2015年全国高中数学联赛(WORD,含答案)

合集下载

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

20XX 年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是.解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是.解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是. 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是.解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是.解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是.(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是.解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为.解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为. 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为. 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0.……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x .……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2,①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得x 1+x 2=12[k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

2015年全国高中数学联赛参考答案(A卷word版本)

2015年全国高中数学联赛参考答案(A卷word版本)

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。

2015年全国高中数学联赛试题答案

2015年全国高中数学联赛试题答案
1≤i ≤ k
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2

2015全国高中数学竞赛试题

2015全国高中数学竞赛试题

2015年全国高中数学竞赛试题一、简述:2015年全国高中数学竞赛试题,作为一场高水平的数学竞赛,其试题设计严谨,旨在全面检测参赛者在数学学科上的知识掌握、思维逻辑和问题解决能力。

试题内容通常涵盖代数、几何、数论等多个数学领域,要求参赛者具备扎实的数学基础和灵活的解题思维。

二、内容分析:该竞赛试题通常包含选择题、填空题和解答题等多种题型,每种题型都有其特定的考查重点。

选择题和填空题主要检测参赛者对数学基础知识点的掌握程度,而解答题则更注重对参赛者思维逻辑和问题解决能力的考查。

整体而言,试题内容既注重基础知识的考查,又强调对数学思想的深入理解和灵活运用。

三、特点分析:综合性强:试题往往融合了多个数学领域的知识点,要求参赛者具备全面的数学素养和跨学科的解题能力。

思维灵活:试题设计注重引导参赛者运用多种数学思想和解题方法进行问题求解,鼓励创新思维和发散性思维。

难度递进:试题难度通常呈现出递进的特点,从基础题到难题逐渐过渡,有利于全面评估参赛者的数学水平。

四、难易程度分析:整体而言,2015年全国高中数学竞赛试题的难度属于较高水平。

基础题部分主要考查参赛者的基本数学知识和解题技巧,难度适中;而难题部分则对参赛者的数学思维和问题解决能力提出了更高的要求,难度较大。

这种难度设计既保证了竞赛的区分度,又充分展现了数学学科的挑战性和趣味性。

需要注意的是,以上分析仅基于一般性的了解和推测,实际试题的难度和特点可能会有所不同。

因此,在准备此类竞赛时,建议参赛者充分熟悉竞赛要求和历年试题,制定科学的备考策略,全面提升自己的数学素养和解题能力。

由于我无法提供2015年全国高中数学竞赛的全部真实试题,我将根据该竞赛的一般特点和难度,为您模拟举例一些可能的试题。

请注意,以下试题仅为示例,并非真实的2015年竞赛试题。

2015年全国高中数学竞赛模拟试题一、选择题1.若复数 (z) 满足 (z + |z| = 2 + i),其中 (i) 是虚数单位,则 (z) 等于:A. (1 + i)B. (1 - i)C. (\frac{3}{2} + \frac{1}{2}i)D. (\frac{4}{3} + i)2.已知等差数列 ({ a_n }) 的前n项和为 (S_n),若 (a_2 + a_4 = 10),则 (S_5) 等于:A. 20B. 25C. 50D. 1003.设函数 (f(x) = ax^3 + bx^2 + cx + d) 的图像关于原点对称,且 (f(x))在 (x = 1) 处的切线斜率为 -6,则下列说法正确的是:A. (a = 2, b = 0)B. (a = -2, b = 0)C. (a = 2, c = 0)D. (a = -2, c = 0)二、填空题1.设实数 (a, b, c) 满足 (a^2 + b^2 + c^2 = 1),则 (ab + bc + ca) 的最大值是 _______。

2015年全国高中数学联赛试题及答案解析

2015年全国高中数学联赛试题及答案解析



5. 已知点 P (1, 2, 5) 是空间直角坐标系 O xyz 内一定点,过 P 作一平面与三坐标轴的正半轴分别交于 A, B, C 三点,则所有这样的四面体 OABC 的体积的最小值为 . x y z 解:设此平面的方程为 1 , a, b, c 0 分别是该平面在 x, y, z 轴上的截距,又点 P 在平面 ABC 内, a b c 3 1 2 5 1 10 1 1 2 5 1 1 2 5 1 2 5 ,即 ,得 VOABC abc 45 .当 , 故 1 ,由于 1 3 a b c a b c 27 abc a b c 3 a b c 6 即 (a, b, c) (3, 6,15) 时, VOABC 的最小值为 45.
2015 年全国高中数学联赛模拟试题 04 第一试参考解答 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 集合 A = {x, y} 与 B = {1, log 3 ( x + 2)} 恰有一个公共元为正数 1 + x ,则 A B = 解:由于 1 + x ¹ x ,故 1 + x = y .由 log 3 ( x + 2) ¹ 1 知 x ¹ 1 ,又因为 1 + x > 0 ,所以 3

2

1 tan tan
tan tan
tan .
2 tan 1 3tan 2
2 1 3tan tan

3 , u 的最大值为 . 6 3
4.在单调递增数列 an 中,已知 a1 2 , a2 4 ,且 a2 n 1 , a2 n , a2 n 1 成等差数列, a2 n , a2 n 1 , a2 n 2 成 解:因为 an 单调递增, a1 0 ,所以 an 0 .因为 a2 n 1 , a2 n , a2 n 1 成等差数列, a2 n , a2 n 1 , a2 n 2 成等 比数列,所以 所以 a2 n 所以 a2 n 等比数列, n 1, 2,3, .那么, a100 _________.

2015年全国高中数学联合竞赛试题及解答.(A卷)

2015年全国高中数学联合竞赛试题及解答.(A卷)

2k 2 1 m2 .②
由直线
AF1, l, BF1
的斜率
y1 , k, y2 x1 1 x2 1
依次成等差数列知,
y1 x1 1
y2 2k x2 1
,又
y1 kx1 m, y2 kx2 m ,所以 (kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) ,化简并
棱两两异面的取法数为 4×2=8,故所求概率为 8 2 . 220 55
2015A6、在平面直角坐标系 xOy 中,点集 K (x, y) | ( x 3 y 6)( 3x y 6) 0 所对应的平
面区域(如图所示)的面积为
◆答案: 24 ★解析:设 K1 {(x, y) || x | | 3y | 6 0} . 先考虑 K1 在第一象限中的部分,此时有 x 3y 6 ,故这些点
对应于图中的△OCD 及其内部.由对称性知, K1 对应的区
域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 {(x, y) || 3x | | y | 6 0} ,则 K2 对应
的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知,K 所对应的平面区域是被 K1 、K2
1 sin
cos4

cos 2 sin 2 sin
sin 2

(1 sin )(1 cos2 )

2 sin
cos2

2.
2015A 3、已知复数数列 zn 满足 z1 1,zn1 zn 1 ni (n 1,2,) ,其中 i 为虚数单位,zn 表

2015年全国高中数学联赛江苏赛区初赛试卷(附详细答案)

2015年全国高中数学联赛江苏赛区初赛试卷(附详细答案)

2015年全国高中数学联赛江苏赛区初赛试卷一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 .2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 .4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c2=1有相同的离心率e ,则e 的值是 .6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7i =1x i y i 的可能取值中最小的为 .9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等. 如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 .10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 .(第6题图) A 1(第9题图) e c d a b 1 2 2015 x二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE的外接圆交于A 、P 两点. 求证:A 、P 、B 、C 四点共圆.13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程.14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由.A BC DP (第12题图)E2015年全国高中数学联赛江苏赛区初赛试卷一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 .解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y2c2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0.8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等. 如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014.(第6题图) A 1 (第9题图)1 22015 (第6题图)A 1由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n )1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形,所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线,所以∠P AD =∠P AF ,从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP ,所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA , 所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l 若直线l 的斜率k =tanα,设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ). 交点P (2,2)在第一象限,m ,n ,t >0. 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,A B C D P (第12题图) E A BCD P (第12题图)E F (第9题图) e c d ab1 2 2015x⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿).pdf

2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿).pdf

C
F
K
D
B
E
R
C
F
K
D
ER. 同理, CD = FK ,所以 BC= CD .
AC AD CD 由 AB= AC= BC= 1,得△ ABC≌△ ADC ,于是 AB= AC= AD ,
即 A 为△ BCD 外接圆的外心. .....................................
40 分
若 b=pt, 1≤ t≤ α- 1,则 a= pα-t, (c, p)= 1,1≤ c≤ b;若 b= pα,则
因此, f(pα)= 1 α-1 t + pα= pα-1+ pα. (这里 φ(x)为 Euler 函数 ). + φ(p )
t=1
a= 1, 1≤c≤ b.
……………………………… 20 分
所以 ER∥AC.
A
同理 FK ∥AC,
于是 ER∥FK . 又因为 RK∥ EF ,
………………………… 20 分
所以四边形 EFKR 为平行四边形,从而 ER=
FK . 因为 ER∥AC,所以∠ REC=∠ ECA= ∠ ECB. 又因为∠ EBC=∠ ERC, EC= EC,
所以△ BEC≌△ ECR,从而 BC=
……………………………… 40 分
显然 (a1, b1, c)= (a1, b1, c1)= 1, (a2, b2, c)= (a2, b2, c2)= 1, 从而 (a, b, c)= (( a,b), c)= (( a1, b1)(a2, b2), c)= (a1, b1, c) ( a2,b2 ,c) =
的外心.
B
E
R
A
证明:如图,连接 ER, FK . 因为∠ BAC=∠ CAD, AC2= AB· AD ,

2015年全国高中数学联赛广西赛区预赛试题参考答案

2015年全国高中数学联赛广西赛区预赛试题参考答案

2. 答案: 5 解析: 原式= (6 1)
11 11 10 9 ∵ 7 2 7 1 3 (7 1)(7 7 7 1) 3 2 711 2 ,
8(710 79 7) 5 ,∴原式被 8 除余数为 5.
3.答案:
a4 b4 c4 x2 3 3 , 2 2 2 , 2 b c c a a b x3 2
3 . 2
∵ f ( x) f (3)
∴当且仅当 a b c 1 时取到最小值,所求最小值为 12. 证明:连结 OP, OA, OC , EP . ∵ N 是 AB 的中点,∴ O, P, N单 调 递 减 . 同 理 , 当 x 1 时 y f (0) g (0) 2 ,当 x 1 时 y
11
f ( x) g ( x ) 递 增 , 而 当 x 0 时 函 数 值
f (1) g (1) ,而当 x 时 y ,∴ ymin 1 .
取得最小值,当且仅当 10.答案:81
2 a 3 2a 3 a 8 7 5 .解得 a ,b , 3a 4b 12. 1 b 2 3b 3 2b 6 3 4

解析:∵由题设 n 恰有 5 个约数,设 n 的质因数分解是 n p1 1 pk k ,∴n 的约数个
a4 c4 2a 2 c 2 a 2 c2 b2 ac 1 2 2 2 2 ,∴ B [ , ) . b 2 2 a c 2 2 .∵ cos B a c 3 2 2ac 2 a c a c
2
9. 答案: 12
解析: ∵易求得 z1 z2 z3 8 6i , z1 z2 z3 z1 z2 z3 =10, ∴ z1 z2 z3

2015年全国高中数学联赛(四川)答案

2015年全国高中数学联赛(四川)答案

2
2
又因为
g (0)
=
a
+1,
g(π
)
=
a

−π
e2

g ( 3π
)
=
a
+
− 3π
e2

g (2π
)
=
a
+
e−2π

2
2
一方面,显然 g(0) > g(3π ) > g(2π ) > g(π ) .
2
2
………10 分
① 若 g(π ) ≥ 0 ,则 f '(x) > 0 ,故 f (x) 在 (0, 2π ) 内单调递增,从而 f (x) 在 (0, 2π ) 内 2
所以,数列{an} 的通项公式为 an = 3n−1 − 2n .
………20 分
参考答案及评分标准 (第 1 页 共 4 页)
Hale Waihona Puke 14、已知函数 f (x) = sin4 x ,
(1)记 g(x) = f (x) + f (π − x) ,求 g(x) 在[π , 3π ] 上的最大值与最小值;
2
68
=
1
.………10

68
84
42
(2)注意到 f ( π ) + f ( 2π ) + f ( 3π ) +" + f (88π ) + f (89π )
180 180 180
180 180
= g( π ) + g( 2π ) +" + g( 44π ) + sin4 ( 45π )

2015年全国高中数学联赛试卷解析汇报

2015年全国高中数学联赛试卷解析汇报

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b)24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x2a2+y2b2=1(a >b >0)与椭圆x2b2+y2c2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c2a2=c2-b2c2,得a =b ,矛盾,因此c <b ,且有c2a2=b2-c2b2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V1V2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V1V2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则错误!x i y i 的可能取值中最小的为 . 解:因为a ·a =b ·b =1,a ·b =0,所以错误!x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q2×(1-q 2n )1-q 2. ……………………………… 15分由S 2n =2T n ,则4q(1+q)=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m)2+(2-mt)2=(mt)2,(2-n)2+(2-nt)2=(nt)2,即⎩⎨⎧m2-(4+4t)m +8=0,n2-(4+4t)n +8=0,……………… 8分所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k(k -1)2条,两端点染蓝色的有(11-k)(10-k)2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k(k -1)2, ①3x 2+x 4=3×(11-k)(10-k)2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

2015年全国高中数学联合竞赛试题与解答(B卷)

2015年全国高中数学联合竞赛试题与解答(B卷)

2015年全国高中数学联赛(B 卷)(一试)一、填空题(每个小题8分,满分64分 1:已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x xa x f x,其中a 为常数,如果)4()2(f f <,则a 的取值围是2:已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为 3:某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值是4:设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA 5:已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是6:设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为7:设P 为椭圆13422=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为 8:正2015边形201521A A A ⋅⋅⋅接于单位圆O ,任取它的两个不同顶点j i A A ,,1≥+的概率为 二、解答题9:(本题满分16分)数列{}n a 满足,31=a 对任意正整数n m ,,均有mn a a a n m n m 2++=+ (1)求{}n a 的通项公式; (2)如果存在实数c 使得c a ki i<∑=11对所有正整数k 都成立,求c 的取值围10:(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值11:(本题满分20分)已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,存在经过点F的一条直线l 交椭圆于B A ,两点,使得OB OA ⊥,求该椭圆的离心率的取值围(加试)1:(本题满分40分)证明:对任意三个不全相等的非负实数c b a ,,都有:21)()()()()()(222222≥-+-+--+-+-a c c b b a ab c ac b bc a ,并确定等号成立的充要条件 2:(本题满分40分)如图,在等腰ABC ∆中,AC AB =,设I 为其心,设D 为ABC ∆的一个点,满足D C B I ,,,四点共圆,过点C 作BD 的平行线,与AD 的延长线交于E 求证:CE BD CD ⋅=23:(本题满分50分)证明:存在无穷多个正整数组)2015,,)(,,(>c b a c b a 满足:1,1,1++-ab c ac b bc a4:(本题满分50分)给定正整数)2(,n m n m ≤≤,设m a a a ,,,21⋅⋅⋅是n ,,2,1⋅⋅⋅中任取m 个互不相同的数构成的一个排列,如果存在{}m k ,,2,1⋅⋅⋅∈使得k a k +为奇数,或者存在整数 )1(,m l k l k ≤<≤,使得l k a a >,则称m a a a ,,,21⋅⋅⋅是一个“好排列”,试确定所有好排列的个数。

2015年全国高中数学联合竞赛试题与解答(A卷)-高中课件精选

2015年全国高中数学联合竞赛试题与解答(A卷)-高中课件精选

2015 年全国高中数学联合竞赛(A 卷)一试说明:1.评阅试卷时,请依据本评分标冶填空题只设0分和8分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 5.在正方体中随机取三条棱,它们两两异面的概率为 .6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 .7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 .8.对四位数abcd , 若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 . 三、解答题9.(本题满分16分)若实数c b a ,,满足c b a c b a 424,242=+=+,求c 的最小值.10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i a a ji ,求4321a a a a +++的值.11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn .2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国高中数学联赛江苏赛区初赛试卷(含答案)

2015年全国 数学联赛赛区 初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c 2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆接四边形, 所以∠PAD =∠PED ,∠PAF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠PAD =∠PAF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .ABCDP(第12题图)EA BC DP (第12题图)EF又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA , 所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t 2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。

2015年全国高中数学联赛试卷解析汇报

2015年全国高中数学联赛试卷解析汇报

标为
3 (
,
3 )
.由对称性知,
S
8S CPG
13 84
24 .
22
22
7.设 为正实数,若存在实数 a,b( a b 2 ) ,使得 sin a sin b 2 ,则 的取
值范围为

答案: w
95 [,)
13 [,
.) 解 : s in a s in b 2 知 , s in a s in b 1 , 而
文档大全
实用标准文案
8.对四位数 abcd ( 1 a 9,0 b, c, d 9 ) ,若 a b, b c, c d, 则称 abcd 为 P 类数;
若 a b, b c, c d ,则称 abcd 为 Q 类数,用 N(P) 和 N(Q)分别表示 P 类数与 Q 类数的个
数,则 N(P)-N(Q) 的值为
不同的实根矛盾) . 10 分
点 F2 ( l , 0 )到直线 l: y
|k m| d
1 k2
1 |2k
1 k2
kx m 的距离为
1
1
|
(2
2k
1
21 k
1 2k
2
)

文档大全
实用标准文案
注意到 | k |
2
d 1 (t t2
2 ,令 t
2 3 ) 1 (t 22
1
2
1 ,则 t
k
3) . t
(1, 3) ,上式可改写为
9.(本题满分 16 分)若实数 a ,b,c 满足 2a 4b 2c ,4a 2b 4c ,求 c 的最小值. 解:将 2a, 2b ,2c 分别记为 x, y, z,则 x, y, z 0 .

2015年全国高中数学联赛吉林赛区预赛

2015年全国高中数学联赛吉林赛区预赛

2015年全国高中数学联赛(吉林赛区)预赛暨2015年吉林省高中数学联赛试题及参考答案一、选择题1.已知[)121(), (,1)4()log ,1,xx f x x x ⎧∈-∞⎪=⎨∈+∞⎪⎩ ,则[](1)f f -=( )A .2B .2-C .41 D .12-2.“实数d c b a ,,,依次成等差数列”是“a d b c +=+”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.若方程()20f x -=在(,0)-∞内有解,则()y f x =的图象可能是( )4.已知向量,a b 的夹角为60︒,且1a =,213a b -=,则b =()32C. 2 5.已知()||f x x x =,若对任意的1x ≥有()()0f x m mf x ++<恒成立,则实数m 的取值范围是( )A .(,1)-∞-B .(,1]-∞-C .(,2)-∞-D .(,2]-∞- 6.函数x x x f 34)(3-=在)2,(+a a 上存在最大值,则实数a 的取值范围是( ) A .)1,25(--B .]1,25(--C .)21,25(--D .]21,25(-- 二、填空题7.四棱锥S ABCD -的底面是边长为2的正方形,SD ABCD ⊥平面,且SD AB =,则四棱锥S ABCD -的外接球的表面积为 __ __. 8.设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =.则数列{}n a 的通项公式为__ __ ___.9.已知函数()sin()sin()(0)24f x x x ππωωω=++>的最小正周期为π,则()x f 在区间上的值域为 __ ___.10. 如图,在四棱锥ABCD E -中,底面ABCD 为正方形,⊥AE 平面CDE ,已知3==DE AE ,F 为线段DE 上的一点,二面角F BC E --与二面角D BC F --的大小相等,则DF 的长为__ ___.11.从0,1,2,,9中选出三个不同数字组成四位数(其中的一个数字用两次),如5224,则这样的四位数共有___________个. 12.非空集合280(,)10 220ax y A x y x y x ay ⎧⎫-+≥⎧⎪⎪⎪=--≤⎨⎨⎬⎪⎪⎪+-≤⎩⎩⎭,当(,)x y A ∈时,目标函数z y x =-既存在最大值,又存在最小值,则实数a 的取值范围是__ ___.三、解答题13.在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)求ABC △的周长的最大值;(Ⅱ)若2sin 2sin(2)sin A B C C ++=,求ABC △的面积.14.已知椭圆22:14x G y +=,直线l 交椭圆G 于,A B 两点,且||2AB =,判断直线l 与圆221x y +=的位置关系,并给出证明.15.已知不等式1ln (1)0x a x --≥对任意的1x ≥均成立,求实数a 的取值范围.16.已知{1,2,,2014}A ⊆,设实数123123,,,,,x x x λλλ满足:(1)、123,,{1,0,1}λλλ∈-且不全为0;(2)、123,,x x x A ∈; (3)、若i j x x =,则1i j λλ≠-(1,i j ≤≤3).如果所有形如123x x x 和112233x x x λλλ++的数均不是2014的倍数,则称A 为“好集”. 求“好集”A 所含元素个数的最大值.参考答案一、选择题1. B 2. A 3. D 4. D 5. B提示:显然0m <,且())mf x x -=,又()||f x x x =为增函数且为奇函数,故()()0()()())f x m mf x f x m mf x f x m f x m ++<⇔+<-⇔+<⇔+< 6. B提示:考虑到x x x f 34)(3-=的唯一极大值点为12x =-,且1()1(1)2f f -==,故1212a a <-<+≤,解得512a -<≤-.二、填空题 7. 12π 8. 14()3n n a -=9.10.12 11. 3888提示:分三类:不含0的有312293423024C C C A ⨯⨯⨯=个;含0且0只用一次的有219233648C C ⨯⨯⨯=个;含0且0用两次的有22923216C A ⨯⨯=个,于是共有3024648216++=个.12. [2,)+∞提示:当2a >时,区域为三角形,显然满足;当2a =时,目标函数z y x =-分别在边界10x y --=和2280x y -+=上取得最小值和最大值. 三、解答题13.(Ⅰ)由余弦定理及已知条件得,224a b ab +-=,于是22()()43434a b a b ab ++=+≤+⨯,得4a b +≤,所以ABC △的周长的最大值为6,当ABC △为等边三角形时取到. (Ⅱ)由2sin 2sin(2)sin A B C C ++= 得sin()sin()4sin cos B A B A A A ++-=, 即sin cos 2sin cos B A A A =,当cos 0A =时,2A π=,6B π=,3a =3b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =所以ABC △的面积1sin 2S ab C ==14.当直线l 的斜率不存在时,由||2AB =知点,A B 的坐标分别为(0,1),(0,1)-,即直线l 的方程为0x =,此时直线l 与圆221x y +=相交。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015全国高中数学联赛安徽省初赛试卷(考试时间:2015年7月4日上午9:00—11:30)注意: 1.本试卷共12小题,满分150分; 2.请用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线; 4.不得使用计算器.一、填空题(每题8分,共64分)1. 函数R ∈++++=-x x x x f x ,e 31)(的最小值是 .2. 设24211111≥+-==--n x x x x n n n ,.数列}{n x 的通项公式是=n x .3. 设平面向量βα,满足3|||,||,|1≤+≤βαβα,则βα∙的取值范围是.4. 设)(x f 是定义域为R 的具有周期π2的奇函数,并且0)4()3(==f f ,则)(x f 在]10,0[中至少有 个零点.5. 设a 为实数,且关于x 的方程1)sin )(cos (=-+x a x a 有实根,则a 的取值范围是.6. 给定定点)1,0(P ,动点Q 满足线段PQ 的垂直平分线与抛物线2x y =相切,则Q 的轨迹方程是 . 7. 设z x yi =+为复数,其中,x y 是实数,i 是虚数单位,其满足z 的虚部和1z iz--的实部均非负,则满足条件的复平面上的点集(,)x y 所构成区域的面积是.8. 设n 是正整数.把男女乒乓球选手各n 3人配成男双、女双、混双各n 对,每位选手均不兼项,则配对方式总数是 .二、解答题(第9题20分,第10━12题22分,共86分)9. 设正实数b a ,满足1=+b a .求证:31122≥+++bb a a .10. 在如图所示的多面体ABCDEF 中,已知CFBE AD ,,都与平面ABC 垂直.设c CF b BE a AD ===,,,1===BC AC AB .求四面体ABCE 与BDEF 公共部分的体积(用c b a ,,表示).11.设平面四边形ABCD的四边长分别为4个连续的正整数。

证明:四边形ABCD的面积的最大值不是整数。

12.已知31位学生参加了某次考试,考试共有10道题,每位学生解出了至少6道题.求证:存在两位学生,他们解出的题目中至少有5道相同.试题解答一、填空题(每题8分,共64分)1. 当3-≤x 时,,e 42)(x x x f -+--=0e 2)(<--='-x x f , 因此)(x f 单调减;当13-≤≤-x 时,,e 2)(x x f -+= 0e )(<-='-x x f ,此时)(x f 亦单调减;当1-≥x 时,x x x f -++=e 42)(,x x f --='e 2)(. 令0)(='x f 得.2ln -=x 因此)(x f 在2ln -=x 处取得最小值6-2ln2.2. 设x a v x a u sin cos -=+=,.方程有实根⇔双曲线1=uv 与圆1)()(22=-+-a v a u 有公共交点. 注意到圆的圆心位于直线x y =之上,只须找到圆与双曲线相切时圆心的位置即可. 易计算得,圆与双曲线切于A(1,1)点时,圆心坐标为2/21-或2/21+.圆与双曲线切于B(-1,-1)点时,圆心坐标为2/21--或2/21+-.因此,a 的取值范围为⎥⎥⎦⎤⎢⎢⎣⎡+-⎥⎥⎦⎤⎢⎢⎣⎡+---∈221,221221,221 a .3. 由4213111++=+--n n n x x x 和421221211++=+--n n n x x x ,可得2112312123121---⎪⎭⎫ ⎝⎛=++=++n n n n n x x x x .故222223232-----⋅-=n n n n n x . 4. ()217299121222-=--≥--+=∙βαβαβα.()494122≤--+=∙βαβαβα.以上等号均可取到.故βα∙的取值范围是⎥⎦⎤⎢⎣⎡-49,217.5. 由题设可知)()()(x f x f x f --=+-=+πππ。

令x=0得0=)(πf 。

另一方面,0.)4()4()42(=-=-=-f f f π 类似地,03)-f(2=π 因此,)(x f 在]10,0[中的零点一定包含34,3,32,44,2,4,32,,3,420-+---ππππππππ,这11个零点.6. 设PQ 的垂直平分线l 与抛物线2x y =相切于),(2t t ,切向为)2,1(t . 则l 的方程为2)(2t t x t y +-=.设),(y x Q ,由PQ 与l 垂直且PQ 中点在l 上,可得⎩⎨⎧-=+=-+②①221)1(0)1(2t tx y y t x . 由①解得yxt 22-=,代入②得Q 的轨迹方程为 0)1)(1(2)12(22=-++-y y x y ,⎥⎦⎤⎢⎣⎡-∈21,1y .7. 0)1()1()1(i 1i )1(Re 1i Re22≥+----=---+=--yx yy x x y x y x z z 等价于 21221221)()(≤-+-y x . 又由于0≥y,故满足条件的点集构成了圆的一部分,计算得其面积为823+π.8. 从3n 名男选手中选取2n 人作为男双选手有23n n C 种选法,把他们配成n 对男双选手有(2)!2!n n n 种配对方式。

女选手类似。

把n 个男选手和n 个女选手配成n 对混双有n!种配对方式。

因此,配对方式总数是n n n nn n n n n n C C 2322232)!()!3(!2!=⎪⎭⎫ ⎝⎛.二、 解答题(第9题20分,第10━12题每题22分,共86分)9. 证明:对任意)1,0(∈a ,由均值不等式有 .414214=⨯≥+aa aa ----------------------------------(5分)因此,a a a aa a a a a -=+-≥++-=+2441441222.------------(15分)同理,对于任意)1,0(∈b ,.212b bb -≥+因此,3221122=-+-≥+++b a bb a a .---------------------(20分)10. 设H CE BF G BD AE == ,,则四面体BEGH 是ABCE 与BDEF 的公共部分.-----------------------------------------------------(5分) 易计算得:G 到直线AB 的距离ba abd +=1,---------------------------------(10分) G 到平面BCFE 的距离ad d 2312=, ------------------------------------------(15分) H 到直线BC 的距离c b bc d +=3,23d b S BEH -=∆.----------------(20分) 因此,))((123332c b b a bd S V BEH BEGH ++==∆.---------------------(22分)11. 不妨设ABCD 是凸四边形,其面积为S .记DA d CD c BC b AB a ====,,,。

由Dcd d c B ab b a AC D cd B ab S cos 2cos 2,sin 21sin 2122222-+=-+=+=, 可得Dcd B ab d c b a D cd B ab S cos cos 2/)(,sin sin 22222-=--++=,--------------(8分)两遍平方和得.))()()((41)(41)()(41)cos(2)()(422222222222222d c b a c d b a b d c a a d c b d c b a cd ab d c b a D B abcd cd ab S -++-++-++-++=--+-+≤--+-+-+= 等号成立当且仅当π=+D B ,即D C B A ,,,四点共圆--------------------(16分)现根据假设d c b a ,,,为四个连续整数).1(3,2,1,≥+++n n n n n 由此)3)(2)(1(+++=n n n n S . 显然 .13322++<<+n n S n n 因此,S 不是整数。

----------------------------------------------------(22分)12. 证明:设S 是所有试题的集合,i S 是第i 位学生解出的试题的集合,i i S S T \=.题目即证存在j i ≠使得5≥j i S S .--------------------------------(5分)不妨设i T S i i ∀==,,4 6.S 共有120310=C 个三元子集,每个i T 恰包含4个三元子集.因此,存在j i ≠使得j i T T ,包含相同的三元子集,3≥j i T T .---(15分)从而,52≥+=-+=j i j i j i j i T T S S S S S S .-----------------(22分)。

相关文档
最新文档