2014年高考真题陕西理数试卷(高清+视频讲解)
2014年高考理科数学陕西卷-答案
【解析】∵ ,∴ ,方差 .
【提示】根据变量之间均值和方差的关系直接代入即可得到结论.
【考点】样本数据的均值和方差的性质
10.【答案】A
【解析】由题意可得出,此三次函数在 处的导数为0,依次特征寻找正确选项:
A选项,导数为 ,令其为0,解得 ,故A正确;
B选项,导数为 ,令其为0, 不成立,故B错误;
【提示】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为 ,两条长度为 ,即可得出结论.
【考点】列举法计算基本事件数及事件发生的概率
7.【答案】B
【解析】A. , , ,不满足 ,故A错;
B. , , ,不满足 ,故B错;
C. , , ,满足 ,但 在 上是单调减函数,故C错.
(Ⅲ)在(Ⅱ)中取 ,可得 ,令 ,则 , 依次取1,2,3…,然后各式相加即得到不等式.
【考点】等差数列,利用导数求闭区间上函数的最值,利用导数研究函数的单调性,类比推理
∴原命题的逆命题是假命题;
根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,
∴命题的否命题是假命题,逆否命题是真命题.故选:B.
【提示】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.
【考点】四种命题间的逆否关系
∴四边形 是平行四边形,
又∵ , , ,
∴ 平面 ,∴ ,
∵ , ,∴ ,
∴四边形 是矩形.
(Ⅱ)如图,分别以 所在直线为 轴建立空间直角坐标系,
则 , , , , , ,
设平面 的一个法向量 ,
∴ , ,∴ ,即得 ,
2014年陕西省高考数学试卷(理科) (1)
(x)在 R 上是单调减函数,故 C 错. D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足 f(x+y)=f(x)f(y),且 f(x)在 R 上是单调增函数,故 D 正确; 故选 D. 8. 【答案】B 【解析】试题分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命
的正四棱柱的各顶点均在同一球面上,则该球的
体积为( )
A.
B.4π C.2π
D.
6. 从正方形四个顶点及其中心这 5 个点中,任取 2 个点,则这 2 个点的距离不小于该 正方.
D. 7. 下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
A.f(x)=x B.f(x)=x3 C.f(x)=( )x D.f(x)=3x 8. 原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题 真假性的判断依次如下,正确的是( ) A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假 9. 设样本数据 x1,x2,…,x10 的均值和方差分别为 1 和 4,若 yi=xi+a(a 为非零常数, i=1,2,…,10),则 y1,y2,…,y10 的均值和方差分别为( ) A.1+a,4 B.1+a,4+a
试卷第 1 页,总 5 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○…… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○……
C.an=2n D.an=2n-1 5. 已知底面边长为 1,侧棱长为
2014年高考理科数学陕西卷
20.(本小题满分 13 分)
如图,曲线 C
由上半椭圆
C1
:y2 a2
x2 b2
1 (a>b>0,y≥0)
和部分抛物线 C2 :y x2 1( y≤0) 连接而成, C1 与 C2 的
公共点为 A , B ,其中 C1 的离心率为
3. 2
(Ⅰ)求 a , b 的值;
(Ⅱ)过 点 B 的 直 线 l 与 C1 , C2 分 别 交 于 点 P , Q ( 均 异 于 点 A , B ) ,若 AP⊥AQ ,求 直 线 l 的 方 程 .
AC 2AE ,则 EF
.
C .(坐标系与参数方程选做题)在极坐标系中,点 (2, π ) 6
到直线 sin( π) 1的距离是
.
6
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共 6 小题,共 75 分).
16.(本小题满分 12 分) △ABC 的内角 A , B , C 所对的边分别为 a , b , c .
在
绝密★启用前
2014 年普通高等学校招生全国统一考试(陕西卷)
理一部分为选择题,第二部分为非选择题.
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应
的试卷类型信息. 卷
3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷和答题卡一并
B. y 2 x3 4 x 125 5
D. y 3 x3 1 x 125 5
第二部分(共 100 分)
二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共 5 小题,每小题 5 分,共 25 分).
11.已知 4a 2 , lg x a ,则 x
.
2014陕西省高考试卷含解析试题及答案
1、下列各句中,加点的词语运用不正确的一项是()A.在席卷全球的金融危机中,连那些科班出身的经济学博士都被赶出华尔街,到地铁卖热狗去了,何况他这个半路出家的?B.在外打拼数十年后,他回到了家乡,用省吃俭用的结余捐建了一所希望小学,为发展当地的教育事业奉献了拳拳爱心。
C.长期以来,杀虫剂、除草剂、增效剂等各种农药所导致的污染,严重侵害着与农业、农村、农民息息相关的城市环境与市民生活。
D.在热心公益蔚然成风的今天,百名青年在某市首届成人礼活动中,以无偿献血作为自己成长的见证,体现了当代青年的责任感。
2、下列各句中,没有语病的一项是A.只有当促进艺术电影繁荣成为社会共识,从源头的创作方到末端的受众方的各环节都得到强有力的支持,艺术电影才能真正实现飞跃。
B.据说当年徽州男人大多外出经商,家中皆是妇孺及孩童,为了安全,徽州的古村落老宅子大多为高墙深院、重门窄窗的建筑。
C.工作之余,大家的闲谈话题脱不开子女教育、住房大小、职务升迁,也照样脱不开为饭菜咸淡、暖气冷热、物价高低吐槽发声。
D.我国重新修订《食品安全法》,目的是用更严格的监管、更严厉的处罚、更严肃的问责,切实保障“舌尖上的安全”,被称为“最严食品安全法”3、把下列句子组成语意连贯的语段,排序最恰当的一项是①从汉字笔画的统计分布规律来看,这种看法是值得商榷的。
②不少人认为简化汉字的理想目标是把十画以上的字简化到十画或不足十画。
③为了增强区别性,对那些笔画较多的非常用字还是不去简化为好。
④文字的应用首先要保证看和读的方便,要有相当的清晰性和区别性。
⑤但把笔画全部减到十画或不足十画,势必增加大量的形近字,给看和读带来困难。
⑥其次才是笔画简单,写起来省事。
A.②①④⑥⑤③ B.②①⑤③④⑥ C.④⑥②①③⑤ D.④⑥③⑤②①4、依次填入下列各句横线处的成语,最恰当的一组是(3分)①他是一个心地善良的人,但性格懦弱、谨小慎微,做起事来总是,从来不敢越雷池一步。
2014陕西省高考试卷含解析理论考试试题及答案
1、下列词语中加点的字,每对读音都不相同的一组是A.棱角/菱形窒息/对峙稽首/稽查B.侥幸/阻挠绚烂/驯服称职/职称C.塑料/朔风叫嚣/发酵本末倒置/倒行逆施D.延伸/筵席瓦砾/罹难挑三拣四/挑拨离间2、下列词语中,没有错别字的一项是A.妨碍功夫片钟灵毓秀管中窥豹,可见一斑B.梳妆吊胃口瞠目结舌文武之道,一张一驰C.辐射入场券循章摘句风声鹤唳,草木皆兵D.蜚然直辖市秘而不宣城门失火,殃及池鱼3、在下面一段话空缺处依次填入词语,最恰当的一组是(3分)书是整个人类的记忆。
没有书,也许历史还在混沌未开的蒙昧中。
读书,让绵延的时光穿越我们的身体,让几千年来的智慧在我们每一个人的血液里汩汩流淌。
读书,不仅需要的精神,还需要懂得快慢精粗之分。
A.徘徊积聚宵衣旰食 B.徘徊积淀废寝忘食C.踟蹰积淀宵衣旰食 D.踟蹰积聚废寝忘食4、下列各句中加点词语的使用,不恰当的一项是A.“2015年度中国文化跨界论坛”日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B.对于那些熟稔互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。
C.这家民用小型无人机公司一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为“十大科技产品”“2014年杰出高科技产品”。
D.近年来,广袤蜀地的新村建设全面推进,大巴山区漂亮民居星罗棋布,大凉山上彝家新寨鳞次栉比,西部高原羌寨碉楼拔地而起。
5、填入下面空缺处的语句,最恰当的一项是我需要清静……最好去处是到个庙宇前小河旁边大石头上坐坐,。
雨季来时上面长了些绿绒似地苔类。
雨季一过,苔已干枯了,在一片未干枯苔上正开着小小蓝花白花,有细脚蜘蛛在旁边爬。
A.阳光和雨露把这石头漂白磨光了 B.这石头被阳光和雨露漂白磨光了C.阳光和雨露已把这石头漂白磨光了的 D.这石头是被阳光和雨露漂白磨光了的6、下列词语中加点字的读音,全部正确的一项是A.暂时zàn 埋怨mái 谆谆告诫zhūn 引吭高歌hángB.豆豉chǐ踝骨huái 踉踉跄跄cāng 按图索骥jìC.梗概gěn 删改shān 炊烟袅袅niǎo 明眸皓齿móuD.搁浅gē解剖pōu 鬼鬼祟崇suì不屑一顾xiâ。
陕西省高考数学试卷(理科)答案与解析word版本
2014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)(2014•陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)考点:交集及其运算.专题:集合.分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选B.点评:本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)(2014•陕西)定积分(2x+e x)dx的值为()A.e+2 B.e+1 C.e D.e﹣1考点:定积分.专题:导数的概念及应用.分析:根据微积分基本定理计算即可.解答:解:(2x+e x)dx=(x2+e x)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)(2014•陕西)根据如图框图,对大于2的正数N,输出的数列的通项公式是()A.a n=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣1考点:程序框图;等比数列的通项公式.专题:算法和程序框图.分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.解答:解:由程序框图知:a i+1=2a i,a1=2,∴数列为公比为2的等比数列,∴a n=2n.故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.解答:解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)(2014•陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:应用题;概率与统计;排列组合.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.点评:本题考查概率的计算,列举基本事件是关键.7.(5分)(2014•陕西)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()xD.f(x)=3x考点:抽象函数及其应用.专题:函数的性质及应用.分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.解答:解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选D.点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假考点:四种命题间的逆否关系.专题:简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)(2014•陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.解答:解:方法1:∵y i=x i+a,∴E(y i)=E(x i)+E(a)=1+a,方差D(y i)=D(x i)+E(a)=4.方法2:由题意知y i=x i+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.点评:本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)(2014•陕西)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣x B.y=x3﹣xC.y=x3﹣x D.y=﹣x3+x考点:导数的几何意义;函数解析式的求解及常用方法.专题:函数的性质及应用;导数的概念及应用.分析:分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.解答:解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.点评:本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)(2014•陕西)已知4a=2,lgx=a,则x=.考点:对数的运算性质.专题:计算题.分析:化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.解答:解:由4a=2,得,再由lgx=a=,得x=.故答案为:.点评:本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)(2014•陕西)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.解答:解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.点评:本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题.14.(5分)(2014•陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是F+V﹣E=2.考点:归纳推理.专题:归纳法;推理和证明.分析:通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.解答:解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V ﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2点评:本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)(2014•陕西)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.解答:解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:点评:本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.(几何证明选做题)16.(2014•陕西)如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=3.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:证明△AEF∽△ACB,可得,即可得出结论.解答:解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.点评:本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.(2014•陕西)在极坐标系中,点(2,)到直线ρsin(θ﹣)=1的距离是1.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:把极坐标化为直角坐标的方法,利用点到直线的距离公式求得结果.解答:解:根据极坐标和直角坐标的互化公式x=ρcosθ,y=ρsinθ,可得点(2,)即(,1);直线ρsin(θ﹣)=1即﹣x+y=1,即x﹣y+2=0,故点(,1)到直线x﹣y+2=0的距离为=1,故答案为:1.点评:本题主要考查把极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)(2014•陕西)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间角.分析:(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.解答:(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH∥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH⊥,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.点评:本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)(2014•陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.考点:平面向量的基本定理及其意义;平面向量的坐标运算.专题:平面向量及应用.分析:(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m+n,表示出m﹣n=y ﹣x,最后结合图形,求出m﹣n的最小值.解答:解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.点评:本题考查了向量的坐标运算,关键在于审清题意,属于中档题,21.(12分)(2014•陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.考点:离散型随机变量及其分布列;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.解答:解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P()P()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.点评:本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.22.(13分)(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线.分析:(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(x p,y p),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.解答:解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(x p,y p),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得x p=,从而y p=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.点评:本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、函数与方程思想,属于难题.23.(14分)(2014•陕西)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.解答:解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.点评:本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.。
15.2014年普通高等学校招生全国统一考试(陕西卷)(答案版)
2014年普通高等学校招生全国统一考试(陕西卷)数 学(理科)一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)2.函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( ) A. π2B .πC .2πD .4π3.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1 4.根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -15.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A. 32π3 B .4πC .2π D. 4π36. 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( )A. 15B. 25C. 35D. 457. 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=21x B .f (x )=x 3 C .f (x )=⎝⎛⎭⎫12x D .f (x )=3x8.原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假9.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a ,4B .1+a ,4+aC .1,4D .1,4+a10. 如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.已知4a =2,lg x =a ,则x =________.12.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为 ___________________________.13.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.14.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.B .(几何证明选做题)如图1-3,△ABC 中,BC =6,以BC 为直径的半圆分 别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =________. C .(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________. 三、解答题(本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1) 若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2) 若a ,b ,c 成等比数列,求cos B 的最小值.四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1) 证明:四边形EFGH 是矩形;(2) 求直线AB 与平面EFGH 夹角θ的正弦值.18.(本小题满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1) 若P A →+PB →+PC →=0,求|OP →|;(2) 设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1) 设X(2) 若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.20.(本小题满分13分)如图所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1) 求a,b的值;(2) 过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1) 令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2) 若f(x)≥ag(x) 恒成立,求实数a的取值范围;(3) 设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.参考答案一、选择题1—10 B B C C D C D B A A1.[解析] 由M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R }={x |-1<x <1,x ∈R },得 M ∩N =[0,1).2.[解析] 已知函数y =A cos(ωx +φ)(A >0,ω>0)的周期为T =2πω,故函数f (x )的最小正周期T =2π2=π.3.[解析] ⎠⎛01(2x +e x )d x =(x 2+e x )10=(12+e 1)-(02+e 0)=e . 4.[解析] 阅读题中所给的程序框图可知,对大于2的整数N ,输出数列:2,22=22,222=23,223=24,…,22N -1=2N ,故其通项公式为a n =2n .5.[解析] 设该球的半径为R ,根据正四棱柱的外接球的直径长为正四棱柱的体对角线长,可得(2R )2=(2)2+12+12,解得R =1,所以该球的体积为V =43πR 3=43π.6.[解析] 利用古典概型的特点可知从5个点中选取2个点的全部情况有C 25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P =610=35.7.[解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x 为单调递减函数,所以排除选项B.8.[解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.9.[解析] 由题意可知x 1+x 2+x 3+…+x 1010=1,故y -=(x 1+x 2+x 3+…+x 10)+10a10=1+a .数据x 1,x 2,…,x 10同时增加一个定值,方差不变.故选A.10.[解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .二、填空题11. 10 12.x 2+(y -1)2=1 13. 1214.F +V -E =215.A. 5 B .3 C .111. [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012=10.12.[解析] 由圆C 的圆心与点(1,0)关于直线y =x 对称,得圆C 的圆心为(0,1).又因为圆C 的半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.13. [解析] 因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.[解析] 由题中所给的三组数据,可得5+6-9=2,6+6-10=2,6+8-12=2,由此可以猜想出一般凸多面体的顶点数V 、面数F 及棱数E 所满足的等式是F +V -E =2.15. [解析] A .由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,代入数据,得m 2+n 2≥5,当且仅当an =bm 时,等号成立,故m 2+n 2 的最小值为 5.B .由题意,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽ACB ,所以AEAC=EFBC.因为AC =2AE ,BC =6,所以EF =3. C .点⎝⎛⎭⎫2,π6的极坐标可化为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即点⎝⎛⎭⎫2,π6在平面直角坐标系中的坐标为(3,1).直线ρsin ⎝⎛⎭⎫θ-π6=ρsin θcos π6-ρcos θsin π6=1,即该直线在直角坐标系中的方程为x -3y +2=0,由点到直线的距离公式得所求距离为d =|3-3+2|12+(-3)2=1.三、解答题16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立,∴cos B 的最小值为12.17.解:(1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.(2)方法一:如图,以D D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA =(0,0,1),BC =(-2,2,0),BA =(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ), ∵EF ∥AD ,FG ∥BC ,∴n ·DA =0,n ·BC =0, 得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105.方法二:如图,以D 为坐标原点建立空间直角坐标系, 则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝⎛⎭⎫1,0,12,F (1,0,0),G (0,1,0).∴FE →=⎝⎛⎭⎫0,0,12,FG =(-1,1,0), BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), 则n ·FE =0,n ·FG =0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA →||n |=25×2=105.18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ), ∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2.方法二:∵P A →+PB →+PC →=0, 则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0,∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →,∴(x ,y )=(m +2n ,2m +n ), ∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.19.解:(1)设A 表示事件“作物产量为300 kg”,B 表示事件“作物市场价格为6元/kg”,由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量市场价格-成本, ∴X 所有可能的取值为50010-1000=4000,5006-1000=2000, 30010-1000=2000,3006-1000=800.P (X =4000)=P (A )P (B )=(1-0.5)(1-0.4)=0.3,P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)0.4+0.5(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.50.4=0.2, 所以X 的分布列为(2) 设C i 表示事件“第i 3), 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896. 20.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2,∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0), 得点Q 的坐标为(-k -1,-k 2-2k ).∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x=x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x1+nx .下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx=x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立.设φ(x )=ln(1+x )-ax1+x(x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax 1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1, 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1, 结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.。
2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014高考数学(理科)陕西卷真题答案解析
2014高考数学(理科)陕西卷真题答案解析
举国瞩目的2014高考已结束,新东方在线高考名师团队联合西安新东方高考名师第一时间对2014高考北京物理真题进行了点评,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。
以下是西安新东方高考数学名师对2014陕西高考数学(理科)真题的解析和点评。
[0,1N =考察解不等式及集合的交并补关系
tanθ=1
;
.
5 ; 225a b +=;(a 2222
5
55
ma nb m n a b ++≥
=
=+ ABC ∆,
)
3,1,
平面平面由题设,可知,)由该四面体的三视图解(EH
FG EH BC FG BC EFGH EFGH BC BD ∴∴////,//,//1(2)(0,0,1)(2,2,0)(2,0,1)n z 0
D DA BC BA DA →
→
→
→
→
→
==-=-∴⋅==⎧⎨解法一:如图,以为坐标原点建立空间直角坐标系,则得
线面平行、垂直性质应用;建立空间坐标系,利用法向量求线面夹角理科18
在直角坐标
m n y x -=-两式相减,得
令y x t -=,由图知,当直线y x t =+过点1,故m n - 的最大值为1.
向量坐标运算;线性规划
的方程.
更多相关高考考试指导,请登陆新东方在线官方网站:。
普通高等学校招生全国统一考试数学理试题(陕西卷,解析版)4
2014年陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是( ) .2A π.B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω3.定积分1(2)xx e dx +⎰的值为( ).2A e + .1B e + .C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n Aa n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.已知底面边长为1为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】Dr r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A 2.5B 3.5C 4.5D【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525===下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭ (D )()3xf x =【答案】 DD y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+ 【答案】 AAA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二部分(共100分)填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).已知,lg ,24a x a ==则x =________. 【答案】 10 【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即14. 观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是【答案】 A 5 B 3 C 1 【解析】 A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CB EFAC AE ACB AEF ,且相似与C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【答案】 (1) 省略 (2)21【解析】 (1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.【答案】 (1) 省略 (2)510【解析】(1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,DA ,DB ,DC (1)=><==<∴=======∴n AB z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2) m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A (2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+=19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元 的概率. 【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896 【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 的分布列如下表:(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y xC a b y a b +=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2.求,a b 的值; 过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x y c b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线(2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k 8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k xkxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,,(2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f(3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xx x x h nnnn g g g g nn n n g x x x g。
【推荐】2014年陕西省高考数学试卷(理科)
2014年陕西省高考数学试卷(理科)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)2.(5分)函数f()=cos(2﹣)的最小正周期是()A.B.πC.2πD.4π3.(5分)定积分(2+e)d的值为()A.e+2 B.e+1 C.e D.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an =2n B.an=2(n﹣1)C.an=2n D.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为( ) A .B .4πC .2πD .6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A . B . C . D .7.(5分)下列函数中,满足“f (+y )=f ()f (y )”的单调递增函数是( ) A .f ()=B .f ()=3C .f ()=()D .f ()=38.(5分)原命题为“若1,2互为共轭复数,则|1|=|2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,假,真B .假,假,真C .真,真,假D .假,假,假9.(5分)设样本数据1,2,…,10的均值和方差分别为1和4,若y i =i +a (a 为非零常数,i=1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a ,4 B .1+a ,4+aC .1,4D .1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y=﹣B .y=3﹣C .y=3﹣ D .y=﹣3+二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lg=a,则= .12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=对称,则圆C 的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ= .14.(5分)观察分析下表中的数据:所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= .(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系Oy中,已知点A(1,1),B(2,3),C(3,2),点P(,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C 由上半椭圆C 1:+=1(a >b >0,y ≥0)和部分抛物线C 2:y=﹣2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为.(Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.23.(14分)设函数f ()=ln (1+),g ()=f ′(),≥0,其中f ′()是f ()的导函数.(Ⅰ)令g 1()=g (),g n+1()=g (g n ()),n ∈N +,求g n ()的表达式; (Ⅱ)若f ()≥ag ()恒成立,求实数a 的取值范围;(Ⅲ)设n ∈N +,比较g (1)+g (2)+…+g (n )与n ﹣f (n )的大小,并加以证明.2014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.[0,1)C.(0,1] D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={|≥0,∈R},N={|2<1,∈R}={|﹣1<<1,∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)函数f()=cos(2﹣)的最小正周期是()A.B.πC.2πD.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f()=cos(2﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)定积分(2+e)d的值为()A.e+2 B.e+1 C.e D.e﹣1【分析】根据微积分基本定理计算即可. 【解答】解:(2+e )d=(2+e )|=(1+e )﹣(0+e 0)=e .故选:C .【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n ﹣1)C .a n =2nD .a n =2n ﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.【解答】解:由程序框图知:a i+1=2a i ,a 1=2, ∴数列为公比为2的等比数列,∴a n =2n . 故选:C .【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f (+y )=f ()f (y )”的单调递增函数是( ) A .f ()=B .f ()=3C .f ()=()D .f ()=3【分析】对选项一一加以判断,先判断是否满足f (+y )=f ()f (y ),然后考虑函数的单调性,即可得到答案. 【解答】解:A .f ()=,f (y )=,f (+y )=,不满足f (+y )=f ()f (y ),故A 错;B .f ()=3,f (y )=y 3,f (+y )=(+y )3,不满足f (+y )=f ()f (y ),故B 错;C .f ()=,f (y )=,f (+y )=,满足f (+y )=f ()f (y ),但f ()在R 上是单调减函数,故C 错.D .f ()=3,f (y )=3y ,f (+y )=3+y ,满足f (+y )=f ()f (y ),且f ()在R 上是单调增函数,故D 正确; 故选:D .【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若1,2互为共轭复数,则|1|=|2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,假,真B .假,假,真C .真,真,假D .假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【解答】解:根据共轭复数的定义,原命题“若1,2互为共轭复数,则|1|=|2|”是真命题;其逆命题是:“若|1|=|2|,则1,2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假, ∴命题的否命题是假命题,逆否命题是真命题. 故选:B .【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据1,2,…,10的均值和方差分别为1和4,若y i =i +a (a 为非零常数,i=1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a ,4 B .1+a ,4+aC .1,4D .1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论. 方法2:根据均值和方差的公式计算即可得到结论. 【解答】解:方法1:∵y i =i +a , ∴E (y i )=E (i )+E (a )=1+a , 方差D (y i )=D (i )+E (a )=4. 方法2:由题意知y i =i +a , 则=(1+2+…+10+10×a )=(1+2+…+10)=+a=1+a ,方差s 2=[(1+a ﹣(+a )2+(2+a ﹣(+a )2+…+(10+a ﹣(+a )2]=[(1﹣)2+(2﹣)2+…+(10﹣)2]=s 2=4. 故选:A .【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=a+b ,则Ey=aE+b ,Dy=a 2D ,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣B.y=3﹣C.y=3﹣D.y=﹣3+【分析】分别求出四个选项中的导数,验证在=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得=±5,故A正确;B选项,导数为,令其为0,=±5不成立,故B错误;C选项,导数为,令其为0,=±5不成立,故C错误;D选项,导数为,令其为0,=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lg=a,则= .【分析】化指数式为对数式求得a,代入lg=a后由对数的运算性质求得的值.【解答】解:由4a=2,得,再由lg=a=,得=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=对称,则圆C 的标准方程为2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=±的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为2+(y﹣1)2=1,故答案为:2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=±的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ= .【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题.14.(5分)观察分析下表中的数据:所满足的等式是F+V﹣E=2 .【分析】通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.【解答】解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2【点评】本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB 的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.【点评】此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.【分析】(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为,y,轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.【解答】(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC 为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为,y,轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得=1.∴.则sinθ=|cos<>|===.【点评】本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)在直角坐标系Oy中,已知点A(1,1),B(2,3),C(3,2),点P(,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m+n,表示出m ﹣n=y﹣,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣,1﹣y)+(2﹣,3﹣y)+(3﹣,2﹣y)=0∴3﹣6=0,3y﹣6=0∴=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(,y)=(m+2n,2m+n)∴=m+2n,y=2m+n∴m﹣n=y﹣,令y﹣=t,由图知,当直线y=+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.【点评】本题考查了向量的坐标运算,关键在于审清题意,属于中档题,21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【分析】(Ⅰ)分别求出对应的概率,即可求的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.【解答】解:(Ⅰ)设A表示事件“作物产量为300g”,B表示事件“作物市场价格为6元/g”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P (=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,P (=2000)=P ()P (B )+P (A )P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P (=800)=P (A )P (B )=0.5×0.4=0.2, 则的分布列为:i 则C 1,C 2,C 3相互独立,由(Ⅰ)知,P (C i )=P (=4000)+P (=2000)=0.3+0.5=0.8(i=1,2,3), 3季的利润均不少于2000的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512, 3季的利润有2季不少于2000的概率为P (C 2C 3)+P (C 1C 3)+P (C 1C 2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896. 【点评】本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.22.(13分)如图,曲线C 由上半椭圆C 1:+=1(a >b >0,y ≥0)和部分抛物线C 2:y=﹣2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为.(Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.【分析】(Ⅰ)在C 1、C 2的方程中,令y=0,即得b=1,设C 1:的半焦距为c ,由=及a 2﹣c 2=b 2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C 1的方程为+2=1(y ≥0),设其方程为y=(﹣1)(≠0),代入C 1的方程,整理得(2+4)2﹣22+2﹣4=0.(*)设点P (p ,y p ),依题意,可求得点P 的坐标为(,);同理可得点Q 的坐标为(﹣﹣1,﹣2﹣2),利用•=0,可求得的值,从而可得答案.【解答】解:(Ⅰ)在C 1、C 2的方程中,令y=0,可得b=1,且A (﹣1,0),B (1,0)是上半椭圆C 1的左右顶点. 设C 1:的半焦距为c ,由=及a 2﹣c 2=b 2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C 1的方程为+2=1(y ≥0).易知,直线l 与轴不重合也不垂直,设其方程为y=(﹣1)(≠0), 代入C 1的方程,整理得: (2+4)2﹣22+2﹣4=0.(*) 设点P (p ,y p ), ∵直线l 过点B ,∴=1是方程(*)的一个根, 由求根公式,得p =,从而y p =,∴点P 的坐标为(,).同理,由得点Q 的坐标为(﹣﹣1,﹣2﹣2),∴=(,﹣4),=﹣(1,+2),∵AP ⊥AQ ,∴•=0,即[﹣4(+2)]=0,∵≠0,∴﹣4(+2)=0,解得=﹣. 经检验,=﹣符合题意,故直线l 的方程为y=﹣(﹣1),即8+3y ﹣8=0.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.23.(14分)设函数f ()=ln (1+),g ()=f ′(),≥0,其中f ′()是f ()的导函数.(Ⅰ)令g 1()=g (),g n+1()=g (g n ()),n ∈N +,求g n ()的表达式; (Ⅱ)若f ()≥ag ()恒成立,求实数a 的取值范围;(Ⅲ)设n ∈N +,比较g (1)+g (2)+…+g (n )与n ﹣f (n )的大小,并加以证明.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明; (Ⅱ)由已知得到ln (1+)≥恒成立构造函数φ()=ln (1+)﹣(≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=时结论成立,即,那么n=+1时,=即结论成立.成立.由①②可知,结论对n∈N+(Ⅱ)已知f()≥ag()恒成立,即ln(1+)≥恒成立.设φ()=ln(1+)﹣(≥0),则φ′()=,当a≤1时,φ′()≥0(仅当=0,a=1时取等号成立),∴φ()在[0,+∞)上单调递增,又φ(0)=0,∴φ()≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+)≥恒成立,(仅当=0时等号成立)当a>1时,对∈(0,a﹣1]有φ′()<0,∴φ()在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在>0使φ()<0,故知ln(1+)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.【点评】本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.。
2014年全国普通高等学校招生统一考试理科数学(陕西卷)
2014年全国普通高等学校招生统一考试理科数学(陕西卷)一、单选题1. 已知集合,则()A.[0,1]B.[0,1)C.(0,1 ]D.(0,1)2. 函数的最小正周期是()A .B.C .D .3. 定积分的值为( )A .B .C.D .4. 根据右边框图,对大于2的整数,得出数列的通项公式是()A.B.C.D.5. 已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.B.C.D.6. 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.7. 下列函数中,满足“”的单调递增函数是()A.B.二、填空题C .D .8. 原命题为“若互为共轭复数,则”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假9.设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为( )A .B .C .D .10. 如图,某飞行器在4千米高空水平飞行,从距着陆点的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为()A .B .C .D .11. 已知则=________.12. 若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.三、解答题13. 设,向量,若,则_______.14. 观察分析下表中的数据:多面体面数() 顶点数() 棱数() 三棱锥5 6 9 五棱锥6 6 10 立方体6 8 12猜想一般凸多面体中,所满足的等式是_________.15. 设,且,则的最小值为16. 如图,中,,以为直径的半圆分别交于点,若,则17. 在极坐标系中,点到直线的距离是_______.18. 的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,求的最小值.19. 四面体及其三视图如图所示,过棱的中点作平行于,的平面分别交四面体的棱于点.(1)证明:四边形是矩形;(2)求直线与平面夹角的正弦值.20. 在直角坐标系中,已知点,点在三边围成的区域(含边界)上(1)若,求;(2)设,用表示,并求的最大值.21. 在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设表示在这块地上种植1季此作物的利润,求的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22. (本小题满分12分)如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.(Ⅰ)求的值;(Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.23. 设函数,其中是的导函数.,(1)求的表达式;(2)若恒成立,求实数的取值范围;(3)设,比较与的大小,并加以证明.。
年陕西省高考数学试卷(理科)答案与解析
2014年陕西省高考数学试卷(理科)答案与解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2014年陕西省高考数学试卷(理科)答案与解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2014年陕西省高考数学试卷(理科)答案与解析的全部内容。
2014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)(2014•陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)考点:交集及其运算.集合.专题:分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选B.点评:本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.三角函数的图像与性质.专题:分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)(2014•陕西)定积分(2x+e x)dx的值为()A.e+2B.e+1C.e D.e﹣1定积分.考点:导数的概念及应用.专题:根据微积分基本定理计算即可.分析:解答:解:(2x+e x)dx=(x2+e x)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)(2014•陕西)根据如图框图,对大于2的正数N,输出的数列的通项公式是()A.an=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣1考点:程序框图;等比数列的通项公式.专题:算法和程序框图.分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.解答:解:由程序框图知:a i+1=2a i,a1=2,∴数列为公比为2的等比数列,∴a n=2n.故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.解答:解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)(2014•陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:应用题;概率与统计;排列组合.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.点评:本题考查概率的计算,列举基本事件是关键.7.(5分)(2014•陕西)下列函数中,满足“f(x+y)=f(x)f(y)"的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()xD.f(x)=3x考点:抽象函数及其应用.专题:函数的性质及应用.分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.解答:解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选D.点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假考点:四种命题间的逆否关系.专题:简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|"是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)(2014•陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+a C.1,4D.1,4+a考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.解答:解:方法1:∵yi=x i+a,∴E(y i)=E(x i)+E(a)=1+a,方差D(y i)=D(x i)+E(a)=4.方法2:由题意知y i=x i+a,。
2014年陕西高考理科数学试题及答案详细解析
绝密★启用前2013-2014学年度???学校6月月考卷试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】B 【解析】试题分析:由{|0,}[0,)M x x x R =≥∈=+∞,2{|1,}(1,1)N x x x R =<∈=-,所以[0,1)M N =,故选B .考点:集合间的运算. 2.函数()cos(2)6f x x π=-的最小正周期是().2A π.B π .2C π .4D π 【答案】B 【解析】试题分析:由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B . 考点:三角函数的最小正周期. 3.定积分1(2)x x e dx +⎰的值为( ).2A e + .1B e + .C e .1D e - 【答案】C【解析】 试题分析:121212000(2)()|(1)(0)x x x e dx xe e e e +=+=+-+=⎰,故选C .考点:定积分.4.根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n Aa n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C 【解析】试题分析:当1,1S i ==时,11212a =⨯=;当12,2S i ==时,122222a =⨯=;当22,3S i ==时,233222a =⨯=;⋅⋅⋅由此得出数列的通项公式为2n n a =,故选C .考点:程序框图的识别.5.已知底面边长为1 )32.3A π .4B π .2C π 4.3D π【答案】D 【解析】试题分析:根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故22R ==,即得1R =,所以该球的体积224441333V R πππ===,故选D . 考点:正四棱柱的几何特征;球的体积.6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )第3页 共18页 ◎ 第4页 共18页1.5A2.5B3.5C4.5D 【答案】C【解析】试题分析:从正方形四个顶点及其中心这5个点中,任取2个点,共有2510C =条线段,A ,B ,C ,D 四点中任意2点的连线段都不小于该正方形边长,共有246C =,所以这2个点的距离不小于该正方形边长的概率63105P ==,故选C D考点:古典概型及其概率计算公式.7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】D【解析】 试题分析:A 选项:由()()12f x y x y +=+,()()111222()f x f y x y xy =⋅=,得()()()f x y f x f y+≠,所以A 错误;B 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以B 错误;C 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以C 错误;D 选项:由()3x yf x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3x f x =是定义在R 上增函数,所以D 正确;故选D .考点:函数求值;函数的单调性.8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】B 【解析】试题分析:设复数1z a bi =+,则21z z a bi ==-,所以12z z ==12z z =,则12,z z 互为共轭复数;如134z i =+,243z i =+,且125z z ==,但此时12,z z 不互为共轭复,故逆命题为假;否命题:若12,z z 不互为共轭复数,则12z z ≠;如134z i =+,243z i =+,此时12,z z 不互为共轭复,但125z z ==,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选B . 考点:命题以及命题的真假. 9.设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】A 【解析】试题分析:由题得:121010110x x x +++=⨯=;2221210(1)(1)(1)10440x x x -+-++-=⨯=12,10,y y y 的均值和方差分别为:均值121010y y y y ++⋅⋅⋅+=12101210()()()()1010101101010x a x a x a x x x a a a ++++⋅⋅⋅++++⋅⋅⋅+++====+方差2221210()()()10y y y y y y -+-+⋅⋅⋅+-=2221210[()(1)][()(1)][()(1)]10x a a x a a x a a +-+++-++⋅⋅⋅++-+=2221210(1)(1)(1)4041010x x x -+-++-=== 故选A考点:均值和方差.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+ 【答案】A【解析】试题分析:由题目图像可知:该三次函数过原点,故可设该三次函数为32()y f x ax bx cx ==++,则2()32y f x ax bx c''==++,由题得:(5)2f -=,(5)2f =-,(5)0f '= 即1252552125255275100a b c a b c a b c -+-=⎧⎪++=-⎨⎪++=⎩,解得1125035a b c ⎧=⎪⎪=⎨⎪⎪=-⎩,所以3131255y x x =-,故选A . 考点:函数的解析式.第7页 共18页 ◎ 第8页 共18页第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)11.已知,lg ,24a x a ==则x =________. 【解析】试题分析:由42a=得12a =,所以1lg 2x =,解得x = 考点:指数方程;对数方程.12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______. 【答案】22(1)1x y +-= 【解析】试题分析:因为圆心与点)0,1(关于直线x y =对称,所以圆心坐标为(0,1),所以圆的标准方程为:22(1)1x y +-=,故答案为22(1)1x y +-=考点:圆的标准方程.13.设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a=,若b a //,则=θtan _______.【答案】12【解析】试题分析:因为b a //,所以2sin 21cos 0θθ⨯-=,即2sin 2cos θθ=,所以22sin cos cos θθθ=,因为20πθ<<,所以cos 0θ≠,所以2sin cosθθ=,所以sin 1tan cos 2θθθ==,故答案为12 考点:共线定理;三角恒等变换. 猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】2F VE +-=【解析】试题分析:①三棱锥:5,6,9F V E===,得5692F V E +-=+-=;②五棱锥:6,6,10F V E ===,得66102F V E +-=+-=;③立方体:6,8,12F V E ===,得68122F V E +-=+-=;所以归纳猜想一般凸多面体中,E V F ,,所满足的等式是:2F V E +-=,故答案为2F V E +-= 考点:归纳推理..A 15.设,,,a b m n R∈,且225,5a b ma nb +=+=的最小值为【解析】试题分析:由柯西不等式得:22222()()()a b m n ma nb ++≥+,所以2225()5m n +≥,得225m n +≥考点:柯西不等式..B 16.如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,若2AC AE =,则EF =【答案】3 【解析】试题分析:由四边形BCFE 为圆内接四边形AEF C ⇒∠=∠,AFE B ∠=∠AEFACB ⇒∆∆⇒12AE EF AC BC ==,又因为6BC =,所以3EF =,故答案为3 考点:几何证明;三角形相似..C 17.在极坐标系中,点(2,6π到直线sin()16πρθ-=的距离是【答案】1【解析】试题分析:直线sin()16πρθ-=1102y x --=,点(2,)6π的直角坐标为,点1102y x --=的距离1|110|1d -===,故答案为1.考点:极坐标方程;点到直线距离.三、解答题(题型注释)18.ABC ∆的内角C B A ,,所对的边分别为c b a ,,.(1)若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (2)若c b a ,,成等比数列,求B cos 的最小值. 【答案】(1)证明见解析;(2)12. 【解析】试题分析:(1)因为c b a ,,成等差数列,所以2a c b +=,再由三角形正弦定理得sin sin 2sin A C B +=,又在ABC ∆中,有()B A B π=-+,所以sin sin[()]sin()B A C A C π=-+=+,最后得:()sin sin 2sin A C A C +=+,即得证;(2)因为c b a ,,成等比数列,所以22b ac =,由余弦定理得22222cos 22a c b a c acB ac ac+-+-== 22122a c ac +=-,根据基本不等式222a c ac +≥(当且仅当a c =时等号成立)得2212a cac+≥(当且仅当a c =时等号成立),即得2211cos 222a c B ac +=-≥,所以B cos 的最小值为12 试题解析:(1)c b a ,,成等差数列2a c b ∴+=由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+()sin sin 2sin A C A C ∴+=+(2)c b a ,,成等比数列22b ac ∴=由余弦定理得22222221cos 2222a c b a c ac a c B ac ac ac +-+-+===- 222a c ac +≥(当且仅当a c =时等号成立)2212a cac+∴≥(当且仅当a c =时等号成立) 2211112222a c ac +∴-≥-=(当且仅当a c =时等号成立)即1cos 2B ≥所以B cos 的最小值为12考点:正弦定理;余弦定理;基本不等式.19.四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 【答案】(1)证明见解析;(2 【解析】试题分析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH ,面E F G H 面BDC FG =,面E F G H 面ABC EH =,所以BC ∥FG ,BC∥EH ,所以FG ∥EH ,同理可得EF ∥HG ,即得四边形EFGH 是平行四边形,同时可证EF FG ⊥,即证四边形EFGH 是矩形;(2)以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA =,(2,2,0)BC =-,(2,2,0)BC =-,设平面EFGH 的一个法向量(,,)n x y z =因为BC ∥FG ,EF ∥AD ,所以0,0n DA n BC ⋅=⋅=,列出方程组,即可得到平面EFGH 的一个法向量n ,AB 与n 的夹角的余弦值的绝对值即为所求.试题解析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH面EFGH 面BDC FG =第11页 共18页 ◎ 第12页 共18页面EFGH 面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH . 同理EF ∥AD ,HG ∥AD , EF ∴∥HG . ∴四边形EFGH 是平行四边形又,,BD AD AD DC BD DC D ⊥⊥=∴AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA =,(2,2,0)BC =-,(2,2,0)BC =-设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD0,0n DA n BC ∴⋅=⋅=即得z =0-2x+2y =0⎧⎨⎩,取(1,1,0)n =sin |cos ,|||5||||5BA n BA n BA n θ⋅∴====⋅ 考点:面面平行的性质;线面角的求法.20.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率. 【答案】(1)分布列见解析;(2)0.896. 【解析】试题分析:(1)设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ” 由题设得4000,2000,800,结合概率公式计算出对应的概率,得出分布列;(2)设i C 表示事件“第i 季利润不少于2000元”(1,2,3)i =,由题意知:123,,C C C 相互独立,由(1)知()(4000)(2000)0.30.50.8i P C P X P X ==+==+=(1,2,3)i =,3季利润均不少于2000元的概率为:3123123()()()()0.80.512P C C C P C P C P C ===,3季中有2季利润不少于2000元的概率为:2123123123()()()30.80.20.384P C C C P C C C P C C C ++=⨯⨯=,根据互斥事件概率的加法公式得:这3季中至少有2季的利润不少于2000元的概率为:0.5120.3840.896+=试题解析:(1)设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ”由题设知:()0.5P A =,()0.5P B =因为利润=产量⨯市场价格-成本 所以X 所以可能的取值为5001010004000⨯-=,500610002000⨯-= 3001010002000⨯-=,30061000800⨯-=(4000)()()(10.5)(10.4)0.3P X P A P B ===--=,(2000)()()()()(10.5)0.40.5(10.4)0.5P X P A P B P A P B ==+=-⨯+⨯-=, (800)()()0.50.40.2P X P A P B ===⨯=,X (2)设i C 表示事件“第i 季利润不少于2000元”(1,2,3)i =, 由题意知:123,,C C C 相互独立,由(1)知()(4000)(2000)0.30.50.8i P C P X P X ==+==+=(1,2,3)i =3季利润均不少于2000元的概率为:3123123()()()()0.80.512P C C C P C P C P C ===3季中有2季利润不少于2000元的概率为:2123123123()()()30.80.20.384P C C C P C C C P C C C ++=⨯⨯=所以,这3季中至少有2季的利润不少于2000元的概率为: 0.5120.3840.896+=考点:离散型随机变量的分布列和期望;互斥事件的概率.21.如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2(1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.【答案】(1)2a =,1b =;(2) 8(1)3y x =-- 【解析】试题分析:(1)由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物22:1(0)C y x y =-+≤公共点为,A B ,得1b =,设2C 的半焦距为c ,由2c e a ==及2221a c b -==,解得2a =; (2)由(1)知,上半椭圆1C 的方程为221(0)4y x y +=≥,(1,0)B ,易知,直线l 与x 轴不重合也不垂直,故可设其方程为(1)(0)y k x k =-≠,并代入1C 的方程中,整理得:2222(4)240k x k x k +-+-=, 由韦达定理得2224P B k x x k +=+,又(1,0)B ,得2244P k x k -=+,从而求得284P ky k -=+,继而得点P 的坐标为22248(,44k k k k --++,同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ----,最后由0AP AQ ⋅=,解得83k =-,经检验83k =-符合题意,故直线l 的方程为8(1)3y x =--. 试题解析:(1)在1C 方程中,令0y =,得(,0),(,0)A b B b - 在2C 方程中,令0y =,得(1,0),(1,0)A B - 所以1b =设2C 的半焦距为c ,由c e a ==及2221a c b -==,解得2a =所以2a =,1b =(2)由(1)知,上半椭圆1C 的方程为221(0)4y x y +=≥,(1,0)B易知,直线l 与x 轴不重合也不垂直,设其方程为(1)(0)y k x k =-≠ 代入1C 的方程中,整理得:2222(4)240k x k x k +-+-= (*)设点P 的坐标(,)P P x y由韦达定理得2224P B k x x k +=+又(1,0)B ,得2244P k x k -=+,从而求得284P ky k -=+所以点P 的坐标为22248(,)44k kk k --++ 同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ---- 22(,4)4kAP k k ∴=+,(1,2)AQ k k =-+ AP AQ ⊥0AP AQ ∴⋅=,即222[4(2)]04k k k k --+=+ 0k ≠,4(2)0k k ∴-+=,解得83k =-经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--考点:椭圆和抛物线的几何性质;直线与圆锥曲线的综合问题. 22.设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.11()(),()(()),n n g x g x g x g g x n N ++==∈,(1)求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围;第15页 共18页 ◎ 第16页 共18页(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】(1)()1n xg x nx=+;(2)(,1]-∞;(3)(1)(2)()ln(1)g g g n n n ++⋅⋅⋅+>-+,证明见解析. 【解析】试题分析:(1)易得()1x g x x=+,且有()0g x ≥,当且仅当0x =时取等号,当0x =时,(0)0n g =,当0x >时()0g x >,由1()(())n n g x g g x +=,得1111()()n n g x g x +-=,所以数列1{}()n g x 是以1()g x 为首项,以1为公差的等差数列,继而得()1n x g x nx =+,经检验(0)0n g =,所以()(0)1n xg x x nx=≥+; 在0x ≥范围内()()f x a g x ≥恒成立,等价于()()0f x ag x -≥成立,令()()()h x f x ag x =-ln(1)1axx x =+-+,即min ()0h x ≥成立,221(1)1()1(1)(1)a x ax x a h x x x x +-+-'=-=+++,令()0h x '>,得1x a >-,分1a ≤和1a >两种情况讨论,分别求出()h x 的最小值,继而求出a 的取值范围;(3)由题设知:12(1)(2)()231ng g g n n ++⋅⋅⋅+=++⋅⋅⋅++,()ln(1)n f n n n -=-+,比较结果为:(1)(2)()ln(1)g g g n n n ++⋅⋅⋅+>-+,证明如下:上述不等式等价于1111ln(1)2341n n +++⋅⋅⋅+<++ 在(2)中取1a =,可得ln(1),01x x x x +>>+,令1,x n N n +=∈,则11ln 1n n n +>+,即1l n (1)l n 1n n n +->+,使用累加法即可证明结论.试题解析:()ln(1)f x x =+,1()1f x x '∴=+,()1xg x x∴=+(1)111()1111x x g x x x x+-===-+++ 0x ≥,11x ∴+≥,111x ∴≤+,1101x∴-≥+,即()0g x ≥,当且仅当0x =时取等号当0x =时,(0)0n g = 当0x >时()0g x >1()(())n n g x g g x +=1()()1()n n n g x g x g x +∴=+,11()111()()()n n n n g x g x g x g x ++∴==+,即1111()()n n g x g x +-=∴数列1{}()n g x 是以1()g x 为首项,以1为公差的等差数列 11111(1)1(1)1()()1n nxn n x g x g x x x+∴=+-⨯=+-⨯=+ ()(0)1n xg x x nx∴=>+当0x =时,0(0)010n g ==+ ()(0)1n xg x x nx ∴=≥+(2)在0x ≥范围内()()f x ag x ≥恒成立,等价于()()0f x ag x -≥成立令()()()ln(1)1axh x f x ag x x x=-=+-+,即()0h x ≥恒成立, 221(1)1()1(1)(1)a x ax x ah x x x x +-+-'=-=+++ 令()0h x '>,即10x a +->,得1x a >- 当10a -≤即1a ≤时,()h x 在[0,)+∞上单调递增()(0)ln(10)00h x h ≥=+-=所以当1a ≤时,()h x 在[0,)+∞上()0h x ≥恒成立;当10a ->即1a >时,()h x 在[1,)a -+∞上单调递增,在[0,1]a -上单调递减, 所以()(1)ln 1h x h a a a ≥-=-+ 设()ln 1(1)a a a a ϕ=-+>1()1a aϕ'=- 因为1a >,所以110a-<,即()0a ϕ'<,所以函数()a ϕ在(1,)+∞上单调递减 所以()(1)0a ϕϕ<=,即(1)0h a -< 所以()0h x ≥不恒成立综上所述,实数a 的取值范围为(,1]-∞ (3)由题设知:12(1)(2)()231n g g g n n ++⋅⋅⋅+=++⋅⋅⋅++, ()ln(1)n f n n n -=-+比较结果为:(1)(2)()ln(1)g g g n n n ++⋅⋅⋅+>-+证明如下:上述不等式等价于1111ln(1)2341n n +++⋅⋅⋅+<++ 在(2)中取1a =,可得ln(1),01xx x x+>>+ 令1,x n N n +=∈,则11ln 1n n n +>+,即1ln(1)ln 1n n n +->+故有1ln 2ln12->1ln 3ln 23->1ln(1)ln 1n n n +->+上述各式相加可得:1111ln(1)2341n n +>+++⋅⋅⋅++结论得证.考点:等差数列的判断及通项公式;函数中的恒成立问题;不等式的证明.。
2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年陕西理科数学高考试卷(带详解)
2014年陕西高考数学试题(理)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1.已知集合,则( )【测量目标】集合的基本运算.【考查方式】用描述法写出两集合,求其交集.【难易程度】容易【参考答案】B【试题分析】2.函数的最小正周期是( )【测量目标】三角函数的基本性质.【考查方式】已知三角函数表达式求其周期.【难易程度】容易【参考答案】B【试题分析】.3.定积分的值为( )【测量目标】定积分.【考查方式】给出解析式求定积分【难易程度】容易【参考答案】C【试题解析】=.4.根据右边框图,对大于2的整数,得出数列的通项公式是( )【测量目标】等比数列的通项公式、程序框图得出程序运算【考查方式】利用程序框图求等比数列【难易程度】中等【参考答案】C【试题分析】∴是=2,q=2的等比数列.选C.5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )【测量目标】空间几何体体积的运算.【考查方式】给出正四棱锥在球上,求球的体积【难易程度】容易【参考答案】D【试题解析】侧棱长为底面边长为1的正四棱柱.底面对角线长为,中点为.所以其半径为,所以其体积为V==.6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )【测量目标】随机事件概率【考查方式】给出随机事件求其概率【难易程度】容易【参考答案】B【试题分析】5中取2个有10种,距离小于边长只能是中心到4的顶点共4种,7.下列函数中,满足“”的单调递增函数是( )A. B. C. D.【测量目标】函数的基本性质.【考查方式】给出一特点,求满足特点的增函数【难易程度】中等【参考答案】B【试题分析】只有D不是递增函数.对B来说,.8.原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假D.假,假,假【测量目标】命题的判断【考查方式】对某一命题的逆命题、否命题、逆否命题的真假性判断.【难易程度】中等【参考答案】A【试题分析】原命题和逆否命题等价,逆命题和否命题等价.因为为递减数列,∴原命题为真,逆命题为真∴四个命题全真,选A.9.设样本数据的均值和方差分别为1和4,若(为非零常数, ),则的均值和方差分别为( )A. B. C. D.【测量目标】样本数据的均值和方差的性质.【考查方式】给出数据关系求数据均值和方差关系.【难易程度】容易【参考答案】A【试题分析】样本数据加同一个数,均值也加此数,方差不变10.如图,某飞行器在4千米高空水平飞行,从距着陆点的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )A. B. C. D.【测量目标】函数的解析式、导数的意义【考查方式】以图片形式给出条件求出函数解析式【难易程度】中等【参考答案】A【试题分析】由题意可知(-5,2)和(2,-5)和(0,0)在函数中,将三点带入等式成立的有A、B、D,再由(-5,2)和(2,-5)处为极值点,即有只有A 符合条件故选A.二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知则=________.【测量目标】指数与对数函数【考查方式】给出指数和对数函数求未知数【难易程度】容易【参考答案】【试题分析】.12.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【测量目标】圆的标准方程、对称的意义.【考查方式】给出圆心点关于直线的对称点以及半径求圆的标准方程【难易程度】容易【参考答案】【试题解析】因为(1,0)关于y=x对称的点为(0,1),所以其圆心点为(1,0),且半径为1所以圆的标准方程为.13.设,向量,若,则_______.【测量目标】三角函数的计算、向量的基本性质.【考查方式】用三角函数值来表示向量,利用其关系求正切值【难易程度】中等【参考答案】【试题分析】∵,,∴即解得.14.观察分析下表中的数据:多面体 面数()顶点数() 棱数()三棱锥 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中,所满足的等式是_________.【测量目标】类比推理.【考查方式】给出几个同类事物推理关系式【难易程度】容易【参考答案】F+V-E=2【试题解析】由题目归类推理容易的F+V-E=2.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为 .【测量目标】最值【考查方式】给出限定条件求最小值【难易程度】中等【参考答案】【试题分析】∵∴,则,∴.(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则 .【测量目标】几何图形【考查方式】给出图形,给出关系式求未知量【难易程度】中等【参考答案】3【试题分析】∵△AEF与△ACB相似∵且BC=6,AC=2AE,∴EF=3.(坐标系与参数方程选做题)在极坐标系中,点到直线的距离是 .【测量目标】极坐标、点到直线距离.【考查方式】给出直线极坐标及极坐标点的坐标求点到直线距离.【难易程度】容易【参考答案】1【试题分析】∵极坐标点对应直角坐标系点,直线=即对应,∴点到直线的距离.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)的内角所对的边分别为.(I)若成等差数列,证明:;(II)若成等比数列,且a=2c求的最小值.【测量目标】等差数列、等比数列、正弦定理、余弦定理.【考查方式】(1)用等差数列根据正弦定理证明三角函数关系(2)等比数列根据余弦定理求最值.【难易程度】中等【试题分析】(Ⅰ)因为a,b,c成等差,所以2b=a+c,即2sin B=sin A+sin C因为sin B=sin(A+C)所以Sin A+sin C=2sin(A+C).(Ⅱ)∵a,b,c成等比,且c=2a∴∴cos B=.17.(本小题满分12分)四面体及其三视图如图所示,过棱的中点作平行于,的平面分别交四面体的棱于点.(1)证明:四边形是矩形;(2)求直线与平面夹角的正弦值.【测量目标】空间几何体、线面的夹角大小【考查方式】计算集合体体积、计算线面夹角的正弦值.【难易程度】中等【试题分析】(1)证明:由该四面体的三视图可知,,,由题设,∥面,面面,面面,∥,∥,∥.同理∥,∥,∥.四边形是平行四边形,又,平面,,∥,∥,,四边形是矩形.(2)如图,以为坐标原点建立空间直角坐标系,则,,,,,,设平面的一个法向量,∥,∥,,即得,取,=.18.(本小题满分12分)在直角坐标系中,已知点,点在三边围成的区域(含边界)上.(1)若,求;(2)设,用表示,并求的最大值.【测量目标】平面坐标系,向量的基本运算.【考查方式】在平面坐标系中给出相关点并给出约束条件利用向量的基本运算求向量的模、根据相关关系式求最值问题【难易程度】较难【试题解析】(1)因为,所以,即得,所以.(2),,即,两式相减得:,令,由图可知,当直线过点时,取得最大值1,故的最大值为1.19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:300500作物产物(kg)概率0.50.5610作物市场价格(元/kg)概率0.40.6(1)设表示在这块地上种植1季此作物的利润,求的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【测量目标】随机事件分布列.【考查方式】根据给出的条件写出分布列,计算不同季节不少于产量的概率【难易程度】中等【试题解析】设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知,,因为利润=产量市场价格-成本,所以所有可能的取值为:,,,,,,,所以的分布列为:400020008000.30.50.2(2)设表示事件“第季利润不少于2000元”,由题意知相互独立,由(1)知,.3季利润均不少于2000元的概率为;3季中有2季利润不少于2000元的概率为.所以,这3季中至少有2季的利润不少于2000元的概率为. 20.(本小题满分13分)如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.(1)求的值;(2)过点的直线与分别交于(均异于点),若,求直线的方程.【测量目标】椭圆与抛物线性质.直线与椭圆的关系【考查方式】给出约束条件利用椭圆和抛物线的性质求椭圆的标准方程,利用直线特点及与椭圆关系求直线解析式.【难易程度】较难【试题解析】(1)在,方程中,令,可得b=1,且得是上半椭圆的左右顶点,设的半焦距为,由及,解得,所以,,由(1)知,上半椭圆的方程为,易知,直线与轴不重合也不垂直,设其方程为,代入的方程中,整理得:(*),设点的坐标,由韦达定理得,又,得,从而求得,所以点的坐标为,同理,由得点的坐标为,,,,,即,,,解得,经检验,符合题意,故直线的方程为.21.(本小题满分14分)设函数,其中是的导函数.(1),求的表达式;(2)若恒成立,求实数的取值范围;(3)设,比较与的大小,并加以证明.【测量目标】导函数、等差数列、函数的单调性、类比推理【考查方式】根据给出的条件解得函数解析式,推到取值范围、证明先关命题.【难易程度】较难【试题解析】,,.(1),,,,,即,当且仅当时取等号,当时,,当时,,,,即,数列是以为首项,以1为公差的等差数列,,,当时,,.(2)在范围内恒成立,等价于成立,令,即恒成立,,令,即,得,当即时,在上单调递增,,所以当时,在上恒成立;当即时,在上单调递增,在上单调递减,所以,设,,因为,所以,即,所以函数在上单调递减,所以,即,所以不恒成立,综上所述,实数的取值范围为.(3)由题设知:,,比较结果为:,证明如下:上述不等式等价于,在(2)中取,可得,令,则,即,故有,,,,上述各式相加可得:,结论得证.。
2014年全国高考陕西省数学(理)试卷及答案【精校版】
输出a 1,a 2,...,a N结束是否i >Ni =i +1S =a iS =1,i =1输入N开始a i =2*S2014年陕西高考数学试题(理)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则MN =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π3.定积分1(2)xx e dx +⎰的值为( ).2Ae + .1B e + .C e .1De -4.根据右边框图,对大于2的整数N , 得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=5.已知底面边长为1的正四棱柱的各顶点均在 同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离 不小于...该正方形边长的概率为( ) 1.5A 2.5B 3.5C 4.5D 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x =(B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 9.设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a 10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________.12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______. 13. 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若//a b ,则=θt a n_______.14. 观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,.(1)若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (2)若c b a ,,成等比数列,求B cos 的最小值. 17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,. 221俯视图左视图 主视图ABCDEFGH(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若0PA PB PC ++=,求OP ;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值. 19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.参 考 答 案一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1.B2.B3.C4.C5.D6.C7.D8.B9.A 10.A二、 填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).12.22(1)1x y +-= 13.1214.2F V E +-= 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. 解:(1)c b a ,,成等差数列 2a c b ∴+=由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+()sin sin 2sin A C A C ∴+=+(2)c b a ,,成等比数列22b ac ∴=由余弦定理得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==== 222a c ac +≥(当且仅当a c =时等号成立)2212a c ac+∴≥(当且仅当a c =时等号成立)2211112222a c ac +∴-≥-=(当且仅当a c =时等号成立)即1cos 2B ≥所以B cos 的最小值为1217、解:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH 面EFGH 面BDC FG = 面EFGH面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又,,BD AD AD DC BD DC D ⊥⊥=∴AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系, 则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA =,(2,2,0)BC =-,(2,2,0)BC =-设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD0,0n DA n BC ∴⋅=⋅=x即得z =0-2x+2y =0⎧⎨⎩,取(1,1,0)n =18. 解:(1)因为0PA PB PC ++= 所以()()()0OA OP OB OP OC OP -+-+-=即得1()(2,2)3OP OA OB OC =++=所以||22OP =(2)OP mAB nAC =+(,)(2,2)x y m n m n ∴=++即22x m n y m n =+⎧⎨=+⎩两式相减得:m n y x -=-令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.解:19.解:设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ”, 由题设知()0.5P A =,()0.4P B = 因为利润=产量⨯市场价格-成本 所以X 所有可能的取值为5001010004000⨯-=,500610002000⨯-= 3001010002000⨯-=,30061000800⨯-=(4000)()()(10.5)(10.4)0.3P X P A P B ===--=,(2000)()()()()(10.5)0.40.5(10.4)0.5P X P A P B P A P B ==+=-⨯+⨯-=,(800)()()0.50.40.2P X P A P B ===⨯=,所以X的分布列为sin |cos ,||||||BA n BA n BA n θ⋅∴=<>===⋅(2)设i C 表示事件“第i 季利润不少于2000元”(1,2,3)i =, 由题意知123,,C C C 相互独立,由(1)知,()(4000)(2000)0.30.50.8i P C P X P X ==+==+=(1,2,3)i =3季利润均不少于2000元的概率为3123123()()()()0.80.512P C C C P C P C P C ===3季中有2季利润不少于2000元的概率为2123123123()()()30.80.20.384P C C C P C C C P C C C ++=⨯⨯=所以,这3季中至少有2季的利润不少于2000元的概率为0.5120.3840.896+=20.解:(1)在1C ,2C 方程中,令0y =,可得b=1,且得(1,0),(1,0)A B -是上半椭圆1C 的左右顶点,设1C 的半焦距为c ,由c a =及2221a c b -==,解得2a = 所以2a =,1b =(3)由(1)知,上半椭圆1C 的方程为221(0)4y x y +=≥, 易知,直线l 与x 轴不重合也不垂直,设其方程为(1)(0)y k x k =-≠ 代入1C 的方程中,整理得:2222(4)240k x k x k +-+-= (*)设点P 的坐标(,)P P x y由韦达定理得2224P B k x x k +=+又(1,0)B ,得2244P k x k -=+,从而求得284P ky k -=+所以点P 的坐标为22248(,)44k kk k --++ 同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ---- 22(,4)4kAP k k ∴=+,(1,2)AQ k k =-+ AP AQ ⊥0AP AQ ∴⋅=,即222[4(2)]04k k k k --+=+0k ≠,4(2)0k k ∴-+=,解得83k =-经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--21.解:()ln(1)f x x =+,1()1f x x '∴=+,()1xg x x∴=+(1)111()1111x x g x x x x+-===-+++ 0x ≥,11x ∴+≥,111x ∴≤+,1101x∴-≥+,即()0g x ≥,当且仅当0x =时取等号当0x =时,(0)0n g =当0x >时()0g x >1()(())n n g x g g x +=1()()1()n n n g x g x g x +∴=+,11()111()()()n n n n g x g x g x g x ++∴==+,即1111()()n n g x g x +-= ∴数列1{}()n g x 是以1()g x 为首项,以1为公差的等差数列 11111(1)1(1)1()()1n nxn n x g x g x x x+∴=+-⨯=+-⨯=+ ()(0)1n xg x x nx ∴=>+当0x =时,0(0)010n g ==+ ()(0)1n xg x x nx∴=≥+ (2)在0x ≥范围内()()f x ag x ≥恒成立,等价于()()0f x ag x -≥成立令()()()ln(1)1axh x f x ag x x x=-=+-+,即()0h x ≥恒成立, 221(1)1()1(1)(1)a x ax x ah x x x x +-+-'=-=+++ 令()0h x '>,即10x a +->,得1x a >- 当10a -≤即1a ≤时,()h x 在[0,)+∞上单调递增()(0)ln(10)00h x h ≥=+-=所以当1a ≤时,()h x 在[0,)+∞上()0h x ≥恒成立;当10a ->即1a >时,()h x 在[1,)a -+∞上单调递增,在[0,1]a -上单调递减, 所以()(1)ln 1h x h a a a ≥-=-+ 设()ln 1(1)a a a a ϕ=-+>1()1a aϕ'=- 因为1a >,所以110a-<,即()0a ϕ'<,所以函数()a ϕ在(1,)+∞上单调递减 所以()(1)0a ϕϕ<=,即(1)0h a -< 所以()0h x ≥不恒成立综上所述,实数a 的取值范围为(,1]-∞ (3)由题设知:12(1)(2)()231n g g g n n ++⋅⋅⋅+=++⋅⋅⋅++, ()ln(1)n f n n n -=-+比较结果为:(1)(2)()ln(1)g g g n n n ++⋅⋅⋅+>-+ 证明如下:上述不等式等价于1111ln(1)2341n n +++⋅⋅⋅+<++ 在(2)中取1a =,可得ln(1),01x x x x+>>+ 令1,x n N n +=∈,则11ln 1n n n +>+,即1ln(1)ln 1n n n +->+ 故有1ln 2ln12-> 1ln 3ln 23-> ⋅⋅⋅⋅⋅⋅ 1ln(1)ln 1n n n +->+ 上述各式相加可得:1111ln(1)2341n n +>+++⋅⋅⋅++ 结论得证.。
2014年高考理数真题试卷(陕西卷)
第 3页,总 17页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
(1)证明:四边形 EFGH 是矩形;
C . an=2n
D . an=2n﹣1
5. (2014•陕西)设样本数据 x1 , x2 , …,x10 的均值和方差分别为 1 和 4,若 yi=xi+a(a 为非零常数,
i=1,2,…,10),则 y1 , y2 , …,y10 的均值和方差分别为( )
A . 1+a,4 B . 1+a,4+a C . 1,4 D . 1,4+a
第Ⅱ卷 主观题
评卷人 得分
一、填空题(共 7 题)
1. (2014•陕西)已知 4a=2,lgx=a,则 x=
.
2.(2014•陕西)若圆 C 的半径为 1,其圆心与点(1,0)关于直线 y=x 对称,则圆 C 的标准方程为
.
3. (2014•陕西)设 a,b,m,n∈R,且 a2+b2=5,ma+nb=5,则
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
2014 年高考理数真题试卷(陕西卷)
(1)若 a,b,c 成等差数列,证明:sinA+sinC=2sin(A+C14•陕西)观察分析下表中的数据:
15.2014年普通高等学校招生全国统一考试(陕西卷)(答案版)
2014年普通高等学校招生全国统一考试(陕西卷)数 学(理科)一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)2.函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( ) A. π2B .πC .2πD .4π3.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1 4.根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -15.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A. 32π3 B .4πC .2π D. 4π36. 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( )A. 15B. 25C. 35D. 457. 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=21x B .f (x )=x 3 C .f (x )=⎝⎛⎭⎫12x D .f (x )=3x8.原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假9.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a ,4B .1+a ,4+aC .1,4D .1,4+a是 ,,N a结束10. 如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.已知4a =2,lg x =a ,则x =________.12.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为 ___________________________.13.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.14.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.B .(几何证明选做题)如图1-3,△ABC 中,BC =6,以BC 为直径的半圆分 别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =________. C .(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________. 三、解答题(本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1) 若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2) 若a ,b ,c 成等比数列,求cos B 的最小值.17.(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1) 证明:四边形EFGH 是矩形;(2) 求直线AB 与平面EFGH 夹角θ的正弦值.18.(本小题满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1) 若P A →+PB →+PC →=0,求|OP →|;(2) 设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1) 设X(2) 若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.20.(本小题满分13分)如图所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1) 求a,b的值;(2) 过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.21.(本小题满分14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1) 令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2) 若f(x)≥ag(x) 恒成立,求实数a的取值范围;(3) 设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.参考答案一、选择题1—10 B B C C D C D B A A1.[解析] 由M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R }={x |-1<x <1,x ∈R },得 M ∩N =[0,1).2.[解析] 已知函数y =A cos(ωx +φ)(A >0,ω>0)的周期为T =2πω,故函数f (x )的最小正周期T =2π2=π.3.[解析] ⎠⎛01(2x +e x )d x =(x 2+e x )10=(12+e 1)-(02+e 0)=e .4.[解析] 阅读题中所给的程序框图可知,对大于2的整数N ,输出数列:2,22=22,222=23,223=24,…,22N -1=2N ,故其通项公式为a n =2n .5.[解析] 设该球的半径为R ,根据正四棱柱的外接球的直径长为正四棱柱的体对角线长,可得(2R )2=(2)2+12+12,解得R =1,所以该球的体积为V =43πR 3=43π.6.[解析] 利用古典概型的特点可知从5个点中选取2个点的全部情况有C 25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P =610=35.7.[解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x 为单调递减函数,所以排除选项B.8.[解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.9.[解析] 由题意可知x 1+x 2+x 3+…+x 1010=1,故y -=(x 1+x 2+x 3+…+x 10)+10a10=1+a .数据x 1,x 2,…,x 10同时增加一个定值,方差不变.故选A.10.[解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .二、填空题11. 10 12.x 2+(y -1)2=1 13. 1214.F +V -E =215.A. 5 B .3 C .111. [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012=10.12.[解析] 由圆C 的圆心与点(1,0)关于直线y =x 对称,得圆C 的圆心为(0,1).又因为圆C 的半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.13. [解析] 因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.[解析] 由题中所给的三组数据,可得5+6-9=2,6+6-10=2,6+8-12=2,由此可以猜想出一般凸多面体的顶点数V 、面数F 及棱数E 所满足的等式是F +V -E =2.15. [解析] A .由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,代入数据,得m 2+n 2≥5,当且仅当an =bm 时,等号成立,故m 2+n 2 的最小值为 5.B .由题意,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽ACB ,所以AEAC=EFBC.因为AC =2AE ,BC =6,所以EF =3. C .点⎝⎛⎭⎫2,π6的极坐标可化为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即点⎝⎛⎭⎫2,π6在平面直角坐标系中的坐标为(3,1).直线ρsin ⎝⎛⎭⎫θ-π6=ρsin θcos π6-ρcos θsin π6=1,即该直线在直角坐标系中的方程为x -3y +2=0,由点到直线的距离公式得所求距离为d =|3-3+2|12+(-3)2=1.三、解答题16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立,∴cos B 的最小值为12.17.解:(1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.(2)方法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA =(0,0,1),BC =(-2,2,0),BA =(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA =0,n ·BC =0, 得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105.方法二:如图,以D 为坐标原点建立空间直角坐标系, 则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝⎛⎭⎫1,0,12,F (1,0,0),G (0,1,0).∴FE →=⎝⎛⎭⎫0,0,12,FG =(-1,1,0), BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), 则n ·FE =0,n ·FG =0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA →||n |=25×2=105.18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ), ∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2.方法二:∵P A →+PB →+PC →=0, 则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0,∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →,∴(x ,y )=(m +2n ,2m +n ), ∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.19.解:(1)设A 表示事件“作物产量为300 kg”,B 表示事件“作物市场价格为6元/kg”,由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量市场价格-成本, ∴X 所有可能的取值为50010-1000=4000,5006-1000=2000, 30010-1000=2000,3006-1000=800.P (X =4000)=P (A )P (B )=(1-0.5)(1-0.4)=0.3,P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)0.4+0.5(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.50.4=0.2, 所以X 的分布列为(2) 设C i 表示事件“第i 3), 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896. 20.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2,∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0),得点Q 的坐标为(-k -1,-k 2-2k ).∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.21.解:由题设得,g (x )=x1+x(x ≥0).(1)由已知,g 1(x )=x 1+x , g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x=x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x1+nx .下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx .那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx=x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立.设φ(x )=ln(1+x )-ax1+x(x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1, 结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!7Å&"!5"!#" #$##%&'(!$%( )*+,!&%(-!$%. /01 6541789:;/<= >?.<AB1CDE %213!%41 541$( 3$%(!!!,)*-(##)#!%%#$ $%:(##)#&,!%#$$%+-#:(!##""!&%%!'.!&%%!"/!!%%!'0!!%%!"&!-.%!#"(;<:&#*()'/® >S £6!##""! &.!/!&0!3+!0Ò 9!%!@#"K #/ 4!##""!@1&.!@1!/!@0!@*!3! ö9k d %Ñx %&/ .:% /.:/>Ö\ 6!##""!.6(&6.!.6(&!6*!"/!.6(&60!.6(&6*!$!'(T |k£4!%(£4槡&/> '/P FõRNCD |h %+¬ /©Ò4!##""!+&+.!3 /!& 0!3 +'!à>¡¢ D F 8 =.ë$DF=%X &DF %+ë&D F/KL 77%7¬>¡¢k£/ab4!##""!!$.!&$/!+$0!3$6!9:-.=%Ôr /%!#1*"(%!#"%!*"0/abc§-.6!##""!%!#"(#!&.!%!#"(#+/!%!#"(()!�!%!#"(+#5!2 4/ ?!%?& 4 @.%+)?!)()?&)0%B% » %¾ %»¾ Èu /Íδµc9%>?/6!##""! %È%.!È%È%/! % %È0!È%È%È=!,óÓ.ö#!%#&%.%#!%/õ ×¡Ý 4!×3% *A (#A1.!.4; Ø.%A (!%&%.%!%"%+*!%*&%.%*!%/õ ×¡Ý 4!##""!!1.%3.!!1.%31./!!%30!!%31.!%!cd %§8{¤R 3q §UI ô8{%àK ü9F "/ ôKL !%q §5±j9ó%'(9ó8{ÃÄ4§ªµ-.d w/C Z %+¬-./ x 4!##""!*(!!&$#+*+$#.!*(&!&$#+*3$#/!*(+!&$#+*#0!*(*+!&$#+1!$#!%%U VW1 R V[6 %213$41 541$( 3&$( !!!!'(3.(&%A D #(.%+#(####!!&! e (/fg4!% e . F !!%%"B%pB *(#ÑE %+e (/% ¡}4########!!+!,%,(,&%F ê (!:29&(%;<:("% (!;<:(%!"% 0 %+789((####!!3!" x 9t=/.ö(¨|©|.!'" F.!J ".!<"ª'$'=Ñe ''!% ¡©'5!&:;C <=¨|©='%J %<_Ôr/ 6########!!$! )Nz{ h6 uX1=j/.1QR klmn opqn9L.1 ("-! Y T ",.%/%)%6$ %5.&1/&($%).16/($%+)&16槡&/® 4####!.-!89ÙÚY T "cd %)"$(=%$(('%ú$(4pg/fe "$%"(%F <%'% "((&"<%+<'(####!/-!1%² Z.¡}Y T "R `1%²=%F &% ()'G p B ':29(*()'(!/KL6####!X YR1 YRZ[8\]^_ `_abcdefg %213'41 36$( !!'!!Ó Ô !& ")"$(/Ði "%$%(_Ñ/k 4.%/%5!! " .%/%5v Ý.:%ÙÚ(:29"1:29((&:29!"1("*! " .%/%5v Å.:%ò;<:$/® !!6!!Ó Ô !& "|©"$(18 ª«dcd _u %n"$/=F <oô{%"1%$(/ô| |©/$1%1(%("%F '%G %H !! "ÙÚ( k¢<'G H 6f ¢*! "òpB "$ ô|<'G H Ïi (/>, !#!5!!Ó Ô !& "Rpi 1%²#+*=%'(F "!!%!"%$!&%+"%(!+%&"%F ,!#%*"R )"$(ªk v/÷2! k "h !! " '(,"1'(,$1'(,(( %ò)'(+,)*! ",'(+,('()"$1'(6"(!)%6$ "%³#%*tu )*6%Þò)*6/®x !!=!!Ó Ô !& "RC Ô>H hå?Cåo % @å?vÓ4!%%%r %Ëo /ÁĦ ×ëÔH h/äêõ¾`RÌu %5 m % ¾©{|c9t (######o äê!GD"+%%$%%a #b%!$%!$#o ÁĦ !r UGD "'!%a #b%!3%!'! ",;tuRëÔH hå?!@Ëo /ÿÚ%ò;/ ñ:*! " RëÔH h PQ +@å?Ëo %òë+@=h¢`&@/ÿÚ 7¢%77&%%%r /ab !&%!!Ó Ô !+ "cd %AB (Êhf -e (!(*&.&1#&/&(!!.4/4%%*!%"×Z B (&(*(*#&1!!*"%"P;©v %(! (&/\ F4"%$% =(!/L .b4槡+&!! "ò.%// *! "nF $/pB 3 (!%(& %F ,%4!õ %F "%$"% ",,"4%òpB 3/¡}!&!!!Ó Ô !3 ",-.%!#"(A 9!!1#"%&!#"(#%E !#"%#!%% =%E !#"6%!#"/7-.!! "n &!!#"(&!#"%&61!!#"(&!&6!#""%6$ 1%ò&6!#"/t þ *! " %!#"!.&!#"Óv %ò¥../ *! ",6$ 1%ÅÏ&!!"1&!&"1.1&!6" 6*%!6"/x %Þ[úÙÚ!。