高锁模光纤激光器的光谱性能。

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。

关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。

并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。

每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。

各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。

但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。

这种激光器称为锁模激光器。

假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。

为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。

现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。

不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。

由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。

于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。

锁模激光器的产生原理

锁模激光器的产生原理

锁模激光器的产生原理
锁模的基本原理,就是激光器内放置损耗调制元件,假设激光器
的腔长时L,则激光器的震荡频率为c/2L。

调制元件的调制周期刚好是光脉冲在腔内一周所需要的的时间2L/c。

因此在谐振腔中往返运行的激光束在通过调制器的时候,总是处在相同的调制周期内。

假如调制器放在谐振腔的一端,再假设t1时刻,某一光信号受到的损耗是a(t1),则,这一信号在腔内往返一周后,将受到同样的损耗,若a(t1)≠0,则该信号在腔内往返一次则遭受到一次损耗,如果损耗大于增益的话,在信号最后会衰减为零,该部分光消失。

而a(t1)=0时,光每次通过衰减器的损耗为零,加上光波在腔内工作物质中的放大,光会不断得到放大,光波振幅不断变大。

如果腔内的损耗和增益物质控制得当,就可以产生脉冲周期为2L/c的脉冲序列输出。

现假设在增益曲线的中心处的纵模频率为v0,由于它的增益最大,首先得到振荡,通过调制器时,受到损耗调制,调制的结果是产生两个边频v0+/—vm,当损耗的变化频率和腔内纵模的频率间隔相等时,即vm=c/2L时,由调制激发的边频实际上与v0相邻的两个纵模频率相等,它们之间具有相同的振幅和相位关系,它们可以开始震荡。

而后,两个边频开始被放大,得到调制,调制后又激发新的边频,以此类推达到了锁模的目的,这些模式叠加起来发生剧烈的耦合,形成了强而窄的光脉冲序列。

彭亦超2.28。

光纤激光器锁模原理介绍

光纤激光器锁模原理介绍

光纤激光器锁模原理介绍Lasers are devices that produce intense beams of monochromatic light through the process of stimulated emission of radiation. Fiber lasers, in particular, are a type of solid-state laser that uses an optical fiber as the gain medium. Their ability to produce high-quality beams of light with high efficiency makes them highly desirable for a variety of applications, including cutting, welding, drilling, and marking in the industrial sector.激光是通过受激辐射过程产生强烈的单色光束的设备。

光纤激光器是一种将光纤作为增益介质的固体激光器。

它们能够高效地产生高质量的光束,因此在工业领域的切割、焊接、钻孔和标记等应用中备受青睐。

One fundamental principle behind the operation of fiber lasers lies in the process of mode locking. Mode locking refers to the synchronization of the phases of the modes of the laser’s electromagnetic field. By doing so, the laser produces pulses of light with a very narrow linewidth and high peak power, which is advantageous for many applications.光纤激光器运作背后的一个基本原理是锁模过程。

9字腔光纤锁模激光器原理__概述说明以及解释

9字腔光纤锁模激光器原理__概述说明以及解释

9字腔光纤锁模激光器原理概述说明以及解释1. 引言1.1 概述本文介绍的是9字腔光纤锁模激光器的原理、工作方式以及其在实验验证与优化方面的应用。

光纤锁模激光器已经成为现代激光技术领域中一个重要的研究课题,具有广泛的应用前景。

其中,9字腔结构是一种常见且有效的布局形式,在锁模激光器研究中被广泛采用。

1.2 文章结构本文将按照以下顺序来展开对9字腔光纤锁模激光器原理的解释和说明:首先,我们将简要介绍光纤锁模激光器基本原理,并详细探讨9字腔结构的特点和组成部分。

接下来,我们将阐述该类型激光器在不同领域中的应用情况。

然后,我们将深入解释该设备的工作原理,包括关键过程如光传输与放大机制、共振腔的特性与工作方式以及锁模效应及其影响因素。

接着,我们将介绍相关实验验证方法和优化措施,并详细阐述实验步骤、设置参数以及结果与分析。

最后,我们将总结主要研究成果,并对未来发展提出展望。

1.3 目的本文的目的是提供读者关于9字腔光纤锁模激光器原理的全面了解。

通过深入探讨其工作机制和特性,我们希望能够为研究人员提供一个清晰、准确的参考,促进对此领域的研究和应用进一步发展。

同时,我们也希望通过实验验证与优化方法的介绍,为相关科研工作者提供有益的指导,从而推动该技术在实际应用中的优化与改进。

2. 9字腔光纤锁模激光器原理:2.1 光纤锁模激光器基本原理:光纤锁模激光器是一种基于光纤放大的激光器,通过在共振腔中引入特定形状的光路径,实现对输出激光的频率和相位进行稳定控制。

该激光器主要由泵浦源、活性介质和反射镜组成。

2.2 9字腔结构介绍:9字腔是一种常用的光纤锁模激光器结构,它由两个反射镜和一个含有掺铒光纤的双环结构组成。

其中一个反射镜是高反射镜,另一个则是半透镜。

这个结构能够提供高品质因子和较窄的线宽。

2.3 锁模激光器的应用领域:锁模激光器具有频率稳定性好、输出功率高、调制带宽宽等优点,被广泛应用于通信、测量、医疗以及科学研究等领域。

激光器主动锁模相位调制_概述说明以及解释

激光器主动锁模相位调制_概述说明以及解释

激光器主动锁模相位调制概述说明以及解释1. 引言1.1 概述激光器是一种非常重要的光学设备,其具有高度的相干性和单色性。

激光器主动锁模相位调制是一种对输出激光进行调控的技术,通过改变激光的相位来实现对其空间和时间特性的调节。

这一技术在现代光通信、激光雷达、激光医疗等领域中得到了广泛应用。

1.2 文章结构本文将首先介绍激光器原理,包括其基本结构和工作原理。

接着将详细阐述主动锁模相位调制的原理,包括其工作机制和相关理论。

然后将探讨该技术在各个应用领域中的优势和特点。

最后,我们将介绍与该技术相关的实验设备与材料,并详细描述实验步骤与参数设置。

最后,在结果分析与讨论部分,我们会展示实验结果并进行深入讨论。

1.3 目的本文旨在全面介绍激光器主动锁模相位调制这一重要技术,并深入探讨其工作原理和应用领域。

通过对实验设备与材料的描述以及实验步骤与参数设置的讨论,我们将为读者提供一个全面理解该技术并能够在实际应用中运用的基础。

同时,我们也将展望该技术未来的研究方向和发展趋势,希望能够激发更多人对于这一领域的兴趣和研究热情。

2. 正文:2.1 激光器原理简介:激光器是一种能够产生高度聚焦和定向的准单色光束的装置。

其工作原理基于电子在外部能级间跃迁时放出能量,从而激发介质中的原子或分子进入激发态。

当这些激发态粒子回到基态时,会发出特定频率和相位的光子。

因为这些光子具有高度的相干性和定向性,所以形成了一束激光。

2.2 主动锁模相位调制原理:主动锁模相位调制是一种控制激光束特性的技术,在传统的激光器基础上引入了相位调制装置。

通过改变该装置对激光腔中光场的干涉条件,可以实现对输出激光波前形状和振荡模式进行精确控制。

主要实现方法是通过在激光腔内加入一个可调谐相位调制元件,如电偶极体或压电晶体等。

该元件可以根据控制信号改变其局域折射率并改变输出波前形状。

当施加不同的电压信号时,相位调制元件会引入不同程度的相位扰动。

利用这种方式,可以实现激光器输出波前在时间和空间上的精确调节。

锁模光纤激光器.

锁模光纤激光器.

E(t)的振幅极大值A(t)max=(2n+1)E0,这说明在振幅出现极值的时
刻各振荡纵模的振幅同时到达极大值。(峰值功率)Pm=N2P0 锁模后所得脉冲的宽度为Δt=[(2n+1) q]-1=1/,式中:q为
器件的纵模间隔; 为器件的振荡线宽。所以激光的带宽越宽,
则所获得的脉冲宽度越窄。(脉冲宽度)
若共有(2n+1)个纵模,则激光的电场强度可表示为:
总的光强为:
由于各纵模之间相位彼此相互独立并呈无规则变化,所以各纵 模之间相干项在时间平均下为零,平均输出光强是纵模之和,不会 出现相干加强或相干减弱时域脉冲波输出,而是呈现出存在幅度和 相位噪声的连续光输出。
锁模激光器输出特性
若使 ,即使相邻纵模间的位相差均保持为某一常 数a(通常称此为相位锁定或锁模),则第q个纵模可以表示为:
主动锁模激光器输出特性
频域
(光谱) 输出经PD探测,输入频 谱分析仪上得到频谱
时域 (脉冲)
主动锁模建立过程(时域)
通过调制腔损耗
实现主动锁模示意图
在激光器腔内插入强度调制器,对腔损耗进行调制。由于激光器
在损耗最低时发射较强的光,激光在腔内往复传播,当调制频率等于 相邻两纵模之间的角频率间隔或者是它的整数倍时,初始产生的细微 的强度差别不断被增强,导致最终产生稳定的锁模脉冲序列。
激光总的电场强度表示为:
总的光强为:
可见,多个纵模相干叠加后,使能量聚集在一个峰值较高的波 包中,形成锁模脉冲,脉冲峰值功率比未锁模时提高了(2n+1)倍。
非锁模与锁模激光输出对比
三个纵模随机振荡的情形
三个纵模锁模振荡的情形
主动锁模激光器工作特性
锁模脉冲的时间间隔为Δt =2L/c。由于2L/c恰好是一个光脉冲在 腔内往返一次所需的时间,所以锁模的结果可以理解为只有一个 光脉冲在腔内往返传播。而激光器的输出则是时间间隔为Δt = 2L/c 的规则脉冲序列。(重复周期,重复频率)

激光器锁模的工作原理

激光器锁模的工作原理

激光器锁模的工作原理
激光器锁模是指在激光器中通过一定的控制方法,使其输出激光波长单一、线宽窄、光能稳定的特殊工作状态。

因此,激光器锁模是一种对于一般激光器性能更高的技术。

激光器的发射是通过激发激光材料中的电子使之跃迁而形成,其发射波长相对单一,但线宽相对较宽,正常情况下,一个激光器的输出往往具有多个模式,这些模式的波长并不相同,同时线宽也存在差异。

如果将这些模式输出,将会影响到激光器的使用效果与信号传输质量。

因此,锁模技术可以使激光器的性能得到提升。

激光器锁模的实现需要通过某种方法使激光器只输出一个特定波长的光,也就是只输出一个模式,即所谓“锁定模式”。

一般来说,这种锁模是基于共振腔模式的锁模技术实现的。

共振腔模式锁模通过在激光器的两端加上反射器形成一个共振腔,将激光器中的多个谐振模式限制在共振腔内并强迫它们保持同一相位,在一定条件下可以使一个谐振模式成为优先输出的模式,从而实现锁模。

同时,激光器工作的稳定性也是锁模技术的关键问题之一,因为在工作过程中激光波长的波动会导致模式的切换,甚至出现模式竞争。

要稳定输出模式,需要通过对激光器中的温度、抽运泵浦功率、电流等参数的精确控制实现。

锁模光纤激光器讲义

锁模光纤激光器讲义
其它纵模上去。因所有纵模都是由优势模给予激发的,所以它 们彼此间都保持着相位的同步,并经相干叠加,形成锁模脉冲。
Байду номын сангаас
主动锁模光纤激光器
主动锁模光纤激光器的典型结构示意图
谐波锁模
主动锁模光纤激光器
输出脉冲的波形
输出脉冲的光谱
被动锁模技术(染料锁模)
利用非线性元件对光强的依赖性,来产生光脉冲的锁模方式。
E(t)的振幅极大值A(t)max=(2n+1)E0,这说明在振幅出现极值的时
刻各振荡纵模的振幅同时到达极大值。(峰值功率)Pm=N2P0 锁模后所得脉冲的宽度为Δt=[(2n+1) q]-1=1/,式中:q为
器件的纵模间隔; 为器件的振荡线宽。所以激光的带宽越宽,
则所获得的脉冲宽度越窄。(脉冲宽度)
若共有(2n+1)个纵模,则激光的电场强度可表示为:
总的光强为:
由于各纵模之间相位彼此相互独立并呈无规则变化,所以各纵 模之间相干项在时间平均下为零,平均输出光强是纵模之和,不会 出现相干加强或相干减弱时域脉冲波输出,而是呈现出存在幅度和 相位噪声的连续光输出。
锁模激光器输出特性
若使 ,即使相邻纵模间的位相差均保持为某一常 数a(通常称此为相位锁定或锁模),则第q个纵模可以表示为:
激光 输出镜 激光介质 染料盒 全反镜
1、线性放大:泵浦刚开始,工作物质对产生的诸多光脉冲进行线 性放大。 2、非线性吸收:染料被漂白,强脉冲被迅速放大,弱脉冲被吸收。 3、非线性放大:工作物质对留下的强脉冲进行非线性放大,使脉 宽被压缩。
被动锁模技术(染料锁模)
P t 线性 放大 P 非线性 吸收 t P t
锁 模 方 式
主动锁模 通过外界信号周期性调制激光器谐振腔参量

锁模激光器原理

锁模激光器原理

锁模激光器原理
嘿,大家知道吗,锁模激光器就像是一个超级有纪律的音乐团队!想象一下,激光就像是一束束音符,而锁模呢,就是让这些音符整整齐齐、有规律地排列起来,演奏出美妙的“激光乐章”。

简单来说,锁模激光器的原理就是让激光器发出的光的各个模式之间保持固定的相位关系。

这就好比一群人跑步,大家步伐一致,节奏不乱。

在这个神奇的过程中,有个关键的角色叫“锁模元件”,它就像是乐队的指挥,让所有的光都听它的指挥,乖乖地按照特定的节奏来。

通过锁模,激光束就变得超级厉害啦!它的能量会高度集中,脉冲宽度会变得非常窄,就像射出的箭一样又快又准。

生活中其实也有类似的情况哦,比如我们排队整齐地走路,或者一起合唱时保持相同的节奏,这和锁模激光器的原理有点像呢!是不是很有趣呀?这样一解释,大家是不是对锁模激光器原理有了更清楚的认识啦!。

锁模激光器实验报告

锁模激光器实验报告

锁模激光器实验报告1.引言1.1 概述概述部分的内容可以包括以下几个方面:1. 锁模激光器的定义和基本原理:介绍锁模激光器是一种利用谐振腔中的光学滤波特性来维持单纵模输出的激光器。

通过谐振腔中的光学滤波效应,锁模激光器可以抑制其他模式的干扰,使输出光束呈现出高纵模纯度和窄光谱宽度的特性。

2. 锁模激光器的特点和应用:说明锁模激光器具有较高的光谱纯度、较窄的光谱宽度、较高的相干性和光束质量等特点。

由于其优秀的性能,锁模激光器在光通信、光谱分析、光学测量、光纤传感等领域有着广泛的应用。

3. 实验背景和研究意义:介绍进行锁模激光器实验的背景和动机。

锁模激光器作为一种重要的光学器件,对于理解光学滤波原理、探索光学谐振腔性质以及应用于光学系统中具有重要的理论和实验意义。

4. 本实验报告的结构和内容安排:简要说明本实验报告的结构和内容安排,使读者对整篇文章有个整体的了解。

本实验报告包括引言部分、正文部分和结论部分,其中引言部分介绍了锁模激光器的概述和目的,正文部分主要包括锁模激光器原理和实验过程,结论部分对实验结果进行分析和总结。

以上是概述部分的内容,根据具体的实验内容和要求,可以适当增加和调整部分内容。

1.2 文章结构文章结构部分的内容应该是对整篇文章的组织和内容进行简要介绍,以让读者对文章有个整体的了解。

可以按照以下方式编写:在本实验报告中,我们将会详细介绍锁模激光器的原理和实验过程。

文章主要分为三个部分:引言、正文和结论。

引言部分主要包括三个方面的内容。

首先是对锁模激光器的概述,介绍了锁模激光器的基本特点和应用领域。

接着是文章的结构安排,即对本篇实验报告的整体框架进行介绍。

最后是对本次实验的目的进行说明,明确实验的目标和意义。

正文部分是本篇实验报告的核心内容,包括锁模激光器的原理和实验过程两个方面。

在锁模激光器原理部分,我们将详细介绍锁模激光器的工作原理、基本结构以及关键技术。

在锁模激光器实验过程部分,我们将详细描述实验所采用的具体步骤、实验条件和实验装置,并对实验进行了详细的记录和数据分析。

激光器锁模技术

激光器锁模技术

脉冲的半功率点的时间间隔近似地等于 , 因而可认为脉冲宽度近似等于

为锁模激光的带宽,它显然不可能超过工作 物质的增益带宽,这就给锁模激光脉冲带来一 定的限制
实现锁模的方法
下面我就以损耗调制为例,说明振幅调制锁模的原理:
利用声光或电光调制均可实现振幅调制锁模
调制激光工作物质的增益或腔内损耗,均可使激光振幅得到调
锁模脉冲光强曲线 N=3,即 (2N+1)=7

(t ) 2 m 时,光强最大
最大光强为:
1 sin (2 N 1)( t ) 2 2 2 2 I m E0 lim (2 N 1) E0 ( t ) 2m 2 1 sin ( t ) 2
可见,相位调制与振幅调制光波类似,调制后,也存在一系 列边带,锁模机理类似
Eq (t) E0e
结果:
i[(0 q)t 0 q ]
激光器输出的总光场是(2N+1)个纵模相干叠加的
E (t)
1 sin (2 N 1)( t ) 2 E0 cos(0 t) 1 sin ( t ) 2
q N
Ee
q
N
i[(0 q ) t 0 q ]
[E0T0 T0E0cos(m t)]cos(0 t 0 )
A0[1 m cos(m t)] cos(0 t 0 )
1 1 A0 cos(0 t 0 ) mA0 cos[(0 m ) t 0 ] mA0 cos[(0 m ) t 0 ] 2 2
当调制器介质折射率按外加调制信号而周期 性改变时,光波在不同时刻通过介质,便有 不同的相位延迟
假设未调制的光场:E(t) E0 cos(0 t 0 ) 相位调制函数为: (t) cos t 则经过调制后的光场就变为: E(t) E0 cos(0 t 0 cos t) 角频率的变化量为:

锁模激光器

锁模激光器

西安邮电大学光电子技术及应用锁模激光器班级:软件1103班学号:04113098院(系):计算机学院姓名:刘歌歌2013年12月8日一、摘要本文主要介绍了锁模的基本原理和应用前景,并简单介绍了锁模激光器。

二、关键词:锁模激光器,工作原理,应用和前景三、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

发展前景:目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lensmode locking)技术是一种独特的被动锁模方法。

科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。

一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。

因此,锁模激光器的输出是一个等间隔的激光脉冲序列。

相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。

一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。

而最终的极限脉宽则受限于增益介质的光谱范围。

衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。

此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。

脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。

由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

四、锁模激光器的原理1、多模激光器的输出特性为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转激光器的输出特性。

腔长为L 的激光器,其纵模的频率间隔为LC v v v q q q 21=-=∆+ (1) 自由运转激光器的输出一般包含若干个超过阀值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安邮电大学光电子技术及应用锁模激光器班级:软件1103班学号:04113098院(系):计算机学院姓名:刘歌歌2013年12月8日一、摘要本文主要介绍了锁模的基本原理和应用前景,并简单介绍了锁模激光器。

二、关键词:锁模激光器,工作原理,应用和前景三、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

发展前景:目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lensmode locking)技术是一种独特的被动锁模方法。

科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。

一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。

因此,锁模激光器的输出是一个等间隔的激光脉冲序列。

相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。

一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。

而最终的极限脉宽则受限于增益介质的光谱范围。

衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。

此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。

脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。

由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

四、锁模激光器的原理1、多模激光器的输出特性为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转激光器的输出特性。

腔长为L 的激光器,其纵模的频率间隔为LC v v v q q q 21=-=∆+ (1) 自由运转激光器的输出一般包含若干个超过阀值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值。

假设在激光工作物质的净增益线宽内包含有2N+1个纵模,那么激光器输出的光波电场是N 个纵模电场的和,即)cos(t E q q N N q q t w Eφ+=∑-=)( (2) 式中,q =0,± 1,± 2,…,± N 是激光器内(2N+1)个振荡模中第q 个纵模的序数; q E 是纵模序数为q 的场强; q w 及q φ是纵模序数为q 的模的角频率及相位。

2、锁模脉冲的特征先看三个不同频率光波的叠加:)2cos(01i i v E E ϕπ+= (3) 其中i=1,2,3 设三个振动频率分别为1v 、2v 、3v 的三个光波沿同一方向传播且有关系式:3v =31v ,2v =21v ,E1=E2=E3=E0若相位未锁定,则此三个不同频率的光波的初位相ϕ1 、ϕ2 、ϕ3 彼此无关。

由于破坏性的干涉叠加,所形成的光波并没有一个地方有很突出的加强。

输出的光强只在平均光强2/320E 基础上有一个小的起伏扰动。

但若设法使ϕ1 = ϕ2 = ϕ3 =0时,有)2cos(101t v E E π= )4cos(102t v E E π= )6cos(103t v E E π=当 t=0 时,013E E =,2029E E =; 131v t =时,2)32cos(001E E E -==π 2)34cos(002E E E -==π003)2cos(E E E ==π三波叠加的结果是:E=E1+E2+E3 = 0;同理可得132v t =时,E=0;11v t =时,03E E =……这样就会出现一系列周期性的脉冲。

当各光波振幅同时达到最大值处时,由于“建设性”的干涉作用,就周期性地出现了极大值(2029E E I ==)。

当然, 对于谐振腔内存在多个纵模的情况,同样有类似的结果。

如果采用适当的措施使这些各自独立的纵模在时间上同步,即把它们的相位相互联系起来,使之有一确定的关系(ϕq+1 - ϕq =常数),那么就会出现一种与上述情况有质的区别而有趣的现象;激光器输出的将是脉宽极窄、峰值功率很高的光脉冲,这就是说,该激光器各模的相位己按照=-+q q ϕϕ1常数的关系被锁定,这种激光器叫做锁模激光器,相应的技术称为“锁模技术”。

要获得窄脉宽、高峰值功率的光脉冲,只有采用锁模的方法,就是使各纵模相邻频率间隔相等并固定为L Cv q 2=∆,并且相邻位相差为常量。

这一点在单横模的激光器中是能够实现的。

下面分析激光输出与相位锁定的关系,为运算方便,设多模激光器的所有振荡模均具有相等的振幅E0,超过阈值的纵模共有2N+1个,处在介质增益曲线中心的模,其角频率为0w ,初相位为0,其模序数q=0,即以中心模作为参考,各相邻模的相位差为α,模频率间隔为w ∆,假定第q 个振荡模])[()cos()(000αϕq t w q w E t w E t E q q q +∆+=+=(4)式中,q 为腔内振荡纵模的序数。

激光器输出总光场是2N+1个纵模相干的结果:tw t A t E 0cos )()(= (5)式中2sin 2))(12(sin )(0αα+∆+∆+=wt wt N E t A(a ) 2N+1个模式经过锁定以后,总的光波场变为频率为0w 的单色调幅波,振幅A(t)-即总光波场受到振幅调制。

(b) 光波电场调幅波按傅立叶分析是由2N+1个纵模频率组成,因此光波的脉冲包括2N+1个纵模的光波。

光场变为频率为0w 的调幅波。

振幅)(t A 是随时间变化的周期函数,光强)()(2t A t I ∝,也是时间的函数,光强受到调制。

按傅里叶分析,总光场由2N+1个纵模频率组成,因此激光输出脉冲是包括2N+1个纵模的光波。

图1给出了9(N=4)个振荡模的输出光强曲线。

图1 9个振荡模的输出光强由上面分析可知,只要知道振幅A(t)的变化情况,即可了解输出激光的持性。

为讨论方便,假定α= 0,则2sin 2)12(sin)(0wt wt N E t A ∆∆+= (6) 上式分子、分母均为周期函数,因此A(t)也是周期函数。

只要得到它的周期、零点,即可以得到A(t)的变化规律。

可求出A(t) 的周期为c L 2; 因为L c v w ππ=∆=∆2 ,所以,c L T 2=,在一个周期内2N 个零值点及2N+1个极值点。

在t=0和c Lt 2=时,A(t)取得极大值,因A(t)分子、分母同时为零,利用罗彼塔法则可求得此时振幅0)12(E N +。

在c L t =时,A(t)取得极小值±E0,当N 为偶数时,A(t)=E0,N 为奇数时,A(t)=-E0。

除了t=0,c L 及c L2点之外,A(t)具有2N-1次极大值。

由于光强正比于A2(t),所以在t=0和c Lt 2=时的极大值,称为主脉冲。

在两个相邻主脉冲之间,共有2N 个零点,并有2N-1个次极大值,称为次脉冲。

所以锁模振荡也可以理解为只有一个光脉冲在腔内来回传播。

通过分析可知以下性质:(1)激光器的输出是间隔为c L 2=τ的规则脉冲序列。

(2)每个脉冲的宽度q v N ∆-+=∆1121τ可见增益线宽愈宽,愈可能得到窄的锁模脉宽。

( t=t0=0时,A(t)有极大值,而分子π=∆+2121t w N )(时,A(t)=0,令01t t t -=∆并近似为半峰值宽,则有…)(3)输出脉冲的峰值功率正比于220)12(+N E ,因此,由于锁模,峰值功率增大了2N+1倍。

(4)多模q w q w ∆+0激光器相位锁定的结果,实现了=-+q q ϕϕ1常数,导致输出一个峰值功率高,脉冲宽度窄的序列冲。

因此多纵模激光器锁模后,各振荡模发生功率耦合而不再独立。

每个模的功率应看成是所有振荡模提供的。

五、锁模激光器产生高功率超短脉冲的应用科学家们对皮秒脉冲及数吉瓦高峰功率短脉冲那么感兴趣,其原因是这种高峰值功率的短光脉冲在工业、教育及军事等应用的潜力极大。

这种短脉冲要是能在高速摄影的应用中的潜力全部发挥出来,其结果将是不可估量的。

用超短脉冲进行远距离测距时,其精度可达到几分之一毫米。

高能量短脉冲可用于受控热核聚变,光雷达,光信息处理,高分辨率光谱、材料非线性光学性质、量子系统的瞬态响应以及超短声冲击渡的研究等。

与光脉冲同步的上升时间为皮秒的电脉冲有众多应用,例如,超快主动脉冲整形,无抖动条纹照相机应用,激光驱动的核聚变系统中的主动前置脉冲压缩以及大功率微波脉冲的形成等。

与集成光学兼容的单频速率光脉冲将在下一代光纤通信系统致超高速信息处理中会得广泛应用。

在光通信中使用单频窄带宽光脉冲,可以消除色散和加大重复率等,在分时多路光通讯系统中使用由外调制半导体激光器产生的吉位速度皮秒光脉冲的开关。

在确定宽带传输系统中的内反射的程度及位置和在研究传播延迟及宽带系统的瞬时响应等方面短电脉冲十分有用。

锁模激光器的发展以及制作高速材料的新方法的不断出现有可能使光导体的响应达到皮秒范围。

可用窄光脉冲作为精确的时钟做无抖动地控制电信号的产生和测量。

对高速电子仪器来说无抖动这一点具有重大的优越性。

这可在不失速情况下增大信号的平均量,延长动态范围并可测量小到每平方赫积成带宽为几微伏的信号。

也可产生大到几千伏的信号。

六、结论如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

通常用带宽、纵摸数量以及相干长度等术语来描述激光的谱线特性。

在自由运转激光器中 ,纵模及横模是在无任何固定的振幅及相位关系下同时振荡的,这种激光器的输出是按时间平均统计平均值的。

在一般谐振腔内,处于激光介质的增益大于谐振腔损耗频率范围内的纵模有几百个。

在频域范畴内,激光辐射由许多纵模间隔为L c2的谱线组成。

这些模彼此互不相关地进行振荡,其相位随机地分布在-π到+π之间。

其时域输出特征类似热噪声。

但是,如果迫使振荡模彼此之间的相位关系保持固定,那么激光输出将以完全确定的形式变化。

此时,我们说激光是锁模或锁相的。

锁横激光器的输出为高斯分布(频率对振幅),并且相位完全一样。

在时域内,激光输出为高斯脉冲串,因此锁模相当于使谱线的振幅及相位相关。

参考文献[1] 周炳琨,高以智.激光原理[M].第五版.北京:国防工业出版社,2008:234-239.[2] 孙忠琪.锁模激光器[J].激光集锦,1993,3(2):12-18.[3]江涛,激光与光电子学进展,北京,电子工业出版社,2000年(8) 40-43。

相关文档
最新文档