2007年高考.全国Ⅱ卷.文科数学试题及解答
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)kkn kn n P k C p p n n -=-= ,,,,一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( ) A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( )A.513B.513-C.512D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412xy-= B.221124xy-= C.221106xy-= D.221610xy-=(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种B.48种C.96种D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABC D A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()lo g a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )A.B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( )A.ππ44⎛⎫-⎪⎝⎭,B.π02⎛⎫⎪⎝⎭,C.π3π44⎛⎫⎪⎝⎭,D.ππ2⎛⎫⎪⎝⎭, (11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则A K F △的面积是( ) A.4B.C.D.81A1D1C 1BD BCA第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3lo g (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S A B C D -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB == (Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.SCDB(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.(21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(22)(本小题满分12分) 已知椭圆22132xy+=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且A C B D ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()x x ∈R 15.4π316.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =,由A B C △为锐角三角形得π6B =.(Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =.18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+ 0.2160.432=+ 0.648=.19.解法一:(1)作S O B C ⊥,垂足为O ,连结A O ,由侧面SB C ⊥底面A B C D ,得SO ⊥底面A B C D .因为SA SB =,所以AO BO =,又45ABC =∠,故A O B △为等腰直角三角形,A O B O ⊥,由三垂线定理,得SA B C ⊥. (Ⅱ)由(Ⅰ)知SA B C ⊥, 依题设A D B C ∥,故SA A D ⊥,由AD BC ==SA =SD ==又sin 45AO AB ==D E B C ⊥,垂足为E ,则D E ⊥平面S B C ,连结SE .E SD ∠为直线S D 与平面S B C 所成的角.sin 11E D A O E SD SDSD====∠所以,直线S D 与平面S B C所成的角为arcsin 11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结A O ,由侧面SB C ⊥底面A B C D ,得SO ⊥平面A B C D .因为SA SB =,所以AO BO =.又45ABC = ∠,AO B △为等腰直角三角形,A O O B ⊥. 如图,以O 为坐标原点,O A 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO ==,又BC =0)A ,,(0B,(0C -,.(001)S ,,,1)SA =-,(0C B =,0SA CB = ,所以SA B C ⊥.(Ⅱ)1)SD SA AD SA C B =+=-=--,0)O A =,. O A 与SD 的夹角记为α,S D 与平面ABC 所成的角记为β,因为O A为平面S B C 的法向量,所以α与β互余.DBCASO Ecos 11O A SD O A SDα==,sin 11β=, 所以,直线S D 与平面S B C所成的角为arcsin 11.20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,. 21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q--==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯--12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤.(Ⅱ)(ⅰ)当B D 的斜率k 存在且0k ≠时,B D 的方程为(1)y k x =+,代入椭圆方程22132xy+=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则2122632kx x k +=-+,21223632k x x k -=+,1232BD x x k =-==+ ;因为A C 与B C 相交于点p ,且A C 的斜率为1k-.所以,221112332k AC k k⎫+⎪⎝⎭==+⨯+. 四边形A B C D 的面积 222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当B D 的斜率0k =或斜率不存在时,四边形A B C D 的面积4S =. 综上,四边形A B C D 的面积的最小值为9625.。
2007年高考数学知识与能力测试题及答案(6套)(文科)
2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
2007数二真题答案详细解析
2007数二真题答案详细解析年数学二的真题是高考数学题目中一道相对较难的题目。
本文将对这道题目进行详细解析,分析其解题思路和解题方法,帮助读者更好地理解和掌握数学常识。
本题属于数学二试卷中的选择题,题目如下:已知数列{a_n}的通项公式为:a_n=n(n-1)^2,(n=1,2,3,...)。
则有命题:S_n=a_1+a_2+...+a_n=(n^2-1)^2。
要判断该命题的真假,我们需要先对数列{a_n}进行分析。
观察数列的通项公式a_n=n(n-1)^2,我们可以发现n(n-1)^2是一个关于n 的三次多项式。
三次多项式的一般形式可以表示为:P(n) = an^3 + bn^2 + cn + d其中a、b、c、d是常数。
在这个问题中,我们需要验证命题S_n=(n^2-1)^2是否成立,也就是判断数列的前n项和等于(n^2-1)^2。
为了方便计算,我们将等式两边展开:S_n = a_1 + a_2 + ... + a_n = (1(1-1)^2) + (2(2-1)^2) + ... + (n(n-1)^2)= (1*0^2) + (2*1^2) + ... + (n(n-1)^2)= 0 + 2 + 8 + ... + n(n-1)^2现在我们需要找到这个数列的通项公式,这样才能求出前n项的和。
观察数列0, 2, 8, ... ,我们可以发现这个数列的通项与原数列{n(n-1)^2}相差一个常数。
因此,我们推测该数列的通项公式为:b_n = n(n-1)^2 + k其中k是常数。
为了求解该数列的通项公式,我们可以先求解数列0, 2, 8, ... 的通项公式,再进行适当的变换。
观察数列0, 2, 8, ... ,我们可以发现这个数列中的每一项均等于相应的n(n-1)^2的2倍。
因此,该数列的通项公式为:b_n = 2n(n-1)^2现在我们已经得到了数列{b_n}的通项公式,我们可以将其代入前面的求和公式中,得到:S_n = b_1 + b_2 + ... + b_n = 2(1(1-1)^2) + 2(2(2-1)^2) + ... + 2(n(n-1)^2)= 2(1*0^2) + 2(2*1^2) + ... + 2(n(n-1)^2)= 2(0 + 2 + 8 + ... + n(n-1)^2)= 2(0^3 + 1^3 + 2^3 + ... + (n-1)^3)现在我们需要求解数列0^3 + 1^3 + 2^3 + ... + (n-1)^3的和。
2007年高考文科数学试题及参考答案(江西卷)
2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01,B.{}2345,,,C.{}02345,,,, D.{}12345,,,, 2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.π D.2π3.函数1()lg 4x f x x -=-的定义域为( )A.(14),B.[14),C.(1)(4)-∞+∞ ,,D.(1](4)-∞+∞ ,,4.若tan 3α=,4tan 3β=,则tan()αβ-等于( )A.3- B.13-C.3 D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++ , 则01211a a a a ++++ 的值为( ) A.2-B.1-C.1D.26.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形O A M 的面积为( )A.1-+B.32- C.1+ D.32+8.若π02x <<,则下列命题正确的是( )A.2sin πx x <B.2sin πx x >C.3sin πx x <D.3sin πx x >9.四面体A B C D 的外接球球心在C D 上,且2C D =,AD =在外接球面上两点A B,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x m x =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b ab+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20a x b x c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项:第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.在平面直角坐标系中,正方形O A B C 的对角线O B 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y fx -=的图象必经过点 .16.如图,正方体1AC 的棱长为1,过点作平面1A B D 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.A H 垂直平面11C B DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)11C1B已知函数21(0)()21(1)x ccx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+.18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是P A的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13C C =.(1)设点O 是A B 的中点,证明:O C ∥平面111A B C ; (2)求A B 与平面11AA C C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--.C1122.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1F AB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =.(2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得,当102x <<时,解得142x <<,当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =代入函数2cos()y x ωθ=+中得cos 2θ=,因为π02θ≤≤,所以π6θ=.由已知πT =,且0ω>,得2π2π2T πω===.(2)因为点π02A ⎛⎫⎪⎝⎭,,00()Q x y ,是P A 的中点,02y =. 所以点P 的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=,即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为 1212()1()10.40.50.8P A A P A A +=-=-⨯= ;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P A B AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20. 解法一:(1)证明:作1O D AA ∥交11A B 于D ,连1C D . 则11O D BB C C ∥∥, 因为O 是A B 的中点,2CA所以1111()32O D A A B B C C =+==.则1ODC C 是平行四边形,因此有1O C C D ∥,1C D ⊂平面111C B A ,且O C ⊄平面111C B A则O C ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1A A ,1C C 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AA C C ,则BH ⊥面11AA C C . 连结A H ,则BAH ∠就是A B 与面11AA C C 所成的角.因为2BH =,AB =sin 10BH BAH AB==∠.A B 与面11AA C C所成的角为arcsin10BAH =∠.(3)因为2BH =,所以222213B A A CCA A C C V SB H -=.111(13222=+= . 1112211111212A B C A B C A B C V S B B -=== △.所求几何体的体积为221112232B A A CCA B C A B C V V V --=+=.解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是A B 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,,1102O C ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且O C ⊄平面111A B C 知O C ∥平面111A B C .1Bx(2)设A B 与面11AA C C 所成的角为θ. 求得1(004)A A = ,,,11(110)A C =- ,,.设()m x y z = ,,是平面11AA C C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩,取1x y ==得:(110)m =,,.又因为(012)A B =--,,所以,cos m <,10m AB AB m AB>==-sin 10θ= 所以A B 与面11AA C C所成的角为arcsin 10.(3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n n T -=-+-+- ,…………① 2234212112342123333333n n nn n T --=-+-++-,…………②+①②得:2232124111121333333n n nn T -=-+-+--2211231313n n n -=-+22333843nnn--=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d d d d d d d θθ=+-=-+ 212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a = 方程为2211xyλλ-=-.(2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩ ①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,12(01)17λ-=∈,故存在1217λ-=满足题设条件.方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24A F A F A F A F B F B F B F B F λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin1)24A F F S A F A F λ==+ △,121212B F F S B F B F λ== △.则1(2AF B S λ=+△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==+.则122211(222A FB S A Bd ==+△.②由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d =.平方得:221)4(1)d λ=-.④由③④消去d可解得,12(01)17λ-=∈,故存在1217λ-=满足题设条件.。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-湖北卷
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan 690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10 B.6 C.5 D.34.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到平面1D EF 的距离为( )6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所1D1C得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F为其右焦点,54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++. 21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵xπ12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin CH θ=; 在BHC Rt △中,πsin62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,.从而2211(0)0002222a aAB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CDVD D =,AB ⊥∴平面VCD .又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··n n .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===n n ···, 即sin 2θ=π02θ<<∵,π4θ∴=.故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB,所在的直线分别为x 轴、y轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪⎪⎝⎭,,,002DC ⎛⎫=- ⎪⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022ABDV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时,即直线BC 与平面VAB 所成角为π6.18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算A能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()2)2(22)2(17122)h a h <<=-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g g a-==,由(I )知03a <<-1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*.(II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111nn qa a --=,222211n n q a a -=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++⎪⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121nq q --⎛⎫-=⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a q q ---+=+=,34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k x p =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122AMN BCN ACN S SS p x x =+=-△△△·.12px x =-=2p == ∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-=2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
2007年普通高等学校招生全国统一考试(全国卷II) 数学(文科)试卷
2007年普通高等学校招生全国统一考试(全国卷II)数学(文科)试卷(必修+选修I)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
共4页,总分150分考试时间120分钟。
2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。
3.选择题的每小题选出答案后,用2B铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
参考公式:如果事件A、B互斥,那么P(A+B)=PA.+PB.如果事件A、B相互独立,那么P(A·B)=PA.·PB.球的表面积公式S=42Rπ其中R表示球的半径,球的体积公式V=334Rπ,其中R表示球的半径如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k )=C k n P k (1-P )n -k一、选择题 1.cos330° =A .21B .-21 C .23 D .-23 2.设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B )= A .{2}B .{3}C . {1,2,4}D .{1,4}3.函数f (x )=|sin x |的一个单调递增区间是 A .(-4π,4π) B .(4π,43π) C .(π,23π) D .(23π,2π) 4.以下四个数中的最大者是 A .(ln2)2B .ln (ln2)C .ln 2D .ln25.不等式x -2x +3>0的解集是A .(-3,2)B .(2,+)C .(-,-3)∪(2,+)D .(-,-2)∪(3,+)6.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =λ+31,则λ=A .32 B .31 C .-31 D .-32 7.已知正三棱锥的侧棱长与底面边长的2倍,则侧棱与底面所成角的余弦值等于A B C .2D 8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为A .1B . 2C .3D .49.把函数y =e x 的图象按向量a =(2,0)平移,得到y =f (x )的图象,则f (x )= A .e x +2B .e x -2C .e x -2D .e x +210.5位同学报名参加两上课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有 A .10种B . 20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为 A .13B .33C .12D .3212.设F 1,F 2分别是双曲线x 2-y 29=1的左右焦点,若点P 在双曲线上,且12PF PF ⋅=0,则12||PF PF + = A .10B .210C . 5D .2 5第II 卷(非选择题)本卷共10题,共90分。
数学2007年高考文科试题及解析
2007年普通高等学校招生全国统一考试浙江卷数 学(文史类)试题全解全析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A)∩B = (A){6} (B){5,8} (c){6,8} (D){3,5,6,8} (2)已知cos 22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tan ϕ=(A) (B)(C)(D) (3)“x >1”是“x 2>x ”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(4)直线x -2y +1=0关于直线x =1对称的直线方程是(A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=0(5)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是(A) 6 (B) 5 (C) 4 (D) 3(6)91x ⎫⎪⎭展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 84(7).若P 是两条异面直线L ,M外的一点,则 (A)过点P 有且仅有一条直线与l 、m 都平行 (B)过点P 有且仅有一条直线与l 、m 都垂直 (C)过点P 有且仅有一条直线与l 、m 都相交 (D)过点P 有且仅有一条直线与l 、m 都异面(8)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 (A1 0.216 (B)0.36 (C)0.432 (D)0.648(9) 若非零向量,a b 满足-=a b b ,则( ) A.22>-b a b B.22<-b a b C.2>-2a a bD.2<-2a a b(10)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是()C.2D.3二.填空题:本大题共7小题.每小题4分.共28分.(11)函数()221x y x R x =∈+的值域是______________.(12)若1sin cos 5θθ+=,则sin 2θ的值是________. (13)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.(14)2z x y =+中的x 、y 满足约束条件250300x y x x y -+≥⎧⎪-≥⎨⎪+≥⎩则z 的最小值是_________.(15)曲线32242y x x x =--+在点(1,一3)处的切线方程是___________(16)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是__________(用数字作答).(17)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.三.解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知△ABC 的周长为+1,且sinA +sin B =(I)求边AB 的长;(Ⅱ)若△ABC 的面积为16sin C ,求角C 的度数.(19)(本题14分)已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程()232320k kx k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…).(I)求1357,,,a a a a 及2n a (n ≥4)(不必证明); (Ⅱ)求数列{n a }的前2n 项和S 2n .(20)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点.(I)求证:CM ⊥EM : (Ⅱ)求DE 与平面EMC 所成角的正切值.(21)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程.(22)(本题15分)已知()221f x x x kx =-++.(I)若k =2,求方程()0f x =的解;(II)若关于x 的方程()0f x =在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明12114x x +<(第21题)2007年普通高等学校统一考试(浙江卷)数学(文)试题答案解析1.【答案】:B【分析】:由于U ={1,3,5,6,8},A ={1,6} ∴C U A={3,5,8}∴(C U A)∩B={5, 【高考考点】集合的交集及补集运算【易错点】:混淆集中运算的含义或运算不仔细出错【备考提示】:集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。
2007年高考试题——文综全国卷2.(试题及答案详解)pdf
2007年普通高等学校招生全国统一考试试题卷文科综合能力测试(全国卷II)注意事项:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共11页,总分300分,考试时间150分钟。
2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在试题卷指定的位置上。
3.选择题的每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4.非选择题必须使用0.5毫米的黑以字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答。
超出答题区域在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6.考试结束,将本试题卷和答题卡一并交回。
第Ⅰ卷本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
芯片是计算机的核心部件。
某跨国公司的芯片生产厂以往均设在发达国家。
但2007年3月,该跨国公司决定在中国大连投资25亿美元建芯片生产厂。
回答1~2题。
1.通常,计算机芯片生产厂的区位选择属于A.原料指向型B.市场指向型C.廉价劳动力指向型D.技术指向型2.该公司在中国投资兴建芯片生产厂,主要因为中国拥有A.丰富的原料B.庞大的市场C.廉价的劳动力D.先进的技术图1所示区域属于湿润的亚热带季风气候。
回答3~5题。
3.R、Q两点的相对高度可能为A.800米B.900米C.1000米D.1100米4.M、N、P、Q四地中,海拔可能相等的两地是A.M、N B.M、P C.M、Q D.P、Q5.若在Q地建一小型度假村,应特别注意防治的自然灾害是A.风沙B.洪涝C.滑坡D.寒冻读图2,回答6~7题。
图1 6.为了加强水土保持,甲、乙、丙、丁四地段中,最应退耕还林(草)的是A.甲B.乙C.丙D.丁7.甲、乙、丙、丁四地段中,灌溉条件最好的地段是A.甲B.乙C.丙D.丁读图,回答8—9题。
2007年全国文科数学卷(全国Ⅱ卷)
2007年普通高等学校招生全国统一考试试题卷(全国Ⅱ)文科数学(必修+选修I)第I 卷(选择题)一.选择题 1. cos3300 = (A)21 (B) -21 (C)23 (D) -23 2.设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B)= (A) {2} (B){3} (C) {1,2,4} (D) {1,4} 3.函数f(x)=|sinx|的一个单调递增区间是 (A)(-4π,4π) (B) (4π,43π) (C) (π,23π) (D) (23π,2π) 4.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln25.不等式x -2x +3>0的解集是(A)(-3,2)(B)(2,+∞)(C) (-∞,-3)∪(2,+∞)(D) (-∞,-2)∪(3,+∞)6.在∆ABC 中,已知D 是AB 边上一点,若=2,=CB CA λ+31,则λ= (A)32 (B)31 (C) -31 (D) -32 7.已知正三棱锥的侧棱长与底面边长的2倍,则侧棱与底面所成角的余弦值等于(A)(C) (D)8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为(A)1 (B) 2 (C) 3 (D) 49.把函数y =e x 的图象按向量a =(2,0)平移,得到y =f (x )的图象,则f (x )= (A) e x +2 (B) e x -2 (C) e x -2 (D) e x +210.5位同学报名参加两上课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有(A)10种 (B) 20种 (C) 25种 (D) 32种 11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(A) 13(B) 33 (C)12 (D)3212.设F 1,F 2分别是双曲线x 2-y 29=1的左右焦点,若点P 在双曲线上,且12PF PF ⋅ =0,则12||PF PF + =(A)10(B)2 10(C) 5 (D) 2 5 第II 卷(非选择题)本卷共10题,共90分。
2007年高考数学卷(四川.文)含详解
2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .三、解答题:本大题共6小题。
2007年高考数学全国II文科详细解析
2007年普通高等学校招生全国统一考试试题卷文科数学(必修+选修Ⅰ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1.cos330=( )A .12B .12-C .2D .2-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()UA B =( )A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2) B .ln(ln 2) C .lnD .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞,C .(3)(2)-∞-+∞,, D .(2)(3)-∞-+∞,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )A .6B .4C .2D .28.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12D .212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=( )AB .CD .第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 18.(本小题满分12分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,, 分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.22.(本小题满分12分) 已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z=a+2b,求z 的取值范围。
2007年(全国卷II)(含答案)高考文科数学
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷
景云制作
(Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)数列 {a n } 的前 n 项和记为 S n , 证明: S n , <128 ( n 1,2,3, …). 21. (本小题满分 12 分) 已知 f ( x) ax bx cx 在区间 [0,1] 上是增函数 , 在区间 ( ,0), (1,) 上是减函数 , 又
(Ⅱ)该选手至多进入第三轮考核的概率
P3 P ( A1 A1 A2 A1 A2 A3 ) P ( A1 ) P ( A1 ) P ( A2 ) P ( A1 ) P ( A2 ) P ( A3 ) 1 4 2 4 3 3 101 . 5 5 5 5 5 5 125
19. (本小题满分 12 分) 解法一: (Ⅰ) 又 tan ABD
PA ⊥ 平面 ABCD , BD 平面 ABCD . BD ⊥ PA .
P
AD 3 BC , tan BAC 3. AB 3 AB
A
∠ABD 30 ,∠BAC 60 , ∠AEB 90 ,即 BD ⊥ AC . AC A . BD ⊥ 平面 PAC . (Ⅱ)连接 PE . BD ⊥ 平面 PAC . BD ⊥ PE , BD ⊥ AE . ∠AEP 为二面角 P BD A 的平面角.
景云制作
试卷类型:A
2007 年普通高等学校招生全国统一考试(陕西)
文科数学(必修+选修Ⅰ)
注意事项: 1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。 2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的 试卷类型信息点。 3.所有答案必须在答题卡上指定区域内作答。 考试结束后, 将本试卷和答题卡一并交回。 第一部分(共 60 分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共 12 小题,每小题 5 分,共 60 分) 。 1.已知全集 U 1,2,3,4,5,6, 集合A 2, 3, 6 ,则集合 CuA 等于 (A){1,4} (B){4,5} (C){1,4,5} (D){2,3,6}
2007年高考新课标全国卷-文科数学(含答案)
2007年高考新课标全国卷-文科数学(含答案)22007年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}|1|22A x x B x x =>-=-<<,,则AB =( )A.{}|2x x >- B.{}1x x >-| C.{}|21x x -<<- D.{}|12x x -<< 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x > D.:p x ⌝∀∈R ,sin 1x >3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣,的简图是( )y x 1 1- 2π- 3π-O 6π π yx 1 1- 2π 3π- O 6π π y x 1 1- 2π- 3π O 6π- π y x π 2π 6π- 1 O 1- 3π ABCD开1k =0S = 50?k ≤是 2S S k=+1k k =+否 输结34.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-, C.(10)-, D.(12),5.如果执行右面的程序框图,那么输出的S =( ) A.2450 B.2500 C.2550 D.2652 6.已知a b c d ,,,成等比数列,且曲线223y xx =-+的顶点是()b c ,,则ad 等于( )A.3 B.2 C.1 D.2- 7.已知抛物线22(0)ypx p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132xx x =+,则有( )A.123FP FP FP += B.222123FPFP FP += C.2132FPFP FP =+ D.2213FPFP FP =·8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.34000cm 3 B.38000cm 3C.32000cm D.34000cm 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A.7 B.12- C.1222正视2侧视112俯视45近线的距离为6,则该双曲线的离心率为. 14.设函数()(1)()f x x x a =++为偶函数,则a = . 15.i 是虚数单位,238i 2i 3i 8i ++++=.(用i a b +的形式表示,a b ∈R ,) 16.已知{}na 是等差数列,466aa +=,其前5项和510S=,则其公差d = .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .18.(本小题满分12分)如图,A B C D ,,,为空间四点.在ABC △中,22AB AC BC ===,等边三角形ADB 以AB 为轴运动. (Ⅰ)当平面ADB ⊥平面ABC 时,求CD ;D BAC6(Ⅱ)当ADB △转动时,是否总有AB CD ⊥?证明你的结论.19.(本小题满分12分) 设函数2()ln(23)f x x x =++(Ⅰ)讨论()f x 的单调性; (Ⅱ)求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值.20.(本小题满分12分)设有关于x的一元二次方程22x ax b++=.20(Ⅰ)若a是从0123,,,四个数中任取的一个数,b是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a是从区间[03],任取的一个数,b是从区间[02],任取的一个数,求上述方程有实根的概率.21.(本小题满分12分)在平面直角坐标系xOy中,已知圆2212320+-+=的圆心为Q,x y x过点(02)P,且斜率为k的直线与圆Q相交于不同的两点A B,.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量OA OB+与PQ共线?如果存在,求k值;如果不存在,请说明理由.7822.B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程;(Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.2007年普通高等学校招生全国统一考试(新课标全国卷)1.A 2.C 3.A 4.D 5.C 6.B9PD BA AOSCB7.C 8.B 9.C 10.D 11.D 12.B 13.3 14.1 15.44i - 16.121.【解析】由{}{}|1|22A x x B x x =>-=-<<,,可得A B ={}|2x x >-.答案:A 2.【解析】p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >答案:C3.【解析】π3()sin 23f ππ⎛⎫=-= ⎪⎝⎭排除B、D,π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭排除C。
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题 1.cos330=( )A .12 B .12- CD.2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =ð( )A .{2}B .{3}C .{124},,D .{14}, 3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭, D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C.lnD .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞,, D .(2)(3)-∞-+∞,, 6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )ABC.2D8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+ B .e 2x- C .2e x - D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种 11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13BC .12D12.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=( )AB.CD.第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = . 15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中, 底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.(1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.22.(本小题满分12分)已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >; (2)若z =a +2b ,求z 的取值范围。
2007年普通高等学校招生全国统一考试文科数学及答案-浙江卷
2007年普通高等学校招生全国统一考试(浙江卷)数学(文史科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则(C U A)∩B=(A){6}(B){5,8} (c){6,8} (D){3,5,6,8}(2)已知cos()22πϕ+=,且||2πϕ<,则tanϕ=(A)-(B) (C)(D)(3)“x>1”是“x2>x”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)直线x-2y+1=0关于直线x=1对称的直线方程是(A)x+2y-1=0 (B)2 x+y-1=0(C)2 x+y-3=0 (D) x+2y-3=0(5)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是(A) 6 (B) 5 (C) 4 (D) 3(6)91)x展开式中的常数项是(A)-36 (B)36 (C)-84 (D)84(7)若P是两条异面直线l、m外的任意一点,则(A)过点P有且仅有一条直线与l、m都平行(B)过点P有且仅有一条直线与l、m都垂直(C)过点P有且仅有一条直线与l、m都相交(D)过点P有且仅有一条直线与l、m都异面(8)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是(A1 0.216 (B)0.36 (C)0.432 (D)0.648(9)若非零向量a、b满足|a一b|=|b|,则(A) |2b|>|a一2b|(B) |2b|<|a一2b|(C) |2a|>|2a一b|(D) |2a|<|2a一b|(10)已知双曲线22221x ya b-=(0,0)a b>>的左、右焦点分别为F1、F2,P是准线上一点,且P F1⊥P F2,|P F1|⋅|P F2|=4ab,则双曲线的离心率是(B) (C)2 (D)3二.填空题:本大题共7小题.每小题4分.共28分.(11)函数22()1xy x Rx=∈+的值域是______________.(12)若sinθ+cosθ=15,则sin 2θ的值是________.(13)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.(14)2z x y=+中的x、y满足约束条件25030x yxx y-+≥⎧⎪-≥⎨⎪+≥⎩则z的最小值是_________.(15)曲线32242y x x x=--+在点(1,一3)处的切线方程是___________ .(16)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是__________(用数字作答).(17)已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于0的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的大小是_________.三.解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知△ABC1,且sinA+sin B(I)求边AB的长;(Ⅱ)若△ABC的面积为16sin C,求角C的度数.(19)(本题14分)已知数列{na}中的相邻两项21ka-、2ka是关于x的方程2(32)320k kx k x k-++⋅=的两个根,且21ka-≤2ka(k =1,2,3,…).(I)求1357,,,a a a a及2na(n≥4)(不必证明);(Ⅱ)求数列{na}的前2n项和S2n.(20)(本题14分)在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点.(I)求证:CM ⊥EM:(Ⅱ)求DE与平面EMC所成角的正切值.(21)(本题15分)如图,直线y=kx+b与椭圆2214xy+=交于A、B两点,记△AOB的面积为S.(I)求在k=0,0<b<1的条件下,S的最大值;(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.(22)(本题15分)已知22()|1|f x x x kx=-++.(I)若k=2,求方程()0f x=的解;(II)若关于x的方程()0f x=在(0,2)上有两个解x1,x2,求k的取值范围,并证明12114x x+<.EMACBD2007年浙江文科试题参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)A (4)D (5)C (6)C (7)B (8)D (9)A (10)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分28分.(11)[0,1) (12)一2425 (13)50 (14)一53(15)520x y +-= (16)266 (17)900三.解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. (18)本题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.满分14分.解:(I)由题意及正弦定理,得AB+BC+AC1. BC+AC, 两式相减,得 AB =1.(Ⅱ)由△ABC 的面积=12BC ·ACsinC =16sin C ,得 BC ·AC =13,由余弦定理,得2221cos 22AC BC AB C AC BC +-==⋅ 所以C =600.(19)本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分14分.(I)解:方程2(32)320k kx k x k -++⋅=的两个根为123, 2k x k x ==.当k =1时,123,2x x ==,所以12a =; 当k =2时,126,4x x ==,所以34a =; 当k =3时,129,8x x ==,所以58a =; 当k =4时,1212,16x x ==,所以712a =;因为n ≥4时,23n n >,所以22 (4)n n a n =≥(Ⅱ)22122(363)(222)n n n S a a a n =+++=+++++++=2133222n n n +++-.(20).本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理能力.满分14分.方法一:(I)证明:因为AC=BC ,M 是AB 的中点, 所以CM ⊥AB .又EA ⊥平面ABC ,所以CM ⊥EM .(Ⅱ)解:连接MD ,设AE=a ,则BD=BC=AC=2a , 在直角梯形EABD 中,AB =,M 是AB 的中点,所以DE =3a ,EM,MD, 因此,DM ⊥EM , 因为CM ⊥平面EMD , 所以CM ⊥DM ,因此DM ⊥平面EMC ,故∠DEM 是直线DM 和平面EMC 所成的角, 在Rt △EMD 中,EM,MDtan ∠DEM=MDEM=(21)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当b =时,.S 取到最大值1.EMACBD(Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ②又因为O 到AB的距离21||S d AB === 所以221b k =+ ③③代入②并整理,得424410k k -+=解得,2213,22k b ==,代入①式检验,△>0故直线AB 的方程是y =或y x =或y x =或y x =.(22)本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力.满分15分. (Ⅰ)解:(1)当k =2时, 22()|1|20f x x x x =-++=① 当210x -≥时,x ≥1或x ≤-1时,方程化为22210x x +-=解得x =,因为01<<,舍去,所以x =.②当210x -<时,-1<x <1时,方程化为210x +=解得12x =-,由①②得当k =2时,方程()0f x =的解所以x =或12x =-. (II)解:不妨设0<x 1<x 2<2,因为22 1 ||1() 1 ||1x kx x f x kx x ⎧+->=⎨+≤⎩ 所以()f x 在(0,1]是单调函数,故()f x =0在(0,1]上至多一个解,若1<x 1<x 2<2,则x 1x 2=-12<0,故不符题意,因此0<x 1≤1<x 2<2.由1()0f x =得11k x =-, 所以1k ≤-;由2()0f x =得2212k x x =-, 所以712k -<<-;故当712k -<<-时,方程()0f x =在(0,2)上有两个解.因为0<x 1≤1<x 2<2,所以11k x =-,22221x kx +-=0 消去k 得2121220x x x x --= 即212112x x x +=,因为x 2<2,所以12114x x +<.。
北京2007年全国各地高考文科数学试题及参考答案
2007年全国各地高考 数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II(非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤ ⎥⎝⎦,B.0⎛ ⎝⎦C.112⎡⎫⎪⎢⎣⎭,D.1⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( )A.①② B.①③ C.② D.③2007年全国各地高考 数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为.11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分) 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I)若3a =,求P ;(II)若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I)求c 的值; (II)求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I)求证:平面COD ⊥平面AOB ;(II)求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I)这6位乘客在其不相同的车站下车的概率; (II)这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.OCADB(I)求AD 边所在直线的方程; (II)求矩形ABCD 外接圆的方程;(III)若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I)求k 的取值范围;(II)设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域; (III)试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年全国各地高考 数学(文史类)(北京卷)参考答案1.∵ ,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试试题卷文科数学(必修+选修I)注意事项:1 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟.2 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。
3 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6 考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 P n(k)=C knP k (1-P)n -k一.选择题 1. cos3300 =(A)21 (B) 21-(C) 23 (D) 23-2.设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B)= (A) {2} (B){3} (C) {1,2,4} (D) {1,4}3.函数f(x)=|sinx|的一个单调递增区间是 (A)⎪⎭⎫⎝⎛-4,4ππ (B) ⎪⎭⎫⎝⎛43,4ππ(C) ⎪⎭⎫ ⎝⎛23,ππ (D) ⎪⎭⎫ ⎝⎛ππ2,234.以下四个数中的最大者是(A) (ln2)2(B) ln(ln2) (C) ln2(D) ln25.不等式203x x ->+的解集是( ) A .(32)-,B .(2)+∞,C .(3)(2)-∞-+∞,,D .(2)(3)-∞-+∞,,6.在∆ABC 中,已知D 是AB 边上一点,若=2,=31λ+,则λ= 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径(A)32 (B)31 (C)31-(D) 32-7.已知正三棱锥的侧棱长与底面边长的2倍,则侧棱与底面所成角的余弦值等于(A)63 (B)43 (C)22 (D)238.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为(A)1(B) 2(C) 3(D) 49.把函数y =e x 的图象按向量a =(2,0)平移,得到y =f (x )的图象,则f (x )=(A) e x +2 (B) e x -2 (C) e x -2 (D) e x +210.5位同学报名参加两上课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有(A)10种 (B) 20种 (C) 25种 (D) 32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(A)31 (B)33 (C)21 (D)2312.设F 1,F 2分别是双曲线19y x 22=-的左右焦点,若点P 在双曲线上,且0PF 21=∙,=+ (A)10 (B)210 (C)5 (D) 25第II 卷(非选择题)本卷共10题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分. 13. 一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 ① .14.已知数列的通项a n =-5n +2,则其前n 项和为S n = ② .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上。
如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 ③ cm 2.16.(1+2x 2)(1+)8的展开式中常数项为 ④ 。
(用数字作答)三.解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分10分)设等比数列 {a n }的公比q <1,前n 项和为S n .已知a 3=2,S 4=5S 2,求{a n }的通项公式.18. (本小题满分12分)在 ∆ABC 中,已知内角A=3π,边 BC=23,设内角B=x , 周长为y (1)求函数y =f (x )的解析式和定义域; (2)求y 的最大值19. (本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率P (A )=0.96 (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共有100件,从中任意抽取2件,求事件B:⎽取出的2件产品中至少有一件二等品 的概率P (B )。
20. (本小题满分12分)如图,在四棱锥S -ABCD 中,底面ABCD 为正方形,侧棱SD ⊥ 底面ABCD ,E 、F 分别是AB 、SC 的中点.(Ⅰ)求证:EF ∥ 平面SAD(Ⅱ)设SD = 2CD ,求二面角A -EF -D 的大小.21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:x -3y =4相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙ 的取值范围。
A B C D SEF22.(本小题满分12分)已知函数f (x )=31ax 3-bx 2+(2-b)x +1 在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明a >0;(2)若z =a +2b ,求z 的取值范围。
2007年普通高等学校招生全国统一考试文科数学试题(必修+选修Ⅰ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.A 9.C 10.D 11.D 12.B 二、填空题13.12014.252n n --15.2+三、解答题17.解:由题设知11(1)01n n a q a S q-≠=-,,则2121412(1)5(1)11a q a q a q q q⎧=-⎪=⨯⎨--⎪-⎩,. ②由②得4215(1)q q -=-,22(4)(1)0q q --=,(2)(2)(1)(1)0q q q q -+-+=, 因为1q <,解得1q =-或2q =-.当1q =-时,代入①得12a =,通项公式12(1)n n a -=⨯-;当2q =-时,代入①得112a =,通项公式11(2)2n n a -=⨯-. 18.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值19.(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”, 则0B B =.若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==.00316179()()1()1495495P B P B P B ==-=-=20.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =, 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. FSH G连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,. 取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面所以EF ∥平面SAD .(2)不妨设(100)A ,,,则(110)(010)(00B C S ,,,,,,,EF 中点111111(0222222M MD EF EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF ∙=,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos MD EA MD EA MD EA∙<>==∙,. 所以二面角A EF D --的大小为. 21.解:(1)依题设,圆O 的半径r 等于原点O 到直线4x =的距离,即 2r ==. 得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,. 设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y ∙=---∙--,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,.22.解:求函数()f x 的导数2()22f x ax bx b '=-+-.(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根. 所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,. 所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫⎪⎝⎭,,,,,.z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫⎪⎝⎭,.ba2 12 4O 4677A ⎛⎫ ⎪⎝⎭, (42)C ,(22)B ,。