高中数学必修五《等比数列》教案
苏教版高中数学(必修5)2.3《等比数列》word教案5篇

2.3.1等比数列的概念【教学思路】:一、创设情景,揭示课题引入:“一尺之棰,日取其半,万世不竭。
”;细胞分裂模型;计算机病毒的传播;印度国王奖赏国际象棋发明者的实例等都是等比数列的实例。
再看下面的例子: ①1,2,4,8,16, (1)12,14,18,116,… ③1,20,220,320,420,…④10000 1.0198⨯,210000 1.0198⨯,310000 1.0198⨯,410000 1.0198⨯,510000 1.0198⨯,……观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:(1)“从第二项起”,“每一项”与其“前一项”之比为常数)(q(2)隐含:任一项00≠≠q a n 且 (3)1≠q 时,}{n a 为常数 二、研探新知 1.等比数列定义:一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,(注意:等比数列的公比和项都不为零). 注意:(1)“从第二项起”与“前一项”之比为常数)(q ,}{n a 成等比数列⇔nn a a 1+=q (+∈N n ,0≠q )(2)隐含:任一项00≠≠q a n 且,“n a ≠0”是数列}{n a 成等比数列的必要非充分条件. (3)1=q 时,}{n a 为常数。
三、质疑答辩,排难解惑,发展思维例1 (教材45P 例1)判断下列数列是否为等比数列:(1)1,1,1,1;(2)0,1,2,4,8;(3)1618141211,,,,--解:(1)所给的数列是首项为1,公比为1的等比数列. (2)因为0不能作除数,所以这个数列不是等比数列.例2 (教材46P 例2)求出下列等比数列中的未知项:(1)2,,8a ; (2)14,,,2b c -. 解:(1)由题得82a a=,∴4a =或4a =-. (2)由题得 412b c b c c b⎧=⎪-⎪⎨⎪=⎪⎩,∴2b =或1c =-.四、巩固深化,反馈矫正 1. 教材49P 练习第1,2题 2. 教材49P 习题第1,2题五、归纳整理,整体认识本节课主要学习了等比数列的定义,即:)0(1≠=-q q a a n n;等比数列的通项公式:11-⋅=n n q a a 及推导过程。
最新人教版高中数学必修5第二章《等比数列》教案(1)

《等比数列》教案(1)
一、教学目标
1.理解等比数列的概念;掌握等比数列的通项公式;理解这种数列的模型应用.
2.通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系.
3.通过教证明、教猜想,学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.
二、教学重点难点
重点:等比数列的定义和通项公式.
难点:灵活应用定义式及通项公式解决相关问题.
三、教法与学法
1.教学方法:启发引导、类比推理,自主探究、合作讨论、归纳总结.
2.学习方法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式.
四、教学过程
(一)创设情境导入新课
师:等比数列的定义还可以用怎样的数学
四、归纳小结,课堂延展
教学设计说明
1.教材地位分析
本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位.
2.学生现实状况分析
学习本节课这前,学生已经学习了等差数列的相关知识,其学习模式知识结构,为学习等比数列提供了基础,同时受到高一学生学习心理和认知结构影响,学习中难免会有一些困难,比如抽象思维有待提高,类比归纳中会出现障碍等.。
高中数学等比数列教学的艺术:设计一个完美的教案

高中数学等比数列教学的艺术:设计一个完美的教案一、教学目标1. 知识目标本节课我们将讲解等比数列的概念、性质及应用。
学生应能够掌握等比数列的定义、通项公式、和式公式及求解相关问题的方法。
2. 能力目标通过本节课的学习,学生应能够掌握分析和解决等比数列问题的能力,提高学生的数学思维能力、分析能力、解决问题的能力和创新能力。
3. 情感目标通过本次教学,使学生对等比数列有更深的理解和认识,能感受到数学的美和艺术,并激发学生学习数学的兴趣和热情。
二、教学重难点1. 教学重点本节课的教学重点为:(1)等比数列的定义及通项公式的掌握;(2)等比数列的和式公式的理解;(3)等比数列的应用,例如在财务管理中的应用。
2. 教学难点本节课教学难点主要在于通项公式和和式公式的推导和理解上。
三、教学方法本课程采用如下教学方法:1. 归纳法通过分类总结等比数列的概念和公式,使学生从已知处推出未知,理解和掌握等比数列的公式和规律。
2. 演示法通过实际案例,让学生更直观地理解和掌握等比数列的应用,在学习中培养学生的创新思维能力。
3. 交互式授课及问答法通过课堂互动方式,使学生积极参与课堂,并对等比数列的概念和公式做深入的理解和分析。
四、教学流程第一步:引入1. 简要介绍等比数列的概念,并展示等比数列在实际生活中的应用场景,例如在财务管理中的应用。
2. 通过引入等比数列的扩展和深化,加深学生对等比数列的认识。
第二步:概念讲解1. 通过归纳法,讲解等比数列的概念及其性质,并引导学生理解等比数列与等差数列的异同点。
2. 讲解等比数列的前n项公式和通项公式及其特殊情况。
第三步:相关公式演练1. 对以上公式进行演示及推导,并提供直观实例让学生理解公式的推导过程。
2. 通过实例演练及讨论,进一步加深对等比数列的理解。
3. 对等比数列的和式公式进行推导,并在课堂上进行实例演示。
第四步:应用实践1. 利用等比数列的特点,引导学生探究等比数列在财务管理中的应用。
高中数学必修5《等比数列》教案

高中数学必修5《等比数列》教案答案:1458或128。
例2、正项等比数列{an}中,a6 a15+a9 a12=30,则log15a1a2a3 a20 =_ 10 ____.例3、已知一个等差数列:2,4,6,8,10,12,14,16,,2n,,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,,2n,,则ck=2k=2 2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。
关键是对通项公式的理解)1、小结:今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比猜想证明的科学思维的过程。
2、作业:P129:1,2,3思考题:在等差数列:2,4,6,8,10,12,14,16,,2n,,中取出一些项:6,12,24,48,,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?教学设计说明:1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比猜想证明的科学研究方法是有利的。
这也就成了本节课的重点。
2、教学设计过程:本节课主要从以下几个方面展开:1) 通过复习等差数列的定义,类比得出等比数列的定义;2) 等比数列的通项公式的推导;3) 等比数列的性质;有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
最新人教版高中数学必修5第二章《等比数列》示范教案

最新⼈教版⾼中数学必修5第⼆章《等⽐数列》⽰范教案§3 等⽐数列3.1 等⽐数列整体设计教学分析等⽐数列与等差数列在内容上是完全平⾏的,包括定义、性质、通项公式等,两个数的等差(等⽐)中项、两种数列在函数⾓度下的解释等,因此在教学时要充分利⽤类⽐的⽅法,以便于弄清它们之间的联系与区别.等⽐数列是另⼀个简单常见的数列,研究内容和⽅法可与等差数列类⽐,这是本节的中⼼思想⽅法.本节⾸先归纳出等⽐数列的定义,导出通项公式,进⽽研究图像,⼜给出等⽐中项的概念,最后是通项公式的应⽤.等⽐数列概念的引⼊,可按教材给出⼏个具体的例⼦,由学⽣概括这些数列的相同特征,从⽽得到等⽐数列的定义.也可将⼏个等差数列和⼏个等⽐数列混在⼀起给出,由学⽣将这些数列进⾏分类,由此对⽐地概括等⽐数列的定义.根据定义让学⽣分析等⽐数列的公⽐不为0,以及每⼀项均不为0的特性,加深对概念的理解.启发学⽣⽤函数观点认识通项公式,由通项公式的结构特征,联想到指数函数进⽽画出数列的图像.由于有了等差数列的研究经验,等⽐数列的研究完全可以放⼿让学⽣⾃⼰解决,充分利⽤类⽐思想,教师只需把握课堂的节奏,真正作为⼀节课的组织者、引导者出现,充分发挥学⽣的主体作⽤.⼤量的数学思想⽅法渗透是本章的特⾊,如类⽐思想、归纳思想、数形结合思想、算法思想、⽅程思想、⼀般到特殊的思想等,在教学中要充分体现这些重要的数学思想⽅法,所有能⼒的体现最终归结为数学思想⽅法的体现.三维⽬标1.通过实例,理解等⽐数列的概念;探索并掌握等⽐数列的通项公式、性质,能在具体的问题情境中,发现数列的等⽐关系,提⾼数学建模能⼒;体会等⽐数列与指数函数的关系.2.通过现实⽣活中⼤量存在的数列模型,让学⽣充分感受到数列是反映现实⽣活的模型,体会数学是丰富多彩的⽽不是枯燥⽆味的,达到提⾼学⽣学习兴趣的⽬的.3.通过对等⽐数列概念的归纳,进⼀步培养学⽣严密的思维习惯,以及实事求是的精神,严谨的科学态度.体会探究过程中的主体作⽤及探究问题的⽅法,经历解决问题的全过程.重点难点教学重点:掌握等⽐数列的定义;理解等⽐数列的通项公式及推导.教学难点:灵活应⽤等⽐数列的定义及通项公式解决相关问题,在具体问题中抽象出等⽐数列模型及掌握重要的数学思想⽅法.课时安排2课时教学过程第1课时导⼊新课思路1.(情境导⼊)将⼀张厚度为0.044 mm的⽩纸⼀次⼜⼀次地对折,如果对折1 000次(假设是可能的)纸的厚度将是4.4×10296 m,相当于约5.0×10292个珠穆朗玛峰的⾼度和,这可能吗?但是⼀位数学家曾经说过:你如果能将⼀张报纸对折38次,我就能顺着它在今天晚上爬上⽉球.将⼀张报纸对折会有那么⼤的厚度吗?这就是我们今天要解决的问题,让学⽣带着这⼤⼤的疑问来展开新课.思路2.(练习导⼊)先给出四个数列:1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,1,1,1,…由学⽣⾃⼰去探究在这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?由此引导学⽣⾃⼰去观察、研究,从中发现规律,突出了以学⽣为主体的思想,训练和培养了学⽣的归纳思维能⼒.让学⽣观察这些数列与上节课学习的等差数列有什么不同?由此引⼊新课.推进新课新知探究提出问题①回忆等差数列的概念及等差数列的通项公式的推导⽅法.②阅读教科书上的①,② 2个背景实例,领会2个实例所传达的思想,写出由2个实例所得到的数列.③观察数列①,②,它们有什么共同的特征?你能再举出2个与其特征相同的数列吗? ④类⽐等差数列的定义,怎样⽤恰当的语⾔给出等⽐数列的定义?⑤你能举出既是等差数列⼜是等⽐数列的例⼦吗?⑥类⽐等差数列通项公式的推导过程,你能推导出等⽐数列的通项公式吗?⑦类⽐等差数列通项公式与⼀次函数的关系,你能说明等⽐数列的通项公式与指数函数的关系吗?活动:教师引导学⽣回忆等差数列概念的学习过程,指导学⽣阅读并分析教科书中给出的2个实例.实例①是与我们⽣活有关的拉⾯问题.拉⾯馆的师傅将⼀根很粗的⾯条,拉伸、捏合,再拉伸、再捏合,这样前8次捏合成的⾯条根数构成⼀个数列:1,2,4,8,16,32,64,128.①实例②是星⽕化⼯⼚今年产值为a 万元,计划在以后5年中每年⽐上年产值增长10%.这样6年的产值构成⼀个数列:a,a(1+10%),a(1+10%)2,a(1+10%)3,a(1+10%)4,a(1+10%)5.②再如,我们常见的某种细胞分裂的模型:图1每次分裂后细胞的个数构成⼀个数列就是:1,2,4,8,….③“⼀尺之棰,⽇取其半,万世不竭”,如果把“⼀尺之棰”看成单位“1”,得到的数列是1,21,41,81,….④教师引导学⽣探究数列①②③④的共同特点:对于数列①,从第2项起,每⼀项与前⼀项的⽐都等于2;对于数列②,从第2项起,每⼀项与前⼀项的⽐都等于1+10%;对于数列③,从第2项起,每⼀项与前⼀项的⽐都等于2;对于数列④,从第2项起,每⼀项与前⼀项的⽐都等于21.也就是说,这些数列有⼀个共同的特点:从第2项起,每⼀项与前⼀项的⽐都等于同⼀常数,这⾥仍是后项⽐前项,⽽不是前项⽐后项,具有这样特点的数列我们称之为等⽐数列.让学⽣类⽐等差数列给出等⽐数列的定义:⼀般地,如果⼀个数列,从第2项起,每⼀项与它的前⼀项的⽐都等于同⼀个常数,那么这个数列叫作等⽐数列.这个常数叫作等⽐数列的公⽐,公⽐通常⽤字母q 表⽰,显然q≠0,上⾯的四个数列都是等⽐数列,公⽐依次是2,1.1,2,21. 教师引导学⽣进⼀步探究,既是等差数列,⼜是等⽐数列的数列存在吗?学⽣思考后很快会举出1,1,1,…,是等⽐数列也是等差数列,其公⽐为1,公差为0.教师可再提出:常数列都是等⽐数列吗?让学⽣充分讨论后可得出0,0,0,…是常数列,但不是等⽐数列.⾄此,学⽣已经清晰了等⽐数列的概念,⽐如,从等⽐数列定义知,等⽐数列中的任意⼀项不为零,公⽐可以为正,可以为负,但不能为0.接下来,教师引导学⽣类⽐等差数列的通项公式的推导⽅法来归纳猜想等⽐数列的通项公式.课件演⽰:不完全归纳法得到等差数列通项公式的过程:a 2=a 1+d,a 3=a 2+d=(a 1+d)+d=a 1+2d,a 4=a 3+d=(a 1+2d)+d=a 1+3d,……归纳得到a n =a 1+(n-1)d.类⽐这个过程,可得等⽐数列通项公式的归纳过程如下:a 2=a 1q,a 3=a 2q=(a 1q)q=a 1q 2,a 4=a 3q=(a 1q 2)q=a 1q 3,……归纳得到a n =a 1q n-1(a 1≠0,q≠0).这样做可以帮助学⽣体会归纳推理对于发现新的数学结论的作⽤.这个结论的正确性可⽤后⾯的数学归纳法进⾏严格证明,现在我们先承认它.下⾯我们再类⽐等差数列,探究推导等⽐数列通项公式的其他⽅法:∵{a n }是等⽐数列, ∴.,,3,21,1124q a a q a a q a a q a a n n n n n n ==-=--=-- 把以上n-1个等式两边分别乘到⼀起,即叠乘,则可得到11-=n n q a a , 于是得到a n =a 1q n-1.容易知道本节开始的实例①的通项公式是a n =2n-1(如图2).图2对于通项公式,教师引导学⽣明确这样⼏点:(1)不要把a n 错误地写成a n =a 1q n (a 1≠0,q≠0).(2)对公⽐q,要和等差数列的公差⼀样,强调“从第2项起,每⼀项与它的前⼀项的⽐”,不要把相邻两项的⽐的次序颠倒,且公⽐q 可以为正,可以为负,但不能为0.(3)在等⽐数列a,aq,aq 2,aq 3,…中,当a=0时,⼀切项都等于0;当q=0时,第2项以后的项都等于0,这不符合等⽐数列的定义.因此等⽐数列的⾸项和公⽐都不能为0.(4)类⽐等差数列中d>0,d<0时的情况,若q>0,则各项符号同号,若q<0,则各项符号异号;若q=1,则等⽐数列为⾮零常数列;若q=-1,则如2,-2,2,-2,…这样的数列;若|q|<1,则数列各项的绝对值递减.应⽤⽰例思路1例1由下⾯等⽐数列的通项公式,求⾸项与公⽐.(1)a n =2n ;(2)a n =41·10n . 活动:本例的⽬的是让学⽣熟悉等⽐数列的概念及通项公式,可由学⽣⼝答或互相提问. 解:(1)a n =2·2n-1, ∴a 1=2,q=2.(2)∵a n =41·10·10n-1, ∴a 1=41×10=25,q=10. 点评:可通过通项公式直接求⾸项,再求公⽐.如(1)中,a 1=21=2,a 2=22=4,∴q=2.变式训练设a 1,a 2,a 3,a 4成等⽐数列,其公⽐为2,则432122a a a a ++的值为( ) A.41 B.21 C.81 D.1解析:由题意知,a 2=a 1q=2a 1,a 3=a 1q 2=4a 1,a 4=a 1q 3=8a 1, ∴4188222211114321a a a a a a a a +=++. 答案:A例2 以下数列中,哪些是等⽐数列? (1)1,-21,41,-81,161; (2)1,1,1, (1)(3)1,2,4,8,12,16,20;(4)a,a 2,a 3,…,a n .活动:教师引导学⽣利⽤等⽐数列的定义来判断.解:(1)是等⽐数列,公⽐q=-21; (2)是公⽐为1的等⽐数列;(3)因为48≠812,所以该数列不是等⽐数列; (4)当a≠0时,这个数列是公⽐为a 的等⽐数列;当a=0时,它不是等⽐数列.点评:本例第(4)⼩题的分类讨论要引起学⽣的注意.变式训练已知数列{lga n }是等差数列,求证:{a n }是等⽐数列.证明:∵{lga n }是等差数列,设公差为d,则lga n+1-lga n =d,即d nn a a 101=+(常数). ∴{a n }是等⽐数列.例3 ⼀个等⽐数列的⾸项是2,第2项与第3项的和是12.求它的第8项的值.活动:本例是⼀道基础题⽬,⽬的在于熟悉等⽐数列通项公式的基本量运算.可让学⽣⾃主探究、体会⽅程思想的运⽤.解:设等⽐数列的⾸项为a 1,公⽐为q,则由已知,得=+=)2(,12)1(,22111q a q a a将①式代⼊②式,得q 2+q-6=0.解得q=-3或q=2.当q=-3时,a 8=a 1q 7=2×(-3)7=-4 374,当q=2时,a 8=2q 7=2×27=256.故数列的第8项是-4 374或256.点评:⽅程思想是本章的重要数学思想,基本量运算是本章的重要题型.例1 数成等差数列,它们的和等于15,如果它们分别加上1,3,9,就成为等⽐数列,求此三个数. 活动:教师引导学⽣分析题意,因为所求三个数成等差数列,它们的和已知,故可设这三个数为a-d,a,a+d,再根据已知条件寻找关于a 、d 的两个⽅程,通过解⽅程组即可获解.解:设所求三个数为a-d,a,a+d,则由题设得+++-=+=+++-),9)(1()3(,152d a d a a d a a d a解此⽅程组,得a=5,d=2.∴所求三个数为3,5,7.点评:此类问题要注意设未知数的技巧.若设所求三个数为a,b,c,则列出三个⽅程求解,运算过程将过于繁杂.因此在计算过程中,应尽可能地少设未知数.例2 在等⽐数列中,已知⾸项为89,末项为31,公⽐为32,则项数为( ) A.3 B.4 C.5 D.6解析:设等⽐数列为{a n }.⼜∵a 1=89,q=32,a n =31, ∴q n-1=1a a n ,即(32)n-1=278. ∴n-1=3,n=4,即项数为4.答案:B例3 已知数列{a n }满⾜a 1=1,a n+1=2a n +1.(1)求证:数列{a n +1}是等⽐数列;(2)求a n 的表达式.活动:教师引导学⽣观察,数列{a n }不是等差数列,也不是等⽐数列,要求a n 的表达式,通过转化{a n +1}是等⽐数列来求解.解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1).∵a 1=1,故a 1+1≠0,则有2111=+++n n a a .∴{a n +1}是等⽐数列. (2)由(1)知{a n +1}是以a 1+1=2为⾸项,以2为公⽐的等⽐数列,∴a n +1=2·2n-1,即a n =2n -1.点评:教师引导学⽣进⾏解后反思.如本题(1),不能忽视对a n +1≠0的说明,因为在等⽐数列{a n }中,a n ≠0,且公⽐q≠0,否则解题会出现漏洞.知能训练课本本节练习1,习题1—3 1—3.课堂⼩结1.让学⽣归纳总结本节学习内容:等⽐数列的概念和等⽐数列的通项公式的推导及简单的应⽤,等⽐数列的证明⽅法.可让学⽣对⽐⼩结等差数列与等⽐数列的知识,对⽐各⾃性质的异同,让学⽣⽤列表的形式给出.2.教师点出,通过本节内容的学习,在掌握知识的同时,我们还学到了探究新问题的⽅法,提⾼了我们解决问题的能⼒,进⼀步明确了学习必须经历探究问题全过程的意义,必须领悟凝练数学思想⽅法.作业课本习题1—3 A 组 5、6.。
高中数学人教A版必修5《等比数列》教案

《等比数列》教案教学目标:1、通过实例,理解等比数列的概念2、探索并掌握等比数列的通项公式3、通过等比数列与指数函数的关系体会数列是一种特殊的函数。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列与其对应函数的关系。
教学过程:一 、复习旧知:1、等比数列的定义及通项公式2、等差数列的通项公式与一次函数之间的关系二、探究新知1、(1)有人说:如果能将一张厚度为 的报纸对折、再对折。
对折50次后,报纸的厚度超过了地球与月球间的距离,你信吗?每次对折后报纸的厚度依次构成数列:(2)《庄子》一书中说:“一尺之棰,日取其半,万世不竭!”(3)某人年初向银行贷款1万元,如果贷款年利率是6%,那么,5年内各年末应该还款总额依次为:1×1.06, 1×1.062, 1×1.063,1×1.064, 1×1.065结合实例分析上述几个数列的共同特点。
mm050、.2050 ...... 2050 ,2050.2050......2050,20502,050 2,05050325032⨯⨯⨯⨯⨯⨯⨯⨯、、、、、、、、 (32)1,161,81,41,21,12、探究等比数列的定义定义:如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,那么这个数列叫做等比数列,这 个常数叫做等比数列的公比,通常用字母q 表示 (q ≠0).3、类比等差数列探究等比数列的通项公式(一)不完全归纳法 (二)累乘法4、探究通项公式与指数函数间的关系思考:教材第50页的探究题课后探究:当 满足什么条件时,等比数列 是递增数列、递减数列?三、例题精析例1:在等比数列{a n}中, (1)a 4=2,a 7=16,求a n ; (2)a 2+a 5=18,a 3+a 6=9,a n=1,求n . (3)a 3=2,a 2+a 4= ,求a n . 变式训练:变式训练:已知数列 满足 , (1)求证:数列 是等比数列 (2)求 的表达式. 四、课堂练习1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B.16或-16 C.32 D.32或-322.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) 320 【例1】 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 分析:设公比q,列出关于a 1和q 的方程组来求解. 解:设等比数列{a n }的公比为q, 则有 a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①② 由①÷②,得q=12或q=2. 当q=12时,a 1=-16. 当q=2时,a 1=1. 故a n =-16· 12 n -1或a n =2n-1. 【例2】 已知数列{a n }满足lg a n =3n+5,求证:{a n }是等比数列. 分析:可由lg a n =3n+5求出a n ,再证明a n+1a n 是与n 无关的常数. 证明:∵lg a n =3n+5,∴a n =103n+5. ∴a n+1=103(n+1)+5=103n+8.∴a n+1a n =103n+8103n+5=1 000. ∴数列{a n }是等比数列.{}n a 12,111+==+n n a a a {}1+n a {}n a q a 1和{}n aA.4 B.8 C.6 D.323.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于() A.64 B.81 C.128 D.2434.若数列{a n}的前n项和S n=23an+13,则{a n}的通项公式是a n=________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.1等比数列教案
临澧一中高一数学组 颜干清
课题 :3.4.1等比数列(一)
教学目标
(一) 教学知识点
1、 等比数列的定义.
2、 等比数列的通项公式.
(二) 能力训练要求
1、 掌握等比数列的定义.
2、 理解等比数列的通项公式及推导.
(三) 德育渗透目标
1、 培养学生的发现意识.
2、 提高学生的逻辑推理能力.
3、 增强学生的应用意识.
教学重点
等比数列的定义及通项公式.
教学难点
灵活应用等比数列的定义及通项公式解决一些相关问题.
教学方法
比较式教学法
采用比较式教学法,从而使学生抓住等差数列与等比数列各自的特点,以便理解、掌握与应用.
教学过程
Ⅰ复习回顾
前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容
1、等差数列定义:a n -a n-1=d (n ≥2)(d 为常数)
2、等差数列性质:
①若a 、A 、b 成等差数列,则A= ②若m+n=p +q ,则,a m + a n = a p + a q ,
③S k ,S 2k - S 3k ,S 2k …成等差数列.
3、等差数列的前n 项和公式:d n n na a a n s n 2
)1(2)(21-+=+=
Ⅱ新课讲授
下面我们来看这样几个数列,有何时共特点?
1,2,4,8,16,…,263 ;① a +b 2
5,25,125,625,…; ② 1,- , ,- ,…; ③
仔细观察数列,寻其共同特点: 数列①:)2(2;21
1≥==--n a a a n n n n ; 数列②: )2(5;51
≥==-n a a a n n n n 数列③: )2(2
1;21
)1(111≥-=•-=---n a a a n n n n n 共同特点:从第二项起,第一项与前一项的比都等于同一个常数.(也就是说,这些数列从第二项起,每一项与前一项的式都具有“相等”的特点)
1、定义
等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列数列的公比;公比通常用字母q 表示(q ≠0),即:a n :a n-1= q (q ≠0)
数列①②③都是等比数列,它们的公比依次是2,5,- ,与等差数列比较,仅一字之差。
总之,若一数列从第二项起,每一项与其前一项之“差”这常数,则为等差数列,之“比”这常数,则为等比数列,此常数称为“公差”或“公比”.
注意公差①“d ”可为0,②公比“q ”不可为0.
2、等比数列的通项公式
请同学们想想等差数列通项公式的推导过程,试着推一推等比数列的通项公式. 解法一:由定义式可得
a 2=a 1q
a 3=a 2q =( a 1q )q = a 1q 2
a 4=a 3q =( a 2q )q =((a 1q )q )q = a 1q 3
……
a n =a n-1q = a 1q n-1(a 4,q ≠0),n=1时,等式也成立,即对一切n ∈N *成立.
解法二:由定义式可得:(n-1)个等式
1 2 1 8 1 2 1 4 a 2 a 1 = q a 3
a 2 = q ① ②
……
若将上述n-1个等式相乘,便可得: 11
342312
--=⨯⨯⨯⨯n n n q a a a a a a a a Λ 即: a n = a 1q n-1(n ≥2)
当n=1时,左=a 1,右=a 1,所以等式成立.
∴等比数列通项公式为: a n = a 1q n-1(a 1,q ≠0)
写出数列①②③的通公式.
数列①: a n =1×2n-1(a 1,q ≠0)
数列②: a n =5×5n-1=5n (a 1,q ≠0)
数列③: a n =1112
1)1()21
(1----=-⨯n n n 与等差数列比较,两者均可用归纳法求得通项公式.
或者, 等差数列是将由定义得到的n-1个式子相“加”,便可求得通项公式;而等比数列则需将由定义行到的n-1个式子相“乘”,方可求得通项公式.
[例1]一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项. 分析:应将已知条件用数学语言描述,并联立,然后求得通项公式.
解:设这个等比数列的首项是a 1,公比是q ,
⎪⎩⎪⎨⎧==181231
21q a q a :则 ②÷①得:2
3=
q ③ ③代入①得:3
161=a ∴111)2
3(316.--⨯==n n n q a a ∴8233162=⨯=a 答:这个数列的第1项与第2项分别是.83
16和 评析:要灵活应用等比数列定义式及通项公式.
Ⅳ课堂练习
课本P 128练习1、2,
Ⅴ课时小结:
a n a n-1 = q n-1
① ②
本节为要学习了等比数列的定义,即:)2,0(1
≥≠=-,n q q q a a n n 为常数. 等比数列的通项公式:a n = a 1q n-1(n ≥2)及推导过程.
Ⅵ课后作业
(一)课本P 129 习题3.91
(二)1、预习内容:课本P 127~P 128
2、预习提纲:
⑴什么是等比中项?
⑵等比数列有哪些性质?
③怎样应用等比数列的定义式、通项公式以有重要性质解决一些相关问题.。