中考数学复习专题八:圆
圆中考 知识点总结
圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。
因此,掌握圆的相关知识对于中考数学是非常重要的。
本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。
知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。
2. 圆的要素:圆心、半径、直径、弧、圆周。
3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。
二、圆的相关公式1. 圆的周长公式:C=2πr。
2. 圆的面积公式:S=πr²。
三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。
2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。
3. 圆的切线与弦的性质:相交弦定理、弦切定理。
4. 圆的内切与外切定理:内切定理、外切定理。
四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。
2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。
3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。
五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。
2. 多做练习,培养解决问题的能力,提高解题技巧。
3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。
六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。
2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。
3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。
4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。
那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。
中考数学复习《圆》专题训练-附带有答案
中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案
2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。
中考圆知识点总结复习
中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。
在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。
本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。
一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。
2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。
二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。
2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。
3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。
4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。
5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。
三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。
五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。
2. 圆的平移、旋转、对称的性质。
六、圆的应用.1. 圆的应用在实际生活和工作中运用。
2. 圆在建筑、设计、制图中的应用。
3. 圆的运动的应用。
七、典型例题解析1. 利用圆的数学知识解决问题的方法。
2. 典型例题的解题思路和方法。
3. 典型例题的解题技巧和技巧。
八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。
2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。
3. 及时总结巩固,弥补知识点的不足。
中考数学圆知识点归纳
中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。
2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。
二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。
2.圆内外的点与圆心之间的关系:内接圆和外接圆。
三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。
2.圆的直径是两个切点。
3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。
4.圆上的切线与半径垂直,且只有一条。
(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。
(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。
2.圆的面积:S=πr²(其中r为半径)。
3.弧长:L=2πr(对应圆心角为360°的弧)。
4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。
2.提取关键信息,运用圆的性质和公式进行计算。
3.运用切线的特性求解问题。
4.运用弧的性质,求解弧长、弦长、圆心角等问题。
5.运用角平分线和垂直平分线的性质,求解相关问题。
六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。
2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。
3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。
4.利用圆内切四边形的特性解决问题。
以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。
中考压轴圆知识点总结
中考压轴圆知识点总结中考数学是学生们的一大难题,而数学中颇具难度的数学圆知识点更是让许多学生头疼。
在中考中,圆的知识点占据了重要的地位,学生们需要认真复习和掌握这些知识点才能顺利通过考试。
下面我们就来总结一下中考数学圆的知识点,希望对大家有所帮助。
一、圆的基本概念1. 圆的定义:在平面上所有到圆心的距离都相等的点的集合称为圆。
圆用字母 O 表示。
2. 圆的元素:圆的圆心、半径和弧。
3. 直径、半径、弧长与圆的关系:直径是通过圆心的线段,它的长度等于两倍的半径;半径是从圆心到圆上任意一点的距离;弧长是指圆的一部分弧所对的圆周的长度。
4. 弧度制:一周角的度数为 360°,而一周角对应的弧长为圆周的长度,如果圆的周长为 L,那么一周角所对应的弧长的度数衡量单位是圆周的长度的一个弧长。
这就是弧的弧度制,以弧长等于半径的角叫做1弧度的那个角。
5. 圆内接与外接:内接四边形是指四边形的四个顶点都在圆上,外接四边形是指四边形的四个顶点都在圆的外切,在圆上。
6. 一个绕圆一周转的圆心角是360°(或2 π 弧度)。
这被称为一周角。
二、圆的相关定理1. 圆内切四边形定理:一个四边形是积形,当且仅当它的内部与外部不相交,并且内部的一个角是直角。
2. 圆的面积和周长计算公式:圆的面积公式A=πr^2 ;圆的周长公式C=2πr3. 圆周角的性质:一个绕圆一周转的圆心角是360°,我们也称这个角叫一周角。
4. 圆的切线定理:在过圆外一点做圆的切线,这条圆的切线和这个点到圆心的连线垂直。
5. 弧长与扇形面积关系:圆心角相等的两个弧所对的圆周相等,圆心角相等的两个扇形的面积与依次对应的弧长成正比。
6. 圆内角、弦长与弧长的关系:在一个圆上的两个弦所确定的两个弧,弦分数相等,它们所对应的圆心角相等。
7. 圆的内切关系和切线定理:8. 圆的位置关系定理:每一对不同圆,在共有的外部和内部至少有一个定位的情态。
中考圆专题知识点总结
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
九年级中考圆题型知识点
九年级中考圆题型知识点九年级中考数学是学生们备考重点之一。
其中,圆是一个重要的几何概念,也是中考数学题目中经常出现的一个考点。
本文将为大家细致解析九年级中考圆题型知识点,希望能帮助同学们更好地应对考试。
一、圆的基本概念圆是平面上所有到圆心的距离都相等的点的集合。
其中,与圆有关的一些常用术语包括:1. 圆心(O):圆的中心点。
2. 半径(r):连接圆心和圆上任意一点的线段,它的长度称为圆的半径。
3. 直径(d):通过圆心的两个确定的点,其长度为圆的直径,直径是半径的两倍。
4. 弧(弧度):圆上的一段弧,可以用圆心角来度量,弧度是度量角度的单位。
二、圆的性质1. 圆的内切圆:一个正多边形的内接圆的半径与这个正多边形的边长之比保持不变。
2. 相交弧的性质:如果两条弦在某个圆上相交,那么这两个相交的弧的度数之和为360°。
3. 切线和切点:切线与半径垂直。
4. 弧与角:圆内每个弧所对的圆心角有唯一对应的。
三、圆的定理和推论1. 同弧度的圆周角相等。
2. 同弧中心角相等。
3. 对称圆周角相等。
4. 直径所对的圆周角为直角。
5. 互余弧余角相等。
6. 弦切定理:圆上的切线与切点所组成的锐角与切点所对的弦上的弧所对的圆心角相等。
四、圆的应用圆的应用在生活中随处可见。
以下是几个典型的示例:1. 汽车轮胎:汽车轮胎的主体即为圆形,保证轮胎的平衡性和牢固性。
2. 潮汐现象:地球与月球之间的引力相互作用所产生的潮汐现象正是由于圆形轨道的影响。
3. 时钟:时钟的表面多为圆形,所以我们通常以圆上点的运动方式来计时。
4. 路灯:路灯的灯罩大多采用圆形或者半圆形,能够同时照亮周围的区域。
总结:掌握圆的基本概念和性质是解决九年级中考圆题型的关键。
除了理论知识的掌握,同学们还应该加强实际应用的训练,这样才能在考试中灵活运用所学知识解题。
希望本文的知识点讲解和实例分析能为同学们的备考提供帮助,让大家能够在数学考试中更加出色。
中考圆形知识点总结归纳
中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。
本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。
一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。
其中,距离相等的这个固定值称为圆的半径,用字母r表示。
圆心是圆上任意两点的连线的垂直平分线的交点。
二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。
2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。
3. 相等弧所对的圆心角是相等的。
4. 圆的内切正多边形的中心与圆心重合。
三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。
圆周角的度数等于它所对的弧的度数。
2. 弦:圆内部连接两点的线段称为弦。
弦分割出的两条弧叫做弦所对的弧。
3. 弧长:指圆上的一段弧所对应的圆周长度。
弧长等于圆心角的弧度值乘以圆的半径。
四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。
2. 切线的性质:切线与半径的垂直分割线。
切线于半径的交点处所对应的圆心角为直角。
五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。
2. 圆的周长公式:C = 2πr,其中C为圆的周长。
六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。
2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。
总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。
对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。
只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。
中考数学圆知识点总结7篇
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
中考圆知识点归纳总结
中考圆知识点归纳总结中考圆是初中数学中非常重要的一个知识点,也是数学的基础。
掌握了中考圆的相关知识,不仅对于进一步学习数学有很大的帮助,也对于解决实际问题有很大的应用价值。
下面将对中考圆的知识点进行归纳总结,希望能够帮助大家更好地掌握这一部分内容。
1. 圆的基本概念圆是平面上距离一个固定点一定距离的点的集合,这个固定点叫做圆心,这个固定距离叫做半径。
圆通常用字母 O 表示圆心,用字母 r 表示圆的半径。
圆上的任一点到圆心的距离都等于半径,这一点是圆的重要性质之一。
2. 圆的相关线段在圆周上取两点 A、B,连接这两点和圆心 O,得到三条线段,分别是弧 AB、弦 AB 和半径 OB。
弧 AB 是连通 A、B 两点的曲线部分,弦 AB 是圆上连接 A、B 两点的线段,半径OB 是以 O 为端点的一段线段。
圆有很多重要的线段长度关系定理,比如:弦长定理、弦切定理、弦心定理等。
3. 圆的面积和周长圆的周长和面积是圆的重要特征。
圆的周长又叫做圆周长或者圆的周长,通常用字母 C 或者 P 表示,圆周长的计算公式是C=2πr,其中 r 表示圆的半径,π 是一个数学常数,约等于3.14。
圆的面积通常用 S 表示,圆的面积计算公式是S=πr²。
4. 圆中角的度量圆上的角分为圆心角、弧对应角和弦对应角。
圆心角的度数等于它所对的圆弧的度数,弧对应角和弦对应角的度数相等。
圆心角、弧对应角和弦对应角之间有很多重要的关系,比如角度的计算,叠加与相交的等。
5. 圆的切线和切点在圆上一个点处的切线是与这个点的切线有且只有一个交点的直线。
圆上的切线长相等。
切点是与切线有且只有一个公共点的圆上的点。
圆的切线和切点有很多重要的定理,比如切线与半径垂直定理等。
中考圆的知识点比较基础但非常重要,掌握了这些知识对于学生进一步学习数学有很大的帮助。
希望同学们多加练习和实践,加强对中考圆知识点的理解和掌握,提高数学的应用能力。
初三数学圆知识点总结归纳
初三数学圆知识点总结归纳数学是一门重要的学科,其中圆是初三阶段的重点内容之一。
为了帮助同学们更好地理解和掌握圆的知识,本文将对初三数学圆的知识点进行总结和归纳。
下面将从圆的基本性质、圆的相关定理以及圆的应用三个方面进行详细介绍。
一、圆的基本性质圆是我们生活中常见的几何形状之一,了解圆的基本性质对于理解和解题都非常重要。
1.圆的定义:圆是平面上一点到另一点距离保持不变的点的集合。
2.圆的要素:圆心、半径和直径是圆的基本要素。
圆心是圆上所有点到该点的距离相等的点,常用字母O表示;半径是从圆心到圆上任意一点的距离,用字母r表示;直径是通过圆心,且两个端点在圆上的线段,直径的长度等于半径的两倍。
3.弧与弦:圆上两点之间的线段叫做弦,圆上两点之间的弧是圆上除去弦包含的部分所剩下的弯曲部分。
4.圆周角:以圆心为顶点的角叫做圆周角,圆周角的度数是弧长所对应的圆心角的度数。
二、圆的相关定理熟练掌握圆的相关定理对于解题非常有帮助,下面将介绍常用的圆的定理。
1. 半径相等定理:同一个圆内,所有的半径相等。
2. 弦长定理:在同一个圆上,相等弧所对的弦相等,或者说弦相等所对的弧相等。
3. 切线定理:切线与半径垂直,半径与切线的交点恰好在切点上。
4. 弧度制与角度制转换:1 弧度=180°/π,1 度=π/180 弧度。
三、圆的应用圆的知识不仅仅用于理论中,还有很多实际应用场景。
下面将介绍几个常见的应用。
1. 圆的面积:圆的面积公式为S = πr^2,其中S表示面积,r表示半径。
2. 扇形面积:扇形是由圆心、弧和两条半径组成的区域,计算扇形的面积可以使用扇形面积公式S = (θ/360°) × πr^2。
3. 弧长公式:弧长公式为L = rθ,其中L表示弧长,r表示半径,θ表示圆心角的度数。
4. 圆与三角形的关系:在三角形中,圆的内切圆是三角形内接圆,三角形的外接圆是三角形外接圆。
通过以上对圆的基本性质、相关定理和应用的总结归纳,我们可以更好地理解和掌握圆的知识点。
中考圆知识点总结
中考圆知识点总结中考的数学试题覆盖了诸多数学知识点,其中圆相关的内容占了重要地位,是中考数学考试中的难点之一。
掌握了圆的相关知识点,不仅可以在考试中取得好成绩,同时也对日常生活中的数学问题有所帮助。
下面将对中考圆的知识点进行总结和归纳。
一、圆的基本概念圆是平面上到定点距离小于等于定长的点的集合,这个定点叫做圆心,这个定长叫做圆的半径。
圆的直径是圆上任意两点的最长距离,圆的直径恰好是圆的半径的二倍。
圆的面积公式为S=πr²,其中r表示圆的半径。
圆的周长公式为L=2πr,同样r表示圆的半径。
二、圆相关的几何定理1. 直径定理:在同一个圆或等圆的两个弦等长,则它们所对的圆心角相等,且所对圆弧的长度相等。
2. 圆心角定理:同弧的两个内角相等,同弦的两个角相等。
3. 弧长定理:同弧的弧长与所对圆心角的大小成正比。
4. 弧的关系定理:弧长和圆心角的关系,相等角对的弧相等,圆心角相等的弧相等。
5. 弧与弦的关系:相等的圆心角所对的弦相等,弦等于半径的弦、垂直与直径的弦等于相等弦。
6. 正弦定理、余弦定理:一般所涉及到的较少,不是本考纲的重点内容。
三、圆的位置关系1. 两圆相交的位置关系:相离、内切、相交、外切2. 圆内接四边形:矩形、菱形、平行四边形、正方形3. 角平分线与弦的关系四、圆的相交与切线关系1. 圆的切线:圆上任何一点的切线只有一条2. 切线定理:切线与半径的夹角是直角3. 切线长度定理:切线外的弦等于切线两条线段的和4. 弦上的圆角:弦上的两个圆角是相等的五、圆的证明题1. 利用圆的性质证明几何定理2. 利用等角、相似证明题3. 利用直线、圆的位置关系证明题4. 利用圆与三角形的关系证明题以上是中考圆的知识点总结,掌握了这些知识,可以更好地应对中考数学试题中的圆相关问题。
希望同学们能够认真学习,多练习,相信在考试中一定能取得好成绩。
2025年中考数学考点分类专题归纳之 圆
2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。
中考圆的知识点总结
中考圆的知识点总结中考数学中,圆是一个重要的几何图形,涉及的知识点较多。
在考试中,对圆的相关知识的理解和掌握是非常关键的。
本文将对中考数学中与圆有关的知识点进行总结和归纳,帮助考生理清思路,更好地备战中考数学。
1. 圆的定义圆是平面上到一个定点的距离等于定值的所有点构成的图形。
其中,定点叫做圆心,距离叫做半径。
2. 圆的性质(1)圆上任意两点之间的线段,叫做弧。
(2)圆的直径是圆上任意两点连线沿圆内部的最大距离,它的长度是半径的2倍。
(3)圆的周长是圆周上的所有点连成的折线的长度。
(4)圆内任意两点与圆心连线的夹角是等腰三角形的夹角。
3. 圆的相关公式(1)圆的周长公式:C = 2πr(其中,C表示周长,r表示半径,π取3.14)。
(2)圆的面积公式:A = πr²(其中,A表示面积)。
4. 圆的位置关系(1)相离:两个圆没有交点,且圆心之间的距离大于两个圆的半径之和。
(2)相切外切:两个圆有且仅有一个公共切点,且圆心之间的距离等于两个圆的半径之和。
(3)相交:两个圆有两个交点,且圆心之间的距离小于两个圆的半径之和。
(4)包含内切:一个圆完全包含另一个圆,且两个圆心之间的距离小于等于两个圆的半径之差。
5. 判定正方形和矩形的方法如果一个四边形的四个角都是直角,并且四条边的长度相等,就可以判定为正方形。
若四边形的对边相等且相邻边两两相等,则可以判定为矩形。
6. 圆锥的相关知识(1)圆锥的配准:当给出圆锥的高及底面的半径时,可以通过连接圆锥的顶点、底面圆心以及连接顶点和底面圆周上的一点构成一个直角三角形,从而确定圆锥的顶部的位置。
(2)圆锥的表面积公式:S = πr² + πrl(其中,S表示表面积,r 表示底面半径,l表示斜高)。
(3)圆锥的体积公式:V = 1/3πr²h(其中,V表示体积,r表示底面半径,h表示高)。
7. 圆柱的相关知识(1)圆柱的表面积公式:S = 2πrh + 2πr²(其中,S表示表面积,r表示底面半径,h表示高)。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
中考圆形知识点总结归纳
中考圆形知识点总结归纳圆形是中考数学中的一个重要知识点,它涉及到多个概念和性质,以下是对中考圆形知识点的总结归纳:圆的基本定义圆是一个平面上所有与给定点(圆心)距离相等的点的集合。
这个距离称为半径。
圆的方程圆的标准方程是 \( (x - h)^2 + (y - k)^2 = r^2 \),其中 \( (h, k) \) 是圆心的坐标,\( r \) 是半径。
圆的性质1. 圆周上的任意一点到圆心的距离都等于半径。
2. 圆的直径是圆上两点之间的最长距离,直径的长度是半径的两倍。
3. 圆内任意两点之间的线段,最短的是直线段,即直径。
4. 圆的切线在切点处与半径垂直。
圆的面积和周长- 圆的面积公式是 \( A = \pi r^2 \)。
- 圆的周长(圆周)公式是 \( C = 2\pi r \)。
圆与直线的位置关系1. 直线与圆相离:直线与圆没有公共点。
2. 直线与圆相切:直线与圆有一个公共点,即切点。
3. 直线与圆相交:直线与圆有两个公共点。
圆与圆的位置关系1. 两圆外离:两圆没有公共点。
2. 两圆外切:两圆只有一个公共点。
3. 两圆相交:两圆有两个公共点。
4. 两圆内切:一个圆完全包含在另一个圆内,只有一个公共点。
5. 两圆内含:一个圆完全包含在另一个圆内,没有公共点。
圆的内接多边形1. 内接于圆的多边形,其所有顶点都在圆上。
2. 正多边形是内接于圆的多边形,且所有边长相等,所有内角相等。
圆的外切多边形1. 外切于圆的多边形,其所有边都与圆相切。
2. 正多边形的外接圆是所有顶点都与圆相切的圆。
圆的弧和扇形1. 弧是圆上两点之间的线段。
2. 扇形是圆心角和它所对的弧所围成的区域。
圆的切线和割线1. 切线是与圆相切的直线。
2. 割线是与圆相交的直线,但不经过圆心。
结束语通过以上对中考圆形知识点的总结归纳,我们可以看到圆的几何性质和计算在中考数学中占有重要地位。
掌握这些知识点对于解决相关的几何问题至关重要。
中考数学圆知识点归纳
中考数学圆知识点归纳1.基本概念-圆:由平面上距离固定点的所有点构成的集合。
-圆心:圆的中心点,用O表示。
-半径:圆心到任意一个点的距离,用r表示。
-直径:通过圆心并且两端点在圆上的线段,其长度为2r。
-弦:连接圆上任意两点的线段。
-弧:圆上两点之间的一段弧。
-弧长:圆的周长。
-弦长:弦的长度。
-切线:只与圆相交于一个点的直线。
-弦切角:以一个弦为直角边的角。
-弦割角:以一个切线和弦为直角边的角。
2.圆的性质-圆上任意两点与圆心的距离相等。
-圆上任意一点到圆心的距离等于半径的长度。
-直径是圆的一条特殊的弦,其长度是任意弦长的两倍。
-圆切线与半径垂直。
-圆切线与切点之间的弦是弦切角的平分线。
-圆切线与半径的夹角等于弦割角。
3.弦长定理-弦长定理:在同一个圆或等圆的两条弦上,如果有一条弦分别与这两条弦垂直,则这两条弦的乘积等于弦的和与弦的差的乘积。
即a*b=c*d,其中a、b为弦的长度,c、d为弦的长度。
4.弧长与扇形面积-弧长:扇形所对的弧的长度,记为L。
-弧长公式:弧长L=rθ,其中r为半径,θ为弧所对的圆心角的度数。
-扇形面积:扇形所对的圆心角所包含的面积,记为S。
-扇形面积公式:扇形面积S=(1/2)r²θ,其中r为半径,θ为弧所对的圆心角的度数。
5.圆周角-圆周角:以圆心为顶点的角。
-弧度制:圆周角的度数换算为弧度的形式,1弧度=180°/π。
-弧度公式:弧长L=rθ,其中r为半径,θ为圆周角的弧度数。
6.相交弦与切线关系-相交弦的性质:-相交弦的线段积相等:如果两条相交弦AD与BC在圆上,且E为相交弦的交点,则AE*DE=BE*CE。
-斜弦的性质:如果两条斜弦在圆上且互不相交,且两条斜弦分别与同一条直径AB相交于两个点C和D,则角ACD+∠ABD=180°。
-弦割弦定理:若弦AB与弦CD相交,则AB/CD=(AD/BC)^2-切线的性质:-切线长度:切线长等于圆心到切点的距离。
2024年中考数学复习-圆知识点复习讲义
圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。
2023年中考专题复习:圆形知识点
2023年中考专题复习:圆形知识点1. 圆的基本属性- 定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
- 半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
- 直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
- 弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
- 扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
- 弦:连接圆上任意两点的线段称为弦。
弦:连接圆上任意两点的线段称为弦。
2. 圆的计算公式- 周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
- 面积:圆的面积等于半径的平方乘以π,即A = πr^2。
面积:圆的面积等于半径的平方乘以π,即A = πr^2。
3. 圆的相关定理- 圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
- 圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
- 圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
- 同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
- 相交弧定理:相交的两个弧所对的圆心角互补。
相交弧定理:相交的两个弧所对的圆心角互补。
4. 圆的应用- 圆的投影:当光线垂直照射在立体表面上时,投影形成的图形通常是圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题7 解直角三角函数一、知识点回顾1、锐角∠A 的三角函数(按右图Rt △ABC 填空)∠A 的正弦:sin A = , ∠A 的余弦:cos A = , ∠A 的正切:tan A = , ∠A 的余切:cot A =2、锐角三角函数值,都是 实数(正、负或者0);3、正弦、余弦值的大小范围: <sin A < ; <cos A <4、tan A •cot A = ; tan B •cot B = ;5、sin A = cos (90°- ); cos A = sin ( - )tan A =cot ( ); cot A = 6、填表7、在Rt △ABC中,∠C =90゜,AB =c ,BC =a ,AC =b ,1)、三边关系(勾股定理): 2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin B = ;cos A = ; cos B = ;tan A = ; tan B = ;cot A = ;cot B =8、图中角可以看作是点A 的 角也可看作是点B 的 角;9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。
记作i ,即i = ;(2)坡角——坡面与水平面的夹角。
记作α,有i =lh=tan α (1)(3)坡度与坡角的关系:坡度越大,坡角α就越 ,坡面就越 二、巩固练习(1)、三角函数的定义及性质1、在△ABC 中,,900=∠C 13,5==AB AC ,则cos B 的值为2、在Rt ⊿ABC 中,∠C =90°,BC =10,AC =4,则______tan _____,cos ==A B ; 3、Rt △ABC 中,若,900=∠C 2,4==BC AC ,则tan ______=B 4、在△ABC 中,∠C =90°,1,2==b a ,则=A cos 5、已知Rt △ABC 中,若,900=∠C cos 24,135==BC A ,则._______=AC 6、Rt △ABC 中,,900=∠C 35tan ,3==B BC ,那么.________=AC 7、已知32sin -=m α,且a 为锐角,则m 的取值范围是 ;8、已知:∠α是锐角,︒=36cos sin α,则α的度数是9、当角度在︒0到︒90之间变化时,函数值随着角度的增大反而减小的三角函是 ( )A .正弦和正切B .余弦和余切C .正弦和余切D .余弦和正切 10、当锐角A 的22cos >A 时,∠A 的值为( )A 小于︒45B 小于︒30C 大于︒45D 大于︒6011、在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦址与余弦值的情况( )A 都扩大2倍B 都缩小2倍C 都不变D 不确定12、已知α∠为锐角,若030cos sin =α,αtan = ;若1t an 70tan 0=⋅α,则_______=∠α;13、在△ABC 中,,900=∠C sin 23=A , 则cosB 等于( ) A 、1 B 、23 C 、22D 、21(2)、特殊角的三角函数值1、在Rt △ABC 中,已知∠C =900,∠A=450则A sin = 2、已知:α是锐角,221cos =α,tan α=______;3、已知∠A 是锐角,且______2sin,3tan ==AA 则; 4、在平面直角坐标系内P 点的坐标(︒30cos ,︒45tan ),则P 点关于x 轴对称点P /的坐标为 ( ) A . )1,23(B . )23,1(-C . )1,23(- D . )1,23(-- 5、下列不等式成立的是( )A .︒<︒<︒45cos 60sin 45tanB .︒<︒<︒45tan 60sin 45cotC .︒<︒<︒45tan 30cot 45cosD .︒<︒<︒30cot 60sin 45cos 6、若1)10tan(30=+α,则锐角α的度数为( ) A .200B .300C .400D .5007、计算(1)_______60cot 45tan _______,60cos 30sin 0000=+=+; (2)︒-︒+︒+︒-︒30sin 30cos 30tan 4145sin 60cos 22(3)000045tan 30tan 145tan 30tan ⋅-+ (4))60sin 45(cos 30sin 60cos 2330cos 45sin 000000---+(3)、解直角三角形1、在△ABC 中,,900=∠C 如果4,3==b a ,求A ∠的四个三角函数值. 解:(1)∵ a 2+b 2=c2∴ c =∴sin A = cos A =∴tan A = cot A =2、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1)已知a =43,b =23,则c= ;(2)已知a =10,c =102,则∠B= ; (3)已知c =20,∠A =60°,则a= ; (4)已知b =35,∠A =45°,则a= ;3、若∠A = ︒30,10=c ,则___________,==b a ; 4、在下列图中填写各直角三角形中字母的值.7、设Rt △ABC 中,∠C =90゜,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,根据下列所给条件求∠B 的四个三角函数值.(1)a =3,b =4; (2)a =6,c =10.8、在Rt △ABC 中,∠C =90゜,BC :AC =3:4,求∠A 的四个三角函数值.9、△ABC 中,已知0045,60,22=∠=∠=C B AC ,求AB 的长ABC9题(4)、实例分析1、斜坡的坡度是3:1,则坡角.____________=α2、一个斜坡的坡度为1=ι︰3,那么坡角α的余切值为 ;3、一个物体A 点出发,在坡度为7:1的斜坡上直线向上运动到B ,当30=AB m 时,物体升高 ( ) A730m B 830m C 23m D 不同于以上的答案 4、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( ) A ︒90 B ︒60 C ︒75 D ︒1055、电视塔高为350m ,一个人站在地面,离塔底O 一定的距离A 处望塔顶B ,测得仰角为060,若某人的身高忽略不计时,__________=OA m.6、如图沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时进行.已知∠ABD=1500,BD=520m,∠B=600,那么开挖点E 到D 的距离DE=____m 时,才能使A,C,E 成一直线.7、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东060,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A 18海里/小时B 318海里/小时C 36海里/小时D 336海里/小时8、如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高。
9、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD 宽12m ,求路基顶AB 的宽B ADCEA C D B10、如图,已知两座高度相等的建筑物AB 、CD 的水平距离BC =60米,在建筑物CD 上有一铁塔PD ,在塔顶P 处观察建筑物的底部B 和顶部A ,分别测行俯角0030,45==βα,求建筑物AB 的高。
(计算过程和结果一律不取近似值)11、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
(1) 问A 城是否会受到这次台风的影响?为什么?(2) 若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长?参考答案二、巩固练习(1)三角函数的定义和性质 1、1312 2、29295 、 25 3、2 4、55 5、10 6、5 7、25.1<<m 8、5409、B 10、 A 11、C 12、3 13、B (2)特殊角的三角函数值60ºFBA1、222、13、214、A5、D6、A7、(1)1、333+ (2)12523-或12536- (3)32+ (4) 23(3)解直角三角形 1、5=c 53sin =A 54cos =A 43tan =A 34cot =A 2、(1)152 (2)10 (3)310 (4)35 3、 5 、25 4、10=a 35=b 5、310=c 10=d6、3334 3317=f 7、(1)5=c 54sin =B 53cos =B 34tan =B 43cot =B (2)8=b 54sin =B 53cos =B 34tan =B 43cot =B8、解:设BC=3k ,AC=k︒=∠90Ck AB 5=∴54cos ,53sin ==∴A A 34cot ,43tan ==A A9、解:过A 作AD ⊥BC ,垂足为D 。
︒=∠=∠90ADB ADC22,45=︒=∠AC A 2=∴AD2,60=︒=∠AD B 3=∴AB(4)实例分析1、︒302、33、C4、C5、33350-6、 7、B8、解:设铁塔AB 高x 米 ︒=∠30B 314cot =+==∠∴ABBDAB BC C 在ABD RT ∆中︒=∠45ADB即314=+xx解得:x=)737(+m 答:铁塔AB 高)737(+m 。
9、解:过B 作BF ⊥CD ,垂足为FBF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠ 3:2=iBC AE=3m ∴DE=4.5mAD=BC ,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m︒=∠=∠90AEF BFE ∴BF//CD∴四边形ABFE 为平行四边形 ∴AB=EF=3m 10、 解:︒=∠∴︒=4545BPC α在RT ∆BPC 中mCP mBC 6060=∴=在矩形ABCD 中 AD=BC=60m︒=∠∴︒=∠6030APD β在RT ∆APD 中AD=60m, ︒=∠60APDmAB CD PD )32060(320-==∴=∴答:AB 高)32060(-米。