数学建模、回归分析
数学建模——线性回归分析实用精品教案
数学建模——线性回归分析实用精品教案一、教学内容本节课选自高中数学教材《数学建模》第四章“数据的拟合与回归”第二节“线性回归分析”。
详细内容包括:线性回归模型的建立,最小二乘法求解线性回归方程,线性回归方程的显著性检验,以及利用线性回归方程进行预测。
二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的建立方法。
2. 学会运用最小二乘法求解线性回归方程,并能解释线性回归方程的参数意义。
3. 能够对线性回归方程进行显著性检验,利用线性回归方程进行预测。
三、教学难点与重点教学难点:最小二乘法的推导和应用,线性回归方程的显著性检验。
教学重点:线性回归模型的建立,线性回归方程的求解及其应用。
四、教具与学具准备教具:多媒体课件,黑板,粉笔。
学具:计算器,草稿纸,直尺,铅笔。
五、教学过程1. 实践情景引入:展示一组关于身高和体重的数据,引导学生思考身高和体重之间的关系。
2. 例题讲解:(1)建立线性回归模型,引导学生根据散点图判断变量间的线性关系。
(2)利用最小二乘法求解线性回归方程,解释方程参数的意义。
(3)对线性回归方程进行显著性检验,判断方程的有效性。
3. 随堂练习:(1)给出另一组数据,让学生尝试建立线性回归模型并求解。
(2)对所求线性回归方程进行显著性检验,并利用方程进行预测。
六、板书设计1. 线性回归模型2. 最小二乘法3. 线性回归方程的显著性检验4. 线性回归方程的应用七、作业设计1. 作业题目:(1)根据给定的数据,建立线性回归模型,求解线性回归方程。
(2)对所求线性回归方程进行显著性检验,并利用方程预测某学生的体重。
2. 答案:(1)线性回归方程为:y = 0.8x + 50(2)显著性检验:F = 40.23,P < 0.01,说明线性回归方程具有显著性。
八、课后反思及拓展延伸1. 课后反思:本节课学生对线性回归分析的理解和应用能力得到了提升,但仍有个别学生对最小二乘法的推导和应用感到困难,需要在课后加强辅导。
数学建模之回归分析法
什么就是回归分析回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。
如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。
回归分析之一多元线性回归模型案例解析多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:(数据可以先用excel建立再通过spss打开)点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,贡献最大的,如下图可以瞧出,车的价格与车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0、05,当概率值大于等于0、1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果您需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“与”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。
数学建模-回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:
数学建模:用线性回归模型进行预测分析
数学建模:用线性回归模型进行预测分析1. 概述数学建模是一种利用数学方法和技巧来解决实际问题的过程。
其中,线性回归模型是最常用的预测分析方法之一,旨在建立一个线性关系来解释自变量(特征)与因变量(目标)之间的关系。
2. 线性回归模型基本原理线性回归模型是基于线性假设,即自变量与因变量之间存在线性关系。
它通过最小化残差平方和来估计自变量对因变量的影响,并确定最佳拟合直线。
2.1 数据集准备在构建线性回归模型之前,需要准备好相关数据集。
数据集应包含自变量和因变量,其中自变量可以是多维的。
2.2 模型训练使用训练集上的数据来训练线性回归模型。
训练过程通过求解最小二乘法方程得到一组最佳参数值。
2.3 模型评价为了评估线性回归模型的准确性,需要使用测试集上的数据进行预测,并计算预测值与真实值之间的误差。
常用指标包括均方误差(MSE)和决定系数(R-squared)等。
3. 线性回归模型的应用场景线性回归模型可以应用于各种预测分析场景。
以下是一些常见的应用场景:3.1 经济学线性回归模型在经济学中常用于预测经济指标,例如GDP、通货膨胀率等。
通过建立一个线性关系,可以帮助经济学家进行政策制定和市场分析。
3.2 市场营销线性回归模型可以用于市场营销领域的广告效果预测、顾客购买意愿预测等。
通过分析不同因素对销售额的影响,可以制定更有效的市场推广策略。
3.3 医疗研究线性回归模型在医疗研究领域广泛应用。
它可以用来预测患者治疗效果、药物剂量与效果之间的关系等,为医生提供决策支持。
4. 线性回归模型的优缺点线性回归模型具有以下几个优点: - 易于理解和解释,模型结果可以直接转化为解释性语言。
- 计算速度快,适用于大规模数据集。
- 可以通过添加交互项和多项式特征来扩展模型的适应能力。
然而,线性回归模型也存在一些缺点: - 对于非线性关系的建模效果较差。
- 对异常值和离群点敏感。
- 对特征之间的相关性较为敏感,可能导致多重共线性问题。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。
线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。
其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。
在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。
例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。
二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。
整数规划模型常用于离散决策问题,如项目选择、设备配置等。
例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。
三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。
该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。
动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。
例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。
在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。
四、图论模型图论是研究图和网络的数学理论。
图论模型常用于解决网络优化、路径规划、最短路径等问题。
例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。
可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。
五、回归分析模型回归分析是研究变量之间关系的一种统计方法。
回归分析模型通常用于预测和建立变量之间的数学关系。
例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。
可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。
六、排队论模型排队论是研究排队系统的数学理论。
排队论模型常用于优化服务质量、降低排队成本等问题。
数学建模中的线性回归分析
数学建模中的线性回归分析数学建模是一门综合性学科,融合了数学、统计学、物理学、工程学等多个学科的知识,旨在解决实际问题。
在数学建模中,线性回归分析是一种常见的方法,用于对数据进行建模和预测。
在本文中,我们将探讨线性回归分析在数学建模中的应用。
一、线性回归分析的基本原理线性回归分析是一种统计学方法,用于确定两个或多个变量之间的关系,并对未知变量进行预测。
在线性回归中,我们通常将一个变量称为因变量,而将另一个或多个变量称为自变量。
当只有一个自变量时,我们称之为简单线性回归;而当有多个自变量时,我们称之为多元线性回归。
简单线性回归模型可以表示为:Y = a + bX + e其中,Y表示因变量,X表示自变量,a表示截距,b表示斜率,e表示误差项。
我们的目标是通过最小化误差项的平方和来确定a和b的值,从而建立最优的线性回归方程。
在多元线性回归中,我们可以使用矩阵来表示线性回归方程:Y = Xb + e其中,Y, X, b, e的意义与简单线性回归的相同。
我们的目标是通过最小化误差项的平方和来确定b的值,从而建立多元线性回归方程。
二、线性回归分析在数学建模中的应用线性回归分析在数学建模中有着广泛的应用,以下是几个常见的例子:1. 市场营销在市场营销中,我们可以使用线性回归来预测销售额。
例如,我们可以收集销售额和广告费用的数据,通过建立线性回归模型来预测在不同的广告投入下,对销售额的影响。
2. 资源规划在资源规划中,我们可以使用线性回归来预测未来的能源需求。
例如,我们可以收集近年来的用电量和气温数据,通过建立线性回归模型来预测未来的用电量,并据此制定相应的能源供应计划。
3. 生态环境管理在生态环境管理中,我们可以使用线性回归来分析环境污染的来源。
例如,我们可以收集空气、水、土壤等指标的数据,通过建立线性回归模型来分析不同污染物的来源,以便制定相应的减排政策。
以上仅是线性回归分析在数学建模中的几个典型应用,实际上线性回归在其他领域中也有着广泛的应用,如金融、医学、物流等。
数学建模案例分析回归分析
为剩余方差(残差的方差),
ˆ
2 e
分别与
ˆ0
、
ˆ1
独立.
ˆ e 称为剩余标准差.
2020/6/15
返回数学建模
7
三、检验、预测与控制
1.回归方程的显著性检验
对回归方程Y 0 1x 的显著性检验,归结为对假设 H 0 : 1 0; H1 : 1 0
进行检验.
假设 H0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
其中 r1
1
1 n 2 F1 1, n 2
2020/6/15
数学建模
10
2.回归系数的置信区间
0 和 1 置信水平为 1-α的置信区间分别为
ˆ
0
t1 2
(n
2)ˆ e
1 n
x2 Lxx
, ˆ0
t1 2
(n
2)ˆ e
1
x2
n Lxx
ห้องสมุดไป่ตู้
和
ˆ1
t
1 2
(n
2)ˆ e
/
Lxx
,
ˆ1
t
1
(n
1.用试验值(样本值)对 0 、 1 和 作点估计;
2.对回归系数 0 、 1 作假设检验;
3.在 x= x0 处对 y 作预测,对 y 作区间估计.
2020/6/15
返回
数学建模
4
二、模型参数估计
1.回归系数的最小二乘估计
有 n 组独立观测值(x1,y1),(x2,y2),…,(xn,yn)
数学建模回归分析matlab版
案例一:股票价格预测
总结词
基于历史销售数据,建立回归模型预测未来销售量。
详细描述
收集公司或产品的历史销售数据,包括销售额、销售量、客户数量等,利用Matlab进行多元线性回归分析,建立销售量与时间、促销活动、市场环境等因素之间的回归模型,并利用模型预测未来销售量。
案例二:销售预测
基于历史人口数据,建立回归模型预测未来人口增长趋势。
非线性模型的评估和检验
非线性回归模型是指因变量和自变量之间的关系不是线性的,需要通过非线性函数来拟合数据。
非线性回归模型
Matlab提供了非线性最小二乘法算法,可以用于估计非线性回归模型的参数。
非线性最小二乘法
03
CHAPTER
线性回归分析
一元线性回归分析是用来研究一个因变量和一个自变量之间的线性关系的统计方法。
回归分析在许多领域都有广泛的应用,如经济学、生物学、医学、工程学等。
它可以帮助我们理解变量之间的关系,预测未来的趋势,优化决策,以及评估模型的性能和可靠性。
回归分析的重要性
模型评估指标
用于评估模型性能的统计量,如均方误差(MSE)、均方根误差(RMSE)等。
误差项
实际观测值与模型预测值之间的差异,通常用 ε 表示。
总结词
对数回归模型的一般形式为 (y = a + blnx) 或 (y = a + bln(x)),其中 (y) 是因变量,(x) 是自变量,(a) 和 (b) 是待估计的参数。在Matlab中,可以使用 `log` 函数进行对数转换,并使用 `fitlm` 或 `fitnlm` 函数进行线性化处理,然后进行线性回归分析。
详细描述
多项式回归模型是一种非线性回归模型,适用于因变量和自变量之间存在多项式关系的情况。
数学建模之回归分析法
28 400
32
225
W8 1
70 3
192 9
14 114
18 225
0
32
225
1069
70 6
192 0
S甌
29 725
0
42 000
35
210
1146
7U
196 6
20.397
22 25?
0
23 990
1.8
150
1026
632
17S.0
18780
23.555
0
33 950
2.8
200
108.7
0
19.390
3.4
1BD
110.6
72.7
197.9
点击“分析”一一回归一一线性一一进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个
自变量 拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以 选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的
毫无疑问, 多元线性回归方程应该为
—/?
上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样 本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
代表随机误差, 其中随机误差分为: 可解释的误差 和 不可解释的误差, 随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)
“选择变量(E)"框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选, 可以将那个自变量,移入“选择变量框”内, 有一个前提就是:该变量从未在另一个目标列 表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:
数学建模 回归分析模型
非线性回归模型的实际应用
预测人口增长
非线性回归模型可以用来描述人口增长的动态变 化,预测未来人口数量。
医学研究
在医学研究中,非线性回归模型可以用来分析药 物对病人体内生理指标的影响。
经济预测
在经济领域,非线性回归模型可以用来预测经济 增长、通货膨胀等经济指标。
多元回归模型的实际应用
01
社会学研究
模型检验
对模型进行检验,包括残差分析、拟 合优度检验等,以确保模型的有效性 和可靠性。
非线性回归模型的参数估计
最小二乘法
梯度下降法
通过最小化预测值与实际值之间的平方误 差,求解出模型中的未知参数。
通过迭代计算,不断调整参数值,以最小 化预测值与实际值之间的误差。
牛顿法
拟牛顿法
基于泰勒级数展开,通过迭代计算,求解 出模型中的未知参数。
线性回归模型的评估与检验
残差分析
分析残差分布情况,检查是否 存在异常值、离群点等。
拟合优度检验
通过计算判定系数、调整判定 系数等指标,评估模型的拟合 优度。
显著性检验
对模型参数进行显著性检验, 判断每个自变量对因变量的影 响是否显著。
预测能力评估
利用模型进行预测,比较预测 值与实际值的差异,评估模型
基于牛顿法的改进,通过迭代计算,求解 出模型中的未知参数,同时避免计算高阶 导数。
非线性回归模型的评估与检验
残差分析
对模型的残差进行统计分析,包括残差 的分布、自相关性、异方差性等,以评
估模型的可靠性。
预测能力评估
使用模型进行预测,比较预测值与实 际值的误差,评估模型的预测能力。
拟合优度检验
通过比较实际值与预测值的相关系数 、决定系数等指标,评估模型的拟合 优度。
2024年数学建模——线性回归分析实用精彩教案
2024年数学建模——线性回归分析实用精彩教案一、教学目标1.让学生理解线性回归分析的基本概念和方法。
2.培养学生运用线性回归分析解决实际问题的能力。
3.培养学生的团队协作精神和创新意识。
二、教学内容1.线性回归分析的基本概念2.线性回归方程的求解3.线性回归模型的检验4.实际案例分析与讨论三、教学过程1.导入同学们,大家好!今天我们要学习的是数学建模中的一种重要方法——线性回归分析。
在实际生活中,我们经常会遇到一些变量之间的关系,如何用数学的方法来描述这些关系呢?让我们一起学习线性回归分析的基本概念和方法。
2.线性回归分析的基本概念(1)线性回归模型:描述两个变量之间关系的数学模型,其中一个变量是自变量,另一个变量是因变量。
(2)线性回归方程:描述线性回归模型的数学方程,形式为y=a+bx,其中a是常数项,b是回归系数。
3.线性回归方程的求解(1)最小二乘法:求解线性回归方程的一种方法,通过使实际观测点到回归直线的距离平方和最小来确定回归系数。
(2)计算步骤:a.收集数据,绘制散点图。
b.根据散点图,初步判断变量之间是否存在线性关系。
c.利用最小二乘法求解回归系数。
d.写出线性回归方程。
4.线性回归模型的检验(1)拟合优度检验:通过计算判定系数R²来评估回归模型的拟合程度。
(2)假设检验:利用t检验和F检验来评估回归系数的显著性。
5.实际案例分析与讨论案例1:某地区房价与收入关系的研究(1)收集数据:收集某地区近年来的房价和收入数据。
(2)绘制散点图:观察房价和收入之间的关系。
(3)求解线性回归方程:利用最小二乘法求解回归系数。
(4)模型检验:计算判定系数R²,进行假设检验。
(5)结论:根据线性回归方程和模型检验结果,分析房价与收入之间的关系。
案例2:某企业产量与广告费用关系的研究(1)收集数据:收集某企业近年来的产量和广告费用数据。
(2)绘制散点图:观察产量和广告费用之间的关系。
数学建模——回归分析模型 ppt课件
有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,
数学建模案例分析第十章统计回归模型
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。
数学建模-多元线性回归分析
数学建模-多元线性回归分析引言多元线性回归是一种常用的数学建模方法,它用于分析多个自变量和一个因变量之间的关系。
通过寻找最佳的拟合直线,我们可以预测因变量的值,同时还可以了解每个自变量对因变量的贡献程度。
在本文档中,我们将介绍多元线性回归的基本原理、模型拟合和模型评估等内容。
基本原理多元线性回归的基本原理建立在最小二乘法的基础上。
我们假设因变量Y和自变量X之间存在线性关系,即:Y = β0 + β1X1 + β2X2 + … + βn*Xn其中,Y是因变量,X1、X2、…、Xn是自变量,β0、β1、β2、…、βn是回归系数。
我们的目标是求解最佳的回归系数,使得拟合直线与观测数据之间的残差平方和最小。
模型拟合为了拟合多元线性回归模型,我们首先需要收集足够的数据。
然后,我们可以使用各种统计软件或编程语言来进行模型拟合。
这些软件和语言通常提供了专门的函数或库,用于执行多元线性回归分析。
以Python语言为例,我们可以使用statsmodels库中的OLS函数进行多元线性回归拟合。
下面是一个示例代码:import pandas as pdimport statsmodels.api as sm# 读取数据data = pd.read_csv('data.csv')# 构建自变量矩阵X和因变量YX = data[['X1', 'X2', ... , 'Xn']]Y = data['Y']# 添加常数列X = sm.add_constant(X)# 拟合模型model = sm.OLS(Y, X)results = model.fit()# 输出回归结果print(results.summary())在上面的代码中,我们首先读取了数据集,然后构建了自变量矩阵X和因变量Y。
接下来,我们使用sm.add_constant()函数在自变量矩阵X中添加了一个常数列,用于拟合截距项。
常见数学建模模型
常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。
常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。
下面将分别介绍这些常见数学建模模型的基本原理和应用领域。
一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。
其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。
线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。
二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。
常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。
回归分析模型在市场预测、金融风险评估等领域有广泛的应用。
三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。
该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。
离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。
四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。
常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。
优化模型广泛应用于生产调度、资源分配、路径规划等领域。
以上是常见数学建模模型的基本原理和应用领域。
数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。
在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。
数学建模——线性回归分析实用教案
数学建模——线性回归分析实用教案一、教学内容本节课选自高中数学教材《数学建模与数学探究》第四章“数据的分析与处理”中的第二节“线性回归分析”。
具体内容包括:线性回归模型的建立与求解,残差分析,线性回归方程的应用。
二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的求解方法。
2. 能够运用线性回归分析方法对实际问题进行模型建立,并进行预测。
3. 培养学生的数据分析能力、逻辑思维能力和实际应用能力。
三、教学难点与重点难点:线性回归方程的求解及残差分析。
重点:线性回归模型的建立与应用。
四、教具与学具准备1. 教具:计算机、投影仪、黑板、粉笔。
2. 学具:直尺、圆规、计算器、练习本。
五、教学过程1. 实践情景引入利用计算机展示一组实际数据,如某城市近10年来的汽车销量与人均GDP的变化情况。
引导学生观察数据,发现数据之间的潜在关系。
2. 理论讲解(1)介绍线性回归分析的基本概念,如自变量、因变量、线性关系等。
(2)讲解线性回归方程的求解方法,如最小二乘法。
(3)阐述残差分析的意义,介绍残差的计算方法。
3. 例题讲解(1)求解一组给定数据的线性回归方程。
(2)利用线性回归方程对实际问题进行预测。
4. 随堂练习让学生根据所学知识,对给出的实际问题建立线性回归模型,并进行预测。
六、板书设计1. 线性回归分析的基本概念2. 线性回归方程的求解方法3. 残差分析4. 线性回归模型的应用七、作业设计1. 作业题目(1)求下列数据的线性回归方程:自变量:1, 2, 3, 4, 5因变量:2, 4, 5, 6, 7(2)某商店的月销售额与广告费之间的关系如下表:广告费(万元):1, 2, 3, 4, 5销售额(万元):2.5, 3.2, 3.9, 4.6, 5.3建立线性回归模型,预测广告费为6万元时的销售额。
答案:(1)线性回归方程:y = 1.4x + 0.6(2)线性回归方程:y = 0.7x + 2.08预测销售额:5.78万元八、课后反思及拓展延伸本节课通过实际问题的引入,让学生了解了线性回归分析的基本概念和应用,掌握了线性回归方程的求解方法。
回归分析在数学建模中的应用
回归分析在数学建模中的应用回归分析是一种统计分析方法,用于研究自变量和因变量之间的关系。
它可以用于在数学建模中预测和解释变量之间的关系。
在本文中,我将讨论回归分析在数学建模中的应用以及其在解决实际问题中的重要性。
回归分析有两种主要类型:简单线性回归和多元线性回归。
简单线性回归是指只有一个自变量和一个因变量之间的关系,而多元线性回归是指有多个自变量和一个因变量之间的关系。
无论是简单线性回归还是多元线性回归,都可以用于预测和解释变量之间的关系。
在数学建模中,回归分析可以用于预测未知值。
通过分析一组已知的自变量和因变量之间的关系,可以建立一个数学模型,以便预测因变量的值。
这种预测能力可以在许多领域中得到应用,例如经济学、金融学、社会科学等。
举一个简单的例子,假设我们要建立一个模型来预测一个人的身高。
我们可以收集一组数据,包括自变量(例如年龄、性别、父母身高等)和因变量(身高)。
然后,我们可以使用回归分析来建立一个模型,以便根据给定的自变量来预测一个人的身高。
此外,回归分析还可以用来解释变量之间的关系。
通过分析已知的自变量和因变量之间的关系,可以得出结论,了解自变量对因变量的影响程度。
这对于解决实际问题非常重要。
例如,在经济学中,回归分析可以用来解释消费者支出与收入之间的关系。
通过分析已知的收入和消费者支出数据,可以得出结论,了解收入对消费者支出的影响程度。
这有助于制定经济政策和预测市场需求。
回归分析还可以用来评估自变量之间的相互作用。
在多元线性回归中,我们可以引入交互项,以考虑自变量之间的相互影响。
通过分析已知的自变量和因变量之间的关系,可以确定自变量之间的相互作用,并加以解释。
总的来说,回归分析在数学建模中有广泛的应用。
它可以用于预测和解释变量之间的关系,评估自变量之间的相互作用,解释因变量的变化程度,并评估模型的拟合程度。
回归分析在解决实际问题中起着重要的作用,帮助我们从数据中提取有价值的信息,并进行合理的预测和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除了多项式之外,通常选择的六类非线性曲线如下:
(1)双曲线
1 b =a+ y x
b (2)幂函数曲线 y = ax , 其中 x>0,a>0
(3)指数曲线 y = ae 其中参数 a>0.
bx
(4)倒指数曲线 y = ae
b/ x
其中 a>0
(5)对数曲线 y=a+blogx,x>0
1 (6)S 型曲线 y = a + be − x
(1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,’model’, beta0) 估计 出的 回归 系数 残差 Jacobian矩阵 输入数据x、y分别为 n × m 矩阵和n维列向 量,对一元非线性回 归,x为n维列向量。 回归系数 的初值
(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显 著性为1-alpha的置信区间Y ± DELTA.
i =1 n
1. 2. 3. 4.
线性关系是否显著?如果显著,则建立线性模型。 当x=(8,30,10,10)时,95%的可能y落在哪个区间? 是否4种化学成分都对释放的热量有显著影响? y还受其他因素影响吗? 如x1*x2, yt-1,xt-1
线性关系的显著性检验
1 记: y = ∑ yi n i =1 y = 94.4231
y = 11 .6036 e
−
1.10641 x
4、 nlintool(x‘,y’,‘volum’,beta0);(作图):
12
11
10
9
8
7
6
2
4
6
8
10
12
14
16
5、预测及作图 [YY,delta]=nlpredci(‘volum’,20,beta,r ,J); YY = 11.0024 delta = 0.2147(95%置信区间半径) plot(x,y,'k+',20,YY,'r')
基本模型
y ~公司牙膏销售量 x1~其它厂家与本公司价格差 x2~公司广告费用
引例1的解
1、输入数据: x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; 2、回归分析及检验: [b,bint,r,rint,stats]=regress(Y,X) 得到结果: b= bint = -16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats = 0.9282 180.9531 0.0000 ˆ ˆ ˆ 即 β 0 = −16.073, β1 = 0.7194 ;ˆ 0 的置信区间为[-33.7017,1.5612], β 1 的 β 置 信 区 间 为 [0.6047,0.834]; r2=0.9282, F=180.9531, p=0.0000 。 p<0.05, 可知回归模型 y=-16.073+0.7194x 成立。
8 综合实例:牙膏的销售量
问 题
建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量 收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期 1 2 … 29 30 本公司价 格(元) 3.85 3.75 … 3.80 3.70 其它厂家 价格(元) 3.80 4.00 … 3.85 4.25 广告费用 (百万元) 5.50 6.75 … 5.80 6.80 价格差 (元) -0.05 0.25 … 0.05 0.55 销售量 (百万支) 7.38 8.51 … 7.93 9.26
5 回归分析
回归分析是研究一个或多个随机变量与另一 些变量之间的关系的统计方法。应用回归模 型可以进行因果关系分析、预测、优化与控 制等多种目的。
回归分析分类: 一元回归分析:m=n=1; y = f ( x) + ε , ε ~ N (0, σ 2 ) 模型: 多元回归分析:m=1,n=k>1; 模型: y = f ( x , x ,L, x , β , β ,L, β ) + ε , ε ~ N (0, σ 多重回归分析:m>1,n>1; 模型:Ym×1 = F ( x1 ,L , xk , β1 ,L , β p ) + ε
12
11
10
9
8
7
6
2
4
6
8
10
12
14
16
18
20
非线性回归化为线性回归
y = ae 两边取对数: ln y = ln a + b / x 换元: u = ln y , c = ln a, d = b, v = 1/ x a = ec , b = d 可化为线性方程: u = c + dv
原方程:
3、残差分析,作残差图:
rcoplot(r,rint)
从残差图可以看出,除第二个数据外,其余数据的残 差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点. (可以去掉该点重新回归)
Residual Case Order Plot
则线性关系不显著,反之显著。 F1−0.1 (4,13 − 4 − 1) = 2.8064
线性关系的拟合性检验(R检验)
Qe /(n − k − 1) 47.86 /(13 − 4 − 1) 2 R = = 0.9736 R = 1− (2677.9 + 47.86) /(13 − 1) (U + Qe ) /(n − 1)
1 2 k 1 2 p
2
)
回归分析的方法与步骤:
选定回归函数; 对回归函数中的位置参数 β , β , L , β 进行估计(最 小二乘方法); 检验有关参数的假设(假设检验);
1 2 p
建立回归方程进行预测和控制。
例2: 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4 有关,今测得一组数据如下,试确定一个 线性模型.
2
R2越接近1,拟合度越高,则解释变量对被 解释变量的解释程度就高,可以推测模型 总体线性关系成立;反之,就不成立。但 这只是一个模糊的推测,不能给出一个在 统计上严格的结论,只作参考。刚才的显 著性检验才是严格的结论。
U /k F= Qe /(n − k − 1)
n −1 R = 1− n − k − 1 + kF
4、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
Residuals
4 3 2 1 0 -1 -2 -3 -4 -5 2 4 6 8 10 Case Number 12 14 16
7 matlab (一元)非线性回归
1、回归:
是事先用m-文件定 义的非线性函数
回归平方和:
n
ˆ ˆ ⎧ y1 = b0 + b1 x11 + b2 x21 + L + bk xk1 ˆ ˆ ˆ ⎪ L ⎨ ⎪ ˆ ˆ ˆ ˆ ˆ yn = b0 + b1 x1n + b2 x2 n + L + bk xkn ⎩
残差平方和:
ˆ U = ∑ ( yi − y )
i =1
n
2
=2677.9
序号
1 7 26 6 60
78.5
2 1 29 15 52
74.3
3 11 56 8 20
104.3
4 11 31 8 47
87.6
5 7 52 6 33
95.9
6 11 55 9 22
109.2
7 3 71 17 6
102.7
8 1 31 22 44
72.5
9 2 54 18 22
93.1
10 21 47 4 26
ˆ Qe = ∑ ( yi − yi ) 2 =47.86
i =1
n
U /k 若线性关系不显著,则: F = Qe /(n − k − 1)
若 F < F1−α (k , n − k − 1)
F (k , n − k − 1)
2677.9 / 4 F= = 111.48 47.86 /(13 − 4 − 1)
2
经常听到这样的说法,“如果给定解释变量值,根据 模型就可以得到被解释变量的预测值为……值”。这 种说法是不科学的,也是统计模型无法达到的。如果 一定要给出一个具体的预测值,那么它的置信水平则 为0;如果一定要回答以100%的置信水平处在什么区 间中,那么这个区间是∞。 在实际应用中,我们当然也希望置信水平越高越好, 置信区间越小越好。如何才能缩小置信区间?
y = β 0 + β 1 x1 + ... + β p x p
[b, bint,r,rint,stats]=regress(Y,X,alpha)
回 归 系 数 的 区 间 估 计
ˆ ⎡β0 ⎤ ⎢ ˆ ⎥ β b=⎢ 1⎥ ⎢ ... ⎥ ⎢ ⎥ ˆ ⎢β p ⎥ ⎣ ⎦
残 差
置 信 区 间
⎡Y1 ⎤ ⎡ 1 x11 ⎢Y ⎥ ⎢1 x 2⎥ 21 Y =⎢ X =⎢ ⎢ ... ⎥ ⎢... ... ⎢ ⎥ ⎢ ⎣Yn ⎦ ⎢ 1 x n1 ⎣