新人教版必修四高中数学精讲优练课型第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件
高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物
2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。
高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4
答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.
高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4
第十页,共35页。
3.已知向量a,b满足(mǎnzú)|a|=1,|b|=4,且a·b=2,则a与b的夹角为 ________.
第十六页,共35页。
解析: (1)a·b=|a||b|cos 120°=3×4×-12=-6. (2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|·cos 120°-3|b|2=2×32+
5×3×4×-12-3×42=-60.
第三十一页,共35页。
[拓展练]☆ 3.(1)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则 a 与 b 的夹角为________; (2)已知非零向量 a,b 满足 a+3b 与 7a-5b 互相垂直,a-4b 与 7a-2b 互 相垂直,求 a 与 b 的夹角.
第六页,共35页。
2.数量积的几何意义及数量积的符号
(1)按照投影的定义,非零向量 b 在 a 方向上的投影为|b|cos θ,其具体情况,
我们也可以借助下面图形分析:
θ 的范围
θ=0° 0°<θ<90° θ=90° 90°<θ<180° θ=180°
图形
b 在 a 上的 投影的正负
正数
正数
0
第七页,共35页。
|2a+b|2=(2a+b)(2a+b)=4|a|2+|b|2+4a·b=4|a|2+|b|2+4|a||b|cos 60°=175. ∴|2a+b|=5 7.
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积教案
θab数学学科必修4模块第二单元教学设计方案 第七学时~第八学时:第二方案2.4.1 平面向量数量积的物理背景及定义一、教学目标1.知识与技能:掌握平面向量的数量积的定义、运算率及其物理意义 2.过程与方法:(1)通过向量数量积物力背景的了解,体会物理学和数学的关系 (2)通过向量数量积定义的给出,体会简单归纳与严谨定义的区别(3)通过向量数量积分配率的学习,体会类比,猜想,证明的探索式学习方法 3.情感、态度与价值观:通过本节探究性学习,让学生尝试数学研究的过程。
二、教学重点、难点重点:平面向量数量积的定义 难点:数量积的性质及运算率三、教学方法:探究性设计方法,提出问题,创设情境,引导学生参与教学过程四、教学过程教学环节 教学内容师生互动 设计意图 引入以物理学中的做功为背景引入问题:观察讨论做功的公式中左右两端的量分别是什么量?什么影响了功的大小?如何精确的给出数学中的定义?力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角教师提出问题,学生思考由旧知识引出新内容;同时联系物理学和数学,理解具体和一般的关系定义形成 问题:给θ一个精确定义 问题:定义向量的一种乘积运算,使得做功公式符合这种运算一、两个非零向量夹角的概念已知非零向量a 与b ,作=a ,=b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角说明:(1)当θ=0时,a 与b 同向; (2)当θ=π时,a 与b 反向;教师引导学生, 注意: 1.两向量必须同起点; 2.θ的取值范围; 3.数量积的定义公式形式; 4.注意特殊向量零让学生自己体会数学的概括性、严谨性及可操作性(3)当θ=2π时,a 与b 垂直,记a ⊥b ; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒二、平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)0与任何向量的数量积为向量定义深化 问题:根据向量数量积的定义进行变形分析,总结性质(考虑特殊情况)结论:两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1、e ⋅a = a ⋅e =|a |cos θ2、a ⊥b ⇔a ⋅b = 03、 a ⋅a = |a |2或||a a a =4、cos θ =||||a ba b5、|a ⋅b | ≤ |a ||b |问题:在以往接触的实数运算中,有很多运算率,结合实数乘法的运算率谈谈平面向量数量积的运算率问题:数量积满足乘法交换率、分配率、结合率、消去率吗? 如何验证。
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)
高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。
高中数学必修四第二章平面向量课后习题Word版(2021年整理)
(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。
高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.
高中数学 精讲优练课型 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教版必修4
【题型探究】 类型一 对平面向量基本定理的理解 【典例】1.(2015·黄石高一检测)已知平行四边形ABCD,下列各组向 量中,是该平面内所有向量基底的是( )
A . A B , D C B . A D , B C C . B C , C B D . A B , D A
2.如果e1、e2是平面α内两个不共线的向量,那么下列说法中不正确 的是( )
2.3 平面向量的基本定理及坐标表示 2.3.1 平面向量基本定理
【知识提炼】 1.平面向量基本定理
条件 e1,e2是同一平面内的两个_不__共__线__向__量__
结论
对于这一平面内的任意向量a,有且只有一对实数λ1,λ2, 使_a_=_λ__1e_1_+_λ__2_e2_
基底 _不__共__线__的向量e1,e2叫做表示这一平面内所有向量的一组基 底.
(2)基底的性质: ①不共线性 平面内两个不共线的向量才可以作为一组基底,基底不同,表示也不 同.由于零向量与任何向量共线,所以零向量不可以作为基底. ②不唯一性 对基底的选取不唯一,平面内任一向量a都可被这个平面的一组基底 e1,e2线性表示,且在基底确定后,这样的表示是唯一的.
2.平面向量基本定理与向量共线定理的联系 由平面向量共线定理可知,任意一个向量可以用一个与它共线的非零 向量来线性表示,而且这种表示是唯一的,故平面向量基本定理是向 量共线定理从一维到二维的推广.
【知识探究】 知识点1 平面向量基本定理 观察图形,回答下列问题:
问题1:判断两个向量能否作为基底的关键是什么? 问题2:平面向量基本定理与向量的线性运算有何关系?
【总结提升】 1.对平面向量基本定理的两点说明 (1)作用和意义 平面向量基本定理告诉我们,平面内任何一个向量都可以沿着两个不 共线的方向分解成两个向量的和,并且这种分解是唯一的.
高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(一)
其中 θ 是 a 与 b 的夹角. (2)规定:零向量与任一向量的数量积为 0 . (3)投影:设两个非零向量 a、b 的夹角为 θ,则向量 a 在 b
|a|cos θ , |b|cos θ 方向的投影是_______ 向量 b 在 a 方向上的投影是_______.
3.数量积的几何意义 a· b 的几何意义是数量积 a· b 等于 a 的长度|a|与 b 在 a 的方
|b|cos θ 的乘积. 向上的投影_______
研一研·问题探究、课堂更高效
2.4.1(一)
探究点一
本 课 时 栏 目 开 关
平面向量数量积的含义
已知两个非零向量 a 与 b,我们把数量|a||b|cos θ 叫做 a 与 b 的 数量积(或内积),记作 a· b,即 a· b=|a||b|cos θ,其中 θ 是 a 与 b 的夹角,θ∈[0,π].规定:零向量与任一向量的数量积为 0. 问题 1 如果一个物体在力 F 的作用下产生位移 s,那么力 F 所
∴a· b=|a|· |b|cos 180° =4×5×(-1)=-20. (2)当 a⊥b 时,θ=90° ,∴a· b=|a|· |b|cos 90° =0. (3)当 a 与 b 的夹角为 30° 时,a· b=|a|· |b|cos 30°
2.4.1(一)
【学法指导】 1.向量的数量积是一种新的乘法,和向量的线性运算有着显著的 区别,两个向量的数量积,其结果是数量,而不是向量.学习 本 课 时必须透彻理解数量积概念的内涵. 时 栏 目 2.向量的数量积与实数的乘积既有区别又有联系,概念内涵更丰 开 关 富,计算更复杂,实数乘法中的一些运算律在向量的数量积中 已经不再成立,不宜作简单类比,照搬照抄.书写格式也要严 格区分,a· b 中的“· ”不能省略.
高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4
向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
新人教版必修四高中数学精讲优练课型第二章平面向量2.5平面向量应用举例课件
提示:由 uuur=0uu ,ur可知AC⊥BD,即平行四边形的对角线互相垂直. 2.典例2中,要A证C明B AD F⊥DE,如何采用向量法求证?
提示:证明
u u u ru u u r A F D E 0 .
【解析】1.选C.因为 =1u ×u(ur-4u )+uur2×2=0,所以 ,所 ACBD
2
所D u u 以E u r (1 , 即0 ) A F⊥0 D, 1 E. (1 , 1 ),
2
2
A u u u F rD u u E u r(1 , 1 )(1 , 1 )0 ,
22
uuur uuur
AFDE,
【方法技巧】利用向量解决垂直问题 (1)方法:对于线段的垂直问题,可以联想到两个向量垂直的条件,即向量的数量积为0. (2)途径:可以考虑向量关系式的形式,也可以考虑坐标的形式.
2uuur uu2r
2
2
所 以 P A E F, 即 P A E F.
【延伸探究】若本题条件不变,用向量法证明PA=EF.
【解题指南】本题所给图形为正方形,故可考虑建立平面直角坐标
系,用向量坐标来解决,为此只要写出 相等即可.
的坐标u,uur证明uu其r 模 PA和EF
【证明】建立如图所示的平面直角坐标系,
u u u r u u u r A B A C .
知识点2 向量在物理中的应用 观察如图所示内容,回答下列问题:
问题1:在物理学中,你知道哪些知识与向量的线性运算有关系? 问题2:如何利用向量方法解决物理中的相关问题?
【总结提升】 向量在物理中应用时要注意的三个问题 (1)把物理问题转化为数学问题,也就是将物理量之间的关系抽象成数学模型. (2)利用建立起来的数学模型解释和回答相关的物理现象.
新人教版必修四高中数学精讲优练课型第二章平面向量2.4.2平面向量数量积的坐标表示、模、夹角课件
|a|=
2.典例2中x与2 向y量2 .a平行的单位向量是什么?与向量a垂直的单位向量可
以表示成什么?
提示:与向量a平行的单位向量是± ,与向量a垂直的单位向量可以
表示为a·e=0.
a
a
【解析】1.选B.因为a=(x,1),b=(1,-2),且a∥b,
所以-2x-1×1=0,解得x=- .
1
所以
|a+b|= ,设<a+b,c>=θ,则|c|2=c·(a+b)=|c|·|a+b|cosθ,
当|c|≠0时,|2 c|=|a+b|·cosθ= cosθ≤ ,故|c|的最大值是 .
2
2
2
类型三 向量的夹角和垂直问题
【典例】1.(2015·长春高一检测)已知a=(1, ),b=( +1, -1),
(2)向量a=(x1,y1),b=(x2,y2),则向量a在向量b方向上的投影能用 a,b的坐标表示吗?
提示:能.向量a在向量b方向上的投影为|a|cosθ(θ为向量a与b的
夹角),而cosθ=
,所以|a|cosθ=
a b | a || b |
ab x1x2 y1y2 .
b
x22 y22
则cosθ= =__________________.
a b | a || b |
x1x2 y1y2 x12y12 x22y22
【即时小测】 1.思考下列问题. (1)向量a=(x1,y1),b=(x2,y2)的数量积仍是向量,其坐标为(x1x2,y1y2)对吗? 提示:不对.向量a=(x1,y1),b=(x2,y2)的数量积为实数,其值为x1x2+y1y2.
2
高一数学人教A版必修4第二章2.4平面向量的数量积2课时课件
F
W = | F |·| s | cosq, 其中 q 是 F 与 s 的夹角.
q
s
功W是一个标量, 它是由矢量 F 与 s 的运算结果. 为解决类似由矢量计算标量的问题, 数学中引入 了向量的 “数量积” 概念.
(二) 向量的数量积
定义: 已知两个非零向量 a 和 b, 它们的夹角为q. 我们把数量 |a| |b|cosq 叫做 a 与 b 的数量积 (或内积),
= x1x2i 2 i 2= |i|2=1,
+x1 y2i j + y1x2 j 2 = | j |2=1,
j
i
+
y1
y2
j
2
又 i j , 得 i j = 0.
∴上式= x1x2 + y1 y2.
结论: 两个向量的数量积等于它们对应坐标的乘积的和. 即 (x1, y1)·(x2, y2) =x1x2+y1y2.
2. 已知△ABC中, AB=a, AC =b, 当 a·b<0 或 a·b=解0 时: 当, aa试bb=判|a断0|时|△b,|AcoBcsoCAs的,A<形0状, .
则角A为钝角,
∴ 当△abA =B0C为 时钝, c角os三A角= 0形, .
则角A为直角,
∴△ABC为直角三角形.
两非零向量垂直数量积为0.
2, 2
求a与b
的夹角q.
cosq = 54 2
又|a
|=
|a ||b | 12, |b |= 9,
cosq
=
54 2 129
=
2 2
,
得 q =135º.
注意
cosq = a b 的应用.
新课标人教A版高中数学必修4第二章平面向量2.4向量的数量积复习课件(共15张PPT)
r rC
A
a?b OA ? OC
练习1: 如图, ABCD的两条对角线相交于点M ,且 uuur r uuur r r r uuuur uuur uuuur AB a,AD b,用a、b表示AM、BD、和MD.
rD b
A
C
M
ar B
练习2:在 ABC中,AB=2,AC=4, A
PE ^ AB, PD ^ AC, AD = 2, AE =1,求 E
A
B
P
C
解:Q 点P为线段BC的中点,
\
uuur BP
=
uuur PC
即AP
AB
AC
AP .
AP 1 ( AB AC ). 2
又BC AC AB,从而
A
AP BC AP ( AC AB)
1 ( AB AC ) ( AC AB)
2
B
P
C
1(
AC
2
2
AB ) 6.
2
问题3:在ABC中,AB 2,AC 4, 若点 P为三角形的外心,求 AP • BC的值 。
A
E
D P
C
B
F
uuur uuur 问题3:若点P为DABC的外心, 求 AP ? BC的值.
A
uuur
uuur uuur
解:将BC转化为AC - AB,得
AP BC AP ( AC AB) AP AC AP AB
B
P
图2
C
AP AC cosPAC AP AB cosPAB
A
G B
F P
E
C
小结:
1、向量数量没有运算,向量只是一个 “路标”.因为有了运算,向量的 力量无限.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】1.因为(a-b)·(a+2b)=|a|2+a·b-2|b|2=1+a·b-32
=-31+a·b,所以-31+a·b=-29,
所以a·b=2,所以cosθ=
又因为0≤θ≤π,所以θ= .
答案:
3
ab 2 1. | a|| b| 14 2
e在a方向上的投影为|e|cos =
2
答案:-2 -
3
1
2
2 4( 1) 2.
3
2
1( 1) 1.
22
【知识探究】 知识点1 平面向量的数量积的概念及其几何意义 观察如图所示内容,回答下列问题:
问题1:向量的数量积是数量,其数值可正、可负、可为零,其决定因素是什么? 问题2:向量数量积a·b中“·”能否省去?
【变式训练】(2015·山东高考)已知菱形ABCD的边长为a,∠ABC=60°,
则 uuur u=u(ur ) BDCD
A . 3 a 2
B . 3 a 2
C .3 a 2
D . 3 a 2
【解析2 】选D.由菱形ABC4 D的边长为a,∠4 ABC=60°得∠BC2 D=120°,∠ABD=30°,在△BCD中,
(3)投影是一个数量,不是向量,其值可正,可负,也可为零.
a b
a
【题型探究】
类型一 向量数量积的运算
【典例】1.已知a与b的夹角为θ=150°,且|a|=3,|b|=4.
则(1)a·b________.
(2)(a-b)2________.
(3)(a+b)·(a-2b)=________.
2.设正三角形的边长为 ,
1 2
类型二 与向量模有关的问题
【典例】1.已知|a|=|b|=5,向量a与b的夹角为 ,则|a+b|=___ __,
|a-b|=________.
3
2.(2015·福州高一检测)已知向量a与b夹角为45°,且|a|=1,
|2a+b|= ,则|b|=________.
10
【解题探究】1.典例1中,要求|a+b|和|a-b|应先求什么?
提示:先分别求|a+b|2、|a-b|2,将模的计算转化为数量积的问题.
2.典例2中条件|2a+b|= 联系起来.
,如何变形可以将a与b的夹角、|a|和|b|
10
提示:将|2a+b|= 两边平方可得(2a+b)2=10,展开后可以将a与b的
夹角、|a|和|b|联系起来.1 0
【解析】1.因为a2=|a|2=25,b2=|b|2=25,
求a·b+b·c+c·a.
u u u r u u u r u u u r 3 A B c , B C a , C A b ,
【解题探究】1.典例1中求数量积问题的关键是什么? 提示:求数量积的关键是确定向量的模及向量的夹角. 2.典例2中a与b,b与c,c与a的夹角为多少? 提示:a与b,b与c,c与a的夹角均为120°.
角为 ”,则结果如何?
3
【解析】2 方法一:因为a2=|a|2=25,b2=|b|2=25,a·b=0,所以
ab ab2 a2b22ab5 2,
方a法二b:若a与ab的b夹2角为 a,2 所b 以2以a2与abb 为 邻5边的2.平行四边形为正方形.
所以|a+b|=|a-b|=
的投影|b|cosθ
b在a的方向上
3.向量数量积的性质
设向量a与b都是非零向量,它们的夹角为θ,
(1)a⊥b⇔_____a_·_.b=0 (2)当a∥b时,a·b=
__|_a_|_|_b_|,当a,b同向时,
(3)a·a=____或_________.
|a|2
a
(4)cosθ=______.
a b (5)|a·b|___|a| |a ||b| b|.|
B.12
C.-12
D.-12
2
2
【解析】选B.m·n=|m||n|cos 45°=4×6×cos 45°
=24× =12 .
2
2
2
3.已知|a|=4,e为单位向量,它们的夹角为 ,则a在e方向2 上 的投
影是________;e在a方向上的投影是________.
3
【解析】a在e方向上的投影为|a|cos =
1.思考下列问题.
(1)两个向量的数量积仍然是向量吗?
提示:不是.两个向量的数量积是数量.
(2)设a与b的夹角为θ,cosθ>0⇔a·b>0对吗?
提示:正确.因为cosθ=
>0,故a·b>0.
a b | a || b |
2.若|m|=4,|n|=6,m与n的夹角为45°,则m·n=( )
A.12
问题1:a在b的方向上的投影与b在a的方向上的投影相同吗? 问题2:向量b在向量a上的投影是数量,还是向量?
【总结提升】
理解数量积的几何意义要关注的三点
(1)a·b等于|a|与b在a方向上的投影的乘积,也等于|b|与a在b方向
上的投影的乘积.其中a在b方向上的投影与b在a方向上的投影是不同
的.
(2)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成 .
类型三 两个向量夹角和垂直问题 【典例】1.已知|a|=1,|b|=4,(a-b)·(a+2b)=-29,则a与b的夹角θ=________. 2.已知非零向量a,b满足a+3b与7a-5b互相垂直,a-4b与7a-2b互相垂直,求a与b的夹角.
【解题探究】1.典例1中,若求a与b的夹角θ,还需要什么? 提示:需要利用(a-b)·(a+2b)=-29,求出a·b. 2.典例2中,a+3b与7a-5b互相垂直,a-4b与7a-2b互相垂直能得出哪些结论? 提示:可以得出
3
2即.由 已7知a2条件16得ab15baa2340bb, ① ((77aa52bb))00, .
②-① 7 得a223b3 2-04a6ab·b=80b,2所以0, 2a② ·b=b2,
代入①得7a2+8b2-15b2=0,
整理得a2=b2.
a·b=|a||b|cos θ=5×5×cos 所以|a+b|=
25, 32
ab2a2b22ab
2525255 3,
ab ab2 a2 b2 2ab
答案:
2525255.
53
5
2.因为|2a+b|= , 1 0
所以(2a+b)2=10,所以4a2+4a·b+b2=10,
(3)一些常见的等式应熟记,如(a±a b2 )2=a2±2a·b+b2,(a+b)·(a-b)=a2-b2等.
【补偿训练】已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,a与b的夹角θ为120°. 求:(1)向量b的模. (2)向量λb的模.
【解析】(1)因为a2=4,所以|a|2=4,即|a|=2. 把x=1代入方程x2+|a|x+a·b=0, 得1+|a|+a·b=0,所以a·b=-3. 所以a·b=|a|·|b|·cosθ. =2|b|cos 120°=-3,所以|b|=3. (2)由(1)知|b|=3,|λb|=|λ|·|b|=3|λ|.
【总结提升】 对数量积概念的两点说明 (1)从定义上看:两向量的数量积是一个数量,而不是向量,其数值可正、可负、可为零, 其决定因素为两向量的夹角. (2)从运算上看:两向量a,b的数量积称作内积,写成a·b,其中“·”是一种运算符号, 不同于实数的乘法符号,不可省略.
知识点2 平面向量数量积的几何意义 观察图形,回答下列问题:
___-_|__a_|_|_b,| 当a,b反向时.
aa
≤
4.向量数量积的运算律
(1)a·b=_____b(·交a换律).
(2)(λa)·b=_______λ__(=a_·__b_)_____(a结·合(λ律b)). (3)(a+b)·c=_________(分配律).
a·c+b·c
【即时小测】
所以|a|=|b|,
所以cosθ=
因为0≤θ≤π,所以a θ b=
.
| a || b |
1 b2 2 b2
1. 2
3
【延伸探究】将典例1中条件改为|a|=1,|b|=4,a与b的夹角为120°,且a+kb与a+2b互相垂 直,求k的值. 【解析】由a+kb与a+2b垂直,则(a+kb)·(a+2b)=0, 即a2+2kb2+(k+2)a·b=0, 由题意得1+32k-2(k+2)=0, 解得k= .
2.4 平面向量的数量积 2.4.1 平面向量数量积的物理背景及其含义
【知识提炼】 1.平面向量数量积的定义
条件 结论 记法 规定
非零向量a与b,a与b的夹角为θ 数量|_a_|_|_b_|c_o_s_θ____叫向量a与b的数量积(或内积) 向量a与b的数量积记作_a_·_b__,即____a_·__b=_|_a_|_|_b_|c_o_s_θ_
2
5252 5 2.
2.(改变问法)典例1在条件不变的情况下,求
的值? a 2 b
|a 2b |
【解析】
a2 ba2 b 2a 24 ab4 b 2 7 52 1. a2 b a2 b 2 a 24 ab4 b 2 1 7 5 7
【方法技巧】求向量的模的常见思路及方法 (1)求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方. (2)a·a=a2=|a|2或|a|= ,此性质可用来求向量的模,可以实现实数运算与向量运算的相 互转化.