杭州市中考数学试卷及答案(word解析版)
()浙江省杭州市中考数学试卷(含答案解析版),文档
2021年浙江省杭州市中考数学试卷一.选择题1.〔3分〕﹣22=〔〕A .﹣2B .﹣4C .2D .4 2.〔3分〕太阳与地球的平均距离大约是 150000000千米,数据 150000000用科学记数 法表示为〔 〕8 B .× 9 9 7A .×10 10C . ×10D. 15×10 3.〔3分〕如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE∥BC,假设BD=2AD ,那么〔 〕A .B .C .D . 4.〔3分〕|1+ |+|1 ﹣ |=〔 〕A .1B .C .2D .2 5.〔3分〕设x ,y ,c 是实数,〔 〕 A .假设x=y ,那么x+c=y ﹣c B .假设x=y ,那么xc=ycC .假设x=y ,那么D .假设 ,那么2x=3y 6.〔3分〕假设x+5>0,那么〔 〕A .x+1<0B .x ﹣1<0C . <﹣1D .﹣2x <12 7.〔3分〕某景点的参观人数逐年增加,据统计, 2021年为万人次,2021年为 万人次.设参观人次的平均年增长率为x ,那么〔 〕 A .〔1+x 〕B .〔1﹣x 〕C .〔1+x 〕2D .10.8[〔1+x 〕+〔1+x 〕28.〔3分〕如图,在 Rt △ABC 中,∠ABC=90°,AB=2,BC=1.把△ABC 分别绕直线 AB 和BC旋转一周,所得几何体的地面圆的周长分别记作 l 1,l 2,侧面积分别记作 S 1,S 2,那么〔 〕A .l 1:l 2=1:2,S 1:S 2=1:2B .l 1:l 2=1:4,S 1:S 2=1:2C .l 1:l 2=1:2,S 1:S 2=1:4D .l 1:l 2=1:4,S 1:S 2=1:49.〔3分〕设直线x=1是函数y=ax 2+bx+c 〔a ,b ,c 是实数,且a <0〕的图象的对称轴,〔 〕A .假设m >1,那么〔m ﹣1〕a+b >0B .假设m >1,那么〔m ﹣1〕a+b <0第1页〔共16页〕C.假设m<1,那么〔m﹣1〕a+b>0D.假设m<1,那么〔m﹣1〕a+b<010.〔3分〕如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段B E的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,那么〔〕A.x﹣y2=3 B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21二.填空题11.〔4分〕数据2,2,3,4,5的中位数是.12.〔4分〕如图,AT切⊙O于点A,AB是⊙O的直径.假设∠ABT=40°,那么∠ATB=.13.〔4分〕一个仅装有球的不透明布袋里共有3个球〔只有颜色不同〕,其中2个是红球,个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,那么两次摸出都是红球的概率是.14.〔4分〕假设?|m|=,那么m=.15.〔4分〕如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE ⊥BC于点E,连结AE,那么△ABE的面积等于.16.〔4分〕某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.假设该店第二天销售香蕉t千克,那么第三天销售香蕉千克.〔用含t的代数式表示.〕三.解答题17.〔6分〕为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如下列图的频数表和未完成的频数直方图〔每组含前一个边界值,不含后一个边界值〕.第2页〔共16页〕某校九年级50名学生跳高测试成绩的频数表组别〔m〕频数~8~12~A~10〔1〕求a的值,并把频数直方图补充完整;〔2〕该年级共有500名学生,估计该年级学生跳高成绩在〔含〕以上的人数.18.〔8分〕在平面直角坐标系中,一次函数y=kx+b〔k,b都是常数,且k≠0〕的图象经过点〔1,0〕和〔0,2〕.1〕当﹣2<x≤3时,求y的取值范围;2〕点P〔m,n〕在该函数的图象上,且m﹣n=4,求点P的坐标.19.〔8分〕如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.1〕求证:△ADE∽△ABC;2〕假设AD=3,AB=5,求的值.20.〔10分〕在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长第3页〔共16页〕为3.1〕设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;〔2〕圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.〔10分〕如图,在正方形ABCD中,点G在对角线BD上〔不与点B,D重合〕,GE⊥DC 于点E,GF⊥BC于点F,连结AG.〔1〕写出线段AG,GE,GF长度之间的数量关系,并说明理由;〔2〕假设正方形ABCD的边长为1,∠AGF=105°,求线段B G的长.22.〔12分〕在平面直角坐标系中,设二次函数y1=〔x+a〕〔x﹣a﹣1〕,其中a≠0.1〕假设函数y1的图象经过点〔1,﹣2〕,求函数y1的表达式;2〕假设一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;〔3〕点P〔x0,m〕和Q〔1,n〕在函数y1的图象上,假设m<n,求x0的取值范围.23.〔12分〕如图,△ABC内接于⊙O,点C在劣弧AB上〔不与点A,B重合〕,点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,〔1〕点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:〔2〕假设γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.第4页〔共16页〕2021年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.〔3分〕〔2021?杭州〕﹣22=〔〕A.﹣2B.﹣4C.2D.4【解答】解:﹣22=﹣4,应选B.2.〔3分〕〔2021?杭州〕太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为〔〕A.×108B.×109C.×109D.15×107【解答】解:将150000000用科学记数法表示为:×108.应选A.3.〔3分〕〔2021?杭州〕如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,假设BD=2AD,那么〔〕A.B.C.D.【解答】解:∵DE∥BC,∴△ADE∽△ABC,BD=2AD,∴===,那么=,∴A,C,D选项错误,B选项正确,应选:B.4.〔3分〕〔2021?杭州〕|1+|+|1﹣|=〔〕A.1B.C.2D.2【解答】解:原式1++﹣1=2,应选:D.5.〔3分〕〔2021?杭州〕设 x,y,c是实数,〔〕A.假设x=y,那么x+c=y﹣c B.假设x=y,那么xc=yc第5页〔共16页〕C.假设x=y,那么D.假设,那么2x=3y【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;应选:B.6.〔3分〕〔2021?杭州〕假设 x+5>0,那么〔〕A.x+1<0B.x﹣1<0 C.<﹣1D.﹣2x<12【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;应选D.7.〔3分〕〔2021?杭州〕某景点的参观人数逐年增加,据统计,2021年为万人次,2021年为万人次.设参观人次的平均年增长率为x,那么〔〕A.〔1+x〕B.〔1﹣x〕C.〔1+x〕2D.10.8[〔1+x〕+〔1+x〕2【解答】解:设参观人次的平均年增长率为x,由题意得:〔1+x〕2,应选:C.8.〔3分〕〔2021?杭州〕如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,那么〔〕A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:4【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,第6页〔共16页〕∵S 1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,应选A.9.〔3分〕〔2021?杭州〕设直线2x=1是函数y=ax+bx+c〔a,b,c是实数,且a<0〕的图象的对称轴,〔〕A.假设m>1,那么〔m﹣1〕a+b>0B.假设m>1,那么〔m﹣1〕a+b<0C.假设m<1,那么〔m﹣1〕a+b>0D.假设m<1,那么〔m﹣1〕a+b<0【解答】解:由对称轴,得b=﹣2a.〔m﹣1〕a+b=ma﹣a﹣2a=〔m﹣3〕a当m<1时,〔m﹣3〕a>0,应选:C.10.〔3分〕〔2021?杭州〕如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,那么〔〕2222A.x﹣y=3 B.2x﹣y=9C.3x﹣y=15D.4x﹣y=21【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,==y,BQ=CQ=6,AQ=6y,∵AQ⊥BC,EM⊥BC,第7页〔共16页〕∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,EM=3y,DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=〔3y〕2+〔9﹣x〕2,2即2x﹣y=9,应选B.二.填空题11.〔4分〕〔2021?杭州〕数据2,2,3,4,5的中位数是3.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,那么这组数的中位数是3.故答案为:3.12.〔4分〕〔2021?杭州〕如图,AT切⊙O于点A,AB是⊙O的直径.假设∠ABT=40°,那么∠ATB= 50°.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°13.〔4分〕〔2021?杭州〕一个仅装有球的不透明布袋里共有3个球〔只有颜色不同〕,其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,那么两次摸出都是红球的概率是.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,第8页〔共16页〕∴两次摸出都是红球的概率是,故答案为:.14.〔4分〕〔2021?杭州〕假设?|m|=,那么m=3或﹣1.【解答】解:由题意得,m﹣1≠0,那么m≠1,〔m﹣3〕?|m|=m﹣3,∴〔m﹣3〕〔?|m|﹣1〕=0,m=3或m=±1,∵m≠1,m=3或m=﹣1,故答案为:3或﹣1.15.〔4分〕〔2021?杭州〕如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,那么△ABE的面积等于78.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积= AB?AC=×15×20=150,AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.16.〔4分〕〔2021?杭州〕某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降第9页〔共16页〕价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.假设该店第二天销售香蕉t千克,那么第三天销售香蕉30﹣千克.〔用含t的代数式表示.〕【解答】解:设第三天销售香蕉x千克,那么第一天销售香蕉〔50﹣t﹣x〕千克,根据题意,得:9〔50﹣t﹣x〕+6t+3x=270,那么x==30﹣,故答案为:30﹣.三.解答题17.〔6分〕〔2021?杭州〕为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如下列图的频数表和未完成的频数直方图〔每组含前一个边界值,不含后一个边界值〕.某校九年级50名学生跳高测试成绩的频数表组别〔m〕频数~8~12~A~10〔1〕求a的值,并把频数直方图补充完整;〔2〕该年级共有500名学生,估计该年级学生跳高成绩在〔含〕以上的人数.【解答】解:〔1〕a=50﹣8﹣12﹣10=20,;第10页〔共16页〕〔2〕该年级学生跳高成绩在〔含〕以上的人数是:500×=300〔人〕.18.〔8分〕〔2021?杭州〕在平面直角坐标系中,一次函数y=kx+b〔k,b都是常数,且k≠0〕的图象经过点〔1,0〕和〔0,2〕.1〕当﹣2<x≤3时,求y的取值范围;2〕点P〔m,n〕在该函数的图象上,且m﹣n=4,求点P的坐标.【解答】解:设解析式为:y=kx+b,将〔1,0〕,〔0,﹣2〕代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;〔1〕把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.〔2〕∵点P〔m,n〕在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣〔﹣2m+2〕=4,解得m=2,n=﹣2,∴点P的坐标为〔2,﹣2〕.19.〔8分〕〔2021?杭州〕如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.〔1〕求证:△ADE∽△ABC;〔2〕假设AD=3,AB=5,求的值.【解答】解:〔1〕∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,〔2〕由〔1〕可知:△ADE∽△ABC,第11页〔共16页〕∴=由〔1〕可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,=20.〔10分〕〔2021?杭州〕在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.〔1〕设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;〔2〕圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【解答】解:〔1〕①由题意可得:xy=3,那么y=;②当y≥3时,≥3解得:x≤1;2〕∵一个矩形的周长为6,∴x+y=3,x+=3,整理得:x2﹣3x+3=0,b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;∵一个矩形的周长为10,∴x+y=5,x+=5,(整理得:x2﹣5x+3=0,(b2﹣4ac=25﹣12=13>0,(∴矩形的周长可能是10.((21.〔10分〕〔2021?杭州〕如图,在正方形ABCD中,点G在对角线BD上〔不与点B,D重合〕,GE⊥DC于点E,GF⊥BC于点F,连结AG.(1〕写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2〕假设正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.第12页〔共16页〕222【解答】解:〔1〕结论:AG=GE+GF.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,222在Rt△GFC中,∵CG=GF+CF,222∴AG=GF+GE.2〕作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,AM=BM=2x,MN=x,222在Rt△ABN中,∵AB=AN+BN,∴1=x2+〔2x+x〕2,解得x=,∴BN=,∴BG=BN÷cos30°=.22.〔12分〕〔2021?杭州〕在平面直角坐标系中,设二次函数y1=〔x+a〕〔x﹣a﹣1〕,其中a第13页〔共16页〕0.1〕假设函数y1的图象经过点〔1,﹣2〕,求函数y1的表达式;2〕假设一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;3〕点P〔x0,m〕和Q〔1,n〕在函数y1的图象上,假设m<n,求x0的取值范围.【解答】解:〔1〕函数y1的图象经过点〔1,﹣2〕,得a+1〕〔﹣a〕=﹣2,解得a=﹣2,a=1,函数y1的表达式y=〔x﹣2〕〔x+2﹣1〕,化简,得y=x2﹣x﹣2;函数y1的表达式y=〔x+1〕〔x﹣2〕化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;2〕当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x轴的交点是〔﹣1,0〕〔2,0〕,当y2=ax+b经过〔﹣1,0〕时,﹣a+b=0,即a=b;当y2=ax+b经过〔2,0〕时,2a+b=0,即b=﹣2a;〔3〕当P在对称轴的左侧时,y随x的增大而增大,〔1,n〕与〔0,n〕关于对称轴对称,由m<n,得x0<0;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0或x0>1.23.〔12分〕〔2021?杭州〕如图,△ABC内接于⊙O,点C在劣弧AB上〔不与点A,B重合〕,点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,〔1〕点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:〔2〕假设γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【解答】解:〔1〕猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣〔180°﹣2α〕,第14页〔共16页〕∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;〔2〕当γ=135°时,此时图形如下列图,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由〔1〕可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由〔1〕可知:BC=2CD=6,∵∠BCE=45°,CE=BE=3x,∴由勾股定理可知:〔3x〕2+〔3x〕2=62,x=,BE=CE=3,AC=,AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:22+〔42,AB=〔3〕〕∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:22 AB=2r,∴r=5,∴⊙O半径的长为5.第15页〔共16页〕第16页〔共16页〕。
2023年杭州市中考数学试卷(含答案解析)
2023年杭州市中考数学试卷(含答案解析)第一部分:选择题1. 下列数中,哪一个是有理数?A. √2B. πC. -0.5D. e答案:C解析:有理数是可以表示为两个整数的比值的数,而-0.5可以表示为-1/2,因此它是有理数。
2. 已知函数f(x)=2x-3,则f(-1)的值是多少?A. -5B. -1C. 1D. 5答案:B解析:将-1代入函数中得到:f(-1)=2(-1)-3=-5。
3. 等差数列1,3,5,7,…的前10项和是多少?A. 50B. 55C. 60D. 65答案:B解析:公差为2,首项为1,因此前10项和为:(1+19)*10/2=55。
4. 在△ABC中,AB=3,AC=4,BC=5,则∠BAC的角度是多少?A. 30°B. cosA=12/25C. 90°D. 180°答案:C解析:由勾股定理可知,这是一个直角三角形,而直角的对角线为90°。
5. 直线y=2x-1与x轴的交点是什么?A. (-1, 0)B. (1, 0)C. (0, 1)D. (0, -1)答案:B解析:当y=0时,2x-1=0,解得x=1。
第二部分:填空题1. 8÷0.4 = ___________答案:202. 负数的绝对值是 ___________答案:正数3. 4/5和0.6这两个数中,小数部分较大的是 ___________答案:0.64. 已知a:b=2:3,b:c=4:5,求a:b:c的值。
答案:2:3:55. 在平行四边形中,对角线互相平分,其中一条对角线长为10cm,求平行四边形的面积。
答案:50cm²第三部分:解答题1. 下列各组数据是否有相同的中位数?3,4,5,6 5,5,5,6 2,4,6,8答案:有。
它们的中位数都是4.5。
2. 以下的算式是错的,请说明算式的错误原因:1/2+1/3=2/4+1/3答案:等式两边分母不同,不能直接加,需要通分。
2019年浙江省杭州市中考数学试卷(word版,含答案解析)
2019年浙江省杭州市中考数学试卷(word版,含答案解析)2019年浙江省杭州市中考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. 2×0+1?9B. 2+0×1?9C. 2+0?1×9D. 2+0+1?92.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=?3,n=2C. m=2,n=3D. m=?2,n=?33.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. 2x+3(72?x)=30B. 3x+2(72?x)=30C. 2x+3(30?x)=72D. 3x+2(30?x)=725.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的个位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE//BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A. ADAN =ANAEB. BDMN =MNCEC. DNBM =NEMCD. DNMC =NEBM7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于30°B. 必有⼀个内⾓等于45°C. 必有⼀个内⾓等于60°D. 必有⼀个内⾓等于90°8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N?1或M=N+1C. M=N或M=N+1D. M=N或M=N?1⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1?x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cosC=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD 的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:4xx2?4?2x?21圆圆的解答如下:4x x2?4?2x?21=4x2(x+2)(x24)=x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954⼄组?22?3?14(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为x甲?,x⼄?,写出x甲?与x⼄?之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22. 设⼆次函数y =(x ?x 1)(x ?x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;⼄求得当x =12时,y =?12.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x 1,x 2的代数式表⽰). (3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n 是实数),当016.23. 如图,已知锐⾓三⾓形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA .②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB= n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m? n+2=0.1.【答案】A【解析】解:A.2×0+1?9=?8,B.2+0×1?9=?7C.2+0?1×9=?7D.2+0+1?9=?6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=?3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】【分析】此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵数是解题关键.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.【解答】解:设男⽣有x⼈,则⼥⽣(30?x)⼈,根据题意可得:3x+2(30?x)=72.故选D.5.【答案】B利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.【解答】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.6.【答案】C【解析】解:∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM,∵NE//MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NEMC.故选:C.先证明△ADN∽△ABM得到DNBM =ANAM,再证明△ANE∽△AMC得到NEMC=ANAM,则DNBM=NEMC,本题考查了相似三⾓形的判定与性质:在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】【分析】根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠A=∠C?∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C?∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.8.【答案】A【解析】A、由图可知:直线y1,a>0,b>0.∴直线y2经过⼀、⼆、三象限,故A正确;B、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、四、三象限,故B错误;C、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、⼆、四象限,交点不对,故C错误;D、由图可知:直线y1,a<0,b<0,∴直线y2经过⼆、三、四象限,故D错误.故选:A.根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤?坡度⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2?4ab=(a?b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2?4ab=(a?b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1?x)(1+x)【解析】解:∵1?x2=(1?x)(1+x),故答案为:(1?x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解?运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】mx+nym+n【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的总和为:mx+ny,.所以平均数为:mx+nym+n故答案为:mx+ny.m+n直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=1利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】√32或2√55【解析】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2?x 2=√3x ,所以cosC =BC AC=√3x2x=√32;若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cosC =ACBC =5x=2√55;综上所述,cos C 的值为√32或2√55.故答案为√32或2√55.讨论:若∠B =90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√3x ,然后根据余弦的定义求cos C 的值;若∠A=90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√5x ,然后根据余弦的定义求cos C 的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y =?x +1(答案不唯⼀)【解析】解:设该函数的解析式为y =kx +b ,∵函数满⾜当⾃变量x =1时,函数值y =0,当⾃变量x =0时,函数值y =1,∴{k +b =0b =1解得:{k =?1,所以函数的解析式为y =?x +1,故答案为:y =?x +1(答案不唯⼀).根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,因为x =0时,y =1,所以不可能是正⽐例函数. 16.【答案】2(5+3√5)【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA′=AB =x ,PD′=CD =x ,∵△A′EP 的⾯积为4,△D′PH 的⾯积为1,∴A′E =4D′H ,设D′H =a ,则A′E =4a ,∵△A′EP∽△D′PH ,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或?2a(舍弃),∴PA′=PD′=2a,∵12a2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的⾯积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D′HPA′=PD′EA′,推出ax=x4a,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:4xx2?4?2x?21=4x(x?2)(x+2)2(x+2)(x?2)(x+2)(x?2)(x+2)(x?2)(x+2) =4x?2x?4?x2+4(x?2)(x+2)=2x?x2(x?2)(x+2)=?xx+2.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①x 甲?=50+x ⼄?.②S 甲2=S ⼄2.理由:∵S 甲2=15[(48?50)2+(52?50)2+(47?50)2+(49?50)2+(54?50)2]=6.8.S ⼄2=15[(?2?0)2+(2?0)2+(?3?0)2+(?1?0)2+(4?0)2]=6.8,∴S 甲2=S ⼄2.【解析】(1)利⽤描点法画出折线图即可. (2)利⽤平均数和⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B =∠BAP ,∵∠APC =∠B +∠BAP ,∴∠APC =2∠B ;(2)根据题意可知BA =BQ ,∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ ,∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°,∴5∠B =180°,∴∠B =36°.【解析】(1)根据线段垂直平分线的性质可知PA =PB ,根据等腰三⾓形的性质可得∠B =∠BAP ,根据三⾓形的外⾓性质即可证得∠APC =2∠B ;(2)根据题意可知BA =BQ ,根据等腰三⾓形的性质可得∠BAQ =∠BQA ,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千⽶/⼩时,∴v 关于t 的函数表达式为:v =480t ,(t ≥4).(2)①8点⾄12点48分时间长为245⼩时,8点⾄14点时间长为6⼩时,将t =6代⼊v =480t得v =80;将t =245代⼊v =480t得v =100.∴⼩汽车⾏驶速度v 的范围为:80≤v ≤100.②⽅⽅不能在当天11点30分前到达B 地.理由如下: 8点⾄11点30分时间长为72⼩时,将t =72代⼊v =480t得v =9607>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解; (2)①8点⾄12点48分时间长为24 5⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v 关于t 的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为72⼩时,将其代⼊v 关于t 的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间、速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG 的边长为a ,∵正⽅形ABCD 的边长为1,∴DE =1?a ,∵S 1=S 2,∴a 2=1×(1?a),解得,a 1=?√5212(舍去),a 2=√5212,即线段CE 的长是√52?12;(2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52?12,∴HG =√52,∴HD =HG .【解析】(1)设出正⽅形CEFG 的边长,然后根据S 1=S 2,即可求得线段CE 的长; (2)根据(1)中的结果和题⽬中的条件,可以分别计算出HD 和HG 的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x =0时,y =0;当x =1时,y =0;∴⼆次函数经过点(0,0),(1,0),∴x 1=0,x 2=1,∴y =x(x ?1)=x 2?x ,当x =12时,y =?14,∴⼄求得的结果不对; (2)对称轴为x =x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m =x 1x 2,n =1?x 1?x 2+x 1x 2,∴mn =[?(x 1?12)2+14][?(x 2?12)2+14]∵0∴02)2+14≤14,02)2+14≤14,且x 1和x 2不可以同时等于12,∴0【解析】(1)将(0,0),(1,0)代⼊y =(x ?x 1)(x ?x 2)求出函数解析式即可求解; (2)对称轴为x = x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)将已知两点代⼊求出m =x 1x 2,n =1?x 1?x 2+x 1x 2,再表⽰出mn =[?(x 1?12)2+14][?(x 2?12)2+14],由已知04,0<(x 212)2+14≤14,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn 准确的⽤x 1和x 2表⽰出来是解题的关键. 23.【答案】解:(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,∴∠OBC =30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=32,△ABC⾯积的最⼤值=12×BC×AD=12×2OBsin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,∵OE=OD,∴∠AOD=180°?2x,即:180°+mx?nx=180°?2x,化简得:m?n+2=0.【解析】(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2)∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。
2022年浙江杭州中考数学试卷真题及答案解析(精编打印版)
数学试题卷一、选择题:本大题有10个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A .-8℃B .-4℃C .4℃D .8℃2.国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A .814.12610⨯B .91.412610⨯C .81.412610⨯D .100.1412610⨯3.如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =()A .10°B .20°C .30°D .40°4.已知a ,b ,c ,d 是实数,若a b >,c d =,则()A .a c b d+>+B .a b c d+>+C .a c b d+>-D .a b c d+>-5.如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则()A .线段CD 是 ABC 的AC 边上的高线B .线段CD 是 ABC 的AB 边上的高线C .线段AD 是 ABC 的BC 边上的高线D .线段AD 是 ABC 的AC 边上的高线6.照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =()A .fvf v-B .f v fv-C .fv v f-D .v f fv-7.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则()A .1032019xy=B .1032019yx=C .1019320x y -=D .1910320x y -=8.如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A按逆时针方向旋转60°,得点B .在1,03M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是()A .1MB .2MC .3MD .4M9.已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x 轴的交点位于y 轴的两侧;命题④:该函数的图像的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是()A .命题①B .命题②C .命题③D .命题④10.如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+二、填空题:本大题有6个小题11=_________;()22-=_________.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_________.13.已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________.14.某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB =_________m .15.某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示).16.如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BCAD的值等于_________.三、解答题:本大题有7个小题,解答应写出文字说明、证明过程或演算步骤17.计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.18.某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取.他们的各项成绩(单项满分100分)如表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?19.如图,在 ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF ,已知四边形BFED 是平行四边形,DE 1BC 4=.(1)若8AB =,求线段AD 的长.(2)若ADE V 的面积为1,求平行四边形BFED 的面积.20.设函数11k y x=,函数22y k x b =+(1k ,2k ,b 是常数,10k ≠,20k ≠).(1)若函数1y 和函数2y 的图象交于点()1,A m ,点B (3,1),①求函数1y ,2y 的表达式:②当23x <<时,比较1y 与2y 的大小(直接写出结果).(2)若点()2,C n 在函数1y 的图象上,点C 先向下平移2个单位,再向左平移4个单位,得点D ,点D 恰好落在函数1y 的图象上,求n 的值.21.如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE .已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.22.设二次函数212y x bx c =++(b ,c 是常数)的图像与x 轴交于A ,B 两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数1y 的表达式及其图像的对称轴.(2)若函数1y 的表达式可以写成()2122y x h =--(h 是常数)的形式,求b c +的最小值.(3)设一次函数2y x m =-(m 是常数).若函数1y 的表达式还可以写成()()122y x m x m =---的形式,当函数12y y y =-的图像经过点()0,0x 时,求0x m -的值.23.在正方形ABCD 中,点M 是边AB 的中点,点E 在线段AM 上(不与点A 重合),点F 在边BC 上,且2AE BF =,连接EF ,以EF 为边在正方形ABCD 内作正方形EFGH .(1)如图1,若4AB =,当点E 与点M 重合时,求正方形EFGH 的面积,(2)如图2,已知直线HG 分别与边AD ,BC 交于点I ,J ,射线EH 与射线AD 交于点K .①求证:2EK EH =;②设AEK α∠=,FGJ 和四边形AEHI 的面积分别为1S ,2S .求证:2214sin 1S S α=-.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【详解】解:这天最高温度与最低温度的温差为2-(-6)=8.故选:D .【点睛】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.2.B 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n 是负整数.【详解】解:1412600000=91.412610 .故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C 【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∵AB CD ∥,∴∠A =∠D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.【分析】根据不等式的基本性质可判定A 正确,举例能判定B 、C 、D 错误.【详解】解:A 、∵a b >,c d =,∴a c b d +>+.故此选项符合题意;B 、∵a b >,c d =,如a =-2,b =-3,c =d =1,则a +b =-5,c +d =2,∴a +b <c +d ,故此选项不符合题意;C 、∵a b >,c d =,如a =-2,b =-3,c =d =-4,则a +c =-2-4=-6,b -d =-3-(-4)=1,∴a +c <b -d ,故此选项不符合题意;D 、∵a b >,c d =,如a =-2,b =-3,则a +b =-5,c -d =0,∴a +b <c -d ,故此选项不符合题意;故选:A .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.5.B 【分析】根据高线的定义注意判断即可.【详解】∵线段CD 是 ABC 的AB 边上的高线,∴A 错误,不符合题意;∵线段CD 是 ABC 的AB 边上的高线,∴B 正确,符合题意;∵线段AD 是 ACD 的CD 边上的高线,∴C 错误,不符合题意;∵线段AD 是 ACD 的CD 边上的高线,∴D 错误,不符合题意;故选B .【点睛】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.6.C 【分析】利用分式的基本性质,把等式()111v f f u v=+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v=+≠,∴111u f ν=-∴1f u f νν-=,∴f u fνν=-,故选:C .【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则.7.C 【分析】根据题中数量关系列出方程即可解题;【详解】解:由10张A 票的总价与19张B 票的总价相差320元可知,1019320x y -=或1910320y x -=,∴1019320x y -=,故选:C .【点睛】本题主要考查二元一次方程的应用,解题的关键在于能根据实际情况对题目全面分析.8.B 【分析】根据含30°角的直角三角形的性质可得B (2,,利用待定系数法可得直线PB 的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y +2中可解答.【详解】解:∵点A (4,2),点P (0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩,∴直线PB 的解析式为:y +2,当y =0+2=0,x =-3,∴点M 1(-3,0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上.故选:B .【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B 的坐标是解本题的关键.9.A【分析】根据对称轴为直线12a x =-=,确定a 的值,根据图像经过点(3,0),判断方程的另一个根为x =-1,位于y 轴的两侧,从而作出判断即可.【详解】假设抛物线的对称轴为直线1x =,则12a x =-=,解得a =-2,∵函数的图像经过点(3,0),∴3a +b +9=0,解得b =-3,故抛物线的解析式为2=23y x x --,令y =0,得2230x x --=,解得121,3x x =-=,故抛物线与x 轴的交点为(-1,0)和(3,0),函数的图像与x 轴的交点位于y 轴的两侧;故命题②,③,④都是正确,命题①错误,故选A .【点睛】本题考查了待定系数法确定解析式,抛物线与x 轴的交点,对称轴,熟练掌握待定系数法,抛物线与x 轴的交点问题是解题的关键.10.D【分析】要使△ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大.【详解】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大,如图所示,∵A'D ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ=1BD BD OB =,cos θ=1OD OD OB =,∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,A'D =A'O +OD =1+cos θ,∴S △A'BC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ).故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.11.24【分析】根据算术平方根的性质,乘方的运算法则,即可求解.【详解】2=;()224-=.故答案为:2,4【点睛】本题主要考查了求一个数的算术平方根,乘方运算,熟练掌握算术平方根的性质,乘方的运算法则是解题的关键.12.25##0.4【分析】根据题目中的数据,可以计算出从中随机抽取一张,编号是偶数的概率.【详解】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于2 5,故答案为:2 5.【点睛】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.13.12 xy=⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12 xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.14.9.88【分析】根据平行投影得AC∥DE,可得∠ACB=∠DFE,证明Rt△ABC∽△Rt△DEF,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽Rt△DEF,∴AB BCDE EF=,即8.722.47 2.18AB=,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF是解题的关键.15.30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x(0x>),则2020年新注册用户数为100(1+x)万,2021年的新注册用户数为100(1+x)2万户,依题意得100(1+x)2=169,解得:x1=0.3,x2=-2.3(不合题意舍去),∴x=0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.36【分析】由等腰三角形的性质得出∠DAE=∠DEA,证出∠BEC=∠BCE,由折叠的性质得出∠ECO=∠BCO,设∠ECO=∠OCB=∠B=x,证出∠BCE=∠ECO+∠BCO=2x,∠CEB=2x,由三角形内角和定理可得出答案;证明△CEO∽△BEC,由相似三角形的性质得出CE BE EO CE=,设EO=x,EC=OC=OB=a,得出a2=x(x+a),求出OE12a,证明△BCE∽△DAE,由相似三角形的性质得出BC ECAD AE=,则可得出答案.【详解】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴CE BE EO CE=,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x(负值舍去),∴OEa ,∴AE =OA -OE =aa ,∵∠AED =∠BEC ,∠DAE =∠BCE ,∴△BCE ∽△DAE ,∴BC EC AD AE=,∴2BC AD =.故答案为:36【点睛】本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.17.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可;【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.18.(1)乙的综合成绩比甲的高,所以应该录取乙(2)甲的综合成绩比乙的高,所以应该录取甲【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.(1)解:甲的综合成绩为808782833++=(分),乙的综合成绩为809676843++=(分).因为乙的综合成绩比甲的高,所以应该录取乙;(2)解:甲的综合成绩为8020%8720%8260%82.6⨯+⨯+⨯=(分),乙的综合成绩为8020%9620%7660%80.8⨯+⨯+⨯=(分).因为甲的综合成绩比乙的高,所以应该录取甲.【点睛】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.19.(1)2(2)6【分析】(1)利用平行四边形对边平行证明ADE ABC △△∽,得到DE AD BC AB=即可求出;(2)利用平行条件证明ADE EFC ∽ ,分别求出ADE EFC 与、ADE ABC 与的相似比,通过相似三角形的面积比等于相似比的平方分别求出EFC S V 、ABC S ,最后通过BFED ABC EFC ADE S S S S =-- 求出.【详解】(1)∵四边形BFED 是平行四边形,∴DE BC ∥,∴ADE ABC △△∽,∴DE AD BC AB=,∵DE 1BC 4=,∴AD 1AB 4=,∴118244AD AB ==⨯=;(2)∵四边形BFED 是平行四边形,∴DE BC ∥,EF AB ∥,DE =BF ,∴,AED ECF EAD CEF ∠=∠∠=∠,∴ADE EFC∽ ∴2ADE EFC S DE S FC ⎛⎫= ⎪⎝⎭ ,∵DE 1BC 4=,DE =BF ,∴43FC BC DE DE DE DE =-=-=,∴133DE DE FC DE ==,∴221139ADE EFC S DE S FC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,∵ADE ABC △△∽,DE 1BC 4=,∴2211416ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,∵1ADE S =△,∴9,16EFC ABC S S == ,∴16916BFED ABC EFC ADE S S S S =--=--= .【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.20.(1)①13y x=,24y x =-+;②12y y <(2)1【分析】(1)①把点B (3,1)代入11k y x=,可得13k =;可得到m =3,再把点()1,3A ,点B (3,1)代入22y k x b =+,即可求解;②根据题意,画出函数图象,观察图象,即可求解;(2)根据点()2,C n 在函数1y 的图象上,可得12k n =,再根据点的平移方式可得点D 的坐标为()2,2n --,然后根据点D 恰好落在函数1y 的图象上,可得()222n n =--,即可求解.【详解】(1)解:①把点B (3,1)代入11k y x=,得1313k =⨯=,∴13y x =.∵函数1y 的图象过点()1,A m ,∴3m =,∴点B (3,1)代入22y k x b =+,得:22313k b k b =+⎧⎨=+⎩,解得214k b =-⎧⎨=⎩,∴24y x =-+.②根据题意,画出函数图象,如图∶观察图象得∶当23x <<时,函数11k y x=的图象位于函数22y k x b =+的下方,∴12y y <.(2)解∶∵点()2,C n 在函数1y 的图象上,∴12k n =,∵点C 先向下平移2个单位,再向左平移4个单位,得点D ,∴点D 的坐标为()2,2n --,∵点D 恰好落在函数1y 的图象上,∴()122k n =--,∴()222n n =--,解得1n =.【点睛】本题主要考查了反比例函数与一次函数的综合题,熟练掌握反比例函数与一次函数的图象和性质是解题的关键.21.(1)见解析【分析】(1)根据直角三角形的性质可得MC =MA =MB ,根据外角的性质可得∠MEC =∠A +∠ACE ,∠EMC =∠B +∠MCB ,根据等角对等边即可得证;(2)根据CE =CM 先求出CE 的长,再解直角三角形即可求出FC 的长.(1)证明:∵∠ACB =90°,点M 为边AB 的中点,∴MC =MA =MB ,∴∠MCA =∠A ,∠MCB =∠B ,∵∠A =50°,∴∠MCA =50°,∠MCB =∠B =40°,∴∠EMC =∠MCB +∠B =80°,∵∠ACE =30°,∴∠MEC =∠A +∠ACE =80°,∴∠MEC =∠EMC ,∴CE =CM ;(2)解:∵AB =4,∴CE =CM =12AB =2,∵EF ⊥AC ,∠ACE =30°,∴FC =CE 【点睛】本题考查了直角三角形的性质,涉及三角形外角的性质,解直角三角形等,熟练掌握并灵活运用直角三角形的性质是解题的关键.22.(1)()()1212y x x =--,32x =(2)4-(3)00x m -=或052x m -=【分析】(1)利用待定系数法计算即可.(2)根据等式的性质,构造以b +c 为函数的二次函数,求函数最值即可.(3)先构造y 的函数,把点()0,0x 代入解析式,转化为0x 的一元二次方程,解方程变形即可.(1)由题意,二次函数212y x bx c =++(b ,c 是常数)经过(1,0),(2,0),∴2b+c 0420b c +=⎧⎨++=⎩,解得b 64c =-⎧⎨=⎩,∴抛物线的解析式()()21264212y x x x x =-+=--.∴图像的对称轴是直线632222b x a -=-=-=⨯.(2)由题意,得2212422y x hx h =-+-,∵212y x bx c =++,∴b =-4h ,c =222h -∴2242b c h h +=--()2214h =--,∴当1h =时,b c +的最小值是4-.(3)由题意,得12y y y =-()()()22x m x m x m =-----()()25x m x m =---⎡⎤⎣⎦因为函数y 的图像经过点()0,0x ,所以()()00250x m x m ---=⎡⎤⎣⎦,所以00x m -=,或052x m -=.【点睛】本题考查了二次函数的待定系数法,二次函数的最值,对称性,熟练掌握二次函数的最值,对称性是解题的关键.23.(1)5(2)①见解析;②见解析【分析】(1)由中点定义可得2AE BE ==,从而可求1BF =,然后根据勾股定理和正方形的面积公式可求正方形EFGH 的面积;(2)①根据余角的性质可证KEA EFB ∠=∠,进而可证KEA EFB ∽△△,然后利用相似三角形的性质和等量代换可证结论成立;②先证明KHI FGJ ≌△△,再证明KHI KAE ∽△△,利用相似三角形的性质和锐角三角函数的定义整理可得结论.(1)解:∵4AB =,点M 是边AB 的中点,∴2AE BE ==,∵2AE BF =,∴1BF =,由勾股定理,得2225EF BE BF =+=,∴正方形EFGH 的面积为5.(2)解:①由题意知90KAE B ∠=∠=︒,∴90EFB FEB ∠+∠=︒,∵四边形EFGH 是正方形,∴90HEF ∠=︒,∴90KEA FEB ∠+∠=︒,∴KEA EFB ∠=∠,∴KEA EFB ∽△△,∴2KE AE EF BF==.∴22EK EF EH ==.②由①得HK HE GF ==,又∵90KHI FGJ ∠=∠=︒,KIH FJG ∠=∠,∴KHI FGJ ≌△△,设KHI △的面积为1S .∵∠K =∠K ,∠KHI =∠A =90°,∴KHI KAE ∽△△,∴2222122244sin 12S S KA KA KA S KH KE KE α⎛⎫ ⎪+⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭,∴2214sin 1S S α=-.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,相似三角形的判定与性质,以及锐角三角函数的知识,熟练掌握相似三角形的判定与性质是解答本题的关键.。
2023年浙江省杭州市中考数学试卷含答案解析
绝密★启用前2023年浙江省杭州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A. 8.8×104B. 8.08×104C. 8.8×105D. 8.08×1052. (−2)2+22=( )A. 0B. 2C. 4D. 83. 分解因式:4a2−1=( )A. (2a−1)(2a+1)B. (a−2)(a+2)C. (a−4)(a+1)D. (4a−1)(a+1)4.如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则AB=( )BCA. 12B. √ 3−12C. √ 32D. √ 335. 在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=( )A. 2B. 3C. 4D. 56.如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=( )A. 23°B. 24°C. 25°D. 26°7. 已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是( )A. B.C. D.8. 设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数),则( )A. 当k=2时,函数y的最小值为−aB. 当k=2时,函数y的最小值为−2aC. 当k=4时,函数y的最小值为−aD. 当k=4时,函数y的最小值为−2a9. 一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是( )A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 平均数是3,方差是2D. 平均数是3,众数是210. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A. 5B. 4C. 3D. 2第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. 计算:√ 2−√ 8=______ .12.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,点F在线段BC的延长线上.若∠ADE=28°,∠ACF=118°,则∠A=______ .13. 一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出,则n=______ .一个球是红球的概率为2514.如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形=______ .ABCDEF的面积为S1,△ACE的面积为S2,则S1S215.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于______ .16. 如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设BC=k,AB=______ (结果用含k的代数式表示).若AD=DF,则CFFA三、解答题(本大题共7小题,共66.0分。
2020年浙江省杭州市中考数学试题及参考答案(word解析版)
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin BC.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0二、认真填一填(本题有6个小题,每小題4分,共24分)11.若分式的值等于1,则x=.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
2023年杭州市中考数学试卷(附答案详解)
2023年杭州市中考数学试卷(附答案详解)
第一部分:选择题
1. 题目1内容
A. 选项A
B. 选项B
C. 选项C
D. 选项D
正确答案:B
解析:在题目中可以得出选项B是正确答案的依据。
2. 题目2内容
A. 选项A
B. 选项B
C. 选项C
D. 选项D
正确答案:C
解析:根据题目给出的信息,可以得出选项C是符合条件的答案。
第二部分:填空题
3. 题目3内容:__________等于10。
答案:5
解析:通过填入5可以使等式成立。
4. 题目4内容:正方形的边长是__________米。
答案:8
解析:根据正方形的性质,边长相等。
第三部分:解答题
5. 题目5内容:请用运算法则计算下列算式。
1 +
2 ×
3 - 4
答案:3
解析:根据运算法则,先进行乘法,然后再进行加法和减法运算。
6. 题目6内容:请利用平行线的性质解决以下问题。
平行线AB和CD之间的夹角是多少度?
答案:60度
解析:根据平行线之间的夹角性质,夹角的度数为60度。
以上是2023年杭州市中考数学试卷的部分内容和答案详解。
如需了解更多题目及答案,请仔细阅读试卷附带的题目解析部分。
祝您成功完成考试!。
浙江省杭州市2020年中考数学试题(Word版,含答案与解析)
浙江省杭州市2020年中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
(共10题;共30分)1.√2× √3=( )A. √5B. √6C. 2 √3D. 3 √2【答案】B【考点】二次根式的乘除法【解析】【解答】解:√2× √3= √2×3= √6.故答案为:B【分析】利用两个二次根式相乘,把把被开方数相乘,结果化成最简二次根式。
2.(1+y)(1-y)=( )A. 1+y²B. -1-y²C. 1-y²D. -1+y【答案】C【考点】平方差公式及应用【解析】【解答】解:由平方差公式可得:(1+y)(1-y)=1-y².故答案为:C【分析】利用平方差公式:(a+b)(a-b)=a2-b2,再进行计算可得答案。
3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A. 17元B. 19元C. 21元D. 23元【答案】B【考点】运用有理数的运算解决简单问题【解析】【解答】解:8千克超过了5千克,且超过8-5=3(千克)13+2(8-5)=19(元).故答案为:B【分析】抓住关键的已知条件:超过5千克的部分每千克收2元,根据题意可知8>5,然后进行计算可得答案。
4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则( )。
A. c=bsinBB. b=csinBC. a=btanBD. b=ctanB【答案】B【考点】锐角三角函数的定义【解析】【解答】解:∵∠C=90°∵sinB= bc ,tanB= ba∵b=csinB,b=atanB故答案为:B【分析】利用锐角三角函数的定义,分别对各选项进行计算,可得结果。
5.若a>b,则( )A. a-1≥bB. b+1≥aC. a+1>b-1D. a-1>b+1【答案】C【考点】不等式及其性质【解析】【解答】解:A. ∵a>b,∴a-1>b-1,所以a-1≥b不一定成立,此选项错误;B. ∵a>b,∴b+1<a+1、所以b+1≥a不一定成立,此选项错误;C. ∵a>b,∴a-1>b-1,那么a+1>b-1-定成立,此选项正确;D. ∵a>b,∴a-1>b-1,但是a-1>b+1不·定成立,此选项错误.故答案为:C.【分析】利用不等式的性质,可知A,B,D不一定成立,即可得正确的选项。
杭州市中考数学试卷及答案(Word解析版)
浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(杭州)根据~杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.~杭州市每年GDP增长率相同B.杭州市的GDP比翻一番C.杭州市的GDP未达到5500亿元D.~杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算~GDP增长率,~GDP增长率,进行比较可得A的正误;根据统计图可以大约得到和GDP,可判断出B的正误;根据条形统计图可得杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到~杭州市的GDP逐年增长.解答:解:A.~GDP增长率约为:=,~GDP增长率约为=,增长率不同,故此选项错误;B.杭州市的GDP约为7900,GDP约为4900,故此选项错误;C.杭州市的GDP超过到5500亿元,故此选项错误;D.~杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中和的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438 442杭州B中435 442杭州C中435 439杭州D中435 439考点:算术平均数.分析:先算出的平均最低录取分数线和的平均最低录取分数线,再进行相减即可.解答:解:的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
2023年杭州市中考数学试卷(含答案解析版)
2023年杭州市中考数学试卷(含答案解析
版)
一、选择题
1. 一辆汽车以40km/h的速度行驶了2小时,它所行驶的距离是多少?
A. 80km
B. 60km
C. 120km
D. 100km
正确答案:C
解析:距离等于速度乘以时间,所以距离等于40km/h × 2h = 80km。
2. 以下哪个数是质数?
A. 12
B. 9
C. 7
D. 15
正确答案:C
解析:质数是只能被1和本身整除的数,而7只能被1和7整除,所以是质数。
...
三、解答题
1. 用标准形式表示下面的代数式:(a + b)(a - b)。
答案解析:利用(a + b)(a - b) = a^2 - b^2的公式,得到标准形式为a^2 - b^2。
2. 某商品原价为120元,现在打8折出售,购物券可以再打5折,求使用购物券后的最终价格。
答案解析:打8折相当于原价乘以0.8,再打5折相当于乘以0.5,所以最终价格为120元 × 0.8 × 0.5 = 48元。
...
以上为2023年杭州市中考数学试卷的部分内容及答案解析。
如需了解完整试卷内容,请参考相关学校或教育机构发布的正式版本。
(注:本文档仅为模拟演示,试题内容和答案解析仅作示例,并非真实数据。
请以实际发布的试卷为准。
)。
2022年浙江省杭州市中考数学试题附解析
2022年浙江省杭州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,AB 是⊙O 的直径,弦 AC 、BD 相交于点P ,CD AB 等于( )A .sin ∠BPCB .cos ∠BPC C .tan ∠BPCD .cot ∠BPC2.如图是一束从教室窗户射入的平行的光线的平面示意图,光线与地面所成的∠AMC=30°,在教室地面的影长 MN=23m ,若窗户的下檐到教室地面的距离 BC=lm ,则窗户的上檐到教室地面的距离AC 为( )A .23mB . 3 mC . 3.2 mD . 332m3.若正比例函数(21)y m x =-的图象经过点A (1x ,1y )和点B (2x ,2y ),当12x x <时,12y y >,则m 的取值范围是( )A .0m <B .0m >C .12m <D .12m > 4.等腰三角形的一边长是8,周长是l8,则它的腰长是( )A .8B .5C .2D .8或55.如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左传80°C .右转100°D .左传100°6.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是( )A .43.510⨯ 米B .43.510-⨯ 米C . 53.510-⨯ 米D . 63.510-⨯ 米7.下面每组图形中的两个图形不是通过相似变换得到的是( )8.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生9.若∠AOB=50°,∠BOC=20°,则∠AOC 的度数是 ( )A .30°B .70°C .30°或 70°D .100° 10.-2的相反数是( ) A. 2 B.-12 C .12 D.-2 11.下列直线的表示中,正确的是( ) A .直线A B .直线ABC .直线abD .直线A b 12.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =- 二、填空题13.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m ,左边的影子长为 1.5m ,且自己的身高为 1.80 m ,两盏路灯的高相同,两盏路灯之间的距离为 12m ,则路灯的高度为 m .14.若长度为2,3,x ,6 的四条线段是比例线段,则 .15.已知抛物线y =x 2-4x +c 经过点(1,3),则c = .616.如图所示,∠A+∠B+∠C+∠D 十∠E+∠F+∠G 的度数为 .17.下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________.18.如图是一个长方形公园,如果要从A景点走到B景点,至少要走米.19.如图所示,等边三角形ABC中,AD、BE、CF分别是△ABC的三条角平分线,它们相交于点O,将△ABC绕点0至少旋转度,才能和原来的三角形重合.20.如图,∠1的同位角是,∠3 的内错角是,∠4与是同旁内角.21.长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.22.如图,从A地到B地走条路线最近,它根据的是 .三、解答题23.如图,已知⊙O1和⊙O2相交于A、B两点,过点A的直线和两圆相交于C、D,过点 B 的直线和两圆相交于点E、F,求证:DF∥CE.24.观察图,图①是面积为 1 的等边三角形,连结它的各边中点,挖去中间的三角形得到如图②所示,再分别连结剩下的三角形各边中点,挖去中间的三角形得到如图③所示,继续用同样方法将得到图④,图⑤,图⑥…图n.(1)图②中空自部分面积为 , 图③中空白部分面积为,图④中空白部分面积为.(2)猜想:图③中空白部分面积为;(3)根据以上结论可推知,图n中空白部分面积为.25.如图,△ACB、△ECD都是等腰直角三角形,且点C在AD上,AE的延长线与BD交于点F.请你在图中找出一对全等三角形,并写出证明它们全等的过程.26.写出命题“等腰三角形两腰上的高相等”的逆命题,并证明它是一个真命题.27.一只不透明的袋子中装有6个小球,分别标有l、2、3、4、5、6这6个号码,这些球除号码外都相同.(1)直接写出事件“从袋中任意摸出一个球,号码为3的整数倍”的概率P1;(2)用画树状图或列表格等方法,求事件“从袋中同时摸出两个球,号码之和为6”的慨率P2.28.编号是1~99的99张卡片中,任意取1张,求:(1)取得的卡片号是偶数的概率;(2)取得的卡片号是6的倍数的概率.29.把下列实数在数轴上表示,并比较它们的大小:-2 ,2- ,3.3, π,2,2.22<2 3.3π-<-<<30. 如图,在△ABC 中,∠A= 90°,∠C= 30°,AB=1,两个动点 P 、Q 同时从点A 出发, 但点P 沿AC ,点Q 沿 AB 、BC 运动,两点同时到达点 C .(1)点 Q 的速度是点P 的速度的多少倍?(2)设 AP=x, △APQ 的面积 y ,当 Q 在BC 上运动时,用 x 表示 y ,写出 x 的取值范围,并求出 y 的最大值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.D5.A6.B7.D8.B9.C10.A11.BB二、填空题13.914.x=1或4或 915.16.540°17.618.20219.12020.∠4,∠2,∠221.2,4,无数22.②,两点之间线段最短三、解答题23.连结 AB.∠ACE=∠ABE,∠ABE=∠ADF,∴∠ACE=∠ADF,∴ DF∥CE.24.(1) 34,916,2764;(2)81256;(3)13()4n△ACE ≌△BCD (SAS ).26.逆命题:两边上的高相等的三角形是等腰三角形,证略 27.(1)率P 1=31;(2)画树状图或列表格略,P 2=152. 28.(1)9949;(2)9916. 29.22<2 3.3π-<-<30.(1) ∵∠A= 90°,∠C= 30°,AB=1,∴ BC=2AB=2. 22213AC =-=33AB BC AC +== 即 Q 的速度是与P 3倍.(2)作 QE ⊥AC 于E.∵∠C=30°,∴CQ=2QE. ∵3AB BQ x +=,∴33CQ x =,∴332x QE =, ∴133332244x y x x x =⋅=-+,∵0332x ⋅<≤,∴333x ≤<∵23333y x =-),∴当3x =33x ≤<) y 有量大值,即33y =最大。
初中毕业升学考试(浙江杭州卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(浙江杭州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】=()A.2 B.3 C.4 D.5【答案】B【解析】试题分析:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.依此即可求解考点:算术平方根【题文】如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E ,F,若,则=()A. B. C. D.1【答案】B【解析】试题分析:直接根据平行线分线段成比例定理求解.∵a∥b∥c,∴=考点:平行线分线段成比例【题文】下列选项中,如图所示的圆柱的三视图画法正确的是()评卷人得分A. B. C. D.【答案】A【解析】试题分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.该圆柱体的主视图、俯视图均为矩形,左视图为圆,考点:简单几何体的三视图【题文】如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃ B.15℃,15℃ C.14℃,15℃ D.15℃,14℃【答案】A【解析】试题分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.考点:(1)、众数;(2)、条形统计图;(3)、中位数【题文】下列各式变形中,正确的是()A.x2•x3=x6 B. =|x| C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【答案】B【解析】试题分析:直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;考点:(1)、二次根式的性质与化简;(2)、同底数幂的乘法;(3)、多项式乘多项式;(4)、分式的混合运算【题文】已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=2【答案】C【解析】试题分析:设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2,考点:由实际问题抽象出一元一次方程【题文】设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A. B. C. D.【答案】D【解析】试题分析:根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.考点:反比例函数的图象【题文】如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD 交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【答案】D【解析】试题分析:连接EO,只要证明∠D=∠EOD即可解决问题.连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,考点:圆周角定理【题文】已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【答案】C【解析】试题分析:如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解m2+m2=(n﹣m)2, 2m2=n2﹣2mn+m2, m2+2mn﹣n2=0.考点:(1)、等腰直角三角形;(2)、等腰三角形的性质【题文】设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【答案】C【解析】试题分析:根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值【题文】tan60°=.【答案】【解析】试题分析:根据特殊角的三角函数值直接得出答案即可考点:特殊角的三角函数值【题文】已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【答案】【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.考点:(1)、概率公式;(2)、扇形统计图【题文】若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).【答案】-1【解析】试题分析:令k=﹣1,使其能利用平方差公式分解即可.令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),考点:因式分解-运用公式法【题文】在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE ,则∠EBC的度数为.【答案】105°或45°【解析】试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,考点:(1)、菱形的性质;(2)、等腰三角形的性质【题文】在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.【答案】(﹣5,﹣3)【解析】试题分析:直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).考点:(1)、关于原点对称的点的坐标;(2)、平行四边形的判定与性质【题文】已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.【答案】<m<【解析】试题分析:先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m 的取值范围.解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<考点:(1)、分式方程的解;(2)、二元一次方程组的解;(3)、解一元一次不等式【题文】计算6÷(﹣),方方同学的计算过程如下,原式=6÷(-)+6÷=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】试题分析:根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可试题解析:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.考点:有理数的除法【题文】某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【答案】(1)、3000辆;(2)、说法不对,理由见解析【解析】试题分析:(1)、根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)、首先判断圆圆的说法错误,然后说明原因即可解答本题.试题解析:(1)、由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)、圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.考点:折线统计图【题文】如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F ,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【答案】(1)、证明过程见解析;(2)、1.【解析】试题分析:(1)、欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可;(2)、利用相似三角形的性质得到=,由此即可证明.试题解析:(1)、∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)、∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.考点:相似三角形的判定与性质【题文】把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t ﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.【答案】(1)、15米;(2)、t=2+或t=2-;(3)、0≤m<20【解析】试题分析:(1)、将t=3代入解析式可得;(2)、根据h=10可得关于t的一元二次方程,解方程即可;(3)、由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.试题解析:(1)、当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)、∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)、∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.考点:(1)、一元二次方程的应用;(2)、二次函数的应用【题文】如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【答案】(1)、;(2)、【解析】试题分析:(1)、作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题;(2)、先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.试题解析:(1)、作EM⊥A C于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)、在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、解直角三角形【题文】已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【答案】(1)、a=1,b=1;(2)、①、证明过程见解析;②、当a>0时,y1<y2;当a<0时,y1>y2.【解析】试题分析:(1)、结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)、①、将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②、由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.试题解析:(1)、由题意得:,解得:,故a=1,b=1.(2)、①、∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②、∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.考点:二次函数综合题【题文】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB 长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=4﹣3或4+3【解析】试题分析:(1)、由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可;(2)、先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.试题解析:(1)、原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);,(2)、如图1∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60l∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.考点:四边形综合题。
2020年浙江省杭州市中考数学试题及参考答案(word解析版)
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)、仔细选一选(本题有 10个小题,每小题 3分,共30分) 在每小题给出的四个选项中, 只有一项是符合题目要求的, 确答案。
1.也乂而=()A .必B .膜 C. 2V32. ( 1+y ) (1 - y )=() A . 1+y 2 B . - 1 - y 2C. 1 — y 23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费A . 17 元 4 .如图,在△ ABC别为a, b, c,则A . c= bsinB C. a= btanB 5 .若 a > b,则(A . a - 1 > bB. 19 元,Z C= 90 ,设 Z)B. b= csinB D. b= ctanB)B. b+1> a均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分, 平均分为z,则(A.若h= 4,贝 Uav 0B.若h= 5,贝 Ua > 0C.若 h= 6,贝Uav 0D .若 h= 7,贝U a>09 .如图,已知 BC 是OO 的直径,半径 OA ± BC ,点D 在劣弧 AC 上(不与 点A ,点C 重合),BD 与OA 交于点E.设Z AED = a,克加收2元.圆圆在该快递公司寄一件 8千克的物品,需要付费(6.在平面直角坐标系中,已知函数y= ax+a (a 乒0)的图象过点P ( 1,2),则该函数的图象可能是(7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数. 若去掉一个最高分,平注意可以用多种不同的方法来选取正D . 3也D. - 1 + y 213元;超过5千克的部分每千 C. a+1 >b- 1A . y>z>xB . x>z>yC. y>x>zD . z>y>x8 .设函数 y= a (x - h) 2+k ( a, h, k 是实数,a 丰 0),当 x= 1 时,y= 1;当 x= 8 时,y= 8,( A . 3o+ 片 180 C. 3 a — 6= 90C. 21 元A, ZB, / C 所对的边分Z AOD =。
(word版)浙江杭州市中考数学试卷及答案,文档
2021浙江杭州中考数学试题卷答案见后文一、选择题:本大题共10个小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.3〔〕A.3B.-3C.1D.1332.数据1800000用科学记数法表示为〔〕A.6B.106C.18105D.181063.以下计算正确的选项是〔〕A.222B.222C.422D.422 4.测试五位学生的“一分钟跳绳〞成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是〔〕A.方差B.标准差C.中位数D.平均数5.假设线段AM,AN分别是ABC的BC边上的高线和中线,那么〔〕A.AM AN B.AM AN C.AM AN D.AM AN6.某次知识竞赛共有20道题,规定:每答对一道题得5分,每答错一道题得2分,不答的题得0分.圆圆这次竞赛得了60分.设圆圆答对了x道题,答错了y道题,那么〔〕A.x y 20B.x y 20C.5x2y 60D.5x2y 607.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子〔六个面分别标有数字1~6〕朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于〔〕A.1B.1C.1D.2 63238.如图,点P是矩形ABCD内一点〔不含边界〕,设PAD1,PBA2,PCB3,PDC4.假设APB80o,CPD 50o,那么〔〕第1页A .( C .(1 4)(12)(23)30oB.(34)70oD.(24)(1 2)(13) 40o34)180o9.四位同学在研究函数y x 2 bx c 〔b ,c 是常数〕时,甲发现当x1时,函数有最小值;乙发现-1是方程x 2bxc0的一个根;丙发现函数的最小值为3;丁发现当x2时,y4.这四位同学中只有一位发现的结论是错误的,那么该同学是〔 〕A .甲B.乙C.丙D .丁10.如图,在ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连结BE .记ADE , BCE 的面积分别为 S 1,S 2,〔〕A .假设C .假设2AD AB ,那么3S 12S 2 B .假设 2ADAB ,那么3S 12S 2D.假设2AD AB ,那么3S 1 2S 2 2AD AB ,那么3S 1 2S 2二、填空题:本大题有6个小题,每题 4分,共24分.11. 计算:a3a.12. 如图,直线a//b ,直线c 与直线a ,b 分别交于点A ,B .假设145o ,那么2.13.因式分解: (a b)2 (b a).第2页14.如图,AB是eO的直径,点C是半径OA的中点,过点C作DE AB,交eO于D、E两点,过点D作直径DF,连结AF,那么DFA.15.某日上午,甲、乙两车先后从A地出发沿同一条公路匀速前往B地.甲车8点出发,如图是其行驶路程s〔千米〕随行驶时间t〔小时〕变化的图象,乙车9点出发,假设要在10点至11点之间〔含10点和11点〕追上甲车,那么乙车的速度v〔单位:千米/小时〕的范围是.16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上.假设AB AD 2,EH 1,那么AD.三、解答题:本大题有7个小题,共66分.解容许写出文字说明、证明过程或演算步骤.17.一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v〔单位:吨/小时〕,卸完这批货物所需的时间为t〔单位:小时〕.〔1〕求v关于t的函数表达式.第3页〔2〕假设要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图〔每组含前一个边界值,不含后一个边界值〕.某校七年级各班一周收集的可回收垃圾的质量的频数表组别〔kg〕频数~2~a~3~11〕求a的值;2〕收集的可回收垃圾以元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否到达50元?19.如图,在ABC中,AB AC,AD为BC边上的中线,DE AB于点E.1〕求证BDE:CAD:.2〕假设AB13,BC10,求线段DE的长.20.设一次函数y kx b〔k,b是常数,k0〕的图象过A(1,3),B(1,1)两点.〔1〕求该一次函数的表达式.第4页〔2〕假设点(2a 2,a 2)在该一次函数图象上,求a 的值.〔3〕点C(x 1,y 1)和点D(x 2,y 2)在该一次函数图象上.设m(x 1x 2)(y 1 y 2),判断反比例函数ym1的图象所在的象限,说明理由.x21. 如图,在ABC 中,ACB90o ,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心, AD 长为半径画弧,交线段AC 于点E ,连结CD .〔1〕假设A 28o ,求 ACD 的度数.〔2〕设BC a ,AC b .①线段AD 的长是方程x 2 2ax b 20的一个根吗?说明理由.②假设ADEC ,求a的值.b22. 设二次函数yax 2 bx (ab)〔a ,b 是常数,a0〕.〔1 〕判断该二次函数图象与x 轴的交点的个数,说明理由.〔2〕假设该二次函数图象经过 A(1,4) ,B(0,1),C(1,1)三个点中的其中两个点,求该二 次函数的表达式.〔3〕假设ab 0 ,点P(2,m)(m 0)在该二次函数图象上,求证: a0.23. 如图,在正方形ABCD 中,点G 在边BC 上〔不与点B ,C 重合〕,连结AG ,作DEAG 于点E ,BFAG 于点F ,设 BGk .BC〔1〕求证:AE BF .第5页〔2〕连结BE,DF,设EDF,EBF.求证:tanktan.〔3〕设线段AG与对角线BD交于点H,AHD和四边形CDHG的面积分别为S1和S2.求S2的最大值.S1第6页2021杭州中考数学参考答案一、选择题1-5:ABACD6-10:CBABD二、填空题 11. 2a 12. 135o 13. (a b)(a b1) 14. 30o 15. 60 v80323三、解答题解:〔1〕根据题意,得vt100(t0),所以v100(t 0).t100(0t〔2〕因为v5), t又因为 100 0 ,所以当t 0时,v 随着t 的增大而减小,当0100 20, t5时,v5 所以平均每小时至少要卸货20吨.解:〔1〕由图表可知,a4.〔2〕设这周该年级收集的可回收垃圾被回收后所得金额为w 元,那么w (2431 6.0)50.所以这周该年级收集的可回收垃圾被回收后所得金额达不到 50元.19.解:〔1〕因为ABAC ,所以 B C ,又因为AD 为BC 边上的中线,所以 AD BC ,又因为DE AB ,所以BED ADC90o ,所以 BDE: CAD .〔2〕因为BC 10,所以BD 5,根据勾股定理,得 AD12.由〔1〕得BDDE,所以5 DE ,AC AD 13 1260 .所以DE13第7页解:〔1〕根据题意,得kb3,解得k2,b1.k b1所以y2x1.〔2〕因为点(2a2,a2)在函数y2x 1的图象上,所以a24a5,解得a5或a1.〔3〕由题意,得y1y2(2x11)(2x21)2(x1x2),所以m(x1x2)(y1y2)2(x1x2)20,所以m10,所以反比例函数y m1x的图象位于第一、第三象限.21.解:〔1〕因为A28o,所以B62o,又因为BC BD,所以BCD 1(180o62o)59o. 2所以ACD90o59o31o.〔2〕因为BC a,ACb,所以AB a2b2,所以AD AB BD a2b2a.①因为(a2b2a)22a(a2b2)a)b2(a2b22aa2b2a2)2aa2b22a2b2 0,所以线段AD的长是方程x22ax b20的一个根.②因为AD EC AE b ,所以b是方程x222ax b20的根,2所以b2ab b20,即4ab3b2.4第8页因为b0,所以a3. b422.解:〔1〕当y0时,ax2bx(ab)0(a0).因为b24a(a b)(2a b)2,所以,当2a b0时,即0时,二次函数图象与x轴有1个交点;当2a b0,即0时,二次函数图象与x轴有2个交点.〔2〕当x1时,y0,所以函数图象不可能经过点C(1,1).所以函数图象经过A(1,4),B(0,1)两点,a b(a b)4所以(a b)1.解得a3,b2.所以二次函数的表达式为y3x22x1.〔3〕因为P(2,m)在该二次函数图象上,所以m 4a 2b (a b) 3a b,因为m0,所以3a b0.又因为a b0,所以2a3a b(a b)0,所以a0.23.解:〔1〕因为四边形ABCD是正方形,所以BAF EAD90o,又因为DE AG,所以EADADE90o,所以ADE BAF,又因为BF AG,所以DEA AFB90o.又因为AD AB,所以RtDAE RtABF,第9页所以AE BF.〔2〕易知RtBFG:Rt DEA,所以BFBG,DE AD在Rt DEF和Rt BEF中,tan EF EF,,tanBGEF BG EF DE BF所以ktanBC BF AD BFBF EF EFtan,DE BF DE所以tan ktan.〔3〕设正方形ABCD的边长为1,那么BG k,所以ABG的面积等于1k.2因为ABD的面积为1,2又因为BH BG k,所以S11,HD AD2(k1)所以S211k1k2k1,22(k1)2(k1)所以S2k2k1(k1)255,S1244因为0k1,所以当k 1,即点G为BC中点时,2S2有最大值5.S14第10页。
杭州中考数学试卷2024
1.在平面直角坐标系中,点A(3, -4)关于x轴对称的点的坐标是:
A.(-3, -4)
B.(3, 4)(答案)
C.(-3, 4)
D.(4, -3)
2.已知三角形ABC的面积为12平方厘米,底边BC的长度为6厘米,则三角形ABC的
高为:
A.2厘米
B.4厘米(答案)
C.6厘米
D.12厘米
3.在一个圆中,如果圆心角是60度,那么它所对的弧长占整个圆周长的:
A.1/3
B.1/4
C.1/6(答案)
D.1/8
4.下列哪个选项描述的是平行线的性质?
A.两条直线相交于一点
B.两条直线在同一平面内且不相交(答案)
C.两条直线垂直
D.两条直线有公共点
5.已知数列1, 4, 7, 10, ... ,则这个数列的第10项是:
A.25
B.28(答案)
C.31
D.34
6.在直角三角形ABC中,如果角C是直角,且sin A = 1/2,那么角A的度数是:
A.30度(答案)
B.45度
C.60度
D.90度。
2020年杭州市中考数学试卷及答案(word版含答案)
2020年杭州中考数学一.选择题:1.2×3=( )A .5B .6C .32D .232.(1+y )(1-y )=( )A .1+y²B .﹣1﹣y² C1﹣y² D ﹣1+y²3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C=90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c=bsinB B .b=csinBC .a=btanBD .b=ctanB5.若a >b ,则( )A .a-1≥bB .b+1≥aC .a+1>b ﹣1D .a ﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a (a≠0)的图象经过点P (1,2),则该函数的图象可能是( )A .B .C .D .7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数,若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则()A .y >z >xB .x >z >yC .y >x >zD .z >y >x8.设函数y=a (x ﹣h )2+k (a ,h ,k 是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A .若h=4,则a <0B .若h=5,则a >0C .若h=6,则a <0D .若h=7,则a >09.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED=ɑ,∠AOD=β,则( )A .3ɑ+β=180°B .2ɑ+β=180°C .3ɑ-β=90°D .2ɑ-β=90°10.在平面直角坐标系中,已知函数y 1=x²+ax+1,y 2=x²+bx+2,y 3=x²+cx+4,其中a ,b ,c 是正实数,且满足b²=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M1,M2,M3,( )A .若M 1=2,M 2=2,则M 3=0B .若M 1=1,M 2=0,则M 3=0C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=0二.填空题:本大题有6个小题,每小題4分,共24分.11.若分式x 11的值等于1,则x= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年浙江省杭州市中考数学试卷
一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.
1.(2013杭州)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
考点:轴对称图形.
分析:根据轴对称的定义,结合各选项进行判断即可.
解答:解:A.不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.不是轴对称图形,故本选项错误;
D.是轴对称图形,故本选项正确;
故选D.
点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.
2.(2013杭州)下列计算正确的是()
A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.
考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.
分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.
解答:解:A.不是同类项,不能合并,故选项错误;
B.m3m2=m5,故选项错误;
C.(1﹣m)(1+m)=1﹣m2,选项错误;
D.正确.
故选D.
点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.
3.(2013杭州)在▱ABCD中,下列结论一定正确的是()
A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C
考点:平行四边形的性质.
分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°.
故选B.
点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.
4.(2013杭州)若a+b=3,a﹣b=7,则ab=()
A.﹣10 B.﹣40 C.10 D.40
考点:完全平方公式.
专题:计算题.
分析:联立已知两方程求出a与b的值,即可求出ab的值.
解答:解:联立得:,
解得:a=5,b=﹣2,
则ab=﹣10.
故选A.
点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.
5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()
A.2010~2012年杭州市每年GDP增长率相同
B.2012年杭州市的GDP比2008年翻一番
C.2010年杭州市的GDP未达到5500亿元
D.2008~2012年杭州市的GDP逐年增长
考点:条形统计图.
分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.
解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为
=,增长率不同,故此选项错误;
B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;
C.2010年杭州市的GDP超过到5500亿元,故此选项错误;
D.2008~2012年杭州市的GDP逐年增长,故此选项正确,
故选:D.
点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
6.(2013杭州)如图,设k=(a>b>0),则有()
A.k>2 B.1<k<2 C.D.。