第二章 谓词逻辑 1.原子命题的内部结构
第2章谓词逻辑
例2.2.2 将命题“没有最大的自然数”符号化。 解 命题中“没有最大的”显然是对所有的自然 数而言,所以可理解为“对所有的x,如果x是自然 数,则一定还有比x大的自然数”,再具体点,即 “对所有的x如果x是自然数,则一定存在y,y也是 自然数,并且y比x大”。令 N(x): x是自然数, G(x,y): x大于y, 则原命题表示为:
2.3 约束变元与自由变元
定义2.3.1 给定一个谓词公式A,其中有一 部分公式形如(x)B(x)或(x)B(x),则称它为A 的x约束部分,称B(x)为相应量词的作用域或辖 域。在辖域中,x的所有出现称为约束出现,x 称为约束变元;A中不是约束出现的其它个体变 元的出现称为自由出现,这些个体变元称自由 变元。自由变元可以看作是公式中的参数。
有了项的定义,函数的概念就可用来表示 个体常元和个体变元。例如,令f(x,y)表示x+y, 谓词N(x)表示x是自然数,那么f(2,3)表示个体自 然数5,而N(f(2,3))表示5是自然数。这里函数是 就广义而言的,例如P(x): x是教授,f(x): x的父 亲,c:张强,那么P(f(c))便是表示“张强的父亲 是教授”这一命题。
(x)(N(x)(y)(N(y)∧G(y,x)))。
例2.2.3 将语句“今天有雨雪,有些人会跌跤” 符号化。
解 本语句可理解为“若今天下雨又下雪,则 存在x,x是人且x会跌跤”。
令R: 今天下雨,S: 今天下雪,M(x): x是人, F(x): x会跌跤,则本语句可表示为: R∧S(x)(M(x)∧F(x))。
2.1 个体、谓词和量词 2.2 谓词公式与翻译 2.3 约束变元与自由变元 2.4 公式解释与类型 2.5 等价式与蕴涵式 2.6 谓词公式范式 2.7 谓词逻辑的推理理论
离散数学第二章
P (t1 , t2 , , tn ) 是原子公式。
32
§2.1.3 谓词逻辑公式(公式 )
定义 谓词公式由下述各条规定组成: (1)原子公式是谓词公式。 (2)若A是谓词公式,则﹁ A也是谓词公式。 (3)若A和B是谓词公式,则A ∨ B,A ∧ B,A → B, 也是谓词公式。
22
2.存在量词
注意:1.在存在量词 的作用下,x不再起变量的作用, 存在量词也“约束”了x的变量作用。 注意:2.在存在量词作用下,命题中的特性谓词与命题 变元之间必须采用联结词合取,而不能用条件。 注意:3.命题的表示形式与个体域密切相关。 例:有些狗是聪明的。 若个体域为所有狗的集合,则该命题表示为:
这种“描述主语性质的谓语结构的抽象形式或描述主语所 涉及对象之间的关系的抽象形式”就是谓词。语句中的主 语称为个体。 在原子命题中引进谓词和个体的概念,这种以命题中的谓 词为基础的分析研究,称为谓词逻辑(或称谓词演算)。
7
§2.1.1 谓词与个体
在谓词逻辑中,将原子命题分解为谓词与个体两部分。
F (a1 , a2 , , an )
例如, T(a):a是教师。 D(3,2):3大于2。 C(武汉,北京,广州):武汉位于北 京和 广州之间。 注意顺序
9
§2.1.1 谓词与个体
在一个谓词中,个体是可以变化的,如 “是大学生” 中个体是可以变化的,可以是“张华是大学生” 也可
以是“何勇是大学生” ,等等。
31
§2.1.3 谓词逻辑公式(公式 )
定义( 项 ) (1)个体常量符是项;
(2)个体变量符是项;
(3)设f是n元函数符,
t1 , t2 , , tn 为项,则
第二章 谓词逻辑 1.原子命题的内部结构
第二章 谓词逻辑一、原子命题的内部结构12.谓词逻辑·谓词和个体词·量词、全称量词和存在量词·个体域·量词的辖域·自由个体变项和约束个体变项·一阶谓词逻辑什么是谓词逻辑在第一章中,我们知道,命题逻辑的根本特征,就在于把原子命题作为基本的单位,对原子命题的内部结构不再进行分析。
在思维实际中,有时我们不涉及原子命题的内部结构,例如,命题推理只涉及命题之间的关系,这时命题逻辑的工具就足够了。
但在更多的情况下需要涉及原子命题的内部结构。
例如:推理1:所有的人都是要死的。
苏格拉底是人。
所以,苏格拉底是要死的。
推理1包括三个不同的原子命题,经过相应的设定后,它的真值形式是()r q p →∧。
这不是一个重言式。
因此,这个显然有效的推理在命题逻辑个被判定无效。
这是因为,推理1的有效性的根据不在原于命题之间的关系,而在于原子命题内部的构成要素之间的关系。
命题逻辑无法解决这样的推理的判定问题。
传统逻辑中的词项逻辑把原子命题进一步分析为主项、谓项、量项和联项的合式构成,这样它就能处理命题逻辑所无法处5理的许多推理,如推理1这样的三段论。
但是,词项逻辑的处理能力有着很大的局限。
例如:推理2:所有的罪犯或者是故意犯罪,或者是过失犯罪。
有些罪犯不是故意犯罪。
因此,有些罪犯是过失犯罪。
这个有效性同样明显的推理的判定,命题逻辑解决不了,词项逻辑同样解决不了。
为了更为有效和尽量不失—般性地解决推理的判定,需要提出新的逻辑工具,进—步分析原子命题的内部结构。
这就是谓词逻辑的任务。
在谓词逻辑中,原子命题被进一步分析为谓词、个体词、量词和联结词这样几个基本成分。
谓词、个体词和量词是谓词逻辑中新引入的概念,联结词作为符号就是真值联结词。
谓词和个体词我们通过以下实例来说明什么是谓词和个体词。
(1) 这张桌子是方的。
(2) 陈先生是贾女土的丈夫。
显然,以上两个命题都是原子命题。
在(1)中,今F(x)表示“x 是方的”,a 表示“这张桌子”,这样,F(a)就表示“这张桌子是方的”,也就是说,命题(1)的表达式是F(a)。
第二章 谓词逻辑
通常。一元谓词表达了客体的“性质”,而多元谓词表达了客体之间的“关系”。
*重点:谓词是描述命题中客体性质或客体之间关系的部分,用大写字母表示。
第2节命题函数与量词
同理,若L(x,y)表示x小于y,那么L(2,3)表示了一个真命题:“2小于3”。而L(5,1)表示假命题:“5小于1”。
又如A(x,y,z)表示一个关系“x加上y等于z”。则且A(3,2,5)衷示了真命题“3+2=5”,而A(1,2,4)表示了一个假命题“1+2=4”。
从上述三个例子中可以看到H(x),L(x,y),A(x,y,z)中的x,y,z等都是客体变元,很象一些函数,于是便有如下定义。
(2)若A是谓词公式,则 A是一个合式公式。
(3)若A和B都是合式公式,则(A∧B),(A∨B),(A→B)和(A B)是谓词公式。
(4)如果A是合式公式,x是A中出现的任何变元,则 xA和彐xA都是谓词公式。
(5)只有经过有限次地应用规则(1)、(2)、(3)、(4)所得到的公式是谓词公式。
在讨论命题公式时,曾用了关于圆括号的某些约定,即最外层的括号可以省略,在谓词合式公式中亦将遵守同样的约定,但需注意,量词后面若有括号则不能省略。
注意,代表客体名称的字母,它在多元谓词表示式中出现的次序与事先约定有关,因此未经约定前,上例记作L(a,b,c)或L(b c,a)等都可以,但一经约定,L(a,b,c)与L(b,c,a)就代表两个不同的命题。
单独一个谓词不是完整的命题,我们把谓词字母后填以客体所得的式子称为谓词填式,这样谓词和谓词填式应该是两个不同的概念。
第二章 谓词逻辑
解:符号化为:x(N(x) ∧y(N(y)G(x,y))
以后可以证明,这两个公式是等价的。
谓词逻辑 22
在谓词逻辑,使用量词应注意以下几点:
1.
在不同个体域中,命题符号化的形式可能不同, 命题的真值也可能会改变。
2.
在考虑命题符号化时,如果对个体域未作说明,
一律使用全总个体域。 多个量词出现时,不能随意颠倒它们的顺序, 否则可能会改变命题的涵义。
谓词逻辑 16
说明 : 命题符号化之前,必须明确个体域的范围, 以上两例子均为全总个体域。 如果将个体域改为D={人类},则特性谓词 M(x)就不需要了。 (对全称量词,特性谓词常作蕴含的前件; 对存在量词,特性谓词常作合取项。) 例1:(1) (x)H(x) (2) (x)D(x) 例2:(1) (x)(Q(x)R(x)) (2) (x)E(x)
(1)设M(x):x是人,H(x):x是要呼吸。 解: 命题符号化为:(x)(M(x)H(x))。 (2)设M(x):x是人,D(x):x是要死的。 命题符号化为:(x)(M(x)D(x))。
谓词逻辑 15
存在量词: “有些”,“存在”,“至少有一个”,表示个体域 D中存在个体,用符号“”表示,称为存在量词。 例2:将下列命题符号化 (1) 有些人是聪明和美丽的。 (2) 有人早饭吃面包。 解: (1) 设M(x):x是人,Q(x):x是聪明的,R(x):x是 美丽的。命题符号化为:(x)(M(x)Q(x)R(x))。 (2) 设M(x):x是人,E(x):x是早饭时吃面包,命 题符号化为:(x)(M(x)E(x))。
谓词逻辑
2
说明:
谓词逻辑是命题逻辑的继续和深入,不仅研 究命题间的逻辑结构,而且考察命题的内部性质, 在这里,对命题的内部逻辑结构作了进一步的刻 画分析。 这需要对客体、谓词以及谓词公式中的量词、 辖域等基本概念的理解,带量词的谓词公式也有 等值演算和推理理论,范式概念,对此需要理解 并学会简单应用。
离散数学第2章 谓词逻辑
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词
第二章 谓词逻辑
离散数学
第一章
例3 设Q(x,y)表示“x比y重”。 当x,y指人或物时,它是一个命题,但 若x,y指实数时,Q(x,y)就不是一个命题。
离散数学
第一章
例4 R(x)表示“x是大学生”。 如果x的讨论范围为某大学里班级中的学 生,则R(x)是永真式。 如果x的讨论范围为某中学里班级中的学 生,则R(x)是永假式。 如果x的讨论范围为一个剧场中的观众, 观众中有大学生也有非大学生,那么,对某些 观众,R(x)为真,对另一些观众,R(x)为假。 真值不理,若L(x,y)表示x小于y,那么 L(2,3) 表示一个命题:“2小于3”, 为真。 而 L(5,1) 表示一个命题:“5小于1”, 为假。 又如,A(x,y,z)表示一个关系“x加上y等于z” 则 A(3,2,5) 表示了真命题“3+2=5”,而A(1,2,4)表示了一个假命题 “1+2=4”。 从上述三个例子中可以看到 H(x),L(x,y),A(x,y,z) 中的x,y,z等都是客体变元。 它们很象数学中的函数,这种函数就是命题函数。
离散数学
第一章
3. 量词 使用上面所讲的一些概念,还不能用符号很好地表达 日常生活中的各种命题。 例如:S(x)表示x是大学生,而x的个体域为某单位的 职工。那么S(x)可以表示某单位职工都是大学生,也可以 表示某单位存在一些职工是大学生。 为了避免这种理解上的混乱,需要引入量词,以刻划 “所有的”和“存在一些’的不同概念。 例如: (1) 所有的人都是要呼吸的。 (2) 每个学生都要参加考试。 (3) 任何整数或是正的或是负的。 这三个例子都需要表示“对所有的x”这样的概念,为此 ,引入符号: (x) 或 (x) 表示“对所有的x”。
离散数学
第一章
离散数学及应用 第3版 第2章 谓词逻辑
2.1个体词、谓词与量词
(3)∃x∀yP(x,y),其中D = {1,2,3},谓词P(x,y) : x = y 解:∃x∀yP(x,y)=∀yP(1,y)∨∀yP(2,y)∨∀yP(3,y)
=(P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3)) ∨(P(3,1)∧P(3,2)∧P(3,3)) =(1∧0∧0)∨(0∧1∧0)∨(0∧0∧1) =0
2.1个体词、谓词与量词
存在量词: 表示存在, 有的, 至少有一个等 x 表示在个体域中存在x 设P (x)是以D为个体域的一元谓词, xP(x) = 0 :对任意的x ∈ D,P(x)取值0 xP(x) = 1 :存在a ∈ D,P(a)取值1
➢ 设D = {a1,···,an}是有限个体域, ∃xP(x) = P(a1)∨P(a2)∨···∨P(an)
所以,∃x∀yP(x,y)与∀y∃xP(x,y)值不相同。
2.1个体词、谓词与量词
例2.3 在谓词逻辑中将下列命题符号化 (1) 人人都爱美; (2) 有人用左手写字 分别取二个不同的个体域 (a) D为人类集合, (b) D为全总个体域 .
(a) (1) 设G(x): x爱美, 符号化为 x G(x) (2) 设T(x): x用左手写字, 符号化为 xT(x)
(b) 设F(x): x为人,G(x): x爱美 T(x): x用左手写字 (1) x (F(x)G(x)) (2) x (F(x)T(x))
这是两个基本公式, 注意它们的使用
2.1个体词、谓词与量词
例2.4 在谓词逻辑中将下列命题符号化
(1) 正数都大于负数
(2) 有的无理数大于有的有理数
注意: 题目中没给个体域, 使用全总个体域
第二章谓词逻辑1.原子命题的内部结构
第二章 谓词逻辑一、原子命题的内部结构12.谓词逻辑·谓词和个体词·量词、全称量词和存在量词·个体域·量词的辖域·自由个体变项和约束个体变项·一阶谓词逻辑什么是谓词逻辑在第一章中,我们知道,命题逻辑的根本特征,就在于把原子命题作为基本的单位,对原子命题的内部结构不再进行分析。
在思维实际中,有时我们不涉及原子命题的内部结构,例如,命题推理只涉及命题之间的关系,这时命题逻辑的工具就足够了。
但在更多的情况下需要涉及原子命题的内部结构。
例如:推理1:所有的人都是要死的。
苏格拉底是人。
所以,苏格拉底是要死的。
推理1包括三个不同的原子命题,经过相应的设定后,它的真值形式是()r q p →∧。
这不是一个重言式。
因此,这个显然有效的推理在命题逻辑个被判定无效。
这是因为,推理1的有效性的根据不在原于命题之间的关系,而在于原子命题内部的构成要素之间的关系。
命题逻辑无法解决这样的推理的判定问题。
传统逻辑中的词项逻辑把原子命题进一步分析为主项、谓项、量项和联项的合式构成,这样它就能处理命题逻辑所无法处5理的许多推理,如推理1这样的三段论。
但是,词项逻辑的处理能力有着很大的局限。
例如: 推理2:所有的罪犯或者是故意犯罪,或者是过失犯罪。
有些罪犯不是故意犯罪。
因此,有些罪犯是过失犯罪。
这个有效性同样明显的推理的判定,命题逻辑解决不了,词项逻辑同样解决不了。
为了更为有效和尽量不失—般性地解决推理的判定,需要提出新的逻辑工具,进—步分析原子命题的内部结构。
这就是谓词逻辑的任务。
在谓词逻辑中,原子命题被进一步分析为谓词、个体词、量词和联结词这样几个基本成分。
谓词、个体词和量词是谓词逻辑中新引入的概念,联结词作为符号就是真值联结词。
离散数学第2章 谓词逻辑
2-2 命题函数与量词
这里有一些人,Exist x,用反写 — 存在变量词, 用于表示个体域中的某些客体 (1)(x)(N(x) P(x))
(2)(x)(M(x) R(x)) (3)(x)(M(x) E(x)) 全称量词与存在量词统称为量词,每个由量词确定的表达式, 都与个体域有关,如: (x)(M(x) H(x)) M(x)是用于限定H(x)中的个体域, M (x)称为特性谓词,限定客体变元变化范围的谓词 当限定范围为M(x)中时,可简写为:(x)(H(x)) 此命题对于论域为人类时,是正确的,而对于自然数则是FALSE, 因为我们是讨论带有量词的命题函数时,必须确定其个体域,把 特性谓词写出来。并且,为了方便,我们将所有命题函数的个体域 全都统一,使用全总个体域。对变化范围用特性谓词加以限制。 一般地,对全称量词,将特性谓词作为前提条件,命题通常写成 条件式,对存在量词,常将之作为合取项。
定义:H是n元谓词,a1,a2,a3……an是n个客体,H(a1,a2……an)所代 表的式子是一个命题,称为谓词填式。(当ai是客体时,A(a1…an) 才是命题。)
3 除了谓词,我们今后还要用到函数这一概念 例:老张是小张的父亲。 小张的父亲=老张
f:….的父亲; a:小张; b:老张; 则b=f(a)
所以 (x)(M (x) F(x))也就是(x)(M (x) F(x))
(5)肖阳的爸爸到北京去了。 “…到…去了”是谓词。F(x,y): x到y去了。a:肖阳, f(x):x的爸爸, b:北京 所以F(f(a),b) (6)谢世平和他的父亲及祖父三人一起去看演出。
F(x,y,z): x,y和z一起去看演出
H(1,c) H(c,1) :张三、李四一样高
例3:P(x): x是大学生 x的个体域:某大学中某班 P(x)永真 x的个体域:某中学中某班 P(x)永假 x的个体域:某剧场中观众 P(x)有真有假
谓词逻辑——精选推荐
第二章谓词逻辑在命题逻辑中,我们把原子命题看作命题演算和推理的基本单位,是不可再分的整体。
因而命题逻辑无法研究命题的内部结构及命题之间的内在联系,甚至无法有效地研究一些简单的推理。
例如,著名的“苏格拉底三段论”:凡是人都是要死的;苏格拉底是人;所以苏格拉底是要死的。
我们知道,这个推理是正确的,但用命题逻辑无法说明这一点。
设p:凡人都是要死的;q:苏格拉底是人;r:苏格拉底是要死的。
则“苏格拉底三段论”可符号化为(p∧q)→r。
显然(p∧q)→r不是重言式。
因此,为了能够进一步深入地研究推理,需要对原子命题做进一步的分析。
2.1 谓词逻辑的基本概念2.1.1 个体与谓词我们可以将原子命题的结构分解为个体和谓词。
定义2.1-1 个体(Individual):个体是我们思维的对象,它是具有独立意义、可以独立存在的客体。
谓词(Predicate):谓词是表示一个个体的性质或若干个个体之间的关系的词。
个体和谓词一起构成了原子命题中的主谓结构。
例2.1-1⑪海水是咸的。
⑫张强与张亮是兄弟。
⑬无锡位于上海与南京之间。
⑪、⑫、⑬都是原子命题,其中海水、张强、张亮、无锡、上海和南京都是个体,“…是咸的”、“…与…是兄弟”和“…位于…与…之间”都是谓词。
⑪中的谓词描述了一个个体的性质,称为一元谓词,⑫中的谓词表示两个个体之间的关系,称为二元谓词,⑬中的谓词表示三个个体之间的关系,称为三元谓词。
依次类推,我们将描述n个个体之间关系的谓词称为n元谓词,通常用大写英文字母来表示谓词。
为方便起见,将命题称为零元谓词。
例如,例2.1-1中的三个谓词可符号化为:P(x):x是咸的;Q(x,y):x与y是兄弟;R(x,y,z):x位于y和z之间。
这里P 、Q 和R表示的都是具体的谓词,称为谓词常元;否则称为谓词变元。
P(x)、Q(x,y)和R(x,y,z)等都是谓词表示的函数形式,通常称为谓词函数,简称为谓词。
然而,仅仅一个谓词,即使是谓词常元,也不能构成一个命题。
1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....
第2章 谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词逻辑推理证明.一、重点内容1. 谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。
谓词是用来刻划个体词的性质或事物之间关系的词. 个体词分个体常项(用a ,b ,c ,…表示)和个体变项(用x ,y ,z ,…表示);谓词分谓词常项(表示具体性质和关系)和谓词变项(表示抽象的或泛指的谓词),用F ,G ,P ,…表示.注意,单独的个体词和谓词不能构成命题,将个体词和谓词分开不是命题.量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”.在谓词逻辑中,使用量词应注意以下几点:(1) 在不同个体域中,命题符号化的形式可能不同,命题的真值也可能会改变.(2) 在考虑命题符号化时,如果对个体域未作说明,一律使用全总个体域.(3) 多个量词出现时,不能随意颠倒它们的顺序,否则可能会改变命题的含义.谓词公式只是一个符号串,没有什么意义,但我们给这个符号串一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公式中的每一个变项都有个体域中的元素相对应.在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是全总个体域。
一般地,使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2. 公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材). 命题的符号化结果都是谓词公式.例如∀x (F (x )→G (x )),∃x (F (x )∧G (x )),∀x ∀y (F (x )∧F (y )∧L (x ,y )→H (x ,y ))等都是谓词公式. 变元与辖域,在谓词公式∀xA 和∃xA 中,x 是指导变元,A 是相应量词的辖域. 在∀x 和∃x 的辖域A 中,x 的所有出现都是约束出现,即x 是约束变元,不是约束出现的变元,就是自由变元. 也就是说,量词后面的式子是辖域. 量词只对辖域内的同一变元有效.换名规则,就是把公式中量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变.代入规则,就是把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号.解释(赋值),谓词公式A 的个体域D 是非空集合,则 (1) 每一个常项指定D 中一个元素; (2) 每一个n 元函数指定D n 到D 的一个函数;(3) 每一个n 元谓词指定D n 到{0,1}的一个谓词;按这个规则做的一组指派,称为A 的一个解释或赋值.在有限个体域下,消除量词的规则为:如D ={a 1,a 2,…,a n },则)(...)()()()(...)()()(2121n n a A a A a A x xA a A a A a A x xA ∨∨∨⇔∃∧∧∧⇔∀谓词公式分类,在任何解释下,谓词公式A 取真值1,公式A 为逻辑有效式(永真式);在任何解释下谓词公式A 取真值0,公式A 为永假式;至少有一个解释使公式A 取真值1,公式A 称为可满足式.3. 前束范式 一个谓词公式的前束范式仍是谓词公式. 若谓词公式F 等值地转化成B x Q x Q x Q k k ...2211那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,x 1,x 2,…,x k 是个体变元,B 是不含量词的谓词公式.每个谓词公式F 都可以变换成与它等值的前束范式. 其步骤如下:① 消去联结词→,↔,⎺∨;② 将联结词⌝移至原子谓词公式之前;③ 利用换名或代入规则使所有约束变元的符号均不同,并且自由变元与约束变元的符号也不同;④将∀x ,∃x 移至整个公式最左边;⑤ 得到公式的前束范式.4.谓词逻辑的推理理论 谓词演算的推理是命题演算推理的推广和扩充,命题演算中的基本等值公式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用. 在谓词演算推理中,某些前提和结论可能受到量词的限制,为了使用这些推理,引入消去和附加量词的规则,有US 规则(全称量词消去规则),UG 规则(全称量词附加规则),ES 规则(存在量词消去规则),EG 规则(存在量词附加规则)等,以便使谓词演算公式的推理过程可类似于命题演算的推理进行.二、实例例2.1 将下列命题符号化:(1) 有某些实数是有理数;(2) 所有的人都呼吸;(3)每个母亲都爱自己的孩子.注意:一般地,全称量词“∀”后,跟蕴含联结词“→”;存在量词“∃”后,跟合取联结词“∧”.解 (1) 设R (x ):x 是实数,Q (x ):x 是有理数。
离散数学第二章谓词逻辑
则xP和xP都是谓词公式
(5)当且仅当能够有限次地应用(1)-(4)所得到的
式子是谓词公式
二、谓词公式的概念
谓词公式是命题公式的扩展,约定最外层圆括号可 以省略,但量词后面若有括号则不省略。
例如 (P(x,y)→(Q(x)→R(y,z)))
P(x,y,z)∧(P(x,y,z)→Q)
y((A(x)∧A(y))→F(x,y,0))
2.2 命题函数与量词
例2.2.6 翻译命题
甲村人与乙村人都同姓。
解 设A(x):x是甲村人。 B(y):y是乙村人。 P(x,y):x与y同姓。 (1)全总个体域 xy((A(x)∧B(y))→P(x,y)) (2)x的论域:甲村人 xy(P(x,y)) y的论域:乙村人
1.令F(x):x是金属。G(y):y是液体。H(x,y):x可以溶解在y 中。则命题“任何金属可以溶解在某种液体中。”可翻译 为( )。 A.x(F(x)∧y(G(y)∧H(x,y))) B.xy(F(x)→(G(y)→H(x,y))) C.x(F(x)→y(G(y)∧H(x,y))) D.x(F(x)→y(G(y)→H(x,y))) 2.令F(x):x是火车。G(y):y是汽车。H(x,y):x比y快。则命 题“某些汽车比所有火车慢。”可翻译为( )。 A.y(G(y)→x(F(x) ∧H(x,y))) B.y(G(y)∧x(F(x)→H(x,y))) C.xy(G(y)→(F(x)∧H(x,y))) D.y(G(y)→x(F(x)→H(x,y)))
由一个谓词常量或谓词变量A,n(n≥0)个个体变量 x1,x2,…,xn组成的表达式A(x1,x2,…,xn) 注意:0元谓词是命题,谓词逻辑是命题逻辑的扩 展。
第二章谓词逻辑
13/86
2.1 谓词逻辑的基本概念与表示
(2).将日常生活和数学中常用的“存在”, “有一个”,“至少有一个”,等词称为存 在量词(Existential Quantifier),符号化为 “ ”。 x/ x:表示个体域里的所有的/有的个体; x F (x)/ x:F (x):表示个体域里所有的/存 在个体具有性质F; x:作用变量; F (x):量词的辖域。
5/86
2.1 谓词逻辑的基本概念与表示
2.1.1谓词 • 定义2.1:在原子命题中,可以独立存在的客
体(句子中的主语,宾语等),称为个体词 (Individual)。而用以刻画个体词的性质或个 体词之间的关系的词即是谓词(Predicate)。
• 单纯的谓词或单纯的个体词都无法构成一个
完整的逻辑含义,只有将它们结合起来才能 构成一个完整的,独立的逻辑断言。
i 1 n n
(x ) G (an )
i 1
因此,对于一个谓词,如果其中每一个变量 都在一个量词作用下,用它就不在是命题函 数,而是一个命题了。
21/86
2.1 谓词逻辑的基本概念与表示
• 例2-8:设P(x):x是素数,I(x):x
9/86
2.1 谓词逻辑的基本概念与表示
• 例2-2:符号化如下命题。
P:上海是一个现代化城市; Q:甲是乙的父亲; R:3介于2和5之间; T:布什和萨达姆是同班同学。
• 注意:
(1).谓词中个体词的顺序是十分重要的,不能随意变 更。如前面的F (b, c)与F (c, b)的真值就不同; (2).一元谓词用以描述一个个体的某种特性,而n元 谓词则用以描述n个个体之间的关系;
19/86
2.1 谓词逻辑的基本概念与表示
2-谓词逻辑
2021/4/9
12
引进一个新的谓词: M(x): x是人。 则两命题符号化为:
(x)( M(x)→P(x) ) (x)( M(x)∧Q(x) )
其中,M(x)称为特性谓词,限制个体变元取值范围.
注意: 引入特性谓词后, 使用全称量词时:特性谓词常做前件 使用存在量词时:特性谓词常做合取项
2021/4/9
第2章 谓词逻辑
大连海事大学
计算机科学与技术学院
2021/4/9
1
第二章 谓 词 逻 辑
命题逻辑中:原子命题为基本单位,是不能再分解的。
1). 命题逻辑的表达能力差: 例: 张三是大学生。P 李四是大学生。Q
2). 命题逻辑的推理能力差: 例: 凡人必死;P 苏格拉底是人;Q 所以苏格拉底必死。R P,Q R? 不是命题逻辑中的有效推理。
(x) ( S(x) → M(x) )
2021/4/9
15
(2)有些大学生是三好优秀生;
特性谓词: S(x):x是大学生; 个体域 G(x): x是三好优秀生; 符号化结果:
( x) ( S(x) ∧ G(x) )
2021/4/9
16
(3)没有不犯错误的人;
特性谓词: P(x):x是人;
个体域
M(x): x是要犯错误的;
H(x,y)表示: x比y长得高。
例 符号化:这座大楼建成了 令F(x):x建成了,G(x): x是大的,H(x): x是楼 令a:这个东西(个体) 则:G(a) ∧ H(a) ∧ F(a)
2021/4/9
8
2.2 量词与全总个体域
个体域(论域)对命题函数真值的影响
例: R(x)表示“x是大学生”。 x的论域分别为 : 某大学里班级中的学生; 某中学里班级中的学生; 一个剧场中的观众。
离散数学第2章 谓词逻辑
量词的作用域即是找出位于该量词之后的相邻子公式,分为以下两种
情况:
(1)若量词后有括号,则括号内的子公式是该量词的作用域。
(2)若量词后无括号,则与量词邻接的子公式为该量词的作用域。
判断公式A中个体变元是自由变元还是约束变元,主要观察它在公 式中是自由出现还是约束出现,自由变元是不受约束的变元,虽然它 有时也在量词的作用域中出现,但它不受相应量词中指导变元的约束。
2.2 谓词公式与翻译
2.2.1 谓词公式 2.2.2 谓词公式的翻译
An Introduction to Database Systenm
2.2.2 谓词公式的翻译
对于含有谓词的命题,在符号化时应注意: (1)区分命题中表示性质和关系的谓词,分别符号化为一元和多元 谓词。 (2)根据命题的实际意义选用全称量词或存在量词。当命题有多个 量词时,注意它们的顺序不能随意调换。 例如:考虑个体的取值范围为实数域,P(x, y)表示x-y=5,则命题 “对于任意x都存在y,使得x-y=5”的符号化形式( 为x): (y)P(x,y) 。该命题 为真命题。若改变量词的出现顺序,得谓词公(y式) (x)P(x,y) ,表示命 题“存在y,对任意x,使得x-y=5”,显然该命题为假命题。 (3)有些命题的符号化形式可能不止一种。 例如:这张红色的餐桌摆满了那些可口的中餐。若令F(x, y)表示“x 摆满了y”,R(x)表示“x是红色的餐桌”,B(x)表示“可口的中餐”,a表 示“这张”,b表示“那些”,则命题符号化为R(a)∧B(b)∧F(a, b)。若将 个体描述性质的谓词划分得更细些,则翻译成不同的谓词公式。若令F(x, y)表示“x摆满了y”,A(x)表示“x是餐桌”,B(x)表示“x是红色的”, C(x)表示“x是中餐”,D(x)表示“x是可口的”,a表示“这张”,b表示 “那些”,则命题符号化为: A(a)∧B(a)∧C(b)∧D(b)∧F(a, b)。
2-123 谓词逻辑(Predicate Logic)
2-2.2 量词(quantifier)
定义:特性谓词 在讨论带有量词的命题函数时,必须确 定其个体域,为了方便,可使用全总个体域。 限定客体变元变化范围的谓词,称作特性谓 词。 利用特性谓词,对以上两个命题进行符 号化 (1) (x)( M(x)→F(x) ) (2) (x)( M(x)∧G(x) )
ax可以表示x是a类型的命题表达了客体的性质称为一元谓词可以表示x小于y类型的命题表达了客体之间的关系称为二元谓词可以表示点x在y与z之间类型的命题表达了客体之间的关系称为三元谓表示n元谓词在这里n个客体变元的顺序不能随意改动
第二章 谓词逻辑 Predicate Logic
前言
苏格拉底三段论(Socrates syllogism): 所有人都是要死的。 苏格拉底是人。 所以苏格拉底是要死的。 ( Socrates, 古希腊哲学家,公元前470~前 399) (孔子,中国伟大哲学家,公元前551~前479)
定义2.存在量词(existential quantifier) 用符号 “ ” 表示。 x 表示存在个体域里的个体。 (x)P(x)表示存在个体域里的个体具有性质P。 符号“”称为存在量词,用以表达“某个”,“存在一 些”,“至少有一个”,“对于一些”等词。 The existential quantifier , a backward E is used to form propositions like (x)P(x), which we read as “there exists an x such that P(x),” “there is an x such that P(x),” or “for some x, P(x).” The compound proposition (x)P(x) has these truth values: ( x ) P(x) is true if P(x) is true for at least one x in U; (x)P(x) is false if P(x) is false for every x in
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章谓词逻辑一、原子命题的内部结构12.谓词逻辑·谓词和个体词·量词、全称量词和存在量词·个体域·量词的辖域·自由个体变项和约束个体变项·一阶谓词逻辑什么是谓词逻辑在第一章中,我们知道,命题逻辑的根本特征,就在于把原子命题作为基本的单位,对原子命题的内部结构不再进行分析。
在思维实际中,有时我们不涉及原子命题的内部结构,例如,命题推理只涉及命题之间的关系,这时命题逻辑的工具就足够了。
但在更多的情况下需要涉及原子命题的内部结构。
例如:推理1:所有的人都是要死的。
苏格拉底是人。
所以,苏格拉底是要死的。
推理1包括三个不同的原子命题,经过相应的设定后,它的真值形式是()r∧。
这不p→q是一个重言式。
因此,这个显然有效的推理在命题逻辑个被判定无效。
这是因为,推理1的有效性的根据不在原于命题之间的关系,而在于原子命题内部的构成要素之间的关系。
命题逻辑无法解决这样的推理的判定问题。
传统逻辑中的词项逻辑把原子命题进一步分析为主项、谓项、量项和联项的合式构成,这样它就能处理命题逻辑所无法处5理的许多推理,如推理1这样的三段论。
但是,词项逻辑的处理能力有着很大的局限。
例如:推理2:所有的罪犯或者是故意犯罪,或者是过失犯罪。
有些罪犯不是故意犯罪。
因此,有些罪犯是过失犯罪。
这个有效性同样明显的推理的判定,命题逻辑解决不了,词项逻辑同样解决不了。
为了更为有效和尽量不失—般性地解决推理的判定,需要提出新的逻辑工具,进—步分析原子命题的内部结构。
这就是谓词逻辑的任务。
在谓词逻辑中,原子命题被进一步分析为谓词、个体词、量词和联结词这样几个基本成分。
谓词、个体词和量词是谓词逻辑中新引入的概念,联结词作为符号就是真值联结词。
谓词和个体词我们通过以下实例来说明什么是谓词和个体词。
(1) 这张桌子是方的。
(2) 陈先生是贾女土的丈夫。
显然,以上两个命题都是原子命题。
在(1)中,今F(x)表示“x是方的”,a表示“这张桌子”,这样,F(a)就表示“这张桌子是方的”,也就是说,命题(1)的表达式是F(a)。
这里,F就是谓词,表示“方”这种性质;x 和a就是个体词,表示具有“方”这种性质的个体。
其中,x称为个体变项,它只表示某一个个体,而不表示一个确定的个体;a称为个体常项,它表示一个确定的个体,即这张桌子。
在(2)中,令H(x,y)表示“x是y的丈夫”,a表示陈先生,b表示贾女士,这样,H(a,b)就表示“陈先生是贾女士的丈夫”,也就是说,命题(2)的表达式是H(a,b)。
这里,H是谓词,表示某人是某人的丈夫”这种关系,x、y和a、b是个体词,同样,x和y是个体变项,a和b是个体常项。
刻画一个个体的性质的谓词称为一元谓词,刻画两个个体之间的关系的谓词称为二元谓词,一般地,刻画n 个个体之间的关系的谓词称为n 元谓词。
显然,谓词不能脱离个体词而独立存在。
如果一个谓词符号表示的是一个具体谓词,即表示某种确定的性质或关系,则称为谓词常项;如果表示的是某个不确定的谓词,则称为谓词变项。
相应地,个体词也分为个体常项和个体变项,已如上述。
约定:以大写英文字母F 、G 、H …表示谓词常项或谓词变项,以小写字母a 、b 、c 、d …表示个体常项,以小写字母x 、y 、z 、u 、v 、w …表示个体变项。
一般地,如果F 是n 元谓词,则它的表达式也可记为F(n x x x ,,,21 )。
其中,n x x x ,,,21 称为谓词F 的主目。
量词、全称量词和存在量词一个包含个体变项的谓词表达式不是命题。
例如,上面的例句(1)中F(x)断定“x 是方的”,但由于x 是个体变项,因而F(x)没有真假,不是命题。
如何使F(x)这样没有真假的表达 式变为有真假的命题呢?有两种方法:第一种方法,用个体常项取代个体变项,例如,令a 表示“这张桌子”,则F(a)就表示“这张桌子是方的”,这是命题,有真假。
这种方法称为解释。
后而将对此作进一步讨论。
第二种方法,对个体变项进行量化。
例如,对F(x)我们进一步断定,对所有的x 来说,F(x)成立;或者断定,至少存在一个x ,F(x)成立。
也就是断定所有的个体都是方的,或者断定至少存在一个个体是方的。
这样的断定就是命题,它们有真假。
在量化的过程中,我们使用了量词。
量词分为全称量词和存在量词。
全称量词断定所有的个体都具有相关谓词所表示的性质或关系;存在量词断定存在(即至少有一个)个体具有相关谓词所表示的性质或关系。
∀表示全称量词,∃表示存在量词。
∀x F(x)表示“任一x 具有F 这种性质”。
∃x F(x)表示“存在x 具有F 这种性质”。
∀x ∀y G(x ,y)表示“任一x 和任一y 具有关系G ”。
∀x ∃yG(x ,y)表示“对任一x ,存在y ,x 和y 具有关系G ”。
∃x ∀yG(x ,y)表示“存在x ,对任一y ,x 和y 具有关系G ”。
∃x ∃yG(x ,y)表示“存在x ,并且存在y ,x 和y 具有关系G ”。
例如,令x 和y 表示自然数,即个体变项的取值范围是自然数,F(x)表示“x 是偶数”, G(x ,y)表示“x >y ”,则:∀x F(x)断定“任一自然数都是偶数”,这是个假命题。
∃x F(x)断定“存在自然数是偶数”,这是个真命题。
∀x ∀y G(x ,y)断定“任一自然数x 和任一自然数y ,都满足x >y ”,这是个假命题。
∀x ∃y G(x ,y)断定“对任一自然数x ,都存在自然数y ,满足x >y(即没有最小的自然数)”,这是个假命题。
∃x ∀yG (x ,y)断定“存在自然数x ,对任一自然数y ,满足x >y(即存在最大的自然数)”,这是个假命题。
∃x ∃y G(x ,y)断定“存在自然数x ,并且存在自然数y ,满足x >y ”,这是个真命题。
个体域量词直接刻画个体变项的量化。
这样,个体变项的取值范围就是一个重要的问题。
同—个带量词的命题,由于个体变项的取值范围不同,可以具有不同的真假值。
例如,令F(x)表示“x有思想”,那么,如果x的取值范围是人,则∀x F(x)断定“所有的人都有思想”,是真命题;而如果x的取值范围是动物,则∀x F(x)断定“所有的动物都有思想”,就成为假命题。
再如,在上面的讨论中,个体变项的取值范围是自然数,因而∀x∃y G(x,y)断定“没有最小的自然数”,是个假命题;但是,如果个体变项的取值范围改为整数,则∀x∃y G(x,y)变为断定“没有最小的整数”,这是个真命题。
个体变项的取值范围称为个体域。
个体域可根据需要作特殊的限制;如果不作特殊的限制,个体域就是指全域,即由所有能被思考的对象组成的域。
∀x F(x)和F(x)的含义是不同的。
∃x F(x)是断定存在个体具有性质F,这是命题。
如果至少有一个这样的个体存在,它就是真的,否则,它就是假的。
而F(x)则只表示某个不确定的个体具有F这种性质,至于这样的个体是否存在,如果存在的话是哪一个,都没有断定,因而不是命题。
∃x F(x)和F(a)的含义也是不同的。
∃x F(x)只是断定存在个体具有性质F,至于是哪一个个体,没有断定;F(a)则具体断定个体常项a所表示的那个个体具有性质F。
因此,如果∃x F(x)真,F(a)未必真;而如果F(a)真,则∃x F(x)一定真。
量词的辖域·约束个体变项和自由个体变项在一个表达式中,量词的约束范围称为量词的辖城。
约定:紧靠量词的括号内的表达式是该量词的辖域,括号外的则不是;如果紧靠量词没有括号,那么,紧靠量词的不包含联结词的表达式是该量词的辖域,其他的则不是。
例如:(1) ∃x F(x) ∨G(x)(2) ∃x(F(x)∨G(x))在这两个表达式中,带横线的部分分别表示∃x的辖域。
在相关量词的辖域中出现的个体变项,称为被量词约束的个体变项,简称约束个体变项;不被量词约束的个体变项称为自由个体变项。
例如,在F(x)和G(x,y)中,x和y都是自由个体变项;在∀x F(x)和∃x∀y G(x,y)中,x和y都是约束个体变项;在∀xG(x,y)中,x是约束个体变项,y是自由个体变项。
再如,在上面的(1)式中,F(x)中的x是约束个体变项,而G(x)中的x是自由个体变项。
(2)式中,x都是约束个体变项。
也就是说,在同一个表达式中,同一个个体变项可以既作为约束个体变项,又作为自由个体变项出现。
一个体变项在它的量词的辖域中出现,称为约束出现:否则,称为自由出现。
一个体变项在一公式中是自由的,当且仅当它在该公式中至少有一次自由出现;一个体变项在一公式中是约束的,当且仅当它在该公式中至少有一次约束出现。
也就是说,一个体变项在一公式中可以既是自由的,又是约束的。
因此,x在(1)式中既是自由的,又是约束的;而在(2)式中是约束的,不是自由的。
什么是一阶谓词逻辑上面讨论的谓词逻辑,是一阶谓词逻辑。
其中,谓词表达的性质和关系,只是个体的性质和个体之间的关系;量词只是对个体变项进行量化。
对象的性质和对象之间的关系,统称对象的属性。
问题在于,不光个体具有属性,属性本身也有属性,属性的属性仍然有属性,如此等等。
例如,“这面红旗”作为个体,具有“红色”这种性质,而“红色”这种性质,具有“鲜艳”这种性质。
因此,“红色”是个体的属性,而“鲜艳”则是属性的属性,自然同时也是个体的属性。
再如,“大张”和“小李”两个个体具有“同乡”这种关系,而“同乡”这种关系,具有“传递性”(即如果a和b是同乡,并且b和c是同乡,则a和c是同乡)。
因此,“同乡”是个体的属性,面“传递”则是属性的属性。
因此,在谓词逻辑中,表达同性的谓词具有层次,这就是渭词的阶。
所谓一阶谓词,就是只刻画个体属性的谓词。
一阶谓词的主目中,只出现个体变项。
当我们说存在某些个体,具有“红色”这种性质,这是在对个体变项进行量化;当我们说存在某些性质具有“鲜艳”这种性质,我们就是在对谓词变项进行量化了。
当我们涉及谓词的谓词,或者对谓词变项进行量化时,就进入了高阶谓词逻辑。
高阶逻辑的许多问题,可以化归为一阶逻辑。
我们只讨论一阶逻辑。
概括地说,一阶谓词逻辑,就是其中的谓词都是一阶谓词,其中的量词只刻画个体变项的量化。
13.谓词逻辑层次上自然语言的符号化现在,我们可以在一阶谓词逻辑的层次上,对自然语言进行符号化,这是对日常思维进行比命题逻辑更深入一步的逻辑分析的基础。
以下的讨论,都通过实例说明。
直言命题的表达式在传统逻辑中,断定个体是否具有某种性质的原子命题称为直言命题。
直言命题分为四种基本类型:全称肯定命题,全称否定命题,特称肯定命题和特称否定命题。
我们先讨论这四种基本命题的符号化。
[例1] 将下列命题符号化:(1)所有的商品都是有价值的(2)有的官员是清廉的。