七年级数学下册第2章相交线与平行线课题六平行线的性质与判定的综合应用当堂检测课件新版北师大版
北师大版七年级数学下册第二章相交线与平行线同步测试试题(含答案及详细解析)
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析
2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测卷(有答案解析)(1)
一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .72.已知一个角是这个角的余角的13,则这个角的度数是( ). A .45︒ B .60︒ C .67.5︒ D .22.5︒ 3.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+ 4.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒ 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 6.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个7.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°8.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角10.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6011.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等12.如图,直线AD //BC ,AC 平分∠DAB ,若∠1=65°,则∠2的度数为( )A .65°B .50°C .60°D .70°二、填空题13.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.14.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.15.如图,已知AB ∥CD ,∠1=120°,则∠C =____.16.已知直线//a b ,将一个含有45度角的直角三角板(90︒∠=C )按如图位置摆放,若160∠=︒,则2∠的度数是_____________.17.如图所示,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为__________;18.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果62ABO ∠=︒,46DCO ∠=︒,则BOC ∠的度数是________︒.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.三、解答题21.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)22.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.23.已知一个角的补角比这个角的余角的2倍大10°,求这个角的度数.24.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 25.如图,AE //CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;(2)判断AD 与BC 的位置关系,并说明理由.26.已知:如图,∠BAP +∠APD =180°,∠1=∠2.试说明:∠E =∠F .(请在横线处填理由)解:∵∠BAP +∠APD =180°,∴AB ∥CD .( ),∴∠BAP =∠APC ( ),∵∠1=∠2(已知)由等式的性质得:∴∠BAP ﹣∠1=∠APC ﹣∠2,即 ,∴AE ∥FP ( ),∴∠E =∠F ( ).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD ∥EF 得出∠CGE=∠GCD ,再由CG ∥AF 得出∠CGE=∠AFE ,根据AB ∥CD ∥EF 可得出∠AFE=∠DHF=∠AHC=∠BAH ,由此可得出结论.【详解】解:∵CD ∥EF ,∴∠CGE=∠GCD ,∠AFE=∠DHF .∵CG ∥AF ,∴∠CGE=∠AFE .∵AB ∥CD ,∴∠BAH=∠DHF ,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH .故选:B .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等. 2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x , 依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.4.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.5.C解析:C【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数.【详解】∵AB ∥CD ,∠BAD=35°,∴∠ADC =∠BAD =35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.7.C解析:C【分析】首先过点D 作DF ∥AE ,交AB 于点F ,由AE ∥BC ,可证得AE ∥DF ∥BC ,然后由两直线平行,同旁内角互补,证得∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,继而证得结论.【详解】过点D 作DF ∥AE ,交AB 于点F ,∵AE ∥BC ,∴AE ∥DF ∥BC ,∴∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,∴∠C+∠CDE+∠E =360°,故选C .【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用. 8.A解析:A【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.B解析:B【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.11.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.12.B解析:B【分析】根据平行线性质得出∠1=∠DAC =65°,∠2+∠BAD=180°,求出∠BAD ,即可得出∠2的度数【详解】解:∵AD ∥BC ,∴∠1=∠DAC =65°,∵AC 平分∠DAB ,∴∠BAD=2∠DAC =130°,∵AD ∥BC ,∴∠2+∠BAD=180°,∴∠2=180°-130°=50°故选:B .【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠BAD 的度数.二、填空题13.20【分析】由已知珠江流域某江段江水流向经过BCD 三点拐弯后与原来相同得AB ∥DE 过点C 作CF ∥AB 则CF ∥DE 由平行线的性质可得∠BCF+∠ABC=180°所以能求出∠BCF 继而求出∠DCF 又由C解析:20【分析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF ,继而求出∠DCF ,又由CF ∥DE ,所以∠CDE=∠DCF .【详解】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.14.120°【分析】根据平行线的性质解答即可【详解】解:∵a∥b∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a∥b,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点.15.60°【解析】∵∠1+∠FEB=180°∠1=120°∴∠FEB=180°-∠1=60°∵AB//CD∴∠C=∠FEB=60°故答案为60°解析:60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.16.75°【分析】先根据对顶角的性质求得∠4=60°然后由三角形外角的性质得∠5=105°然后根据补角的定义求得∠3最后运用平行线的性质解答即可【详解】解:如图所示∵∠4=∠1=60°∠B=45°∴∠5解析:75°【分析】先根据对顶角的性质求得∠4=60°,然后由三角形外角的性质得∠5=105°,然后根据补角的定义求得∠3,最后运用平行线的性质解答即可.【详解】解:如图所示.∵∠4=∠1=60°,∠B=45°∴∠5=∠4+∠B=60°+45°=105°,∵∠5+∠3=180°∴∠3=180°-∠5=75°∵直线a//b.∴∠2=∠3=75°.故答案为:75°.【点睛】本题考查了等腰直角三角形的性质、平行线的性质、三角形外角的性质等知识:根据三角形外角的性质以及邻补角互补求得∠3的度数是解答本题的关键.17.40°【分析】先根据两直线平行同位角相等求出∠BCN再利用平角定义即可求出【详解】∵PQ∥MN∠FBQ=50°∴∠BCN=∠FBQ=50°又∠ECF=90°∴∠ECM=180°-90°-50°=40解析:40°【分析】先根据两直线平行,同位角相等求出∠BCN,再利用平角定义即可求出.【详解】∵PQ∥MN,∠FBQ=50°,∴∠BCN=∠FBQ=50°,又∠ECF=90°,∴∠ECM=180°-90°-50°=40°.故答案为:40°.【点睛】本题是基础题,主要利用平行线的性质和平角的定义解答.18.【分析】过点O 作OE ∥AB 得到∠EOB=根据OE ∥ABCD ∥AB 推出OE ∥CD 得到∠COE=即可求出∠BOC 【详解】如图过点O 作OE ∥AB ∴∠EOB=∵OE ∥ABCD ∥AB ∴OE ∥CD ∴∠COE=∴解析:108【分析】过点O 作OE ∥AB ,得到∠EOB=62ABO ∠=︒,根据OE ∥AB ,CD ∥AB 推出OE ∥CD ,得到∠COE=46DCO ∠=︒,即可求出∠BOC.【详解】如图,过点O 作OE ∥AB ,∴∠EOB=62ABO ∠=︒,∵OE ∥AB ,CD ∥AB ,∴OE ∥CD ,∴∠COE=46DCO ∠=︒,∴∠BOC=∠EOB+∠COE=62°+46°=108°,故答案为:108.【点睛】此题考查平行线的性质:两直线平行内错角相等,平行线的推论:平行于同一直线的两直线平行.19.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D 点引CD ⊥AB 于C 然后沿CD 开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛 解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.20.20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比再根据已知条件即可得出结论;【详解】解:∵a ∥b ∴△ABC 的面积:△BCD 的面积=AB :CD =1:2∴△BCD 的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比,再根据已知条件即可得出结论;【详解】解:∵a ∥b ,∴△ABC 的面积:△BCD 的面积=AB :CD =1:2,∴△BCD 的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.三、解答题21.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM ,利用“同位角相等,两直线平行”可得出AB ∥CD ,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC 的度数,再利用“两直线平行,内错角相等”即可求出∠C 的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM ,∴AB ∥CD ,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC 平分∠AEF ,∴∠AEC=59°,(角平分线的定义)∵AB ∥CD ,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.22.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒ ∴ABE ∠的补角的度数为18048132︒-︒=︒答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.23.10°【分析】设这个角的度数为x°,根据已知条件列出含有x 的方程,解方程即可得到答案 .【详解】解:设这个角的度数为x ,依题意有:()()18029010---=x x解得10x =︒故这个角的度数为10°【点睛】本题考查补角和余角的定义,熟练掌握利用方程解决几何问题是解题关键.24.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.25.(1)∠2=145°;(2)BC∥AD,理由见解析.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,再根据邻补角的定义即可求得∠2;(2)由平行线的性质可知:∠A+∠ADC=180°,然后根据∠A=∠C,可证得∠C+∠ADC=180°,从而可证得BC∥AD.【详解】解:(1)∵AE∥CF,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC∥AD.理由:∵AE∥CF,∴∠A+∠ADC=180°,又∵∠A=∠C,∴∠C+∠ADC=180°,∴BC∥AD.【点睛】本题考查平行线的性质和判定.在本题中能正确识图找出同位角和同旁内角是解题关键.26.同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质即可说明理由.【详解】解:∵∠BAP+∠APD=180°,∵∠APD+∠APC=180°,∴∠BAP=∠APC(同角的补角相等),∵∠1=∠2(已知),由等式的性质得:∴∠BAP-∠1=∠APC-∠2,即∠EAP=∠FPA,∴AE∥FP(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:同角的补角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元达标测试(附答案)
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元达标测试(附答案)一.选择题(共10小题,满分40分)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠43.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.48.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是(填序号)12.已知直线a∥b,b∥c,则直线a、c的位置关系是.13.如图所示,请你填写一个适当的条件:,使AD∥BC.14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.17.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.18.已知直线l1∥l2,BC=3cm,S△ABC=3cm2,则S△A1BC的高是.三.解答题(共9小题,满分48分)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.20.画图题:(1)在如图所示的方格纸中(单位长度为1),经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.21.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M 到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.22.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF 平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.24.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.25.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.26.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC与边ON互相垂直.(直接写出答案)参考答案一.选择题(共10小题,满分40分)1.解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.2.解:观察图形可知,互为对顶角的两个角是∠3和∠4.故选:D.3.解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠B′OC=90°+60°=150°.故选:C.4.解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.5.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.6.解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选:C.7.解:直线DE截AB、AC,形成两对内错角,直线AB截AC,DE,形成一对内错角;直线AC截AB,DE,形成一对内错角.综上,共形成4对内错角.故选:D.8.解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.10.解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,二.填空题(共8小题,满分32分)11.解:①在同一平面内,不相交的两条线段叫做平行线,正确;②过一点,有且只有一条直线平行于已知直线,正确;③两条平行直线被第三条直线所截,当两直线平行,同位角相等,故原命题错误;④同旁内角相等,两直线平行,正确.故答案为:①②④.12.解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.13.解:添加∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.∵∠F AD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行).14.解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)15.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.17.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.18.解:过点A作AD⊥l2,过A1作A1E⊥l2,∵l1∥l2,∴AD=A1E,∴S△ABC=S△A1BC=3cm2,即BC•AD=BC•A1E=3,∵BC=3cm,∴A1E=2cm,则S△A1BC的高是2cm,故答案为:2cm三.解答题(共9小题,满分48分)19.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.20.解:(1)如图(2)EF与GH的位置关系是:垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S△ABC=×2×2=10.21.解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为:PN,PM,PN,0.22.解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).故答案为:AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.23.证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.24.解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;故答案为:∠BOD,∠AOE;(2)∵∠DOB=∠AOC=70°,∠DOB=∠BOE+∠EOD,∠BOE:∠EOD=2:3,∴,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°.25.解:(1)结论:∠P=∠PCD﹣∠P AB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠P AB+∠P,∴∠P=∠AHC﹣∠P AB,∴∠P=∠PCD﹣∠P AB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.26.证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.27.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.。
北师大版七年级数学下册第二章相交线与平行线专项测试题 附答案解析(一)
第二章相交线与平行线专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1).2、在下列命题中,一定正确的是( ).A. 对顶角相等B. 同旁内角互补C. 内错角相等D. 同位角相等3()4、过一点画已知直线的平行线()A. 不存在或有且只有一条B. 有两条C. 不存在D. 有且只有一条5、平面内三条直线的交点个数可能有()6)7、画一条线段的垂线,垂足在()A. 以上都有可能B. 线段的延长线上C. 线段的端点D. 线段上8)9、在同一平面内,两条直线的位置关系是()A. 平行,垂直或相交B. 垂直或相交C. 平行或相交D. 平行或垂直10)A. 垂直B. 相交或平行C. 平行D. 相交11)12、下列说法中:①棱柱的上、下底面的形状相同;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()13、下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()14、用一把带有刻度的直角尺,(1)可以画出两条平行线;(2)可以画出一个角的平分线;(3)可以确定一个圆的圆心、以上三个判断中正确的个数是()15、尺规作图的画图工具是()A. 没有刻度的直尺和圆规B. 直尺、量角器C. 三角板、量角器D. 刻度尺、量角器二、填空题(本大题共有5小题,每小题5分,共25分)16、已知两条直线相交,有一组邻补角相等,则这两条直线的位置关系为 .17.18、三条直线相交,最多有个交点.19米,则小明从起跳点到落脚点的距离于”)20、作图题的书写步骤是_______、________、_______,而且要画出_______和_______,保留________.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在铁路旁有一城镇,现在要建一火车站,为使城镇的人乘车方便(即距离最近),①请你在铁路边选一点建火车站,②说明理由.2223、如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.第二章相交线与平行线专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1).【答案】D所以这两个角互为同位角.2、在下列命题中,一定正确的是( ).A. 对顶角相等B. 同旁内角互补C. 内错角相等D. 同位角相等【答案】A【解析】解:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;所以只说同位角相等,内错角相等,同旁内角互补都是错误的,对顶角相等是正确的.故答案应选:对顶角相等.3()【答案】A4、过一点画已知直线的平行线()A. 不存在或有且只有一条B. 有两条C. 不存在D. 有且只有一条【答案】A【解析】解:若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.5、平面内三条直线的交点个数可能有()【答案】A【解析】解:如图所示,6)【答案】A7、画一条线段的垂线,垂足在()A. 以上都有可能B. 线段的延长线上C. 线段的端点D. 线段上【答案】A【解析】解:由垂线的定义可知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.8)【答案】B9、在同一平面内,两条直线的位置关系是()A. 平行,垂直或相交B. 垂直或相交C. 平行或相交D. 平行或垂直【答案】C【解析】在同一个平面内,两条直线只有两种位置关系,即平行或相交。
北师大版七年级数学下册第二章《相交线与平行线》单元检测练习及答案
七年级数学下册第二章《相交线与平行线》单元检测练习命题人:家长签名:班级:______________ 姓名:________________ 座位号:________ 总分一. 选择题(每小题3分,共10小题,答案写在表格内,否则答案无效)题号 1 2 3 4 5 6 7 8 9 10 答案1.已知∠α=35°,那么∠α的余角等于( )A.35°B.55°C.65°D.145°2.下面四个图形中,∠1与∠2是对顶角的图形()A.B.C.D.3.下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵B.⑶⑷C.⑴⑵⑶D.⑵⑶⑷4.下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1 B.2 C.3 D.45.如图,已知直线a∥b,直线c与a,b相交,∠1=110°,则∠2的度数为( )(第5题图)(第6题图)A.60°B.70°C.80°D.110°6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.如图所示,直线l 1,l 2被直线l 所截形成八个角.由下列哪一个选项中的条件可判定l 1∥l 2 ( )(第7题图) (第8题图) A .∠2+∠4=180° B .∠3+∠8=180° C .∠5+∠6=180° D .∠7+∠8=180° 8.如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是 ( )A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠29.如图,A B∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于( )(第9题图) (第10题图) A .122°B .151°C .116°D .97°10.如图,已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( ) A .50︒B .65︒C .60︒D .70︒二.填空题(每小题4分,共7小题)11.一个角的度数为20°,则它的补角的度数为_____________12.如图,图①是装修工人装修的一部分,图②是一活动角工具(∠1的度数可大可小),利用活动角工具,装修工人能检测出a 与b 是否平行,其中的依据是_______________________________________________________13.如图,已知AB∥CD,∠1=130°,则∠2=_____________14.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=_______(第14题图)(第15题图)15.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是16.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是___________(第16题图)(第17题图)17.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是_______________________________ (填序号)三.解答题(18-20每题6分,21-23每题8分,24-25每题10分)18.如图,∠1=∠2,DE⊥BC,AB⊥BC,试说明:∠A=∠3.解:因为DE⊥BC,AB⊥BC(已知),所以∠DEC=∠ABC=90°(____________________________________),所以DE∥AB(____________________________________________),所以∠2=________ (____________________________________),∠1=________ (____________________________________).因为∠1=∠2(已知),所以∠A=∠3(等量代换).19.如图,已知AC∥DF,直线AF分别与直线BD、CE相交于点G,H,∠1=∠2.求证:∠C=∠D解:∵∠1=∠2(已知)∠1=∠DGH(),∴∠2=_______(等量代换)∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF()∴∠D=∠ABG ()∴∠C=∠D ()20.已知:如图:∠1=∠2,∠3+∠4= 180°;确定直线a,c的位置关系,并说明理由;解:a c;理由:∵∠1=∠2(),∴ a // ( );∵ ∠3+∠4= 180°(),∴ c // ( );∵ a // , c // ,∴ // ( );21.如图,E 点为DF 上的点,B 为AC 上的点,12∠=∠,C D ∠=∠,求证:DF∥AC.证明:∵ 12∠=∠(已知),∠1=∠3,∠2=∠4( ),∴∠3=∠4(等量代换).∴ // ( );∴∠C=∠ABD( )∵∠C=∠D( )∴∠D=__________( )∴AC∥DF ( )22.已知:如图,DE∥BC,∠ADE=64°,BE 平分∠DBC,求∠DEB 的度数.23.如图,直线EF∥GH,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.24.按要求作图(不写作法,但要保留作图痕迹)已知点P、Q分别在∠AOB的边OA,OB上(如图所示)①作直线PQ;②过点P作OB的垂线;③过点Q作OA的平行线.25.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为________;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为________.七年级数学下册第二章《相交线与平行线》单元检测练习参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 160°12. 同位角相等,两直线平行. 13. 50°14.60° 15.110°16. 76°17. ①③④⑤三.解答题(共8小题)18. 垂直的定义同位角相等,两直线平行∠3两直线平行,内错角相等∠A两直线平行,同位角相等19. 对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,20. 解:a // c;理由:∵∠1=∠2(已知),∴ a // b ( 内错角相等,两直线平行);∵ ∠3+∠4= 180°(已知),∴ c // b ( 同旁内角互补,两直线平行);∵ a // b ,c // b ,∴ a // c ( 平行于同一条直线的两条直线平行);21. 对顶角相等;DB;CE;内错角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.22.解:因为DE∥BC,所以∠DBC=∠ADE=64°.因为BE平分∠DBC,所以∠CBE=12∠DBC=12×64°=32°.因为DE∥BC,所以∠DEB=∠CBE=32°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.24.解:如图所示:25. (1)解:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)解:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为∠1=∠2+∠3;(3)解:如图3,设直线AC与DP交于点F,∵∠PFA是△PC F的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为∠2=∠1+∠3.。
北师大版七年级数学下册第2章相交线与平行线同步达标测试(Word版含答案)
北师大版七年级数学下册《第2章相交线与平行线》同步达标测试(附答案)一.选择题(共10小题,满分40分)1.三条直线相交,交点最多有()A.1个B.2个C.3个D.4个2.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.6.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b7.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个8.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A.22°B.46°C.68°D.78°9.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°10.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交二.填空题(共8小题,满分40分)11.如图,∠B的内错角是.12.如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.13.如图,将一张长方形的纸条折叠,若∠1=70°,则∠2的度数为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=度.15.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25°,∠2=75°,则∠B=.16.若一个角的补角等于它的余角4倍,则这个角的度数是度.17.小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A,B,C,D,E,F,G,然后将点A,B,C,D,E,F,G顺次首尾连接,发现AG恰好经过点C,且∠B﹣∠DCG=115°,∠B﹣∠D=10°,若AG∥EF,则∠E=m°,这里的m=.18.如果两个角的两边分别平行,其中一个角为45°,则另一个角的度数为.三.解答题(共5小题,满分40分)19.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC =26°时,求∠BOE的度数.20.如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.23.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一.选择题(共10小题,满分40分)1.解:如图:,交点最多3个,故选:C.2.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.5.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.6.解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角,C选项正确,符合题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.7.解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.解:∵OB平分∠COD,∠BOD=22°,∴∠BOC=22°,∵BO⊥AO,∴∠BOA=90°,∴∠AOC=∠BOA﹣∠BOC=90°﹣22°=68°;故选:C.9.解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.10.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.二.填空题(共8小题,满分40分)11.解:∠B的内错角是∠BAD;故答案为:∠BAD.12.解:∵∠1+∠2=60°,∠1=∠2,∴∠1=×60°=30°,∴∠AOD=180°﹣30°=150°.故答案为:150°.13.解:由题意可得,∠3=∠1+∠2,∵∠3+∠1=180°,∠1=70°,∴∠3=110°,∴∠1+∠2=110°,∴∠2=110°﹣∠1=110°﹣70°=40°,故答案为:40°.14.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.15.解:∵m∥n,∴∠3=∠2=75°,∴∠BAC=∠3﹣∠1=75°﹣25°=50°,∵∠C=90°,∴∠B=90°﹣∠BAC=90°﹣50°=40°.故答案为:40°16.解:设这个角为x度,则:180﹣x=4(90﹣x).解得:x=60.故这个角的度数为60度.17.解:延长ED交AG于点H,∵AG∥EF,∴∠E=∠CHD,∴∠CHD=∠CDE﹣∠DCG,∵∠B﹣∠DCG=115°,∠B﹣∠CDE=10°,∴∠CDE=∠B﹣10°,∠DCG=∠B﹣115°,∴∠E=∠CHD=∠B﹣10°﹣(∠B﹣115°)=105°,故答案为:105.18.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.其中一个角为45°,若两角相等,则另一个角的度数为45°;若两角互补,则另一个角的度数为180°﹣45°=135°;故答案为:45°或135°.三.解答题(共5小题,满分40分)19.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.20.证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠CP A,∵∠BAE=∠CPF,∴∠P AE=∠APF,∴AE∥PF.21.∠AED=∠C.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).22.解:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠FEB+∠ABE=180°.∵∠ABE=120°,∴∠FEB=180°﹣∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=95°.23.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元综合测试题(附答案)
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.如图,∠1和∠2是同位角的是()A.B.C.D.2.下列作图语言叙述规范的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=ACC.过点P作线段AB的垂线D.过直线a,b外一点P作直线MN,使MN∥a∥b3.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE,且∠AOC:∠COF=2:3,则∠DOF的度数为()A.105°B.112.5°C.120°D.135°4.如图,BD⊥AC于点D,AE⊥BC于点E,CF⊥AB于点F,AE、BD、CF交于点O,则图中能表示点A到直线OC距离的是线段()的长.A.AO B.AE C.AC D.AF5.如图,AB∥CD,∠2=70°,PE平分∠BEF,则∠CPE的度数为()A.70°B.110°C.145°D.160°6.如图,下列条件中,不能判定AD∥BC的是()A.∠1=∠2B.∠BAD+∠ADC=180°C.∠3=∠4D.∠ADC+∠DCB=180°7.如图,AB∥CD,BF,DF分别平分∠ABE和∠CDE,BF∥DE,∠F与∠ABE互补,则∠F的度数为()A.30°B.35°C.36°D.45°8.已知:如图AB∥EF,BC⊥CD,则∠α,∠β,∠γ之间的关系是()A.∠β=∠α+∠γB.∠α+∠β+∠γ=180°C.∠α+∠β﹣∠γ=90°D.∠β+∠γ﹣∠α=90°二.填空题(共8小题,满分40分)9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠7;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,其中能判断a∥b的条件是:.10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=30°,则∠2的大小为度.11.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=°.12.如图,已知AE∥BD,∠1=3∠2,∠2=26°,求∠C=.13.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为.14.如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.15.已知∠A的两边与∠B的两边分别垂直,且∠A比∠B的3倍少40°,则∠A=.16.如图,已知∠ABD=∠PCE,AB∥CD,∠AEC的角平分线交直线CD于点H,∠AFD =86°,∠H=22°,∠PCE=°.三.解答题(共6小题,满分40分)17.如图,直线CD,AB相交于点O,∠BOD和∠AON互余,∠AON=∠COM.(1)求∠MOB的度数;(2)若∠COM=∠BOC,求∠BOD的度数.18.如图,已知∠A=∠EDF,∠C=∠F.求证:BC∥EF.19.“村村通”是国家的一个系统工程,其中包涵公路、电力、生活和饮用水、电话网、有线电视网、互联网等等,现计划在A,B,C周边修公路,公路从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,那么要想从C村修路CE,沿什么方向修,可以保证CE与AB平行?20.如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.21.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:①BD∥CE②DF∥AC.22.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.参考答案一.选择题(共8小题,满分40分)1.解:根据同位角的定义,观察上图可知,A、∠1和∠2是同位角,故此选项符合题意;B、∠1和∠2不是同位角,故此选项不符合题意;C、∠1和∠2不是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项不合题意;故选:A.2.解:A、过点P作线段AB的中垂线,叙述错误,故此选项错误;B、在线段AB的延长线上取一点C,使AB=AC,叙述错误,应为BC=AB,故此选项错误;C、过点P作线段AB的垂线,叙述正确;D、过直线a外一点P作直线MN,使MN∥a,不能同时作平行于两条直线的直线;故选:C.3.解:设∠AOC=2α,∠COF=3α,∵∠AOC=∠BOD=2α,∵OE平分∠BOD,∴∠DOE=α,∵OF⊥OE,∴∠EOF=90°,∴∠DOE+∠EOF+∠COF=180°,∴α+90°+3α=180°,∴α=22.5°,∴∠DOF=∠EOF+∠DOE=90°+22.5°=112.5,故选:B.4.解:点A到直线OC的距离的线段长是AF,故选:D.5.解:∵AB∥CD,∠2=70°,∴∠BEF=∠2=70°,∵PE平分∠BEF,∴∠BEP=∠BEF=35°,∵AB∥CD,∴∠CPE=180°﹣∠BEP=145°;故选:C.6.解:A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故选项不符合题意;B、∵∠BAD+∠ADC=180°,∴AB∥DC(同旁内角互补,两直线平行),故选项符合题意;C、∵∠3=∠4,∴AD∥BC(内错角相等,两直线平行),故选项不符合题意;D、∵∠ADC+∠DCB=180°,∴AD∥BC,(同旁内角互补,两直线平行),故选项不符合题意.故选:B.7.解:∵BF,DF分别平分∠ABE和∠CDE,∴∠1=∠2,∠FBA=∠FBE,∵AB∥CD,∴∠FBA=∠3,∵BF∥DE,∠F与∠ABE互补,∴∠3=∠EDC=2∠2,∠F=∠1,∠F+∠ABE=180°,设∠2=x,则∠3=2x,∠ABE=4x,∴x+4x=180°,解得,x=36°,即∠F的度数为36°,故选:C.8.解:如图,分别过C、D作AB的平行线CM和DN,∵AB∥EF,∴AB∥CM∥DN∥EF,∴∠α=∠BCM,∠MCD=∠NDC,∠NDE=∠γ,∴∠α+∠β=∠BCM+∠CDN+∠NDE=∠BCM+∠MCD+∠γ,又BC⊥CD,∴∠BCD=90°,∴∠α+∠β=90°+∠γ,即∠α+∠β﹣∠γ=90°,故选:C.二.填空题(共8小题,满分40分)9.解:①∠1=∠7,对顶角相等不能判定a∥b,故①不符合题意;②∠3=∠6,可根据内错角相等,两直线平行得到a∥b,故②符合题意;③∠1=∠8,则∠1=∠2,可根据同位角相等,两直线平行得到a∥b,故③符合题意;④∠5+∠8=180°,可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b,故④符合题意;故答案为:②③④.10.解:如图,延长F A,由折叠的性质,可得∠3=∠1=30°,∴∠4=180°﹣30°﹣30°=120°,∵CD∥BE,BE∥AF,∴∠ACD=∠4=120°,又∵AC∥BD,∴∠2=180°﹣∠ACD=180°﹣120°=60°.故答案为:60.11.解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=36°.故答案为:36.12.解:∵∠1=3∠2,∠2=26°,∴∠1=78°,∵AE∥BD,∴∠3=∠1=78°,∴∠C=78°﹣26°=52°.故答案为:52°.13.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故答案为:20°.14.解:当AB⊥直线CD时,AB,BO分别交DC的延长线于M,N点,如图,∴∠BMN=90°,∵∠B=45°,∴∠CNO=∠BNM=45°,∵∠DCO=60°,∠DCO=∠CNO+∠BOC,∴∠BOC=60°﹣45°=15°,∵∠AOB=90°,∴∠AOC=∠AOB+∠BOC=90°+15°=105°;当AB⊥CD时,AB,AO分别交CD于点E,F,∴∠AEC=90°,∵∠A=45°,∴∠CFO=∠AFE=90°﹣45°=45°,∵∠CFO=∠AOD+∠D,∠D=30°,∴∠AOD=45°﹣30°=15°,∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD=90°﹣15°=75°.综上,∠AOC的度数为105°或75°.15.解:设∠B是x,根据题意,得①两个角相等时,如图1:∠B=∠A=x,x=3x﹣40,解得,x=20°,故∠A=20°,②两个角互补时,如图2:x+3x﹣40=180,所以x=55°,3×55°﹣40°=125°综上所述:∠A的度数为:20°或125°.故答案为:125°或20°16.解:∵AB∥CD,∴∠ABD=∠PDB,∵∠ABD=∠PCE,∴∠PDB=∠PCE,∴BD∥CE,∴∠CEG=∠DGH,∵EH平分∠AEC,∴∠CEH=∠AEH,∵∠DGH=∠EGF,∴∠EGF=∠GEF,∵∠AFD=∠AEG+∠EGF=2∠EGF=86°,∴∠EGF=43°,∴∠DGH=43°,∴∠PCE=∠PDG=∠H+∠DGH=65°,故答案为:65.三.解答题(共6小题,满分40分)17.解:(1)∵∠BOD和∠AON互余,∴∠BOD+∠AON=90°,∵∠AON=∠COM,∴∠BOD+∠COM=90°,∴∠MOB=180°﹣(∠BOD+∠COM)=90°;(2)设∠COM=x,则∠BOC=5x,∴∠BOM=4x,∵∠BOM=90°,∴4x=90°,解得x=22.5°,∴∠BOD=90°﹣22.5°=67.5°.18.证明:∵∠A=∠EDF(已知),∴AC∥DF(同位角相等,两直线平行),∴∠C=∠CGF(两直线平行,内错角相等).又∵∠C=∠F(已知),∴∠CGF=∠F(等量代换),∴BC∥EF(内错角相等,两直线平行).19.解:使CE沿北偏东65°方向(或使CE与CB垂直),即可保证CE与AB平行.理由如下:如图,由题意得,AD∥BF,∴∠ABF=180°﹣65°=115°,∴∠ABC=115°﹣25°=90°,要使CE∥AB,则∠ECB=∠CBD=90°,∴CE⊥CB,则CE应沿北偏东65°方向修.20.证明:∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂线的定义),∴FG∥HE(同位角相等,两直线平行),∴∠3=∠4(两直线平行,内错角相等),又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC,∴DE∥BC(内错角相等,两直线平行).21.证明:∵∠1=∠4,∠1=∠2,∴∠2=∠4,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.22.解:(1)①∵AB∥CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM∥FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°﹣2∠1,∴∠MEF=∠EFN∴EM∥FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB∥CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.。
七年级数学下第二章相交线与平行线单元达标检测试卷含答案
第二章相交线与平行线达标检测卷一、选择题(每题3分,共30分)1.在同一平面内两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.平行或相交或垂直2.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对3.如图,是同位角关系的是()A.∠3和∠4B.∠1和∠4C.∠2和∠4D.不存在4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直6.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定7.如图,有三条公路,其中AC与AB垂直,小明和小亮分别从A,B两点沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是()A.小亮骑车的速度快B.小明骑车的速度快C.两人骑车的速度一样快D.因为不知道公路的长度,所以无法判断他们骑车速度的快慢8.下列说法中,正确的是()A.过点P不能画线段AB的垂线B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥ABC.在同一平面内,过一点有且只有一条直线垂直于已知直线D.过一点有且只有一条直线平行于已知直线9.如图,如果AB ∥CD ,则∠α,∠β,∠γ之间的关系是()A. ∠α+∠β+∠γ=180°B. ∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α+∠β+∠γ=270°10.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n=()A.180°nB.(n+1)180°C.(n-1)180°D.(n-2)180°二、填空题(每题3分,共24分)11.尺规作图是指用____________画图.12. 如图,直线a,b相交,∠1=60°,则∠2=__________,∠3=__________,∠4=__________.13.如图,直线AB与CD的位置关系是_________,记作_________于点_________,此时∠AOD=_________=_________=_________=90°.14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=_________.15.如图,请写出能判断CE∥AB的一个条件,这个条件是:_________或_________或_________.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=_________.17.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a__________c.若a∥b,b∥c,则a_________c.若a∥b,b⊥c,则a_________c.18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.如图,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB 于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?(3)请你用直尺和圆规作图,作一个角,使它等于2∠ABC.(要求用尺规作图,不必写作法,但要保留作图痕迹)20.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:因为AD∥BC(已知),所以∠1=∠3(___________).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥___________ (___________).所以∠3+∠4=180°(___________).21.如图,已知∠1=∠2,AC平分∠DAB,你能判定哪两条直线平行?说明理由.22.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.23.如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.25.如图,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得关系中任意选取一个加以说明.参考答案一、1.【答案】C2.【答案】B解:三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交,不交于同一点,有三个交点,故选B.本题考查了相交线,分类讨论是解题关键,注意不要漏掉任何一种情况.3.【答案】B解:同位角的特征:在截线同旁,在两条被截直线同一方向上.4.【答案】B5.【答案】D6.【答案】D解:因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角的大小关系,故选D.7.【答案】A8.【答案】C解:过一点画线段的垂线,即过一点画线段所在直线的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点且与AB垂直的直线上,或Q点不在过P点且与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;故C正确.9.【答案】C解:如图,过点E向右作EF∥CD,则∠FED=∠γ;由AB∥CD,可知EF∥AB,所以∠α+∠AEF=180°,即∠AEF=180°-∠α.不难看出∠β=∠FED+∠AEF,由此得到∠β=∠γ+∠AEF=∠γ+180°-∠α,即∠α+∠β-∠γ=180°,故选C.10.【答案】C解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥A n C,所以A3E∥A2D∥…∥A1B∥A n C,所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,…,所以∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)180°.二、11.【答案】圆规和没有刻度的直尺12. 【答案】120°;60°;120°13.【答案】垂直;AB⊥CD; O;∠BOD; ∠BOC;∠AOC14.【答案】50°解:因为AB∥CD,所以∠1=∠AGF.因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF.故∠EGB=50°.15.【答案】∠DCE=∠A;∠ECB=∠B;∠A+∠ACE=180°16.【答案】90°解:因为AB∥CD,所以∠BAC+∠ACD=180°.因为CE,AE分别平分∠ACD,∠CAB,所以∠1+∠2=90°.17.【答案】∥;∥;⊥18.【答案】48°三、19.解:(1)如图,①直线PD即为所求;②直线PE,PF即为所求.(2)∠EPF=∠B.理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),所以∠EPF=∠B(等量代换).(3)作∠MGH=∠ABC,以GH为一边在外侧再作∠HGN=∠ABC,即∠MGN=2∠ABC.20.解:因为AD∥BC(已知),所以∠1=∠3(两直线平行,内错角相等).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥DF(同位角相等,两直线平行).所以∠3+∠4=180°(两直线平行,同旁内角互补).21.解:DC∥AB,理由如下:因为AC平分∠DAB,所以∠1=∠3.又因为∠1=∠2,所以∠2=∠3.所以DC∥AB(内错角相等,两直线平行).22.解:(1)因为CF平分∠DCE,所以∠1=∠2=∠DCE.因为∠DCE=90°,所以∠1=45°.因为∠3=45°,所以∠1=∠3.所以CF∥AB(内错角相等,两直线平行).(2)因为∠D=30°,∠1=45°,所以∠DFC=180°-30°-45°=105°.23.解:因为∠1+∠2=180°,所以AB∥CD.所以∠3=∠GOD.因为∠3=100°,所以∠GOD=100°.所以∠DOH=180°-∠GOD=180°-100°=80°.因为OK平分∠DOH,所以∠KOH=∠DOH=×80°=40°.24.解:因为AE平分∠BAD,所以∠1=∠2.因为AB∥CD,∠CFE=∠E,所以∠1=∠CFE=∠E.所以∠2=∠E.所以AD∥BC.25.解:题图①:∠APC+∠PAB+∠PCD=360°.理由:过点P向右作PE∥AB,如图①,因为AB∥CD,所以AB∥PE∥CD.所以∠A+∠1=180°,∠2+∠C=180°.所以∠A+∠1+∠2+∠C=360°.所以∠APC+∠PAB+∠PCD=360°.题图②:∠APC=∠PAB+∠PCD.理由:过点P向左作PE∥AB, 如图②,因为AB∥CD,所以AB∥PE∥CD.所以∠1=∠A,∠2=∠C.所以∠APC=∠1+∠2=∠PAB+∠PCD.题图③:∠APC=∠PAB-∠PCD.理由: 延长BA交PC于E, 如图③, 因为AB∥CD,所以∠1=∠C.因为∠PAB=180°-∠PAE=∠1+∠P,所以∠PAB=∠APC+∠PCD.所以∠APC=∠PAB-∠PCD.题图④:∠APC=∠PCD-∠PAB.理由:设AB与PC交于点Q,如图④,因为AB∥CD,所以∠1=∠C.因为∠1=180°-∠PQA=∠A+∠P, 所以∠P=∠1-∠A.所以∠APC=∠PCD-∠PAB.。
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测(含答案解析)(4)
一、选择题1.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55° 2.下列说法不正确...的是( ) A .对顶角相等 B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 3.一个角的余角是它的补角的25,这个角是( ) A .30B .60︒C .120︒D .150︒ 4.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35° 5.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 6.下列说法正确的有( )①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC =BC ,则点C 就是线段AB 的中点.⑤不相交的两条直线是平行线A .1个B .2个C .3个D .4个 7.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°8.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 9.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°10.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90° 11.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6012.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-二、填空题13.已知70AOB ∠=︒,COB ∠与AOB ∠互余,则AOC ∠的度数为______.14.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.15.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.16.如图,AB//CD , 15,25A C ︒︒∠=∠=则M ∠=______17.如图,直线AB 、CD 相交于点O ,OM AB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.18.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.19.如图,AB ∥CD ,则∠B+∠D+∠P =_____.20.如图AB 与CD 相交于O ,OP AB ⊥,若120∠=︒,则2∠=________.三、解答题21.如图所示,直线AB ,CD 相交于点O ,OE 平分AOD ∠,射线OF 在BOD ∠内部.(1)若56AOC ∠=︒,求∠BOE 的度数.(2)若OF 平分BOD ∠,请直接写出图中所有互余的角.(3)若::7:3:1EOD FOD FOB ∠∠∠=,求COE ∠的度数.22.如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数.(2)当OE 平分COB ∠时,求EOD ∠的度数.23.如图1AOC ∠,和BOD ∠都是直角.(1)如果35DOC ∠=︒,则AOB ∠= ;(2)找出图1中一组相等的锐角为: .(3)选择,若DOC ∠变小,AOB ∠将变( );A .大B .小C .不变(4)在图2中,利用能够画直角的工具在图2上再画一个与BOC ∠相等的角,不写做法,保留作图痕迹.24.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .25.如图,直角三角板的直角顶点O 在直线AB 上,OC 、OD 是三角板的两条直角边,OE 平分AOD ∠.(1)若20COE ∠=︒,求BOD ∠的度数;(2)若COE α∠=,则BOD ∠= ︒(用含α的代数式表示);(3)当三角板绕点O 逆时针旋转到图2的位置时,其他条件不变,请直接写出COE ∠与BOD ∠之间有怎样的数量关系.26.如图,东西方向上有一条高速公路连接A ,B 两城市,在高速公路的一侧有一座水电站P ,现测得水电站在城市A 的东北方向上,在城市B 北偏西60°方向上.(1)求∠APB 的度数;(2)若一辆轿车以每小时90公里的速度沿AB 方向从A 城市开往B 城市,行驶1.5小时轿车正好在水电站P 的正南方向上,请用方向和距离描述轿车相对于水电站P 的位置.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.2.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、一个角的补角一定不大于这个角,故该项符合题意;D、垂线段最短,故该项不符合题意;故选:C.【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.3.A解析:A设这个角的度数是x°,根据题意得出方程2901805x x-=-(),求出方程的解即可.【详解】解:设这个角的度数是x°,则2901805x x-=-(),解得:x=30,即这个角的度数是30°,故选A.【点睛】本题考查了余角和补角,注意:∠A的余角是90°-∠A,∠A的补角是180°-∠A.4.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.5.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案
第二章《相交线与平行线》单元测试卷(新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°2.如图,直线a与直线c相交于点O,则∠1的度数是()A.60°B.50°C.40°D.30°第2题图第3题图第4题图3.如图,∠1=15°,AO⊥CO,直线BD经过点O,则∠2的度数为()A.75°B.105°C.100°D.165°4.如图,直线c与直线a,b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°5.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2=()A.55°B.65°C.75°D.85°第5题图第6题图第7题图第8题图6.如图,下列说法中正确的是()A.若∠2=∠4,则AB∥CDB.若∠BAD +∠ADC=180°,则AB∥CDC.若∠1=∠3,则AD∥BCD.若∠BAD +∠ABC=180°,则AB∥CD7.(传统文化)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°8.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2=()A.90°B.65°C.60°D.50°9.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4等于()。
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测(有答案解析)(4)
一、选择题1.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角2.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对;③若∠BOF =4∠AOE ,则∠DON =54°;④若MON n AOE BOF ,则n 的倒数是23,其中正确有( )A .3个B .2个C .1个D .0个 3.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( ) A .70︒B .60︒C .30D .20︒ 4.一个角的补角,等于这个角的余角的3倍,则这个角是( )A .30°B .35°C .40°D .45° 5.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行6.如图,直线,a b 与直线,c d 相交,已知341100∠=∠∠=︒,,则2∠的度数为( )A .110︒B .100︒C .80︒D .70︒7.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 8.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90° 9.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90° 10.在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a ∥b ,b ∥c 则 a ∥cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c11.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .12612.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.已知β∠的一边与α∠的一边平行,β∠的另一边与α∠的另一边垂直,若53α∠=︒,则β∠=______.14.一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.15.若∠A 的余角与∠A 的补角的度数和比平角的13多110︒,则∠A =____________. 16.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.17.如图,AB//CD ,直线EF 与AB 、CD 分别交于点G 、H ,GM ⊥GE ,∠BGM=20°,HN 平分∠CHE ,则∠NHD 的度数为_______.18.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)22.如图,已知直线AB ,CD 相交于点O ,AOE ∠与AOC ∠互余.(1)若32BOD ∠=︒,求AOE ∠的度数;(2)若:05:1AOD A C ∠∠=,求∠BOE 的度数.23.在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上. ()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ; ()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.25.已知,//BC OA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________ (2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.26.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别在线段AB 、BC 上,//AC DE ,//DF AE 交BC 于点F ,AE 平分.BAC ∠求证:DF 平分BDE ∠证明:AE ∵平分(BAC ∠已知)12∠∠∴= ( )//AC DE13(∴∠=∠ )故23∠∠= ( )//DF AE25∴∠=∠ ( )并且34∠=∠ ( )45∴∠=∠ ( )DF ∴平分BDE ∠ ( )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.2.B解析:B【分析】根据方位角的定义,以及角平分线的定义,分别求出所需角的度数,然后分别进行判断,即可得到答案.【详解】解:∵∠AOE =m °,∴∠EOD=90°-m°,∴点E 位于点O 的北偏西90°-m °;故①错误;∵∠EOF =90°,∴∠EOD+∠DOF =90°,∠AOE+∠BOF=90°,∵∠AOD =∠BOD=90°,∴∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°,∵OM 、ON 分别平分∠AOE 和∠BOF ,∴∠AOM=∠EOM ,∠BON=∠FON ,∴∠EOM+∠MOD=90°,∠FON+∠DON=90°,∴图中互余的角共有8对,故②错误;∵∠BOF =4∠AOE ,∠AOE+∠BOF=90°,∴∠BOF=72°,∴∠BON=36°,∴∠DON=90°-36°=54°;故③正确;∵∠AOE+∠BOF=90°,∴∠MOE+∠NOF=11()904522AOE BOF , ∴9045135MON , ∴1353902MON n AOE BOF , ∴n 的倒数是23,故④正确; ∴正确的选项有③④,共2个;故选:B .【点睛】本题考查了角平分线的定义,余角的定义,方位角的表示,以及角度的和差关系,解题的关键是熟练掌握题意,正确找出图中角的关系进行判断.3.C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.4.D解析:D【分析】设这个角的度数是x ,根据题意列得1803(90)x x ︒-=︒-,求解即可.【详解】设这个角的度数是x ,则1803(90)x x ︒-=︒-解得x=45︒,故选:D .【点睛】此题考查余角、补角定义,与余角补角有关的计算,正确掌握余角、补角的定义是解题的关键.5.C解析:C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C 正确;故选:C .【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.6.B解析:B【分析】根据平行线的性质定理和判定定理即可解答,由∠ 3=∠4可知a与b平行,从而推出∠2=∠1,即可得解;【详解】∵∠3=∠4,∴ a与b平行,∴∠1=∠2∴∠2=∠1=100°,故选:B.【点睛】本题考查了平行线的性质与判定,解决问题的关键是准确掌握平行线的判定与性质,并熟练运用;7.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.8.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.9.B解析:B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.10.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.11.A解析:A【分析】根据平行线的性质可求解∠GFD的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD,∠1=54°,∴∠GFD=∠1=54°,∵EF⊥CD,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A.【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC,∴∠D+∠BCD=180°,又∵∠D=68°,∴∠BCD=112°,故选:D.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.143°或37°【分析】分AB∥CFEF⊥BD和AB∥CFEF⊥BD两种情况画出图形根据平行线的性质和垂直的定义求解【详解】解:如图1AB∥CFEF⊥BD∵AB∥CF∴∠CFD=∠α=53°∵EF⊥解析:143°或37°【分析】分AB∥CF,EF⊥BD和AB∥CF,EF⊥BD两种情况,画出图形,根据平行线的性质和垂直的定义求解.【详解】解:如图1,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠DFE=90°,∴∠β=∠CFD+∠DFE=53°+90°=143°;如图2,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠EFD=90°,∴∠β=∠EFD-∠CFD=90°-53°=37°;故答案为:143°或37°.【点睛】本题考查了平行线的性质,垂直的定义,解题的关键是根据题意画出图形,分类讨论求出结果.14.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD∥OB时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=解析:30°或45°或120°或135°或165°【分析】分五种情况进行讨论,分别依据平行线的性质进行计算即可得到∠α的度数.【详解】解:①当CD∥OB时,∠α=∠D=30°②当OC∥AB时,∠OEB=∠COD=90°,此时∠α=90°-∠B=90°-45°=45°③当DC∥OA时,∠DOA=∠D=30°,此时∠α=∠AOB+∠AOD=90°+30°=120°④当OD∥AB时,∠AOD=∠A=45°,此时∠α=∠A+∠AOD=90°+45°=135°⑤当CD∥AB时,延长BO交CD于点E,则∠CEO=∠B=45°∴∠DEO=180°-∠CEO=135°∴∠DOE=180°-∠DEO-∠D=15°此时∠α=180°-∠DOE=180°-15°=165°综上,在旋转过程中,当两块三角板有两边平行时, 的度数为30°或45°或120°或135°或165°【点睛】本题主要考查了平行线的性质的运用.在旋转过程中,注意分情况讨论是解题关键.15.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°【分析】设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110 ,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.16.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.17.125°【分析】由垂直的定义可得∠MGH=90°即可求出∠BGH的度数根据平行线的性质可得∠CHE=∠BGH根据角平分线的定义可得∠CHN=∠EHN=∠CHE 即可求出∠CNH的度数根据邻补角的定义即解析:125°【分析】由垂直的定义可得∠MGH=90°,即可求出∠BGH的度数,根据平行线的性质可得∠CHE=∠BGH,根据角平分线的定义可得∠CHN=∠EHN=1∠CHE,即可求出∠CNH的度2数,根据邻补角的定义即可求出∠NHD的度数.【详解】∵GM⊥GE,∴∠MGH=90°,∵∠BGM=20°,∴∠BGH=∠MGH+∠BGM=110°,∵AB//CD,∴∠CHE=∠BGH=110°,∵HN平分∠CHE,∠CHE=55°,∴∠CHN=∠EHN=12∴∠NHD=180°-∠CHN=125°,故答案为:125°【点睛】本题考查垂直的定义、角平分线的定义及平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.18.70【分析】根据两直线平行同位角相等可得∠C=∠1再根据两直线平行内错角相等可得∠2=∠C【详解】∵DE∥AC∴∠C=∠1=70°∵AF∥BC∴∠2=∠C =70°故答案为70【点睛】本题考查了平行线解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.19.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D点引CD⊥AB于C然后沿CD开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D点引CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,根据垂线段最短.故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.故答案为:34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题21.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∥CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM,∴AB∥CD,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC平分∠AEF,∴∠AEC=59°,(角平分线的定义)∵AB∥CD,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.22.(1)58°;(2)120°【分析】(1)先根据对顶角的性质证得32AOC BOD ∠=∠=︒,根据AOE ∠与AOC ∠互余计算即可得到答案;(2)根据:5:1AOD AOC ∠∠=,180AOC AOD ∠+∠=︒,求得30AOC ∠=︒,得到30BOD AOC ∠=∠=︒,由90COE DOE ∠=∠=︒即可求出结果.【详解】解(1)因为AOC ∠与BOD ∠是对顶角,所以32AOC BOD ∠=∠=︒,因为AOE ∠与AOC ∠互余,所以90AOE AOC ∠+∠=︒,所以90AOE AOC ∠=︒-∠9032=︒-︒58=︒;(2)因为:5:1AOD AOC ∠∠=,所以5AOD AOC ∠=∠,因为180AOC AOD ∠+∠=︒,所以6180AOC ∠=︒,30AOC ∠=︒,又30BOD AOC ∠=∠=︒,90COE DOE ∠=∠=︒,所以BOE DOE BOD ∠=∠+∠9030=︒+︒120=︒.【点睛】此题考查几何图形中角度计算,余角的定义及求一个角的余角,邻补角的定义及求一个角的邻补角的度数,对顶角的性质,掌握图形中各角度的位置关系是解题的关键. 23.(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG <<【分析】(1)将AB 沿着BC 方向平移,使其过点C ,此时经过的格点即为所求;(2)延长CB ,作AE 与CB 交于F 点,此时E 点即为所求;(3)过B 点作AB 的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.24.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°. 【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=72°,求出∠O+∠A=180°,根据平行线的判定得出即可; (2)根据角平分线定义求出1362EOC BOA ︒∠=∠=,即可得出答案; (3)①不变,求出∠OFB=2∠OCB ,即可得出答案; ②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=2α+β,α=β=18°,即可得出答案.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE ∠=∠,∠BOA=72°, ∴11136222EOC EOF FOC BOF FOA BOA ︒∠=∠+∠=∠+∠=∠=, 故答案为:36°;(3)①不变,∵BC ∥OA ,∴∠OCB=∠AOC ,又∵∠FOC=∠AOC ,∴∠FOC=∠OCB ,又∵BC ∥OA ,∴∠OFB=∠FOA=2∠FOC ,∴∠OFB=2∠OCB ,即∠OCB :∠OFB=1:2.即∠OCB=12∠OFB ; ②由(1)知:OB ∥AC ,∴∠OCA=∠BOC ,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC ∥OA ,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.【点睛】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.26.角平分线的定义 ; 两直线平行,内错角相等 ; 等量代换 ; 两直线平行,同位角相等 ; 两直线平行,内错角相等 ; 等量代换 ; 角平分线的定义.【分析】根据角平分线的定义得到12∠=∠,根据平行线的性质得到13∠=∠,等量代换得到23∠∠=,根据平行线的性质得到25∠=∠,等量代换即可得到结论.【详解】证明:AE ∵平分(BAC ∠已知)12(∴∠=∠角平分线的定义)//(AC DE 已知)13(∴∠=∠两直线平行,内错角相等)故23(∠=∠等量代换)//(DF AE 已知)25∴∠=∠,(两直线平行,同位角相等)34(∠=∠两直线平行,内错角相等)45(∴∠=∠等量代换)DF ∴平分(BDE ∠角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解答本题的关键.。