第三节常见连续型随机变量的概率分布 -PPT精选文档

合集下载

连续随机变量及其分布

连续随机变量及其分布

0, 2 F(x)= Ax , 1,
试求: (1)系数 A;
x 0, 0 x 1, x 1.
(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.
数学与信息工程系
例2:设随机变量X具有概率密度
求:(1)常数a;(2)
(3)X的分布函数F(x)
解: (1)由概率密度的性质可知
查出 ( x) ( x) 立即可得 ( x) ( x).
数学与信息工程系
第三节 连续随机变量及其分布
设 X ~ N ( , 2 ), 则有
P( X ) ? 0.6826 P( 2 X 2 ) ? 0.9544 P( 3 X 3 ) ? 0.9974
30 1 1 d x 10 30 25 30 dx 15
=1/3.
数学与信息工程系

X ~ U(2, 5). 现在对 X 进行三次独 立观测,试求至少有两次观测值大 于 3 的概率.
解: 记 A = { X > 3 }, 则 P(A) = P( X> 3) = 2/3
设 Y 表示三次独立观测中 A 出现的次数, 则 Y~ b(3, 2/3),所求概率为 P(Y≥2) = P(Y=2)+P(Y=3) 2 3 0 2 2 1 3 2 1 C3 C3 =20/27 3 3 3 3
f ( x)
F( x )
1

O
x
O
x
数学与信息工程系
第三节 连续随机变量及其分布
指数分布最常见的一个场合是寿命分布.
指数分布具有“无记忆性”
对于任意 s,t >0,有

第三节连续型随机变量及其分布

第三节连续型随机变量及其分布

第三节 连续型随机变量及其分布上一节我们研究了离散型随机变量,这类随机变量的特点是它的可能取值及其相对应的概率能被逐个地列出.这一节我们将要研究的连续型随机变量就不具有这样的性质了.连续型随机变量的特点是它的可能取值连续地充满某个区间甚至整个数轴.例如,测量一个工件长度,因为在理论上说这个长度的值X 可以取区间(0,+∞)上的任何一个值.此外,连续型随机变量取某特定值的概率总是零(关于这点将在以后说明).例如,抽检一个工件其长度X 丝毫不差刚好是其固定值(如 1.824cm )的事件{X =1.824}几乎是不可能的,应认为P{X =1.824}=0.因此讨论连续型随机变量在某点的概率是毫无意义的.于是,对于连续型随机变量就不能用对离散型随机变量那样的方法进行研究了.为了说明方便我们先来看一个例子.例2.8 一个半径为2米的圆盘靶,设击中靶上任一同心圆盘上的点的概率与该圆盘的面积成正比,并设射击都能中靶,以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.解 1°若x <0,因为事件{X ≤x }是不可能事件,所以F (x )=P {X ≤x }=0.2°若0≤x ≤2,由题意P {0≤X ≤x }=kx 2,k 是常数,为了确定k 的值,取x =2,有P {0≤X ≤2}=22k ,但事件{0≤X ≤2}是必然事件,故P {0≤X ≤2}=1,即22k =1,所以k =1/4,即P {0≤X ≤x }=x 2/4.于是F (x )=P {X ≤x }=P {X <0}+P {0≤X ≤x }= x 2/4.3°若x ≥2,由于{X ≤2}是必然事件,于是F (x )=P {X ≤x }=1.综上所述F (x )=⎪⎩⎪⎨⎧≥<≤<,2,1,20,41,0,02x x x x 它的图形是一条连续曲线如图2-2所示.图2-2另外,容易看到本例中X 的分布函数F (x )还可写成如下形式:F (x )=t t f xd )(⎰∞-,其中 f (t )=⎪⎩⎪⎨⎧<<.,0,20,21其他t t这就是说F (x )恰好是非负函数f (t )在区间(-∞,x ]上的积分,这种随机变量X 我们称为连续型随机变量.一般地有如下定义.定义2.3 若对随机变量X 的分布函数F (x ),存在非负函数f (x ),使对于任意实数x 有F (x )=⎰∞-xx t f d )(, (2.8)则称X 为连续型随机变量,其中f (x )称为X的概率密度函数,简称概率密度或密度函数(Density function).由(2.8)式知道连续型随机变量X 的分布函数F (x )是连续函数.由分布函数的性质F (-∞)=0,F (+∞)=1及F (x )单调不减,知F (x )是一条位于直线y =0与y =1之间的单调不减的连续(但不一定光滑)曲线. 由定义2.3知道,f (x )具有以下性质:1°f (x )≥0;2°⎰+∞∞-x x f d )(=1;3°P {x 1<X ≤x 2}=F (x 2)-F (x 1)=⎰21d )(x x x x f (x 1≤x 2);4°若f (x )在x 点处连续,则有F ′(x )=f (x ).由2°知道,介于曲线y =f (x )与y =0之间的面积为1.由3°知道,X 落在区间(x 1,x 2]的概率P {x 1<X ≤x 2}等于区间(x 1,x 2]上曲线y =f (x )之下的曲边梯形面积.由4°知道,f (x )的连续点x 处有f (x )=.}{)()(lim lim0x x x X x P x x F x x F x x ∆∆+≤<=∆-∆+++→∆→∆这种形式恰与物理学中线密度定义相类似,这也正是为什么称f (x )为概率密度的原因.同样我们也指出,反过来,任一满足以上1°、2°两个性质的函数f (x ),一定可以作为某个连续型随机变量的密度函数.前面我们曾指出对连续型随机变量X 而言它取任一特定值a 的概率为零,即P {X =a }=0,事实上,令Δx >0,设X 的分布函数为F (x ),则由{X =a }⊂{a -Δx <X ≤a },得 0≤P {X =a }≤P {a -Δx <X ≤a }=F (a )-F (a -Δx ). 由于F (x )连续,所以)(lim 0x a F x ∆-→∆=F (a ).当Δx →0时,由夹逼定理得P {X =a }=0,由此很容易推导出P {a ≤X <b }=P {a <X ≤b }=P {a ≤X ≤b }=P {a <X <b }.即在计算连续型随机变量落在某区间上的概率时,可不必区分该区间端点的情况.此外还要说明的是,事件{X =a }“几乎不可能发生”,但并不保证绝不会发生,它是“零概率事件”而不是不可能事件.例2.9 设连续型随机变量X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x Ax x 试求:(1)系数A ;(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.解 (1)由于X 为连续型随机变量,故F (x )是连续函数,因此有1=F (1)=20101lim lim)(Ax x F x x -→-→= =A ,即A =1,于是有F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x x x (2) P {0.3<X <0.7}=F (0.7)-F (0.3)=(0.7)2-(0.3)2=0.4; (3) X 的密度函数为f (x )=F ′(x )=⎩⎨⎧<≤.,0;10,2其他x x由定义2.3知,改变密度函数f (x )在个别点的函数值,不影响分布函数F (x )的取值,因此,并不在乎改变密度函数在个别点上的值(比如在x =0或x =1上f (x )的值).例2.10 设随机变量X 具有密度函数f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,43,22,30,其他x x x kx (1) 确定常数k ;(2) 求X 的分布函数F (x );(3) 求P {1<X ≤72}. 解 (1)由⎰∞∞-x x f d )(=1,得x xx kx d )22(d 4330⎰⎰-+=1, 解得k =1/6,故X 的密度函数为f (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤.,0,43,22,30,6其他x x x x(2) 当x <0时,F (x )=P {X ≤x }=⎰∞-xt t f d )( =0; 当0≤x <3时,F (x )=P {X ≤x }=⎰∞-xt t f d )(=⎰⎰∞-+00d )(d )(xt t f t t f =12d 620x t t x=⎰;当3≤x <4时,F (x )=P {X ≤x }=⎰∞-xt t f d )(=0303()()()xf t dt f t dt f t dt -∞++⎰⎰⎰=233(2)23;624x t t x dt dt x +-=-+-⎰⎰当x ≥4时,F (x )=P {X ≤x }=⎰∞-xt t f d )(=⎰⎰⎰⎰∞-+++030434d )(d )(d )(d )(xt t f t t f t t f t t f=t t t t d )22(d 64330⎰⎰-+ =1.即F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<.4,1,43,324,30,12,0,022x x x x x x x(3) P {1<X ≤7/2}=F (7/2)-F (1)=41/48.下面介绍三种常见的连续型随机变量. (1)均匀分布若连续型随机变量X 具有概率密度f (x )=⎪⎩⎪⎨⎧<<-.,0,,1其他b x a ab (2.9)则称X 在区间(a ,b )上服从均匀分布(Uniform distribution ),记为X ~U (a ,b ).易知f (x )≥0且⎰⎰∞∞--=ba x ab x x f d 1d )(=1.由(2.9)可得 1°P {X ≥b }=⎰∞bx d 0 =0,P {X ≤a }=⎰∞-ax d 0=0,即 P {a <X <b }=1-P {X ≥b }-P {X ≤a }=1;2°若a ≤c <d ≤b ,则P {c <X <d }=ab c d x a b dc--=-⎰d 1. 因此,在区间(a ,b )上服从均匀分布的随机变量X 的物理意义是:X 以概率1在区间(a ,b )内取值,而以概率0在区间(a ,b )以外取值,并且X 值落入(a ,b )中任一子区间(c ,d )中的概率与子区间的长度成正比,而与子区间的位置无关. 由(2.8)易得X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤--<.,1,,,,0b x b x a a b ax a x (2.10) 密度函数f (x )和分布函数F (x )的图形分别如图2-3和图2-4所示.图2-3 图2-4在数值计算中,由于四舍五入,小数点后第一位小数所引起的误差X ,一般可以看作是一个服从在[-0.5,0.5]上的均匀分布的随机变量;又如在(a ,b )中随机掷质点,则该质点的坐标X 一般也可看作是一个服从在(a ,b )上的均匀分布的随机变量.例2.11 某公共汽车站从上午7时开始,每15分钟来一辆车,如某乘客到达此站的时间是7时到7时30分之间的均匀分布的随机变量,试求他等车少于5分钟的概率.解 设乘客于7时过X 分钟到达车站,由于X 在[0,30]上服从均匀分布,即有f (x )=⎪⎩⎪⎨⎧≤≤.,0,300,301其他x显然,只有乘客在7∶10到7∶15之间或7∶25到7∶30之间到达车站时,他(或她)等车的时间才少于5分钟,因此所求概率为P {10<X ≤15}+P {25<X ≤30}=⎰⎰+15103025d 301d 301x x =1/3. (2)指数分布若随机变量X 的密度函数为f (x )=⎩⎨⎧≤>-.00,,0,e x x x λλ (2.11) 其中λ>0为常数,则称X 服从参数为λ的指数分布(Exponentially distribution ),记作X ~E (λ).显然f (x )≥0,且x x x f x d e d )(0⎰⎰∞∞-∞-=λλ=1.容易得到X 的分布函数为F (x )=⎩⎨⎧≤>--.00,,0,e 1x x x λ指数分布最常见的一个场合是寿命分布.指数分布具有“无记忆性”,即对于任意s ,t >0,有P {X >s +t |X >s }=P {X >t }. (2.12)如果用X 表示某一元件的寿命,那么上式表明,在已知元件已使用了s 小时的条件下,它还能再使用至少t 小时的概率,与从开始使用时算起它至少能使用t 小时的概率相等.这就是说元件对它已使用过s 小时没有记忆.当然,指数分布描述的是无老化时的寿命分布,但“无老化”是不可能的,因而只是一种近似.对一些寿命长的元件,在初期阶段老化现象很小,在这一阶段,指数分布比较确切地描述了其寿命分布情况.(2.12)式是容易证明的.事实上,(){,}{}{}{}{}1()ee {}.1()es t t λsP X s X s t P X s t P X s t X s P X s P X s F s t P X t F s λλ-+->>+>+>+>==>>-+====>--(3)正态分布若连续型随机变量X 的概率密度为f (x )=222)(e π21σμσ--x , -∞<x <+∞, (2.13)其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布(Normal distribution ),记为X ~N (μ,σ2).显然f (x )≥0,下面来证明⎰∞∞-x x f d )(=1.令σux -=t ,得到.d eπ21d e π2122)(222t x t x ⎰⎰∞∞--∞∞---=σμσ记I =t t d e22⎰∞∞--,则有I 2=⎰⎰∞∞-∞∞-+-ds d e222t s t .作极坐标变换:s =r cos θ,t =r sin θ,得到I 2=22π22r redrd πθ∞--∞=⎰⎰,而I >0,故有I,即有.π2d e 22=⎰∞∞--t t于是.1π2π21d e 21222)(=⋅=--∞∞-⎰x x σμσπ 正态分布是概率论和数理统计中最重要的分布之一.在实际问题中大量的随机变量服从或近似服从正态分布.只要某一个随机变量受到许多相互独立随机因素的影响,而每个个别因素的影响都不能起决定性作用,那么就可以断定随机变量服从或近似服从正态分布.例如,因人的身高、体重受到种族、饮食习惯、地域、运动等等因素影响,但这些因素又不能对身高、体重起决定性作用,所以我们可以认为身高、体重服从或近似服从正态分布.参数μ,σ的意义将在第四章中说明.f (x )的图形如图2-5所示,它具有如下性质:图2-5 图2-61°曲线关于x =μ对称;2°曲线在x =μ处取到最大值,x 离μ越远,f (x )值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小;3°曲线在μ±σ处有拐点; 4°曲线以x 轴为渐近线;5°若固定μ,当σ越小时图形越尖陡(图2-6),因而X 落在μ附近的概率越大;若固定σ,μ值改变,则图形沿x 轴平移,而不改变其形状.故称σ为精度参数,μ为位置参数. 由(2.13)式得X 的分布函数F (x )=t xt d eπ21-2)(22⎰∞--σμσ. (2.14)特别地,当μ=0,σ=1时,称X 服从标准正态分布N (0,1),其概率密度和分布函数分别用)(x ϕ,Φ(x )表示,即有22e π21)(x x -=ϕ, (2.15)Φ(x )=t x t d e π2122⎰∞--. (2.16) 易知,Φ(-x )=1-Φ(x ).人们已事先编制了Φ(x )的函数值表(见本书附录).一般地,若X ~N (μ,σ2),则有σμ-X ~N (0,1).事实上,Z =σμ-X 的分布函数为 P {Z ≤x }=}{x X P ≤-σμ=P {X ≤μ+σx }=t t xd e π21222)(σμσμσ--+∞-⎰,令σμ-t =s ,得P {Z ≤x }=s x s d e π2122⎰∞-- =Φ(x ), 由此知Z =σμ-X ~N (0,1).因此,若X ~N (μ,σ2),则可利用标准正态分布函数Φ(x ),通过查表求得X 落在任一区间(x 1,x 2]内的概率,即P {x 1<X ≤x 2}=⎭⎬⎫⎩⎨⎧-≤-<-σμσμσμ21x X x P=⎭⎬⎫⎩⎨⎧-≤--⎭⎬⎫⎩⎨⎧-≤-σμσμσμσμ12x X P x X P =⎪⎭⎫⎝⎛-Φ-⎪⎭⎫⎝⎛-Φσμσμ12x x .例如,设X ~N (1.5,4),可得P {-1≤X ≤2}=⎭⎬⎫⎩⎨⎧-≤-≤--25.1225.125.11X P=Φ(0.25)-Φ(-1.25)=Φ(0.25)-[1-Φ(1.25)]=0.5987-1+0.8944=0.4931.设X ~N (μ,σ2),由Φ(x )函数表可得P {μ-σ<X <μ+σ}=Φ(1)-Φ(-1)=2Φ(1)-1=0.6826,P {μ-2σ<X <μ+2σ}=Φ(2)-Φ(-2)=0.9544, P {μ-3σ<X <μ+3σ}=Φ(3)-Φ(-3)=0.9974.我们看到,尽管正态变量的取值范围是(-∞,∞),但它的值落在(μ-3σ,μ+3σ)内几乎是肯定的事,因此在实际问题中,基本上可以认为有|X -μ|<3σ.这就是人们所说的“3σ原则”.例2.12 公共汽车车门的高度是按成年男子与车门顶碰头的机会在1%以下来设计的.设男子身高X 服从μ=170(cm),σ=6(cm)的正态分布,即X ~N (170,62),问车门高度应如何确定?解 设车门高度为h (cm),按设计要求P {X ≥h }≤0.01或P {X <h }≥0.99,因为X ~N (170,62),故P {X <h }=⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-<-617061706170h h X P ≥0.99, 查表得 Φ(2.33)=0.9901>0.99.故取6170-h =2.33,即h =184.设计车门高度为184(cm )时,可使成年男子与车门碰头的机会不超过1%.例2.13 测量到某一目标的距离时发生的随机误差X (单位:米)具有密度函数f (x )=3200)20(2eπ2401--x .试求在三次测量中至少有一次误差的绝对值不超过30米的概率.解 X 的密度函数为f (x )=222402)20(3200)20(eπ2401eπ2401⨯----⨯=x x ,即X ~N (20,402),故一次测量中随机误差的绝对值不超过30米的概率为P {|X |≤30}=P {-30≤X ≤30}=⎪⎭⎫⎝⎛--Φ-⎪⎭⎫⎝⎛-Φ402030402030=Φ(0.25)-Φ(-1.25)=0.5981-(1-0.8944)=0.4931.设Y 为三次测量中误差的绝对值不超过30米的次数,则Y 服从二项分布b (3,0.4931),故P {Y ≥1}=1-P {Y =0}=1-(0.5069)3=0.8698.为了便于今后应用,对于标准正态变量,我们引入了α分位点的定义. 设X ~N (0,1),若z α满足条件P {X >z α}=α,0<α<1, (2.17)则称点zα为标准正态分布的上α分位点,例如,由查表可得z0.05=1.645,z0.001=3.16.故1.645与3.16分别是标准正态分布的上0.05分位点与上0.001分位点.。

连续型随机变量及其概率密度

连续型随机变量及其概率密度

1. 均匀分布
设连续型随机变量
X
具有概率密度f
(
x)
b
1
a
,
a x b,
0,
其它,
则称 X 在区间 (a, b) 区间上服从均匀分布,记为 X ~ U (a, b).
说明:
对c, l R, 如果(c, c l ) (a, b), 则
cl
l
P(c X c l ) c
f ( x)dx ba
1
( x )2
e , 2 2
2
x
, ( 0)为常数, 则称X服从正态分布,记作:X : N(, 2).
0, 1时, X : N (0,1)
概率密度: ( x)
1
x2
e2
2
说明:
f(x)满足概率条件: f(x) 0,
+ f(x)dx 1 -
证明(2): 令 x- t, 则x t, dx dt
解 : (1) 由概率密度的定义 :
f ( x)dx 1
-
f ( x)dx
3 C(9 x2 )dx 1
-
-3
C 1 36
(2)
P{ X 0}
0 -3
1 36
(9
x2 )dx
1 36
(9x
x3 3
)
|03
1 2
P{1 X 1} 1 1 (9 x2 )dx 13
-1 36
k 0
n大,p小,np=3,用=np=3的泊松近似
上式 1 N 3k e3 0.01
k0 k !
N 3k e3 0.99
k0 k !
查泊松分布表,最小N=8。至少配8名维修工。

第三节连续型随机变量及其概率密度

第三节连续型随机变量及其概率密度

则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.

2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x

连续型随机变量的分布【概率论及数理统计PPT】

连续型随机变量的分布【概率论及数理统计PPT】

1
dx =1
3
1 1 x 2
? 思考: P(-1/2<X<2)=
课堂练习
1.
证明
f
(x)

x a
e x2 2a
0
x0 x0
(a>0)
是某一个随机变量X的密度函数。
x 0 x 1
2.设随机变量X~ f ( x ) ax b 1 x 2
0
对于随机变量 X ,如果存在非负可积函数
f(x) , x (,) ,使得对任意 a b , 有
b
P(a X b) a f ( x)dx
则称 X为连续型随机变量,称 f(x)为 X 的 概率密度函数,简称为概率密度或密度函数.
(III) 概率密度函数的性质
1 o f (x) 0


(由 ex2 dx 可得) 0

x
σ大
(2)概率密度图形是以x=μ为对称轴的R上的连续函数,
在x=μ点f(x)取得最大值; (3)若σ固定,μ改变,密度曲线随对称轴左右移动,形状保持不变;
若μ 固定, σ改变,σ越大,曲线越平坦,σ越小,曲线越陡峭.
例8. 设随机变量 X~U(2 ,5). 现在对 X进行三次独立 观测,试求至少有两次观测值大于3的概率。

e x
X ~ f (x)
x0
0 x0
正态分布
一般正态分布
X ~N(μ,σ2)
定义:称 随机变量 X服从参数为 μ,σ2的正态分布, σ>0,
μ是任意实数,若
(x)2
f(x)
X ~ f (x)
e , 1
2 2

连续型随机变量及其概率分布

连续型随机变量及其概率分布
aБайду номын сангаас
b
利用概率密度可确 定随机点落在某个 范围内的概率
f (x) (4)在 f (x) 的连续点 x 处, F(x)=
注:
(1)连续型随机变量 X 的分布函数F(x)处处连续. (2)连续型随机变量取任一指定实数值a 的概
P X = a=. 0 (3) 率均为0. 即
P X a F ( a ) l i m F ( a x ) = F ( a ) F ( a ) = 0
例. 设X服从参数为3的指数分布,求它的密度函数 ( 1 X 2 ) 及 P( X 1) 和 P
3 e 3 x x 0 解: X 的概率密度 f ( x ) x 0 0
P ( x X x ) xd )x 1 2 f(
x 1
3 P ( X 1 ) fx ( ) d x 3 e d x e 1 1 3 x
, 正 态 分 布 , 记 为
2
X ~N ( ,2)
具有下述性质 fx :
正态分 布曲线
1

曲线 f x 关于 轴对称;
P μ X μ h P μ hX μ h 0

1 时 , 取最大值 f( ) 2 x 2
常见的连续型随机变量
1. 均匀分布
定义:若 随机变量 X的概率密度为:
1 , a x b f (x) ba , 其它 0
f ( x)
1 b a
a
b
则称X在区间[ a, b]上服从均匀分布, 记作 X ~ U(a, b)
X的分布函数为:
1 , a x b f (x) ba , 其它 0

高等数学第三节连续型随机变量及其概率密度函数

高等数学第三节连续型随机变量及其概率密度函数

▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
概率统计
2. 概率密度函数的性质
性质1 f ( x) 0
性质2
f ( x)dx 1
f (x)
这两条性质是判定 一个函数 f(x) 是否 为某随机变量 X 的 概率密度函数的充 要条件.
面积为1
o
x
概率统计
性质3
F ( x0 x) F ( x0 )
x0x f (t)dt x0
当 x 0时, 两边取极限:
0
P(X
x0 )
lim
x0
x0x f (t)dt
x0
0
P( X x0 ) 0
概率统计
注 ▲ 这个结论的意义:
(1). P( X x0 ) 0 从积分的几何意义上说,当 底边缩为一点时,曲边梯形面积退化为零。
(2).由此可知连续型随机量X 在某区间上取值的 概率只与区间长度有关,而与区间是闭、开、 半开半闭无关,即有:
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f ( x)dx
F ( x2 ) F ( x1 )
概率统计
注 P( x X x x) F( x x) F(x)
不计高阶 无穷小
x x
x f (t) dt
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x] 上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。
P( x1 X x2 ) F ( x2 ) F ( x1 )

连续型随机变量的概率分布

连续型随机变量的概率分布
均匀分布的分布函数为 :
0,
xa
F
(
x)
x b
a a
,
a xb
1,
xb
如, 每隔10分钟发车一辆,乘客等车的时间 X~U(0,10) 读数采用四舍五入法,设最小刻度为1,则误差 Y~U(-0.5,0.5)
上页 下页 返回
例1: 某站点从8点到10点有一班车随机到达, 一 乘客9点到达车站。问他能坐上该班车的概率。
x2
e 2,
x
2
( ( x)为偶函数,其图形关于纵轴对称)
分布函数为:
x
(x)
1
t2
e 2 dt
2
性质: (i) (0) 0.5
(ii) ( x) 1 ( x)
(x)
由图形对称性
P(X x) P(X x)
( x) 1 ( x)
标准正态分布有表可查P254, 如
(0.3) 0.6179 (3) 0.9987
更一般的 P( X G) f ( x)dx
G
上页 下页 返回
(5)对连续型随机变量X,任给实数a,必有
P(X a) 0
0 P( X a) F (a) F (a x) x 0 0 注: 这表明求连续型随机变量落在一个区间上的概率 值时,不必考虑区间端点的情况。即
P(a X b) P(a X b) P(a X b) P(a X b)
上页 下页 返回
(3) N (, 2)与N (0,1)的联系
定理:若X ~ N (, 2) , 则 X ~ N (0,1)
证明:设Z X 则Z的分布函数为:
FZ ( x)
P(Z
x)
P(X
x)
P{X x} FX ( x)

§3、连续型随机变量及其分布

§3、连续型随机变量及其分布

综上所述,即得随机变量X的分布函数为
0, 当x 0时 1 F ( x) x 2 , 当0 x 2时 4 1, 当x 2时
对F(x)求导数,可得 x 2时 f ( x) F ( x) 2 0, 其它

P{a X b} F (b) F (a ) b a .
x
x

x 2 a x 2 a x dx a x arcsin C . 2 2 a
2 2
2
8
③当
x x 1 时,
1

F ( x)
f (t )dt
2 0 1 t 2 dt 0 1 1;
注:积分 所以
1

1
1 1 t dt 12 为单位圆面积一半. 2
19
正态分布密度函数 图形曲线的几何性质: (1)概率密度曲线 关于 x =μ为轴对称; (2)密度函数的 最大值为
f max ( x ) f ( )
(3)在点 x±μ处有拐点,凸凹区间为 (, ), ( , ), ( ,); (4)概率密度曲线以 x 轴为水平渐近线. 参数μ (X的数学期望)是其位置参数;参数σ (X的均方差)是其形状参数.
注:分布函数F(x)的不可导点仅两个,……
6
【例1】设随机变量X的概率密度为
求X的分布函数. 【解】 注意到其概率密度 f(x)是分段函数,因此 根据其分段定义区间(-∞,-1],(-1,1],(1,+∞),分段 求其分布函数F(x). ①当
x
2 1 x 2 , 1 x 1, f ( x) 其它, 0,

《连续型随机变量》课件

《连续型随机变量》课件

02
对于连续型随机变量的最大值,其概率分布函数为F(x)=1−e−λxtext{F}(x) = 1 - e^{-lambda x}F(x)=1−e−λx,其中λlambdaλ是随机变量的密度函数。
03
对于连续型随机变量的最小值,其概率分布函数为F(x)=1−e−λ(−x)text{F}(x) = 1 - e^{-lambda (-x)}F(x)=1−e−λ(−x)。
THANKS
感谢观看
最大值和最小值在决策分析中的应用
01
在风险管理中,连续型随机变量的最大值和最小值具有重要的应用价 值。
02
通过分析最大值和最小值的概率分布、数学期望和方差,可以帮助决 策者更好地理解潜在的风险和机会,从而做出更明智的决策。
03
在金融领域,连续型随机变量的最大值和最小值可用于评估投资组合 的风险和回报,以及制定风险管理策略。
连续型随机变量的最小值的数学期望 E(Xmin)=−∞∑x=0xP(X<x)text{E}(X_{min}) = infty sum_{x=0} x P(X < x)E(Xmin)=−∞∑x=0xP(X<x)。
连续型随机变量的最小值的方差 Var(Xmin)=−∞∑x=0[x2P(X<x)−E2(Xmin)]text{ Var}(X_{min}) = -infty sum_{x=0} [x^2 P(X < x) E^2(X_{min})]Var(Xmin)=−∞∑x=0[x2P(X<x)− E2(Xmin)]。
03
连续型随机变量的期望和方差
期望的定义和计算
定义
连续型随机变量的期望值是所有可能取值的加权和,其中每个取值的权重等于该 取值出现的概率。

概率论 Ch3连续型随机变量与分布(4,5,6).ppt

概率论  Ch3连续型随机变量与分布(4,5,6).ppt

x
1 2
x
fX Y
t
1 2
dt
x 1
2t 3
dt
1
0
1 3
x
2
1
1
x 1 1 x2 x2
x 1 1 x2
x2
⑵由分布函数性质知
3 1
3 1
1
P0
X
2
Y
2
FX Y
2
2
FX
Y
0
2
1 3
3 2
2
1
0
5 12
也可由密度函数性质得到:
P
0
X
3 2
Y
1 2
3 2 0
fX Y
x
1 2
dx
3 2
2xdx
13
5.
12
⑶由定义: fY X y x
fX
x
x3 4
0,

f x, y
,
fX x
当0 x 2时,
f
x,
y
2xy
0 x 2, 0 y x , X x 2
0
其余
2xy
0
0 y x 2
其余
故当 0 x 2 时,
2 xy
fY X
例1 设二维随机变量 X ,Y 的联合分布函数为
F x, y AB arctan xC arctan y,
求常数 A, B,C.
解 由分布函数 F x, y的性质得:
lim
x y
F
x,
y
A
B
π 2
C
π 2
1,
lim
x, y
F

连续性随机变量分布函数PPT详解

连续性随机变量分布函数PPT详解

1
f ( x)dx
b
dx (b a)
∴ =1/(b-a).
a
d 1
d c
(2) P{c X d}
dx
c ba ba
(一)均匀分布 若连续型随机变量X的概率密度函数为
f
(x)
b
1
a
,
a
x
b
0, else
则称X在(a, b)上服从均匀分布,记为 X ~ U (a, b)
易知, f ( x) 0,
a
f ( x)dx
0
20
③ F(a) = F(a)
④ F(a) = 2F(a) 1
练习
2.设X为连续型随机变量,其分布函数为:
F
(
x)
A
Be
2
x
,
x0
C,
x0
求:(1)A ,B,C (2) f(x) (3) P{-2<X<1}
练习
3、设X与Y 同分布,X 的概率密度为
f
(
x)
3 8
x
2
Z的概率密度: x
1
x2
e2
2
Z的分布函数:(x) x
y ( x)
y
1 t2 e 2 dt
2
(x)
(x)
xx 1
x 0 x
x
29
标准正态分布N(0, 1)
(x)
密度函数记为 (x),
分布函数记为 (x).
(1) (0) 1 , 2
( x)
1 (x)
x 0 x
x
(2) ( x) 1 (x)
2
3 P{ X C } 3F (C ) 3(C 3) 2

连续型概率分布课件

连续型概率分布课件

1.4
0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5
0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6
0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
• 随机变量在从 x1到x2间的某一给定区间取值的概率被定 义为概率密度函数在 x1与x2间的图形的面积。
均匀连续型概率分布的期望值和方差
练习
• 已知随机变量x在10和20间服从均匀分布 – 计算P(x<15); – 计算P(12≤x≤18); – 计算E(x); – 计算Var(x)。
6 连续型概率分布
1.1
0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2
0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3
0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
横轴相交。
正态概率分布的性质
• 标准差决定曲线的宽度 • 正态概率分布曲线下的
总面积是 1,对所有的连 续型概率分布都是如此。 • 正态随机变量的概率由曲 线下面积给出。一些常用 区间的概率是68.26%, 95.44%,99.72%

连续型随机变量PPT课件

连续型随机变量PPT课件

20
1
x
e 10 dx
1
x
e 10
20
10 1 0
10 10
e1 e2 0.2325
2021/5/11
33
3.正 态 分 布
如果连续型随机变量X 的密度函数为
f x
1
e
x 2
2 2
2
x
其中 , 0为参数
则称随机变量X 服从,参数为 , 2 的
正态分布.记作
f (x)
下面验证:
x
f x dx
1
e
x 2
2 2
dx
1
2
2021/5/11
36
密度函数的验证(续)
下面验证:
f xdx
1
x 2
e 2 2 dx 1
2
首先验证:
x dx
1
x2
e 2 dx 1
2
或验证:
x2
e 2 dx 2
2021/5/11
P 1或 2
11 dx 6 1 dx
3 9
29
24 2 99 3
2021/5/11
27
2.指 数 分 布
如果随机变量 X 的密度函数为
f
x
e
x
x0
0 x0
其中 0为常数,则称随机变量服从 参数为的指数分布.
2021/5/11
28
密度函数的验证
设X ~ 参数为的指数分布,f x是其密度函数,则有:
例 7:
设打一次电话所用的时间 X(单位:分钟)是
以 1 为参数的指数随机变量.如果某人刚
10 好在你前面走进公用电话间,求你需等待10分 钟到20分钟之间的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(图2.7).
σ1 σ2
O
O
x
O
x
图2.7正态分布曲线(
)
2、标准正态分布 当参数μ=0,σ=1时,正态分布称 做标准正态分布,记作N(0,1).标准正态概率密度
φ(x) 和分布函数Ф(x)为
1 1 () x e , () x = e d u . 2 2
2 x 2
(y F ) e 2 π ( | a| ) 1
2 y (a b ) 2 2 2 a
d t ,

e 2 π (a )
1
2 y (a b ) 2 2 2 a

22 于 是 Y a X b ~ N ( a b , a ) .

第三节、常见连续型随机变 量的概率分布
一、均匀分布和均匀随机数
称随机变量X在区间[a,b]上服从均匀分布,如果它有密度
1 , 若 x [a ,b ], f (x ) ba [a ,b ]. 若 x 0 ,
均匀分布亦称矩形分布,其分布函数有简单的表达式:
, 若 xa, 0 x a F ( x) , 若 a xb, b a , 若 x b. 1
F ( 0 ) P X 0 P X 0 P X 0
由条件知,在事件C={0<X<0.75}出现的条件下,随机变量X 在区间(0,0.75)上服从均匀分布.因此,对于任意0<<0.75,有 x 4 x P 0 X x |C ; 0 . 75 3 4 x P 0 X x P { 0 X x } C P 0 X x | C P ( 态分布的关系 对于任意 ( ,2) 则 实数 a,b(a≠0),如果 X~N
22 Ya X bN ~( a b , a ) .
特别 1 ) 、 若 X ~ N ( ,2 ) , U ( X )~ N ( 0 , 1 )


2 ) 、 若 U ~ N ( 0 , 1 ) , X U , ~ ~ N ( ,2 ) .

y b 1 e a 2 π
2 ( yb )a ( t ) 2 2
2 证明:设X~N 则当 a 数为 ( , ) , 0时Ya X b 的 分 布 函
F ( y ) P Y y P a X by P X
d t ,
Fy ( )
e 2 π ( a )
1
2 y ( a b ) 2 2 2 a
. 0时 Y a X b 的 分 布 函 当a 数为
2 ( yba ) ( t ) 2 2
b 1 y F () y P Y y P a Xb y P X 1 e a 2 π
侧面的下1/4部分,分别占4个侧面和底面总面积的,可见
1 1 P X 0 P ( A ) , P X 0 . 7 5 P ( B ) , 53 5 P 0 X 0 . 7 5 P ( C ) . 5
当x<0时,显然F(x)=0,当x≥0.75时, 显然F(x)=1.F(0)=1/5;易见
1、均匀随机数 随机数指按随机顺序排列并服从一定分 布律的数字,一般指服从均匀分布律的随机数,而服从 其他分布律的随机数前面一般冠以分布的名称. 2、均匀分布的典型应用 均匀分布在统计模拟(仿真) 中有重要应用.按均匀分布产生大量均匀随机数,并通 过均匀随机数进行模拟;在计算机上可以迅速地产生大 量随机数.利用均匀随机数还可以模拟随机抽样和各种 分布的随机变量.均匀随机数还用于数值计算.
3、正态分布的典型应用
(1) 实际中,许多自然现象和社会现象,工农业生产和 管理,以及科学技术和科学试验中的很多现象,都可 以用正态分布律或近似地用正态分布律来描述. (2) 许多重要概率分布,如统计推断中最常用的分布、 分布和分布都是正态变量函数的分布.在后面几章我 们将看到,凡是涉及正态分布的统计推断问题,一般 都有比较完满的结果. (3) 大量随机变量之和的概率分布以及许多重要分布的 极限分布,在一定条件下是正态分布.这正是第五章将 要讲的中心极限定理的内容.中心极限定理同时揭示了 产生正态分布条件,从而也说明了正态分布的广泛性的 原因.
二、正态分布
称随机变量X服从参数为 ( , 2 ) 的正态分布,记作
X ~N ( ,2)
如果它有概率密度
1 ( x ) 2
2 ( x ) 2 e2
( x )
正态分布亦称高斯(Gauss)分布. 1、正态分布曲线 利用微积分中函数研究的一般方法, 容易绘出正态分布密度函数φ(x) ——正态分布曲线
1 5
1 4 xx 4 1 F ( x ) P X x P X 0 P 0 X x . 5 55 于是,最后得随机变量X的分布函数为
若 x 0, 0 , 4x 1 若 F x , 0 x 0.75, 5 若 1 , x 0.75. 注意,随机变量X既不是离散型的也不是连续型的,是 离散-连续混合型的.
例2.27 设容积为一立方米的油箱外形为一正立方体,容器的3/4
盛有油, 假设在其4个侧面或下底面的随机部位出现了一个小孔,
油可经此小孔自然流出.以X表示最后剩余油面的高度,求随机 变量X的分布函数F(x).

设A={小孔在底面},B={小孔在侧面的上1/4部分},
C={小孔在侧面的上1/4部分},则易见A={X=0},B={X=0.75}, C={0< X <0.75}.由于底面、4个侧面的上1/4部分,以及4个
x
2 u 2
(1) 数值表 附表1是标准正态分布函数Ф(x)的数值表. (2) 表中对于x≥0给出了Ф(x)的值;对于x<0,利用关系 (3) 式Ф(x)=1-Ф(-x)计算Ф(x)的值. 附表2是标准正态分布密度函数φ(x)的数值,当x<0 时利用关系式φ(x)= φ(-x).附表3是标准正态分布 N(0,1)水平α的双侧分位数 u 的数值表.
相关文档
最新文档