圆的切线证明及有关计算
圆的切线证明方法归纳
圆的切线证明方法归纳切线是指与圆相切且与圆的半径垂直的直线。
在几何学中,圆的切线是一个重要的概念。
证明圆的切线有许多不同的方法,下面将介绍一些常见的证明方法。
1.垂直切线法:这是最常见的证明方法之一。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA,并且将OA延长到交切线于点T。
(3)根据勾股定理可得:OA^2 =OT^2 + AT^2。
(4)由于OT和AT都是切线的一部分,所以OT和AT都垂直于OA。
(5)根据垂直定理可知OT和AT平方和等于OA的平方,即OT^2 + AT^2 = OA^2。
(6)根据步骤4和5可得:AT^2 = OA^2 - OT^2。
(7)OT是半径,所以OT^2= r^2,代入上式得:AT^2 = OA^2 -r^2。
(8)AT是切线的一部分,所以AT > 0。
因此,OA^2 - r^2 > 0。
(9)根据正数平方根的性质,OA^2 - r^2的平方根存在。
(10)所以,根据步骤9,AT存在,即OT与切线上的一点T并非同一点。
(11)由于OT与圆的半径相交于点O,所以OT是与半径垂直的直线,即切线。
2.切线垂直与半径的证明:这种证明方法基于一个重要的定理:切线垂直于半径。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA和OT。
(3)由于AO是圆的半径,所以AO与圆心O的向量相等,即AO = OT。
(4)由于切线与圆相切,切点A是切线上的一点,所以OA与切线垂直。
(5)根据向量几何的性质可得,向量OA与向量OT垂直。
(6)根据定义,切线上的每一个点与圆心都构成一个向量,这个向量与向量OA垂直。
(7)所以,根据步骤6,切线与所有圆心上的向量都垂直,即切线垂直于半径。
3.外切圆的切线证明:这种证明方法适用于外切圆。
具体步骤如下:(1)假设有一个三角形ABC,其中AB和BC是两条直线段,角ABC是直角。
证明圆的切线的七种常用方法
证明圆的切线的七种常用方法类型1、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,⊙O的直径AB=12,点P是AB延长线上一点,且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD =5,求⊙O 的直径.方法3、等角代换法证垂直3.如图,在Rt△ABC中,∠C=90°,D为BC 的中点,以AC 为直径的⊙O交AB于点E . 求证:DE是⊙O 的切线.方法4、平行线性质法证垂直4.如图,已知四边形OABC的三个顶点A ,B ,C在以O为圆心的半圆上,过点C 作CD ⊥AB,分别交AB,AO 的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°,点B是︵AC的中点.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若⊙O的半径是6,求DC的长.AB POCACBPD OAEBDOCA O F ECDB方法5、全等三角形法证垂直5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF .求证:BF 是⊙O 的切线.类型2、无公共点:作垂直,证半径方法6、角平分线性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线;(2)求线段AC 的长.方法7、全等三角形法证半径7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切.A OBCD F A B C D EA OB C D。
圆的切线性质与判定
例2:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F, (1)求证:DF是⊙O的切线;
证明:连结OD, ∵OB=OD,∴∠ODB=∠B 又∵AB=AC,∴∠C=∠B ∴∠ODB=∠C ∴OD∥AC 又∵DF⊥AC ∴∠DFC=90° ∴∠ODF=∠DFC=90° ∴DF⊥OD ∴DF为⊙O的切线
注意:确定唯一公共点,可证明直线和圆相切
例1:直线l和⊙O的公共点的个数为m,且m满足方程 m2+2m- 3=0, 试判断直线l和⊙ O的位置关系,并 说明理由.
例3.如图,直线y=- x+4与y轴交于点A,与x轴交于 点B,以点C( ,0)为圆心,OC的长为半径作⊙C, 证明:AB是⊙C的切线。 M 分析:由于不知AB和⊙C是否有公共点,故考虑过C作CM⊥AB于M,再证CM为⊙C的半径即可
小结一
确定唯一公共点,证切线
无交点,作垂直,证半径
有交点,连半径,证垂直
证明切线的一般方法简单表述为:
小试牛刀
例3:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F,
(2)连结OP ∵AC与⊙O相切于点P,∴OP⊥AC 由(1)可知OD∥AC,且DF⊥AC, 故四边形ODFP为正方形 ∴PF=OD=OB=3 设AC=x,则在Rt△APO中有 AP2+OP2=OA2 即(x-4)2+32=(x-3)2 解得x=8 ∴AC=8
是圆的切线
是圆的切线
是圆的切线
3、圆的切线性质定理:圆的切线垂直于经过切点的半径。 辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。
圆的切线的判定定理的证明-高中数学知识点讲解
圆的切线的判定定理的证明
1.圆的切线的判定定理的证明
【知识点的知识】
1、直线和圆的位置关系:
相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.
相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点.相离:直线和圆没有公共点时,叫做直线和圆相离.
2、切线的性质定理:圆的切线垂直于过切点的直径(或半径).
3、由直线与圆的位置关系和切线的性质定理推理总结出切线的判定定理:
切线的判定定理:经过半径(或直径)的外端并且垂直于这条半径(直径)的直线是圆的切线.
注意:“经过半径(或直径)的外端”和“垂直于这条半径(或直径)”这两个条件缺一不可.
4、切线的判定方法:
①直线到圆心的距离等于该圆的半径(直线与圆的位置关系);
②线与圆有唯一公共点(切线定义);
③切线的判定定理.
1/ 1。
证明圆的切线经典例题
证明圆的切线方法及例题证明圆的切线常用的方法有:一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.求证:EF 与⊙O 相切.证明:连结OE ,AD.∵AB 是⊙O 的直径,∴AD ⊥BC.又∵AB=BC ,∴∠3=∠4.∴BD=DE,∠1=∠2. 又∵OB=OE ,OF=OF ,∴△BOF ≌△EOF (SAS ).∴∠OBF=∠OEF.∵BF 与⊙O 相切,∴OB ⊥BF.∴∠OEF=900.∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的⌒ ⌒例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切.证明一:作直径AE ,连结EC.∵AD 是∠BAC 的平分线,∴∠DAB=∠DAC.∵PA=PD ,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB ,∴∠1=∠B.又∵∠B=∠E ,∴∠1=∠E∵AE 是⊙O 的直径,∴AC ⊥EC ,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE.∵AD 是∠BAC 的平分线,∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900.∵OA=OE ,∴∠E=∠1.∵PA=PD ,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA ⊥PA.∴PA 与⊙O 相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.⌒ ⌒例3 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M求证:DM 与⊙O 相切.证明一:连结OD.∵AB=AC ,∴∠B=∠C.∵OB=OD , ∴∠1=∠B.∴∠1=∠C.∴OD ∥AC.∵DM ⊥AC ,∴DM ⊥OD. ∴DM 与⊙O 相切证明二:连结OD ,AD.∵AB 是⊙O 的直径,∴AD ⊥BC. 又∵AB=AC,∴∠1=∠2.∵DM ⊥AC ,∴∠2+∠4=900∵OA=OD ,∴∠1=∠3.∴∠3+∠4=900.即OD ⊥DM. ∴DM 是⊙O 的切线 说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.D例4 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线证明:连结OC 、BC.∵OA=OC ,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB , ∴△OBC 是等边三角形.∴OB=BC.∵OB=BD ,∴OB=BC=BD.∴OC ⊥CD.∴DC 是⊙O 的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好. 例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP.求证:PC 是⊙O 的切线.证明:连结OC∵OA 2=OD ·OP ,OA=OC ,∴OC 2=OD ·OP ,OC OPOD OC.又∵∠1=∠1,∴△OCP ∽△ODC.∴∠OCP=∠ODC.∵CD ⊥AB ,∴∠OCP=900.∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的D例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.证明一:连结OA,OB,作OE⊥CD,E为垂足.。
切线长定理结论
切线长定理结论切线长定理,也称为外接角定理,是解决与圆相关问题的一个重要定理。
它描述了一个圆外部一点到圆的切线的两个切点连线的长的平方等于从此点到这两个切点的两个切线的切线段的乘积。
切线长定理对于解决与圆相关的几何问题非常有用,例如计算切线与半径的关系等。
切线长定理的结论可以形式化地表述如下:给定一个圆C,半径为r,圆心为O,外部一点P到圆C的切点分别为A和B,切线APB的长的平方等于PA和PB的乘积,即PA^2 = PB^2。
具体来说,设点P到切线APB的切点A和B的距离分别为x和y,则有:(x+y)^2 = x^2 * y^2这就是切线长定理的核心结论。
为了证明切线长定理,我们可以利用几何转化和同阶几何关系。
设圆C的半径为r,切线APB上的点Q到圆心O的距离为d,可以利用OQ=√(d^2 + r^2),以及齐次方程的性质,则有:d^2 + r^2 = PA * PB同样地,设点P到切点A和B的距离分别为x和y,则可以用x+y=d, xy=r^2,将上述方程代入之前的等式,得到:(x+y)^2 = x^2 * y^2此即切线长定理的证明过程。
在解决几何问题时,切线长定理能够帮助我们快速求解一些未知的长度关系,例如确定一个点到圆的切线的长度等。
它是解决与圆相关问题的一个重要工具,对于提高几何问题的解题效率和准确性具有重要意义。
总结来说,切线长定理是解决与圆相关问题的一个重要定理,描述了一个点到圆的切线的两个切点连线的长的平方等于从此点到这两个切点的两个切线的切线段的乘积。
它在解决几何问题时起着重要作用,能够帮助我们快速求解未知的长度关系,提高几何问题的解题效率和准确性。
因此,熟练掌握切线长定理对于学生学习几何学和解决实际问题具有重要意义。
中考数学与圆的切线相关的证明与计算
中考数学与圆的切线相关的证明与计算圆的切线:经过半径的外端并且垂直于这条半径的直线是圆的切线 .一、圆的切线的判定及相关计算1.如图,以△ABC 的边AB 为直径作⊙O,与BC 交于点D,点E 是弧BD 的中点,连接AE 交BC 于点F,∠ACB=2∠BAE .求证:AC 是⊙O 的切线.例题1图【分析】连接AD,利用等弧所对圆周角相等及∠ACB=2∠BAE 可得到∠BAD=∠BCA,再结合直径所对圆周角为直角即可得证.证明:如解图,连接AD.例题1解图∵点E 是弧BD 的中点,∴弧BE =弧DE,∴∠1=∠2 .∵∠BAD=2∠1, ∠ACB=2∠1,∴∠ACB=∠BAD.∵AB为⊙O 直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C=90°.∵∠C=∠BAD,∴∠DAC+∠BAD=90°.∴∠BAC=90°,即AB⊥AC. 又∵AB 是⊙O 的直径,∴AC 是⊙O 的切线.证明切线的常用方法:1.直线与圆有交点,“连半径,证垂直”.(1) 图中有90°角时,证垂直的方法如下:①利用等角代换:通过互余的两个角之间的等量代换得证;②利用平行线性质证明垂直:如果有与要证的切线垂直的直线,则证明半径与这条直线平行即可;③利用三角形全等或相似:通过证明切线和其他两边围成的三角形与含90°的三角形全等或相似得证.(2)图中无90°角时:利用等腰三角形的性质,通过证明半径为所在等腰三角形底边的中线或角平分线,再根据“三线合一”的性质得证.2.直线与圆无交点,“作垂线,证相等”.2.如图,在Rt△ABC 中,∠C=90°,⊙O 是△ABC 的外接圆,点D 在⊙O 上,且弧AD=弧CD , 过点D 作CB 的垂线,与CB 的延长线相交于点E,并与AB 的延长线相交于点F .(1) 求证:DF 是⊙O 的切线;(2) 若⊙O 的半径R=5,AC=8,求DF 的长.例题2图【解析】(1) 证明:如解图,连接DO 并延长,与AC 相交于点P.例题2解图∵弧AD = 弧CD,∴DP⊥AC.∴∠DPC=90°.∵DE⊥BC,∴∠CED=90°.∵∠C=90°.∴∠ODF=90°,而点D 在⊙O 上,∴DF 是⊙O 的切线;(2) 解:例题2解图∵∠C=90°,R=5,∴AB=2R=10.在Rt△ABC 中,根据勾股定理可得,BC=6 .∵∠DPC+∠C=180°,∴PD∥CE.∴∠CBA=∠DOF.∵∠C=∠ODF,∴△ABC ∽△FOD.∴CA / DF = BC / OD , 即8 / DF = 6 / 5 ,∴DF = 20 / 3 .类型二、切线性质的相关证明与计算3.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE,与AC 的延长线交于点D,作AE⊥AC 交DE 于点E .(1) 求证:∠BAD=∠E;(2) 若⊙O 的半径为5,AC=8,求BE 的长.例题3图【解析】(1) 证明:∵⊙O 与DE 相切于点B,AB 为⊙O 的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°.∴∠BAD=∠E;(2) 解:如解图,连接BC.例题3解图∵AB 为⊙O 的直径,∴∠ACB=90°,∵AC=8,AB=2 ×5=10 .∴在Rt△ACB 中,根据勾股定理可得BC = 6 .又∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC ∽△EAB .∴AC / EB = BC / AB , 即8 / EB = 6 / 10 ,∴BE=40 / 3 .4.如图,⊙O 的半径OA=6,过点A 作⊙O 的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B 作BC∥OA,并与⊙O 交于点C,连接AC、CD.(1) 求证:DC∥AP;(2) 求AC 的长.例题4图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠OAP=90°.∵BD 是⊙O 的直径,∴∠BCD=90°.∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO.∴DC∥AP;(2) 解:∵AO∥BC,OD=OB,例题4解图∴如解图,延长AO 交DC 于点E,则AE⊥DC,OE=1/2 BC,CE=1/2 CD.在Rt△AOP 中,根据勾股定理可得:OP=10.由(1) 知,△AOP∽△CBD,∴BD/OP = BC/OA = CD/AP , 即12/10 = BC/6 = DC/8 ,∴BC = 36/5 , DC = 48/5 .∴OE = 18/5 , CE = 24/5 , AE = OA + DE = 6 + 18/5 = 48/5 ,在Rt△AEC 中,根据勾股定理可得:AC = 24√5 / 5 .5.如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线.作BM=AB,并与AP 交于点M,延长MB 交AC 于点E,交⊙O 于点D,连接AD.(1) 求证:AB=BE;(2) 若⊙O 的半径R=5,AB=6,求AD 的长.例题5图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEM+∠AME=90°. 又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2) 解:如解图,连接BC.例题5解图∵AC 是⊙O 的直径,∴∠ABC=∠EAM=90°,在Rt△ABC 中,AC=10,AB=6,根据勾股定理可得:BC = 8 . 由(1) 知,∠BAE=∠AEB,∴△ABC∽△EAM,∴∠C=∠AME,AC/EM = BC/AM , 即10/2 = 8/AM ,∴AM = 48/5 .又∵∠D=∠C,∴∠D=∠AMD.∴AD=AM=48/5 .。
证明圆的切线的七种常用方法-圆的切线证明7种方法
证明圆的切线的七种常用方法证明一条直线是圆的切线的方法及辅助线的作法1、连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”2、作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型一、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB =4,AB=12,求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠P的度数;(2)求证:P A是⊙O的切线;(3)若PD=5,求⊙O的直径.方法3、等角代换法证垂直3、如图,已知Rt △ABC 中,∠C =90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E 。
求证:DE 是⊙O 的切线;方法4、平行线性质法证垂直4、如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .且︒=∠30E ,点B 是的中点(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)求证CF=OC(2)若半圆O 的半径为6,求DC 的长.方法5 全等三角形法证垂直5、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF ,求证:BF 是⊙O 的切线。
A B O D CF类型二、无公共点:做垂直,证半径方法6 角平分线的性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =2.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.方法7 全等三角形法证半径7.已知四边形ABCD 中,∠BAD =∠ABC =90°,CD BC AD =+,以AB 为直径的⊙O 。
圆的切线长定理
圆的切线长定理圆的切线长定理是几何学中的重要定理之一,它描述了一个切线与圆的相交关系以及切线的长度和与圆的位置有关。
这个定理被广泛应用于各个领域,包括物理学、工程学和计算机图形学等。
本文将详细介绍圆的切线长定理及其应用。
一、圆的切线长定理的表述圆的切线长定理可以用以下方式表述:如果在圆上有一点P,并且通过这点作一条直线与圆相交于A、B两点,那么线段PA和线段PB 的乘积等于切线与圆心连线的长度的平方。
即PA * PB = PT^2,其中T是切点。
二、圆的切线长定理的证明要证明圆的切线长定理,可以使用几何推理和三角关系。
设圆的半径为r,圆心为O,切点为T,切线与圆心连线为OT。
连接OA、OB,得到△OAT和△OBT两个直角三角形。
由正弦定理可得:sin∠OAT = r / OTsin∠OBT = r / OT又因为∠OAT和∠OBT是互余角(补角),即∠OAT + ∠OBT = 90°,所以sin∠OAT = cos∠OBT。
将上述两个等式代入PA * PB = PT^2,得到:r * r = PA * PB因此,圆的切线长定理得证。
三、圆的切线长定理的应用圆的切线长定理可以应用于很多实际问题中。
以下是一些具体应用:1. 圆的切线长定理可以用于计算切线的长度。
如果已知圆的半径和切线与圆的位置,可以通过切线长定理计算切线的长度。
2. 圆的切线长定理可以用于求解与圆相切的直线方程。
通过已知切点和切线长度,可以确定切线的位置,从而求解与圆相切的直线方程。
3. 圆的切线长定理可以应用于计算切线与圆心连线的长度。
通过已知切线长度和切点,可以计算切线与圆心连线的长度。
4. 圆的切线长定理还可以用于解决几何问题。
例如,判断两个圆是否相切,可以通过切线长定理计算切线的长度,从而判断圆是否相切。
圆的切线长定理是几何学中的重要定理,它描述了切线与圆的相交关系以及切线的长度和与圆的位置的关系。
通过应用该定理,我们可以解决各种与圆相关的问题,从而推动几何学的发展和应用。
圆的切线方程公式证明
圆的切线方程公式证明首先,我们知道圆是由一组等距离于圆心的点组成的。
圆中心到圆上任意一点的距离被称为半径,记为r。
除此之外,根据圆的定义,任意一条直线与圆相交的情况有三种:相离、相切和相交。
我们目前关注的是与圆相切的情况。
设圆的方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心坐标。
我们要证明的是,与该圆相切的直线的方程为:lx + my + n = 0。
为了证明这个结论,我们可以采用几何的方法和代数的方法相结合。
1.几何证明:我们先设想一条直线与圆相切于点P(x₀,y₀)。
我们可以从几何性质出发,来推导直线的方程。
首先,我们可以得知圆心O到切点P的距离与切点P的切线垂直相交。
因此,切点P的切线与圆心O到切点P的连线垂直相交。
根据直线的垂直线性质,我们可以得到该切线的方向向量为v₁=(a-x₀,b-y₀)。
而对于直线的方程,我们可以设定一个系数k,将切线的方向向量乘以k,得到:v₂=k(a-x₀,b-y₀)。
根据直线的一般式方程,直线的方程为:lx + my + n = 0。
因此,我们可以得到线段OP的方向向量为v₃=(x-x₀,y-y₀)。
根据向量的内积性质,我们可以得到v₂·v₃=0。
即k(a-x₀,b-y₀)·(x-x₀,y-y₀)=0。
展开上式并整理,我们得到k(ax + by - ax₀ - by₀ - r²) = 0。
由于k是任意的系数,我们可以将k设定为1,从而得到:ax + by- ax₀ - by₀ - r² = 0。
根据圆的方程,我们可以得到ax₀ + by₀ = r²。
将其代入上式中,得到:ax + by - ax₀ - by₀ - r² = 0。
因此,我们可以得出与圆相切的直线方程为:lx + my + n = 0。
2.代数证明:上述几何证明已经给出了圆的切线方程的数学表达式。
初中数学--证明圆的切线方法及例题
初中数学--证明圆的切线方法及例题
证明圆的切线常用的方法有:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切.
例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.
求证:PA与⊙O相切.
例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M
求证:DM与⊙O相切.
例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.
求证:DC是⊙O的切线
例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.
求证:PC是⊙O的切线.
例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.
求证:CE与△CFG的外接圆相切.
分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.
二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”
例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.
求证:AC与⊙D相切.
例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.
求证:CD是⊙O的切线.。
圆的切线证明方法
圆的切线证明方法
圆的切线证明方法,以下是一种基本的证明方法:
设有一个圆,以O表示圆心,r 表示圆的半径,P 表示圆上的任意一点。
1. 通过圆心O 和点P 作直线OP,连接O 和P。
2. 在OP 上取一点Q,使得OP = OQ,即OQ = r。
3. 连接Q 和P。
4. 证明OP ⊥QP:
(a) 观察OPQ,由构造可知OP = OQ,∠OQP = ∠OPQ = 90,因此OP ⊥QP。
5. 检验点P 是否在圆上:
(a) 证明OP = r:
OP = OP (构造上有一个等边三角形OPQ)
OP = OQ (构造上OP = OQ)
OP = r(圆的定义)
(b) 证明点P 在圆上:
因为OP = r,所以点P 与圆心O 之间的距离等于圆的半径r,因此点P 在圆上。
6. 结论:直线OP 是圆的半径,通过点P 且垂直于切线QP。
这就是一种证明圆的切线的方法。
通过构造等边三角形和性质的推导,我们可以证明平面上任意一点到圆的切线垂直于半径,且点P 在圆上。
这种方法简单直观,容易理解。
当然,这只是其中一种证明方法,圆的切线还可以通过其它方法进行证明。
但这种证明方法是最基本和常用的一种,可以帮助我们理解圆与切线的关系。
证明圆的切线方法
证明圆的切线方法圆的切线是指与圆相切且经过切点的直线。
证明圆的切线有多种方法,下面将详细介绍三种常用的方法。
方法一:使用勾股定理证明切线长度与切点到圆心距离的关系。
设圆的圆心为O,切点为A,切线与圆的交点为B。
我们需要证明OA⊥AB。
1.根据勾股定理,可知直角三角形OAB成立。
因为OA为半径,AB为切线,所以OA⊥AB取证。
2.为了得到与切线相垂直的线段,我们取切点A为起点,用圆心O为终点,连接AO。
3.连接OB。
4.观察△OAB和△OBA,它们有共边OA,且OO相等且共线,所以两个三角形是全等三角形。
5.根据全等三角形的性质可知,∠OAB=∠OBA,又∠OAB为直角,所以∠OBA也是直角。
6.根据直角三角形的定义可知,线段OB⊥AB。
因此,我们证明了圆的切线与半径的垂直。
方法二:使用割线定理证明切线的长度。
设圆的圆心为O,半径为r,切点为A,切线与圆的交点为B,圆上的一点为C。
1.连接OA、OB、OC。
2.观察△OAB和△OAC,它们有共边OA,且∠OAB为直角,所以两个三角形是相似三角形。
3.根据相似三角形的性质可知,AB/OB=OA/OC。
4.由于直角三角形中,OA=r,所以AB/OB=r/OC。
5.由于OA⊥AB,所以∠OAB=90°,所以∠OCB也是直角。
6.根据直角三角形的定义可知,线段OC⊥CB。
由于OC⊥AB,且OC⊥CB,所以线段AB⊥CB。
因此,我们证明了圆的切线与半径的垂直。
方法三:使用割线与切线的交角性质证明切线的存在性。
设圆上的一点为P,切点为A,切线与圆的交点为B。
1.连接OA、OP。
2.观察△OAP,根据三角形内角和定理可知∠OAP+∠OPA+∠POA=180°。
3.∠POA为平行于弧PA的圆心角,根据圆心角的定义可知∠POA=1/2×弧PA。
4.切线与弦的夹角等于相应弧所对的圆心角的一半,所以∠APB=1/2×弧PA。
5.因为直线和平行线有关的几何性质之一是,被两条平行线截取的弦上的两个圆心角相等。
过圆外一点做圆的切线 过程证明
过圆外一点做圆的切线过程证明过圆外一点做圆的切线的过程证明可以通过几何方法和解析几何方法进行。
我将从这两个角度分别进行解释。
首先,我们从几何方法来证明。
假设有一个圆,以及圆外一点P。
我们要证明通过点P存在唯一一条切线。
我们可以通过以下步骤进行证明:1. 连接圆心O和点P,得到直线OP。
2. 以点P为圆心,作一个以OP为直径的圆,交原圆于两点A和B。
3. 证明PA和PB都是切线。
证明PA是切线:由于PA和PB是以点P为圆心的圆的两条切线,根据切线定理,PA和PB与圆的切点处的切线垂直于半径。
因此,PA是圆的切线。
证明PB是切线:同理可得,PB也是圆的切线。
因此,通过点P存在唯一一条切线,即PA和PB重合,构成唯一的切线。
接下来,我们从解析几何的角度来证明。
假设圆的方程为(x-a)² + (y-b)² = r²,点P的坐标为(x₀, y₀)。
我们要证明以点P为圆外一点的切线方程。
1. 首先,我们可以列出点P到圆的距离公式:d = √((x₀ a)² + (y₀ b)²)。
2. 接着,我们列出圆的方程:(x-a)² + (y-b)² = r²。
3. 然后,我们将点P到圆的距离代入圆的方程,得到:(x₀ a)(x a) + (y₀ b)(y b) = r²。
4. 最后,我们得到以点P为圆外一点的切线方程:(x₀ a)(x a) + (y₀ b)(y b) r² = 0。
这样,我们通过解析几何的方法也得到了以点P为圆外一点的切线方程。
综上所述,我们通过几何方法和解析几何方法分别证明了过圆外一点做圆的切线的存在性和切线方程。
希望这样的回答能够全面地解答你的问题。
切线证明的常用方法
优翼微课
初中数学知识点精讲课程
切线证明的常用方法
1、圆的切线的判定方法有三种: ①.定义法:直线l 与圆只有唯一的公共点 ②.距离法:圆心O与直线l 的距离d=r ③.切线的判定定理:经过半径的外端并且垂直于这条半径的直 线是圆的切线。 2、切线的证明方法: ①.圆与直线的公共点没有标明字母,则过圆心作直线的垂线段 为辅助线,再证垂线段的长等于半径的长。简记为:作垂直,证 半径。 ②.圆与直线的公共点标明字母,则连这个点和圆心得到辅助半 径,再证所作半径与这条直线垂直。简记为:连半径,证垂直。
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.
变式练习
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙切;
证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
课堂小结
有切点,连半径, 证垂直
切线证明的常用 方法
证明圆的切线方法
证明圆的切线方法圆是一个平面图形,由一组固定点与它们到另一个点(圆心)的距离相等所形成的一条曲线。
在几何学中,圆的切线是与圆上某一点相切的直线。
证明圆的切线在我们日常生活和技术应用中经常用于解决问题,比如在机械工程、物理学、数学等领域。
圆的切线是与圆上某一点相切的直线。
为了证明圆的切线,我们需要了解以下一些基本概念:切点:切线与圆相切的点称为切点。
半径:从圆心到圆上任意一点的线段称为半径。
切线定理:如果一直线与圆相交,那么它的切点处的切线垂直于该直线。
下面我们来证明圆的切线定理。
设圆的圆心为O,切点为P,切线与圆相交于点Q,连接PO、QO两线段,如图所示:在三角形OPQ中,OP为半径,所以∠OQP=90°。
同时,因为OPP'Q是菱形,所以∠PP'Q=∠P'OQ。
又因为切线与半径垂直,所以∠P'OQ=90°,因此∠PP'Q=90°。
因此,P'Q与切线相垂直,即切线在切点处垂直于半径。
下面我们来证明切线只有一个。
为了证明,我们需要使用反证法,假设切线有两个,分别为l1和l2。
由于l1和l2均与圆上的同一点P相切,因此l1和l2一定共线。
因此,从圆心O到切点P的半径垂直于l1和l2,且这两个半径共线,这是不可能的,因此假设不成立,切线只有一个。
在证明过程中,我们需要使用一些基础的几何工具,比如直线垂直、菱形特性等,同时需要根据形状和条件进行适当的化简和简化,这也有助于我们更好地理解和掌握证明过程。
除了圆的切线定理,我们还可以使用其他方法来证明圆的性质,比如介弧定理、切线角定理等,这些方法可以帮助我们深入理解圆的性质,并在问题解决中灵活应用。
圆的切线定理
圆的切线定理定理表述设有一个圆和一条直线,当这条直线与圆相切时,直线与圆的切点之间的线段与半径垂直。
证明过程证明圆的切线定理的方法主要有两种:几何法和代数法。
几何法几何法是通过几何构造来证明定理。
我们可以通过以下步骤进行证明:1. 假设有一个圆和一条直线,直线与圆相切于点P。
2. 以圆心为起点,作一条半径OP。
3. 连接直线上的点P和圆心O,得到线段OP。
4. 利用三角形的性质,我们可以得出线段OP与直线的斜率相等。
5. 因为直线与圆相切,所以线段OP与半径OP垂直。
6. 因此,根据直线斜率的性质,直线与半径垂直。
通过以上步骤,我们证明了圆的切线与半径垂直。
代数法代数法是通过代数计算来证明定理。
我们可以使用坐标系的方法进行证明:1. 假设圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
2. 假设直线的方程为y = mx + c,其中m为直线的斜率,c为截距。
3. 将直线方程代入圆的方程,得到(x-a)^2 + (mx + c - b)^2 - r^2 = 0。
4. 根据圆的定义,当直线与圆相切时,该方程只有一个解。
5. 解方程得到一个二次方程,利用判别式判断方程有一个解的特性。
6. 通过计算判别式,可以得到切线方程有唯一解的条件。
7. 根据等式等式的性质,解方程得到的根与圆的切点相对应。
8. 证明了切线方程与圆的切点正交。
通过以上代数计算,我们证明了圆的切线与半径垂直。
应用和实例圆的切线定理在几何学和应用数学中有着广泛的应用。
它在解析几何的证明和问题求解中起着重要的作用。
例如,通过圆的切线定理,我们可以解决求直线与圆的切点坐标和切线方程的问题。
这对于工程学和物理学中的曲线研究非常有用。
另外,圆的切线定理在计算机图形学和计算机模拟中也被广泛应用。
通过计算机算法,我们可以快速计算出圆与直线的切点坐标,从而实现更精确的模拟效果。
总之,圆的切线定理是解析几何中重要的定理之一,它在几何学和应用数学中有着广泛的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆切线的证明及有关计算(一)
一、课标要求
了解切线的概念:探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线。
会过圆上一点画圆的切线。
二、教学目标
1.归纳直线与圆相切的性质和判定方法以及切线长定理,并能运用这些知识进行计算和证明;2.在计算与证明中培养学生的分析问题、解决问题以及综合运用知识的能力。
三、教学重点
运用切线的性质和判定方法进行计算与证明。
四、教学难点
灵活运用所学知识解决有关切线问题。
五、【基础知识回顾】
(一).切线的定义:
(二).切线性质:
圆的切线______于过切点的半径.
提醒:根据这一定理,在圆中遇到切线时,常连接圆心和切点,即可得垂直关系
(三).切线判定:
(1) 和圆有唯一公共点的直线是圆的切线.(定义)
(2) 经过半径的外端且______这条半径的直线是圆的切线.(判定定理)
(3) 如果圆心到一条直线的距离等于______,那么这条直线是圆的切线.
提醒:1、在切线的判定中,当直线和圆的公共点标出时,用判定定理证明(连半径,证垂直).
2、当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切(作垂直,证半径). (四).切线长
(1)切线长定义:
经过圆外一点作圆的切线,这点和切点之间的,叫做这点到圆的切线长.
(2)切线长定理:
从圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线两条切线的夹角
六.【典型例题解析】
考点一:与切线性质有关的计算
例1、(九上P122 1(4))如图,P A、PB切⊙O于A、B两点,且
∠P=70°,则∠C=_______.
分析:连接OA、OB,则OA⊥PA,OB⊥PB, 易得四边形
APBO的内角∠AOB的度数,从而可得∠C。
(变式)如图,P A、PB切⊙O于A、B两点,点C在⊙O上,
且∠ACB=50°,则∠P=_______.
例2、如图,在等腰直角三角形ABC中,AB=AC=8,O为BC
的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分
别为D,E,则⊙O的半径为()
A.8B.6 C.5 D.4
分析:连接OD、OE,则OD⊥BA,OE⊥AC,根据切线长定理
得AD=AE,易得正方形ADOE;若设OD=x,根据勾股定理可得OD2+BD2=BO2从而得到方程,通过解方程既得⊙O的半径。
【备考指导】解决与切线有关的求角度或线段问题的方法:当已知切线时,常作辅助线连接切点与圆心或寻找直径所对的圆周角,构造直角三角形,然后利用勾股定理或相关的三角函数知识计算线段长度;而在求角度时,往往与圆周角、圆心角有关,求解过程中有时需要作出合适的辅助线,构造与所求角有关的圆心角或直角三角形进行求解。
考点二:与切线判定有关的证明
例3.已知:如图, AB是⊙O的直径, ⊙O过BC的中点D, 且DE⊥AC于点E.
(1)求证: DE是⊙O的切线;
(2) 若∠C=30°,CD=10 cm, 求⊙O的直径.
分析:(1)若所证直线与圆的交点字母标出,则连接这条半径,证明这
条半径________所证直线;
(2)利用等腰三角形和直角三角形知识可求.
【备考指导】证明直线是圆的切线的方法:①可以利用定义判定,
与圆只有一个公共点的直线是圆的切线;②若已知直线与圆有公
共点,连接过这点的半径,证明这条半径与直线垂直即可,可简述为:有切点,连圆心,证垂直;③若未知直线与圆的交点,过圆心作直线的垂线段,证明垂线段的长等于圆的半径.可简述为:无切点、作垂直、证相等.
七、中考链接
(一)基础达标训练
1.(13.河池)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,
则PA=.
2. (14.湘潭)如图,AB为⊙O的直径,C为⊙O外一点,过C作⊙O的切线,切点为B, 连接AC交⊙O于D,∠C=38°,点E在AB右侧的半圆上运动(不与A、B重合), 则∠AED的大小是( )
A.19° B.38° C.52° D.76°
第1题 第2题 第3题
3.(12.玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB、BC分别交于点M、N,若⊙O的半径为r,则Rt△MBN的周长为 ( )
4.(14.玉林)如图,直线MN与⊙O相切于点M,ME=EF 且EF∥MN,则cosE= .
5.(12.玉林改编)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
求证:AC是⊙O的切线;
(二)能力提升
1.(14.无锡)如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为
D ,CD 与AB 的延长线交于点C ,∠A=30°,给出下面3个结论:
①AD=CD ;②BD=BC ;③AB=2BC ,其中正确结论的个数是( )
A .3
B .2
C .1
D .0
r A 2
5 D. 2r . C r 23 B.r
.
2.(14.内江)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,
以斜边AB上的一点O为圆心所作的半圆分别与AC、BC
相切于点D、E,则AD为()
A.2.5 B.1.6 C.1.5 D.1
3.(1
4.贺州九下P102第11题变式)如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.
(1)求证:BO⊥CO;(2)求BE和CG的长.
4.(13.南宁)如图,在△ABC中,∠BAC=90,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE ⊥AC于点E,BE交⊙O于点F。
(1)求证:DE是O的切线。
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长。
5.(14.南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切与点E,F,与AB分别交于点G,H,且EH的延长线和CB 的延长线交于点D,则CD 的长为.。