苏教版六年级数学下册知识点(汇编)

合集下载

苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版六年级下册数学知识要点总结

苏教版六年级下册数学知识要点总结

苏教版六年级下册数学知识要点总结
本文档旨在总结苏教版六年级下册数学课程的主要知识要点,
帮助学生复和掌握相关知识。

1. 整数的运算
- 整数的加法和减法运算:正数与正数相加、负数与负数相加、正数与负数相加的规律
- 整数的乘法和除法运算:正数与正数相乘、负数与负数相乘、正数与负数相乘的规律
- 整数的运算定律:加法和乘法的结合律、交换律和分配律
2. 分数的运算
- 分数的加法和减法运算:通分、化简、按规定格式进行计算
- 分数的乘法和除法运算:乘法的规律、除法的规律、分子分
母的计算
3. 小数的认识与运算
- 小数的表示方法:有限小数和循环小数
- 小数的加法和减法运算:按规定格式进行计算
- 小数的乘法和除法运算:乘法的规律、除法的规律、小数位数的控制
4. 平面图形的认识与计算
- 点、线、面的基本概念与特征
- 三角形、四边形、圆的性质与判断
- 平面镶嵌图形的认识与构造
5. 条形统计图的制作与分析
- 数据收集与整理
- 条形统计图的制作步骤
- 数据的分析与解读
以上是苏教版六年级下册数学课程的主要知识要点总结。

希望这份文档能够对学生的学习和复习有所帮助。

苏教版六年级下册数学知识点

苏教版六年级下册数学知识点

苏教版六年级下册数学知识点一、二位数的计算1. 加法和减法:掌握两位数的加法和减法运算方法,如54+28、76-35等。

2. 乘法和除法:学习两位数与一位数的乘法和除法,如47×3、82÷5等。

二、三位数的计算1. 加法和减法:掌握三位数的加法和减法运算方法,如325+287、756-438等。

2. 乘法和除法:学习三位数与一位数的乘法和除法,如526×4、948÷6等。

三、四位数的计算1. 加法和减法:掌握四位数的加法和减法运算方法,如3245+1789、4796-2534等。

2. 乘法和除法:学习四位数与一位数的乘法和除法,如3764×7、8924÷3等。

四、小数的认识和运算1. 小数的读法和写法:学习正确读写小数,如0.75读作零点七五。

2. 小数的加法和减法:掌握小数的加法和减法运算方法,如0.35+0.82、1.53-0.67等。

3. 小数的乘法和除法:学习小数与整数的乘法和除法,如0.6×5、3.24÷2等。

五、分数的认识和运算1. 分数的概念:理解分数的概念和意义,如1/2表示一个整体被分成两份。

2. 分数的表示和读法:学习用分数表示数的一部分,如2/3读作二分之三。

3. 分数的加法和减法:掌握分数的加法和减法运算方法,如1/4+2/3、3/5-1/3等。

4. 分数的乘法和除法:学习分数的乘法和除法运算方法,如1/2×3/4、2/3÷1/5等。

六、面积的计算1. 长方形的面积:了解长方形面积的概念,学习计算长方形的面积,如长6厘米、宽4厘米的长方形的面积是多少?2. 正方形的面积:认识正方形面积的特点,学习计算正方形的面积,如边长为5米的正方形的面积是多少?3. 平行四边形的面积:了解平行四边形面积的计算方法,通过实际例子计算平行四边形面积。

七、图形的旋转和翻转1. 图形的旋转:认识图形的旋转概念,学习按规律旋转图形的方法。

苏教版六年级数学下册知识点梳理

苏教版六年级数学下册知识点梳理

苏教版六年级数学下册知识点梳理
苏教版六年级数学下册知识点总结
第一单元:百分数的应用(2课时)
大分率减小分率等于相差的分率,实分率减计分率等于实比计多的分率。

利息等于本金乘以利率乘以时间,实际售价等于原价乘以折扣。

第二单元:圆柱和圆锥(3课时)
圆的直径是圆的两个切点之间的距离,半径是圆心到圆上任一点的距离,周长是圆的边界长度,面积是圆内部的区域。

圆柱是一个由一个圆和它的平行剖面所组成的几何体,侧面积等于圆周长乘以高,表面积等于两个底面积加上侧面积,体积等于底面积乘以高。

圆锥是一个由一个圆和一个顶点所组成的几何体,体积等于圆柱体积的1/3.
第三单元:比例(1课时)
两个比相等的式子叫做比例。

基本性质是两个外项的积等于两个内项的积。

比例尺是图上距离与实际距离的比值,应注意面积变化。

第四单元:确定位置(5课时)
知道物体的方向和距离,就能确定物体的位置。

方向标包括上北下南左西右东。

第五单元:正比例和反比例(1课时)
路程与时间的比例是速度,单价与数量的乘积是总价。

第六单元:解决问题的策略(1课时)
学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。

第七单元:统计(5课时)
扇形统计图可以清楚地表示出各部分数量同总数量之间的关系。

众数是一组数据出现次数最多的数,中位数是一组数据中正中间的一个数或中间两个数的平均数,平均数是总数之和除以个数。

小学苏教版六年级下册数学知识点总结

小学苏教版六年级下册数学知识点总结

苏教版六年级(下册)数学知识点总结第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式S=Ch或者S=2πrh或者S=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式S表=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版六年级数学下册全册知识清单知识归纳总复习

苏教版六年级数学下册全册知识清单知识归纳总复习

习”后面是几就读作几。

0是最小的自然数,但0不是最小的一位数,最小的一位数是1。

易错点:误认为75.075读作七十五点七十五。

要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。

小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。

正、负数表示两种具有相反意义的量。

小数部分·的整数部分,余数就是带分数的分数部分的分子,原分母不变。

③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。

④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。

(2)判断一个分数能否化成有限小数的方法。

a.要看这个分数是不是最简分数。

b.如果是最简分数,就要看其分母中含有哪些质因数。

如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。

(3)分数、小数与百分数之间的互化。

四、常见的量1. 常见的计量单位及其进率。

(1)质量单位及其进率。

①常见的质量单位有吨.........、.千克..、.克.。

. ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。

①时间单位有世纪.......、.年.、.月.、.日.、.时.、.分.、.秒.,.季度..、.星.期等。

...②日、时、分、秒等时间单位的关系。

③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。

根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。

.......(3)人民币的单位及其进率。

①人民币的单位有元........、.角.、.分.。

苏教版六年级数学下册复习重点整理

苏教版六年级数学下册复习重点整理

苏教版六年级数学下册复习重点整理1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷2S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)小学奥数公式和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。

苏教版六年级下册数学知识点

苏教版六年级下册数学知识点

苏教版六年级下册数学知识点苏教版六年级下册数学知识点包括:1.小数的认识和比较:学生需要了解小数的定义、小数的读法和写法,以及小数的比较方法。

在比较时,学生需要注意小数位数相同的情况下,从左到右逐位比较大小。

2.小数的四则运算:包括小数的加、减、乘、除运算。

在进行小数的四则运算时,学生需要注意保持位数对齐,运算符的处理以及结果是否符合实际意义。

3.百分数的认识和比较:学生需要理解百分数的含义以及与小数和分数之间的关系。

学生需要掌握将小数和分数转化为百分数的方法,并能够比较大小。

4.百分数的四则运算:包括百分数的加、减、乘、除运算。

学生需要掌握将百分数转化为小数和分数,并能够进行相应的运算。

5.乘法和除法的应用:学生需要运用乘法和除法解决实际问题,例如计算周长、面积、体积、速度等。

6.分数的计算与应用:学生需要掌握分数的加、减、乘、除运算,以及分数与分数、分数与整数之间的运算。

学生还需要运用分数解决实际问题,例如分配问题、比例问题等。

7.算式的变形:学生需要掌握算式的变形方法,包括合并同类项、提取公因式、分配率等。

学生需要能够运用算式的变形解决实际问题。

8.图形的认识和绘制:学生需要认识各种图形的名称、性质和特点,并能够准确地绘制各种图形。

学生需要掌握图形间的关系,例如相似、合同、包含等。

9.直角、平行和垂直线的认识:学生需要认识直角、平行和垂直线的定义以及它们的性质。

学生需要能够判断直角关系、平行关系和垂直关系,并能运用这些关系解决实际问题。

10.坐标系和坐标的认识:学生需要认识坐标系和坐标的定义,以及坐标与图形之间的关系。

学生需要能够在坐标系中准确地标出点的坐标,并能够根据坐标绘制图形。

11.数据的统计和分析:学生需要能够进行数据的整理、表达和展示,例如制作表格、绘制频数分布直方图等。

学生需要能够根据数据进行分析,并能够解答与数据相关的问题。

以上是苏教版六年级下册数学的主要知识点,希望对你有所帮助。

(完整版)苏教版六年级数学下册知识点

(完整版)苏教版六年级数学下册知识点

苏教版六年级数学下册知识点第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S 底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

完整版苏教版六年级数学下册知识点

完整版苏教版六年级数学下册知识点

1 / 10苏教版六年级数学下册知识点第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

2 / 10知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S 侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版六年级下册数学知识点归纳

苏教版六年级下册数学知识点归纳

苏教版六年级下册数学知识点归纳
一、简单数量比较和计算
1. 利用试探的方法,比较数量的大小
2. 了解带单位数量的表达方式,并利用口算进行比较与计算
3. 掌握计数法,按给定格式计算结果
二、整数的运算
1. 学习整数的加减法
2. 掌握逆运算,对计算题进行求解
3. 了解整数的乘法,学习合并乘法计算
三、分数的加减
1. 掌握带分数的加减运算规律
2. 理解分数加减问题
3. 了解带分子带分母乘法、混合运算
四、一元二次方程
1. 学习一元二次方程的解题思路
2. 掌握了解判别式含义
3. 掌握联立方程解题的方法
五、图形的认识
1. 掌握直角坐标系的概念
2. 了解直线斜率含义
3. 理解折线图和柱状图的意义
六、三角形应用
1. 掌握解三角形的方法
2. 了解三角形的性质
3. 学习利用变量的方法解三角形
七、根据比例进行数量变换
1. 掌握比、比例的概念
2. 了解黄金分割比例
3. 理解利用比例来变换数量的方法
八、统计与概率
1. 掌握统计方法,理解更多数据背后的意义
2. 了解概率的定义,学习计算事件概率
3. 理解有理数的意义,学习运用有理数进行计算。

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳苏教版小学六年级数学下册知识点归纳六年级数学下册知识点归纳一、负数: 1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例1、理解比例的意义和基本性质,会解比例。

2、苏教版小学六年级数学下册知识点归纳:理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2、通过抽屉原理的灵活应用感受数学的魅力。

六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。

能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2023最新苏教版六年级数学下册基础知识点归纳

2023最新苏教版六年级数学下册基础知识点归纳

2023最新苏教版六年级数学下册基础知
识点归纳
本文档旨在总结2023最新苏教版六年级数学下册的基础知识点。

以下是重点内容的归纳:
1. 四则运算
- 加法:理解加法的基本概念,能够进行简单的竖式加法计算。

- 减法:理解减法的基本概念,能够进行简单的竖式减法计算。

- 乘法:理解乘法的基本概念,能够进行简单的乘法计算。

- 除法:理解除法的基本概念,能够进行简单的除法计算。

2. 数的认识
- 自然数:了解自然数的概念和表示方法。

- 整数:了解整数的概念和表示方法,能够在数轴上表示整数。

- 分数:了解分数的概念和表示方法,能够进行简单的分数计算。

- 小数:了解小数的概念和表示方法,能够进行小数的加减运算。

3. 单位换算
- 长度单位换算:研究厘米与米的换算,毫米与厘米的换算。

- 容量单位换算:研究升与毫升的换算。

- 重量单位换算:研究千克与克的换算。

4. 几何图形
- 平行线与垂直线:了解平行线与垂直线的概念,能够判断两条线是否平行或垂直。

- 三角形:了解三角形的概念和性质,能够识别不同类型的三角形。

- 圆的认识:了解圆的概念和相关术语,能够绘制简单的圆。

5. 数据统计
- 数据的收集与整理:研究如何收集和整理数据。

- 数据的图表表示:研究如何用表格和图表表示数据。

- 数据的分析与解读:研究如何分析和解读图表中的数据。

以上是2023最新苏教版六年级数学下册的基础知识点归纳,请同学们认真研究和掌握,加强基础知识的研究,提高数学能力。

苏教版数学六年级下册知识点总结

苏教版数学六年级下册知识点总结

一 扇形统计图一、认识扇形统计图1. 用一个圆表示总数量.........,.用圆中每个扇形分别表示各部分数量占总数量的百分比。

.........................这样的统计图叫作扇形统计图。

2. 扇形统计图的特点。

(1)用一个圆表示总数量。

(2)用圆中每个扇形分别表示各部分数量占总数量的百分之几。

(3)扇形统计图可以清楚地看出各部分数量与总数量之间的关系。

3. 根据扇形统计图解决简单的实际问题。

已知总数量,根据扇形统计图求各部分数量是多少,就是求一个数的百分之几是多少,用乘法计算。

4. 扇形统计图的绘制方法。

(1)算出各部分数量占总数量的百分比。

(2)算出表示各部分数量的扇形圆心角的度数。

(3)取适当半径画一个圆,并按照算出的各个扇形圆心角的度数,在圆中画出各个扇形。

(4)在每个扇形中标明所表示的各部分数量的名称和所占的百分比,也可以用图例标明。

二、统计图的应用1. 明确每种统计图的特点。

(1)扇形统计图的特点:从图上无法直接看出各部分数量的多少.................,.但可以清楚地看出各部..........分数量占总数量的百分比。

............(2)折线统计图的特点:不仅能看出各个数量的多少............,.还能够反映数量的增减变化情况..............,.能.看出数量变化的幅度。

..........(3)条形统计图的特点:可以直观地.....看出各个数量的多少.........,.易于比较数量之间的差别。

............2. 根据实际需要选择统计图。

(1)要想清楚地看出各部分数量与总数量之间的关系,可以选择扇形统计图。

(2)要反映数量的增减变化情况,可以选择折线统计图。

(3)要想直观地看出数量的多少,可以选择条形统计图。

二 圆柱和圆锥一、圆柱的认识1. 圆柱的特征。

(1)圆柱从上到下一样粗。

(2)圆柱上、下两个面是完全相同的圆。

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳六年级数学下册知识点归纳一、负数: 1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例1、理解比例的意义和基本性质,会解比例。

2、苏教版小学六年级数学下册知识点归纳:理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2、通过抽屉原理的灵活应用感受数学的魅力。

六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。

能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

苏教版六年级数学下册知识点

苏教版六年级数学下册知识点

苏教版六年级数学下册知识点第一单元扇形统计图1.扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比。

2.选择合适的统计图3.扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)4.统计图:条形统计图、折线统计图、扇形统计图条形统计图折线统计图扇形统计图特点用一个单位长度表示一定的数量用整个圆面积表示总数,用圆内的扇形面积表示各部分占总数的百分数用直条的长短表示数量的多少用折线起伏表示数量的增减变化作用从图中能清楚地看出各数量的多少,便于相互比较从图中能清楚地看出数量增减变化的情况,也能看出数量的多少从图中能清楚地看出各部分与总数的百分比,以及部分与部分之间的关系高顶点第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积、表面积1.圆的相关计算:圆的周长=πd=2πr 圆的面积=πr 22.圆柱侧面积(2)侧面积的推导:把一个圆柱沿高剪开得到的是一个长方形,这个长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积就是圆柱的侧面积,长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。

同样把一个圆柱的侧面沿斜边剪开得到的是一个平行四边形,这个平行四边形的底等于圆柱的底面周长,平行四边形的高等于圆柱的高,平行四边形的面积就是圆柱的侧面积,所以圆柱的侧面积=底面周长×高。

(3)计算侧面积三种方法:(1)S 侧=ch (2)S 侧=πdh (3)S 侧=2πrh3.圆柱的表面积:圆柱的表面积指的是圆柱的侧面与两个底面积的和。

苏教版六下数学知识点汇总

苏教版六下数学知识点汇总

六下数学知识点汇总班级:姓名:一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和 -- -个加数=另一个加数5、被减数-减数=差被减数-差=减数;差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。

S =S =V= 三、【常用单位换算】换算方法:(1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;四、比例尺:1.图上距离:实际距离=比例尺要求会求比例尺:已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版六年级数学下册知识点第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

解:12.56÷3.14÷2=2(厘米)2×3.14×2×(12.56+2)=182.8736平方厘米答:做一个这样的罐头盒需要182.8736平方厘米铁皮。

知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。

相关公式:①已知半径和高,V圆柱=πr2h②已知直径和高,V圆柱=π(d÷2)2h③已知周长和高,V圆柱=π(C÷2π)2h难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。

得到的结论:圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。

知识点五:圆锥体积的计算方法理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。

用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。

相关公式:只需要在圆柱的相关公式前面乘以三分之一。

①已知半径和高,V圆锥=1/3πr2h②已知直径和高,V圆锥=1/3π(d÷2)2h③已知周长和高,V圆锥=1/3π(C÷2π)2h重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。

例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)h1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米1.7×6.28=10.676吨答:这堆沙子共重10.676吨。

知识点七:圆柱和圆锥的横截面理解掌握:★圆柱横截面的分割方法:①按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。

②按平行于底面分割,这样分割的横截面是圆。

圆锥横截面的分割方法:①按圆锥的高分割,这样分割的横截面是等腰三角形。

②按平行于底面分割,这样分割的横截面是圆。

第三单元解决问题的策略学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。

第四单元比例知识点一:图像的放大和缩小理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n;把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。

知识点二:比例的意义理解掌握:1、比例:表示两个比相等的式子。

任何一个比例都是由两个内项和两个外项组成。

2、比和比例的区别:(1)比是表示两个数相除的关系。

比例是表示两个比相等的关系。

(2)比由两项组成(前项、后项)。

比例由四项组成(两个内项、两个外项)。

知识点三:应用比的含义组成比例理解掌握:判断两个比能否组成比例,关键要看它们的比值是否相等。

若比值相等,则能组成比例;若比值不想等,则不能组成比例。

知识点四:比例的基本性质理解掌握:比例的基本性质:在比例里,两个外项的积等于两个内项的积。

若a:b=c:d,那么ad=bc。

若用分数表示比a/b=c/d,那么ad=bc。

------十字交叉法知识点五:解比例理解掌握:解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。

例1: 5:8=x:16 1/9 : 1/4 =x:188x=5×16 4:9 =x:18x=10 9x =4×18x =8知识点六:用比例解应用题解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。

那么A商品原来多少元?解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是:(A商品原来的价格+420元):(B商品原来的价格+420元)=6:5利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x 元列出比例方程(5x+420):(3x+420)=6:5(5x+420)×5 =(3x+420)×6------比例基本性质25x+2100 =18x+2520------乘法分配率25x-18x=2520-2100------等式基本性质x =605×60=300元答:A商品原来300元。

知识点七:比例尺的意义理解掌握:比例尺就是图上距离与实际距离的比。

图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。

相关公式:(1)比例尺=图上距离÷实际距离(2)图上距离=比例尺×实际距离(3)实际距离=图上距离÷比例尺知识点八:比例尺的应用理解掌握:(1)注意比例尺的前后单位是否统一。

一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例尺。

如1:40千米=1:4000000厘米(2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。

第五单元确定位置知识点一、根据方向和距离确定物体的位置理解掌握:(1)用字母表示方向。

S表示“南”,W表示“西”,E表示“东”,N表示“北”。

(2)理解“X偏X若干度”,如南偏西15°,表示由南面向西面旋转15°的方向;西偏南15°,表示有西面向南面旋转15°的方向。

这两个方向一样吗?请同学们仔细考虑一下?如果不一样,那么应该这么说呢?南偏西15°= 偏°;西偏南15°= 偏°。

(3)如何来用方向和距离确定位置呢?答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,三量出观察地点和实际地点的距离,四标注要清楚。

知识点二、根据平面图用方向和距离描述简单的行走路线解题方法:描述行走路线的方法:按行走路线,确定观测点及行走方向和路程,用“先……然后……再”等词语,按顺序叙述。

第六单元正比例和反比例知识点一、正比例的意义及应用理解掌握:(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。

(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。

(3)判断两种量是否成正比例的应用方法:1、判断两个是否相关联;2、判断这两个量的比值是否一定,比值一定就成正比例关系;反之不成正比例关系。

(简说:用除法,商一定,成正比)知识点二、正比例的图像理解掌握:正比例图像是一条直线。

从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的另一个量的值。

知识点三:反比例的意义及应用理解掌握:(1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么这两个量叫做成反比例的量,它们的关系叫做成反比例关系。

(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),反比例关系式可用x×y=k。

(3)判断两种量是否成反比例的应用方法:1、判断两个是否相关联;2、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。

(简说:用乘法,积一定,成反比)知识点四:用正反比例解应用题解题方法:(1)判断题目中相关联的量成什么关系,列出等量关系式;(2)(3)设未知数,列方程;(4)(5)解方程并检验写答。

例1:一部机器上有两个互相咬合的齿轮,主动轮有80个齿,每分钟转90转。

相关文档
最新文档