上海市虹口区2012届高三数学(理科)二模试卷

合集下载

2012年上海高考理科数学试卷及解析

2012年上海高考理科数学试卷及解析

2012年上海市高考数学试卷(理科)一、填空题( 分):.( 上海)计算: ( 为虚数单位)..( 上海)若集合 > , ﹣ < ,则 ..( 上海)函数 ( ) 的值域是 ..( 上海)若 (﹣ , )是直线 的一个法向量,则 的倾斜角的大小为 (结果用反三角函数值表示)..( 上海)在的二项展开式中,常数项等于..( 上海)有一列正方体,棱长组成以 为首项、为公比的等比数列,体积分别记为 , , , , ,则( )..( 上海)已知函数 ( ) ﹣ ( 为常数).若 ( )在区间 , )上是增函数,则 的取值范围是 ..( 上海)若一个圆锥的侧面展开图是面积为 的半圆面,则该圆锥的体积为 ..( 上海)已知 ( ) 是奇函数,且 ( ) ,若 ( ) ( ) ,则 (﹣ ) ..( 上海)如图,在极坐标系中,过点 ( , )的直线 与极轴的夹角 ,若将 的极坐标方程写成 ( )的形式,则 ( )..( 上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)..( 上海)在平行四边形 中, ,边 、 的长分别为 、 ,若 、 分别是边 、 上的点,且满足 ,则的取值范围是 ..( 上海)已知函数 ( )的图象是折线段 ,其中 ( , )、 (, )、 ( , ),函数 ( )( )的图象与 轴围成的图形的面积为 ..( 上海)如图, 与 是四面体 中互相垂直的棱,,若 ,且 ,其中 、 为常数,则四面体 的体积的最大值是 .二、选择题( 分):.( 上海)若 是关于 的实系数方程 的一个复数根,则(). , . ﹣ , . ﹣ , ﹣ . , ﹣.( 上海)在 中,若 < ,则的形状是().锐角三角形 .直角三角形 .钝角三角形 .不能确定.( 上海)设 < < < , ,随机变量 取值 、 、 、 、 的概率均为 ,随机变量 取值、、、、的概率也均为 ,若记 、 分别为 、的方差,则(). >.. <. 与 的大小关系与 、 、 、 的取值有关.( 上海)设 , ,在 ,, 中,正数的个数是(). . . .三、解答题(共 小题,满分 分).( 上海)如图,在四棱锥 ﹣ 中,底面 是矩形, 底面 , 是 的中点,已知 , , ,求:( )三角形 的面积;( )异面直线 与 所成的角的大小..( 上海)已知 ( ) ( )( )若 < ( ﹣ )﹣ ( )< ,求 的取值范围;( )若 ( )是以 为周期的偶函数,且当 时, ( ) ( ),求函数 ( )( , )的反函数..( 上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 轴正方向建立平面直角坐标系(以 海里为单位长度),则救援船恰好在失事船正南方向 海里 处,如图,现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发 小时后,失事船所在位置的横坐标为( )当 时,写出失事船所在位置 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.( )问救援船的时速至少是多少海里才能追上失事船?.( 上海)在平面直角坐标系 中,已知双曲线 : ﹣.( )过 的左顶点引 的一条渐进线的平行线,求该直线与另一条渐进线及 轴围成的三角形的面积;( )设斜率为 的直线 交 于 、 两点,若 与圆 相切,求证: ;( )设椭圆 : ,若 、 分别是 、 上的动点,且 ,求证: 到直线 的距离是定值..( 上海)对于数集 ﹣ , , , , ,其中 < < < < , ,定义向量集 ( , ), , ,若对任意,存在,使得,则称 具有性质 .例如 ﹣ , , 具有性质 .( )若 > ,且 ﹣ , , , 具有性质 ,求 的值;( )若 具有性质 ,求证: ,且当 > 时, ;( )若 具有性质 ,且 、 ( 为常数),求有穷数列 , , , 的通项公式.年上海市高考数学试卷(理科)参考答案与试题解析一、填空题( 分):.( 上海)计算: ﹣ ( 为虚数单位).考点:复数代数形式的乘除运算。

2012年高考真题试卷理科数学(上海卷)答案解析版(2)

2012年高考真题试卷理科数学(上海卷)答案解析版(2)

2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分): 1.计算:=+-ii13 (i 为虚数单位)。

【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。

【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。

【答案】)3,21(-3.函数1sin cos 2)(-= x xx f 的值域是 。

【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12s i n 1≤≤-x ,所以212s i n 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。

【答案】]23,25[--4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。

【答案】2arctan5.在6)2(xx -的二项展开式中,常数项等于 。

【解析】二项展开式的通项为k kk k k k k x C xx C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。

【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。

【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78。

2012届高三二模考试数学试卷(理)及答案

2012届高三二模考试数学试卷(理)及答案

2012届高三模拟考试数学试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A. 1B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{2,B x x =≤∈Z },则A B = ( )A. (0,2)B. [0,2]C. {0, 2}D. {0,1,2}3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为. A. 1 B. 3 C 6 D. 25.设向量(1,0)a = ,11(,)22b = ,则下列结论正确的是 ( )A.a b =B.2a b ⋅= C. a ∥b D. a b - 与b 垂直6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( )A.715816P <≤ B. 1516P > C. 715816P ≤< D.3748P <≤ 7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>; ③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑ 若记,则回归直线y =bx a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>= 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A的纵坐标为35.则s i n α=_____________;tan(2)πα-=_______________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为__________________.11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是_________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则ADAC= ;15.(坐标系与参数方程选做题) 已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式;(2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(本小题满分14分) 有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.18.(本小题满分14分)如图5(1)中矩形ABCD 中,已知2AB =,AD =MN 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使平面ABNM 与平面MNCD 所成角为60 ,如图5(2).(1) 求证:BO DO ⊥;(2) 求AO 与平面BOD 所成角的正弦值.OABDC MNABDCMNO图6B A19.(本小题满分12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos 1A bB a == (1)求证:ABC ∆是直角三角形;(2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求PAC ∆面积最大值.20.(本小题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点. (1)求动点P 的轨迹1C 的方程; (2)设曲线1C上的三点1122(,),(,)A x y B C x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.21.(本小题满分14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;(3)已知正数12,,,n λλλL ,满足121n λλλ+++=L ,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,nx x x L ,都有1122()n n f x x x λλλ+++>L 1122()()()n n f x f x f x λλλ+++L .2012届高考模拟测试数学试题(理科)参考答案和评分标准一.选择题:CACBD ABB二填空题:9.35(2分)247(3分) 10. 22(1)2x y -+= 11. 13 12. 15- 13. 33(,][,)22-∞-+∞ 14. 4315.1三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分14分)解:(1)设数列{}n a 的公比为q ,……………1分若1q =,则111S a ==,21244S a ==,31399S a ==,故13231022S S S +=≠⨯,与已知矛盾,故1q ≠,………………………………………………2分从而得1(1)111n nn a q q S q q--==--,………………………………………………4分由1S ,22S ,33S 成等差数列,得132322S S S +=⨯,即321113411q q q q--+⨯=⨯--, 解得13q =……………………………………………5分 所以11113n n n a a q--⎛⎫=⋅= ⎪⎝⎭.………………………………………………6分(2)由(1)得,11()3n n n b a n n -=+=+,………………………………7分 所以12(1)(2)()n n T a a a n =++++++1(1)(1)(12)12n n b q n nS n q -+=++++=+- ………………………………10分2111()(1)333.12213n n n n n n --+++-=+=-……………………………12分 17.(本题满分12分)(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分) (2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ== … (7分)… (10分)E ξ=0×110+1×1130+2×25+3×215=4730 …(12分)18(本题满分14分)解:(1)由题设,M ,N 是矩形的边AD 和BC 的中点,所以AM ⊥MN, BC ⊥MN, 折叠垂直关系不变,所以∠AMD 是平面ABNM 与平面MNCD 的平面角,依题意,所以∠AMD=60o , ………………………………………………………………………………………………………2分 由AM=DM ,可知△MAD 是正三角形,所以AD=2,在矩形ABCD 中,AB=2,AD=所以,,由题可知,由勾股定理可知三角形BOD 是直角三角形,所以BO ⊥DO ……………………………………………………………………………………… 5分解(2)设E ,F 是BD ,CD 的中点,则EF ⊥CD, OF ⊥CD, 所以,CD ⊥面OEF, OE CD⊥ 又BO=OD ,所以OE ⊥BD, OE⊥面ABCD, OE ⊂面BOD , 平面BOD ⊥平面ABCD过A 作AH ⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连结OH ,…………………… 8分 所以OH 是AO 在平面BOD 的投影,所以∠AOH 为所求的角,即AO 与平面BOD 所成角。

2012年上海市高考数学试卷(理科)附送答案

2012年上海市高考数学试卷(理科)附送答案

2012年上海市高考数学试卷(理科)一、填空题(56分):1.(4分)计算:=(i为虚数单位).2.(4分)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=.3.(4分)函数f(x)=的值域是.4.(4分)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为(结果用反三角函数值表示).5.(4分)在的二项展开式中,常数项等于.6.(4分)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V2,…,V n,…,则(V1+V2+…+V n)═.7.(4分)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是.8.(4分)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.9.(4分)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g (﹣1)=.10.(4分)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.11.(4分)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).12.(4分)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是.13.(4分)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.14.(4分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.二、选择题(20分):15.(5分)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣116.(5分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定17.(5分)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关18.(5分)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100三、解答题(共5小题,满分74分)19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.20.(14分)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.(14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?22.(16分)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP ⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.23.(18分)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).【分析】由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案【解答】解:故答案为1﹣2i2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).【分析】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案【解答】解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x <3},所以A∩B=(﹣,3)故答案为(﹣,3)3.(4分)(2012•上海)函数f(x)=的值域是.【分析】先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.【解答】解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).【分析】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.【解答】解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan25.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.=x6﹣r(﹣)r=(﹣2)r x6﹣2r【解答】解:展开式的通项为T r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1606.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V2,…,V n,…,则(V1+V2+…+V n)═.【分析】由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求【解答】解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V 1+V2+…+v n)==故答案为:7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1] .【分析】由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围【解答】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.【分析】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f (x)+2,则g(﹣1)=﹣1.【分析】由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案【解答】解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.【分析】取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.【解答】解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).【分析】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.【解答】解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5] .【分析】画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.【解答】解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.【分析】根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.【解答】解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.【分析】作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.【解答】解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭球上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1【分析】由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项【解答】解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围【解答】解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关【分析】根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.【解答】解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100【分析】由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断【解答】解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA ⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.【分析】(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.【解答】解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,而PA、AD是平面PAD的交线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.【分析】(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.【解答】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?【分析】(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P 的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.【解答】解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP ⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.【分析】(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON 不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.【解答】解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.【分析】(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t 异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.【解答】解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n具有性质P,则A k也具有性质P.先证明若A k+1任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而因为A k+1s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,+1x k}具有性质P,═{﹣1,q,q2,…,q k﹣1,x k+1}.所以A k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=取=(x k+1﹣1=,不可能若t=﹣1,则x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k所以s=﹣1,x k+1综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.。

2012虹口二模答案

2012虹口二模答案

2012年虹口区中考数学模拟练习卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题共6题,满分24分)1.A ; 2.B ; 3.C ; 4.D ; 5.B ; 6.C .二、填空题:(本大题共12题,满分48分)7.2(3)(3)x x +-; 8.2; 9.12122,1,1, 2.x x y y ==-⎧⎧⎨⎨=-=⎩⎩; 10.1x =-; 11.2y x =-; 12.(1,0)-; 13.12; 14.11+22a b -;15.45; 16.10; 17.240; 18.或.三、解答题:(本大题共7题,满分78分) 19.解:原式=2213++-……………………………………………………(8分) =0 …………………………………………………………………………………(2分)20.解法1:去分母,得:2(1)(33)2(1)x x x x x -++=+, ………………………(2分)整理,得:24830x x ++= …………………………………………………………(3分)解这个方程,得: 1213,22x x =-=-. …………………………………………(4分) 经检验,1213,22x x =-=-都是原方程的根.所以,原方程的根是1213,22x x =-=-.…………………………………………(1分)解法2:设1xy x =+, 则原方程可化为:32y y-=………………………………………………………(1分)整理,得:2230y y --=…………………………………………………………(2分) 解这个方程,得123,1y y ==-……………………………………………………(2分)当3y =时,31xx =+ 解得32x =- ………………………………………(2分)当1y =-时,11xx -=+ 解得12x =- ………………………………………(2分)经检验,1213,22x x =-=-都是原方程的根.所以,原方程的根是1213,22x x =-=-.………………………………………(1分)21.解:联结OA ,联结OD 交AB 于点E ……………………………………………………(1分)∵ AD BD= ∴OD ⊥AB , AB=2AE …………………………………………………(2分) 在Rt △ADE 中,1tan 2DE DAB AE ∠== 设DE=x ,AE=2x ,……………………………………………………………………(1分) 则OE=5- x 在Rt △AOE 中,222AO OE AE =+∴2225(5)(2)x x =-+ ……………………………………………………………(2分) 解得:122,0x x ==(舍去)………………………………………………………(1分) ∴DE=2,AB=2AE=8…………………………………………………………………(1分) ∴8216ABCD S =⨯= ………………………………………………………………(2分)即 ABC D 的面积为16 22.解:(1)25,6次;……………………………………………………………………(4分) (2)图略;………………………………………………………………………………(3分) (3)8731259025++⨯=(人). 答:该校125名九年级男生约有90人体能达标.……………………………(3分)23. 证明:(1)∵ED ∥BC∴GB GCGE GA=……………………………………………………………………………(1分) ∵GB 2 =GE ·GF ∴GB GFGE GB=∴GF GC GB GA= ……………………………………………………………………………(2分) ∴AB ∥CF 即AB //CD …………………………………………………………………(2分) 又∵ED ∥BC∴四边形ABCD 为平行四边形…………………………………………………………(1分)(2)联结BD 交AC 于点O ………………………………………………………………(1分)∵四边形ABCD 为平行四边形∴BO=DO ,………………………………………………………………………………(2分) ∵GB=GD ∴OG ⊥BD 即AC ⊥BD ………………………………………………(2分)又∵四边形ABCD 为平行四边形∴四边形ABCD 为菱形…………………………………………………………………(1分)24.解:(1)抛物线的对称轴为直线1x =- …………………………………………(3分)(2)把A (-3,0)和B (1,0)分别代入2(0)y ax bx c a =++≠得:0930a b ca b c =-+⎧⎨=++⎩解得:3c a =-……………………………………………(3分)∴3OC a =………………………………………………………………………(1分) (3)当∠ACB =90°时,易得△AOC ∽△BOC∴23OC OB OA =⋅=∴OC = …………………………………………(1分)∴0C 或(, ①a >0时,c <0∵∠ACB 不小于90°∴0c ≤<………………………………………(1分) ∵c =-3a∴0a <≤………………………………………………………(1分) ②a <0时,c >0∵∠ACB 不小于90°∴0c <≤(1分) ∵c=-3a∴0a ≤<………………………………………………………(1分)所以,综上述,知:0a ≤<或0a <≤.25.解:(1)当120CMF ∠=︒时,可求得:30BMO ∠=︒ …………………………(2分) ∴Rt MOB ∆中,cot 30MB OB =⋅︒= ……………………………(2分)(2)联结ON ,可证:ANO ∆≌1B NO ∆ ∴1AON B ON ∠=∠,1AN NB = 又∵1MOB MOB ∠=∠ ∴90NOM ∠=︒又190OB M B ∠=∠=︒∴可证:1MBO ∆∽1OB N ∆ ∴2111OB MB NB =⋅又1=MB MB x =,12OB OB == ∴212x NB =⋅ ∴14NB x =∴4AN x=……………………………………(2分) ∵AD AB ⊥ ∴90DAB ∠=︒ 又90B ∠=︒ ∴//AD BC∴CMF ∆∽ANF ∆∴22441444CMF ANF C CM x x x x x C AN x∆∆--====-+ ∴214y x x =-+ (04)x <<………………………………………………(2分,1分)(3)由题意知:45EAO C ∠=∠=︒∵△FMC ∽△AEO ∴只有两种情况:FMC AEO ∠=∠或FMC AOE ∠=∠①当FMC AEO ∠=∠时,有CFM AOE ∠=∠又可证:AOE OMB FMO ∠=∠=∠ ∴CFM FMO ∠=∠ ∴//OM AC ∴45OMB C ∠=∠=︒∴Rt MOB ∆中,cot 452MB OB =⋅︒=………………………………………(2分) ②当FMC AOE ∠=∠时,∵AOE OMB OMF ∠=∠=∠ ∴60CMF OMF OMB ∠=∠=∠=︒∴Rt MOB ∆中,cot 60MB OB =⋅︒=………………………………(2分) 所以,综上述,知2BM =或BM =……………………………………(1分)。

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).考点:交集及其运算.专题:计算题.分析:由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案解答:解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x<3},所以A∩B=(﹣,3)故答案为(﹣,3)点评:本题考查交集的运算,解题的关键是熟练掌握交集的定义及运算规则,正确化简两个集合对解题也很重要,要准确化简3.(4分)(2012•上海)函数f(x)=的值域是.考点:二阶矩阵;三角函数中的恒等变换应用.专题:计算题.分析:先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.解答:解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:点评:本题主要考查了二阶行列式的求解,以及三角函数的化简和值域的求解,同时考查了计算能力,属于基础题.4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).考点:平面向量坐标表示的应用.专题:计算题.分析:根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.解答:解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan2点评:本题主要考查了方向向量与斜率的关系,以及反三角的应用,同时运算求解的能力,属于基础题.5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160点评:本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.6.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点:数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1].考点:指数函数单调性的应用.专题:综合题.分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围解答:解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]点评:本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=﹣1.考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案解答:解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.考点:简单曲线的极坐标方程.专题:计算题.分析:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.解答:解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:点评:本题主要考查了简单曲线的极坐标方程,以及正弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].考点:平面向量的综合题.专题:计算题.分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点:函数的图象.专题:计算题;综合题;压轴题.分析:根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.解答:解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.点评:本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于难题.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE 都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.解答:解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能力以及计算能力.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1考点:复数相等的充要条件.专题:计算题;转化思想.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:余弦定理的应用;三角形的形状判断.专题:解三角形.分析:由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围解答:解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C点评:本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础试题17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;压轴题.分析:根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.解答:解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.点评:本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.考点:直线与平面垂直的性质;异面直线及其所成的角.专题:证明题;综合题;空间位置关系与距离;空间角.分析:(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.解答:解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.点评:本题根据一个特殊的四棱锥,求异面直线所成的角和证明线面垂直,着重考查了异面直线及其所成的角和直线与平面垂直的性质等知识,属于中档题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.考点:直线与圆锥曲线的综合问题;圆锥曲线的综合.专题:计算题;压轴题;转化思想.分析:(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.解答:解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.考点:数列与向量的综合;元素与集合关系的判断;平面向量的综合题.专题:计算题;证明题;综合题;压轴题.分析:(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.解答:解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n先证明若A k+1具有性质P,则A k也具有性质P.任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k+1═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,x k}具有性质P,所以A k+1═{﹣1,q,q2,…,q k﹣1,x k+1}.取=(x k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1=,不可能所以s=﹣1,x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.。

2012年高考理科数学上海卷-答案

2012年高考理科数学上海卷-答案

2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角 【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项【考点】二项式定理6.【答案】87【提示】由题意可得,正方体的体积1318n n n V a -⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围【考点】指数函数单调性8.【答案】3【解析】如图,21π2π22l l =⇒=,又22ππ2π1r l r==⇒=,所以h =21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案 【考点】函数奇偶性,函数的值 10.【答案】()π61sin θ-【解析】(2,0)M 的直角坐标也是(2)0,,斜率k =,所以其直角坐标方程为2x -=,化为极坐标方程为:cos 2ρθθ-=,1cos 12ρθθ⎛⎫= ⎪ ⎪⎝⎭,πsin 16ρθ⎛⎫-= ⎪⎝⎭,()π61sin ρθ=-,即()π61()sin f θθ=-.【提示】取直线l 上任意一点(,)P ρθ,连接OP ,则OP ρ=,POM θ∠=,在三角形POM 中,利用正弦定理建立等式关系,从而求出所求 【考点】极坐标方程【提示】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可 【考点】古典概型,概率计算 12.【答案】[2,5]【提示】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围【考点】平面向量 13.【答案】54133211201122535515510|(10)|10|533212124124x x x =⨯+-⨯+⨯=-+-==故答案为:54【提示】根据题意求得110,02()11010,12x x f x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,从而22110,02()11010,12x x y xf x x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,利用定积分可求得函数(),(01)y xf x x =≤≤的图像与x 轴围成的图形的面积 【考点】函数的图像319.【答案】(Ⅰ) (Ⅱ)π420.【答案】(Ⅰ)2133x -<< (Ⅱ)310xy =-,0,[]lg2x ∈(Ⅱ)结合函数的奇偶性和反函数知识进行求解. 【考点】函数的周期性,反函数,对数函数图像与性质. 21.【答案】/时 救援船速度的方向为北偏东7arctan30弧度 (Ⅱ)救援船的时速至少是25海里才能追上失事船22.【答案】(Ⅰ)双曲线212:1112x y C -=左顶点A ⎛⎫ ⎪ ⎪⎝⎭,渐近线方程为:y =.23.【答案】(Ⅰ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式(1,)b -.11 / 11综上所述1i i x q -=,1,2,,i n =⋯【提示】(Ⅰ)在Y 中取1(,2)a x =u u r ,根据数量积的坐标公式,可得Y 中与1a u u r 垂直的元素必有形式(1,)b -,所以2x b =,结合2x >,可得x 的值.(Ⅱ)取111(,)a x x =u u r ,2(,)a s t =u u r 根据120a a =u u r u u r g ,化简可得0s t +=,所以s t 、异号.而1-是数集X 中唯一的负数,所以s t 、中的负数必为1-,另一个数是1,从而证出1X ∈,最后通过反证法,可以证明出当1n x >时,11x =(Ⅲ)先猜想结论:1i i x q -=,1,2,3,...i n =记2{1,1,,,}k k A x x =-L ,2,3,,k n =⋯通过反证法证明出引理:若1k A +具有性质P ,则k A 也具有性质P .最后用数学归纳法,可证明出1i i x q -=,1,2,3,...i n =【考点】数列,向量,元素,集合关系.。

2012学年第一学期虹口区高三数学质量调研卷(文理)

2012学年第一学期虹口区高三数学质量调研卷(文理)

虹口区2012学年度第一学期高三年级数学学科期终教学质量监控测试卷(时间120分钟,满分150分) 2013.1一、填空题:(每小题4分,满分56分)1.已知集合{}0322<-+=x x x A ,{}21<-=x x B ,则=⋂B A . 2.已知向量)2,1(-=a ,)1,1(=b ,b a m -=,b a n λ+=,如果n m ⊥,则实数=λ .3.从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中的概率是 .4.双曲线1322=-y x 的两条渐近线的夹角大小等于 . 5.已知ααcos 3sin =,则=+αα2sin 12cos .6.在下面的程序框图中,输出的y 是x 的函数,记为)(x f y =,则=-)21(1f .输出结束开始7.关于z 的方程20132012101i zii izi+=--+(其中i 是虚数单位),则方程的解=z . 8.若对于任意0>x ,不等式a x x x≤++132恒成立,则实数a 的取值范围是 . 9.在等比数列{}n a 中,已知3221=a a ,243=a a ,则=+++∞→)(lim 21n n a a a . 10.在ABC ∆中,32=AB ,2=AC 且︒=∠30B ,则ABC ∆的面积等于 . 11.已知正实数x 、y 满足xy y x =+2,则y x +2的最小值等于 .12.等差数列{}n a 的前n 项和为n S ,若0211=-++-m m m a a a ,3812=-m S ,则=m .13.设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,当],0[π∈x 时,1)(0<<x f ,且在]2,0[π上单调递减,在],2[ππ上单调递增,则函数x x f y sin )(-=在]10,10[ππ-上的零点个数为 .14.设点P 在曲线22+=x y 上,点Q 在曲线2-=x y 上,则PQ 的最小值等于 .二、选择题:(每小题5分,满分20分)15.若i -2是关于x 的实系数方程02=++b ax x 的一根,则该方程两根的模的和为( )A . 5;B .52;C .5;D .10.16.已知1l 、2l 、3l 是空间三条不同的直线,下列命题中正确的是( )A .如果21l l ⊥ ,32//l l .则31l l ⊥;B .如果21//l l ,32//l l .则1l 、2l 、3l 共面.C .如果21l l ⊥ ,32l l ⊥.则31l l ⊥;D .如果1l 、2l 、3l 共点.则1l 、2l 、3l 共面.17.定义域为R 的函数c x b ax x f ++=2)()0(≠a 有四个单调区间,则实数c b a ,,满足( )A . 0042>>-a ac b 且;B .042>-ac b ;C .02>-ab ; D .02<-ab .18.数列}{n a 满足⎩⎨⎧=-==k n a k n n a k n 2,12,当当,其中*∈N k ,设n n a a a a n f 21221)(++++=- ,则)2012()2013(f f -等于( )A . 20122;B .20132;C .20124;D .20134.三、解答题:(满分74分) 19.(本题满分12分)在正四棱锥ABCD P -中,侧棱PA 的长为52,PA 与CD 所成的角的大小等于DCBA P510arccos. (1)求正四棱锥ABCD P -的体积;(2)若正四棱锥ABCD P -的五个顶点都在球O 的表面上,求此球O 的半径.20.(本题满分14分)已知函数x x x x x x f 2cos cos sin 3)3sin(sin 2)(+⋅+-⋅=π.(1)求函数)(x f 的最小正周期,最大值及取最大值时相应的x 值; (2)如果20π≤≤x ,求)(x f 的取值范围.21.(本题满分14分)已知圆:O 422=+y x .(1)直线1l :0323=-+y x 与圆O 相交于A 、B 两点,求AB ; (2)如图,设),(11y x M 、),(22y x P 是圆O 上的两个动点,点M 关于原点的对称点为1M ,点M 关于x 轴的对称点为2M ,如果直线1PM 、2PM 与y 轴分别交于),0(m 和),0(n ,问n m ⋅是否为定值?若是求出该定值;若不是,请说明理由.22.(本题满分16分)数列{}n a 的前n 项和记为n S ,且满足12-=n n a S . (1)求数列{}n a 的通项公式;(2)求和nn n n n n C S C S C S C S ⋅++⋅+⋅+⋅+1231201 ;(3)设有m 项的数列{}n b 是连续的正整数数列,并且满足:)lg(log )11lg()11lg()11lg(2lg 221m ma b b b =+++++++ . 问数列{}n b 最多有几项?并求这些项的和.23.(本题满分18分)如果函数)(x f y =的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立,则称此函数具有“)(a P 性质”.(1)判断函数x y sin =是否具有“)(a P 性质”,若具有“)(a P 性质”求出所有a 的值;若不具有“)(a P 性质”,请说明理由.(2)已知)(x f y =具有“)0(P 性质”,且当0≤x 时2)()(m x x f +=,求)(x f y =在]1,0[上的最大值.(3)设函数)(x g y =具有“)1(±P 性质”,且当2121≤≤-x 时,x x g =)(.若)(x g y =与mx y =交点个数为2013个,求m 的值.虹口区2012学年度第一学期高三年级数学学科期终教学质量监控测试卷答案一、填空题(每小题4分,满分56分)1、)1,1(-;2、2;3、21; 4、3π; 5、21-; 6、1-; 7、i 21-; 8、51≥a ; 9、16±; 10、32或3;11、9; 12、10; 13、20; 14、427; 二、选择题(每小题5分,满分20分)15、B ; 16、A ; 17、C ; 18、C ; 三、解答题(满分74分) 19、(12分) 解:(1)取AB 的中点M ,记正方形ABCD 对角线的交点为O ',连PM ,O P ',AC ,则AC 过O '.PB PA =,AB PM ⊥∴,又510cos =∠PAM ,52=PA ,得22=AM .………………4分4='O A ,2='O P3642)24(31312=⋅⋅='⋅=-O P S V ABCD P 底 ∴正四棱锥ABCD P -的体积等于364(立方单位).………………8分(2)连AO ,O O ',设球的半径为R ,则R OA =,2-='-='R O P R O O ,在A O O Rt '∆中有2224)2(+-=R R ,得5=R 。

2012上海市二模数学各区24,25题

2012上海市二模数学各区24,25题

二次函数()21236y x =+的图像的顶点为A ,与y 轴交于点B ,以AB 为边在第二象限内作等边三角形ABC .(1)求直线AB 的表达式和点C 的坐标. (2)点(),1M m 在第二象限,且△ABM 的面积等于△ABC 的面积,求点M 的坐标.(3)以x 轴上的点N 为圆心,1为半径的圆,与以点C 为圆心,CM 的长为半径的圆相切,直接写出点N 的坐标.yx-111-1O已知,90ACB ∠= ,C D 是A C B ∠的平分线,点P 在C D 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABCPD图9ABCEGPDF函数xk y =和xk y -=)0(≠k 的图像关于y 轴对称,我们把函数xk y =和xk y -=)0(≠k 叫做互为“镜子”函数.类似地,如果函数)(x f y =和)(x h y =的图像关于y 轴对称,那么我们就把函数)(x f y =和)(x h y =叫做互为“镜子”函数.(1)请写出函数43-=x y 的“镜子”函数: ,(3分) (2)函数 的“镜子”函数是322+-=x x y ; (3分) (3)如图7,一条直线与一对“镜子”函数xy 2=(x >0)和xy 2-=(x <0)的图像分别交于点C B A 、、,如果2:1:=AB CB ,点C 在函数xy 2-=(x <0)的“镜子”函数上的对应点的横坐标是21,求点B 的坐标. (6分)ABCOxy 图7在ABC Rt ∆中,︒=∠90C ,6=AC ,53sin =B ,⊙B 的半径长为1,⊙B 交边CB于点P ,点O 是边AB 上的动点.(1)如图8,将⊙B 绕点P 旋转︒180得到⊙M ,请判断⊙M 与直线AB 的位置关系;(4分) (2)如图9,在(1)的条件下,当OMP ∆是等腰三角形时,求OA 的长; (5分) (3)如图10,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设y NB =,x OA =,求y 关于x 的函数关系式及定义域.(5分).BOACP 图9BOACP 图8 图10ONBAC24.(本题满分12分,每小题满分各4分)如图,在平面直角坐标系中,二次函数cy+=2的图像经过点)0,3(A,+axbx,0(-C,顶点为D.(-)0,1B,)3(1)求这个二次函数的解析式及顶点坐标;(2)在y轴上找一点P(点P与点C不重合),使得0∠APD,求点P坐标;=90(3)在(2)的条件下,将APD∆沿直线AD翻折,得到AQD∆,求点Q坐标.yxO ABCD25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图,ABC ∆中,5==BC AB ,6=AC ,过点A 作AD ∥BC ,点P 、Q 分别是射线AD 、线段BA 上的动点,且BQ AP =,过点P 作PE ∥AC 交线段AQ 于点O ,联接PQ ,设POQ ∆面积为y ,x AP =.(1)用x 的代数式表示PO ;(2)求y 与x 的函数关系式,并写出定义域;(3)联接QE ,若PQE ∆与POQ ∆相似,求AP 的长.BPDQCAO E在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠经过点(3,0)A -和点(1,0)B .设抛物线与y 轴的交点为点C .(1)直接写出该抛物线的对称轴;(2)求O C 的长(用含a 的代数式表示);(3)若A C B ∠的度数不小于90︒,求a 的取值范围.-1 O1 2 -1 12-3 -2 yx第24题图-3 3 -23 AB如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长;(2)设B M x =,C M F y AN F ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.OABCMDN B 1F第25题图24.(本题共3小题,每小题4分,满分12分)已知:如图,抛物线2y x b x c =-++与x 轴的负半轴相交于点A ,与y 轴相交于点B (0,3),且∠OAB 的余切值为13.(1)求该抛物线的表达式,并写出顶点D 的坐标; (2)设该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,BC 与直线l 相交于点E .点P 在直线l 上,如果点D 是△PBC 的重心,求点P 的坐标; (3)在(2)的条件下,将(1)所求得的抛物线沿y 轴向上或向下平移后顶点为点P ,写出平移后抛物线的表达式.点M 在平移后的抛物线上,且△MPD 的面积等于△BPD 的面积的2倍,求点M 的坐标.xyO AB(第24题图)25.(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分)已知:如图,AB ⊥BC ,AD // BC , AB = 3,AD = 2.点P 在线段AB 上,联结PD ,过点D 作PD 的垂线,与BC 相交于点C .设线段AP 的长为x . (1)当AP = AD 时,求线段PC 的长;(2)设△PDC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△APD ∽△DPC 时,求线段BC 的长.ABCDP (第25题图) ABCD(备用图)24.在Rt △ABC 中, AB =BC =4,∠B = 90,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边AB 、BC 或其延长线上交于D 、E 两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形. (1)直角三角板绕点P 旋转过程中,当BE = ▼ 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图(1)的情形时,求证:PD =PE ;(3)如图(3),若将直角三角板的直角顶点放在斜边AC 的点M 处,设AM : MC =m : n (m 、n 为正数),试判断MD 、ME 的数量关系,并说明理由.图(1)图(2) 图(3)MABCDEEDPPED ABCCBA25.如图,在直角坐标平面中,O 为原点,A (0,6), B (8,0).点P 从点A 出发, 以每秒2个单位长度的速度沿射线AO 方向运动,点Q 从点B 出发,以每秒1个单位长度的速度沿x 轴正方向运动.P 、Q 两动点同时出发,设移动时间为t (t >0)秒.(1)在点P 、Q 的运动过程中,若△POQ 与△AOB 相似,求t 的值; (2)如图(2),当直线PQ 与线段AB 交于点M ,且51MABM 时,求直线PQ 的解析式;(3)以点O 为圆心,OP 长为半径画⊙O ,以点B 为圆心,BQ 长为半径画⊙B ,讨论⊙O 和⊙B 的位置关系,并直接写出相应t 的取值范围.图(1) 图(2) (备用图)MyxOBAQP A BOxyQPyxBA O24.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)如图,一次函数1+=x y 的图像与x 轴、y 轴分别相交于点A 、B .二次函数的图像与y 轴的正半轴相交于点C ,与这个一次函数的图像相交于点A 、D ,且1010sin =∠ACB .(1) 求点C 的坐标;(2) 如果∠CDB =∠ACB ,求这个二次函数的解析式.(第24题图)xyOAB C25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点E,设OA=x,CD=y.(1)求BD长;O(2)求y关于x的函数解析式,并写出定义域;E (3)当CE⊥OD时,求AO的长.A C D B(第25题图)。

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

(D)
(A)25.
(B)50.
(C)75.
三、解答题(本大题共有 5 题,满分 74 分)
(D)100. P
19.如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,
PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,
AD=2 2 ,PA=2.求: (1)三角形 PCD 的面积;(6 分)
21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴
正方向建立平面直角坐标系(以 1 海里为单位长度),则救援船恰在失事船的正南方向 12

里 A 处,如图. 现假设:①失事船的移动路径可视为抛物线
y
12 49
x2
;②定位后救援船即刻沿直线匀速前往救援;③救
y P
援船出发 t 小时后,失事船所在位置的横坐标为 7t .
(1)若 x>2,且{1, 1, 2, x} ,求 x 的值;(4 分)
(2)若 X 具有性质 P,求证:1 X,且当 xn>1 时,x1=1;(6 分) (3)若 X 具有性质 P,且 x1=1,x2=q(q 为常数),求有穷数列 x1, x2 , , xn 的通 项公式.(8 分)
2012 年上海高考数学(理科)试卷解答
l
6
.若将 l 的极坐标方程写成
f ( ) 的形式,则
f ( )
1
sin(
6
)
.
O
M
x
11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有
两人选择的项目完全相同的概率是
2 3
(结果用最简分数表示).
12.在平行四边形
ABCD

2012年高考理科数学上海卷-答案

2012年高考理科数学上海卷-答案

2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)12AB ⎛-= ⎝【提示】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案arctan2【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角 【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项【考点】二项式定理6.【答案】8 )1n V ++=【提示】由题意可得,正方体的体积1318n n n V a -⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围【考点】指数函数单调性8. 【解析】如图,21π2π22l l=⇒=,又22ππ2π1r l r ==⇒=,所以h 21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案 【考点】函数奇偶性,函数的值 10.【答案】()π61sin θ-【解析】(2,0)M 的直角坐标也是(2)0,,斜率k =2x =,化为极坐标方程为:cos 2ρθθ-=,1cos 12ρθθ⎛⎫= ⎪ ⎪⎝⎭,πsin 16ρθ⎛⎫-= ⎪⎝⎭,()π61sin ρθ=-,即()π61()sin f θθ=-.【提示】取直线l 上任意一点(,)P ρθ,连接OP ,则OP ρ=,POM θ∠=,在三角形POM 中,利用正弦定理建立等式关系,从而求出所求 22233327C C =,求21133218C C =,故2【提示】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可 【考点】古典概型,概率计算 [2,5]||||[||||BM CN t BC CD ==∈||BM t =,||2CN t =,所以故22532222t AM AN t t t ⎛⎫⎛=+= ⎪--+⎝⎭max ()AM AN f =min ()(1)AM AN f =【提示】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围【考点】平面向量 13.【答案】54133211201122535515510|(10)|10|533212124124x x x =⨯+-⨯+⨯=-+-==故答案为:54【提示】根据题意求得110,02()11010,12x x f x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,从而22110,02()11010,12x x y xf x x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,利用定积分可求得函数(),(01)y xf x x =≤≤的图像与x 轴围成的图形的面积319.【答案】(Ⅰ)(Ⅱ)π∴(1,AE =,(0,2BC =,设AE 与BC 夹角为222AE BC AE BC=⨯,由此可得异面直线各点的坐标,从而(1,AE =,(0,2BC =得到AE 与BC 夹角为【考点】直线与平面垂直,异面直线及其所成的角.20.【答案】(Ⅰ)2133x -<<(Ⅱ)310xy =-,0,[]lg2x ∈(Ⅱ)结合函数的奇偶性和反函数知识进行求解. 【考点】函数的周期性,反函数,对数函数图像与性质. 21.【答案】/时 救援船速度的方向为北偏东7arctan30弧度22.【答案】(Ⅰ)双曲线212:111x y C -=左顶点A ⎛⎫ ⎪ ⎪⎝⎭,渐近线方程为:y =.所以12OP OQ x x =20-= (Ⅰ)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积. ,通过求解0OP OQ = 轴时,设直线ON 【考点】直线,圆锥曲线.23.【答案】(Ⅰ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式(1,)b -.,从而4x =(Ⅱ)证明:取11(,a x x =.设2(,)a s t =满足120a a =. 中唯一的负数,所以t 、中之一为,另一为1,故11n x x <<选取11(,a x x =并设2(,)a s t =满足120a a =,即1=-,则1x ,矛盾;,,}k x ,k 先证明:若A 任取1(,)a s t =K s t A ∈、时,显然有2a 满足120a a =; 11k A +具有性质,所以有21(,a s t =,使得120a a =,从而1k x +=.由1)(1,)k x +-=,得1k s tx x +=≥,,}k x 有性质1,,,}k k x x +,,}k x1,1,,,,k k q q x -取11(k a x +=,并设2(,)a s t =满足120a a =,即.由此可得s 与t 中有且只有一个为所以1s =-1k k q q q -≤=,又x q >11 / 11综上所述1i i x q -=,1,2,,i n =⋯【提示】(Ⅰ)在Y 中取1(,2)a x =,根据数量积的坐标公式,可得Y 中与1a 垂直的元素必有形式(1,)b -,所以2x b =,结合2x >,可得x 的值.(Ⅱ)取111(,)a x x =,2(,)a s t =根据120a a =,化简可得0s t +=,所以s t 、异号.而1-是数集X 中唯一的负数,所以s t 、中的负数必为1-,另一个数是1,从而证出1X ∈,最后通过反证法,可以证明出当1n x >时,11x =(Ⅲ)先猜想结论:1i i x q -=,1,2,3,...i n =记2{1,1,,,}k k A x x =-,2,3,,k n =⋯通过反证法证明出引理:若1k A +具有性质P ,则k A 也具有性质P .最后用数学归纳法,可证明出1i i x q -=,1,2,3,...i n =【考点】数列,向量,元素,集合关系.。

2012年上海理科高考数学试题及答案

2012年上海理科高考数学试题及答案

2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii +-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范 围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .[来源:学。

科。

网Z 。

X 。

X 。

K]9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD =AN AM ⋅的取值范围是 .13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为 常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( )(A )锐角三角形. (B )直角三角形.(C )钝角三角形.(D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关. 18.设251sinπn nn a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)[来源:学_科_网Z_X_X_K] 19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,PA=2.求:[来源:学_科_网](1)三角形PCD 的面积;(6分) (2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)BCDABCDP E21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分) (2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分) 1.计算:ii +-13= 1-2i (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . 3.函数1sin cos 2)(-=xx x f 的值域是],[2325-- . 4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 -160 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] . 8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则[=)(θf )sin(16θπ- . 11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是32(结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD =AN AM ⋅的取值范围是 [2, 5] .13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c . 二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( B )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . ABCD[来源:学科网ZXXK]17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的[来源:学#科#网Z#X#X#K]概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( A )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关. 18.设251sinπn nn a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( D )(A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,PA=2.求: (1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)[解](1)因为PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ⊥CD ,所以CD ⊥平面PAD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与BC 的夹角为θ,则222224cos ===⨯⋅BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则[来源:Z&xx&] EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形, 所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π……12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .AB CP E yABCDP EF由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线 24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程y = 中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=tt v .……10分因为2212≥+tt ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎧+=b x y ,得22.设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分[来源:Z,xx,](3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412kkk y x ,所以22412||kk ON ++=.同理121222||-+=kk OM . ……13分[来源:Z§xx §]设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n .[来源:学&科&网] 先证明:若A 具有性质P ,则A 也具有性质P.当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与 s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n . 当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ; 当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -= 也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以k k q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分 [解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211s t t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n<<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x x k q x x ,k =1, 2, …, n . ……18分。

上海市虹口区年高三二模数学试题

上海市虹口区年高三二模数学试题

虹口区2013学年度第二学期高三年级数学学科期终教学质量监控测试卷(理科)(时间120分钟,满分150分)一、填空题(每小题4分,满分56分)1、已知集合{}12A x x =-<,{}2B 4x x =<,则A B ⋂= . 2、函数2()41f x x x =-++([]1,1x ∈-)的最大值等于 .3、在ABC ∆中,已知sin :sin :sin A B C =则最大角等于 .4、已知函数()y f x =是函数xy a =(0a >且1a ≠)的反函数,其图像过点2(,)a a ,则()f x = .5、复数z 满足11z i i i=+,则复数z 的模等于_______________.6、已知tan 2α=,tan()1αβ+=-,则tan β= .7、抛物线28y x =-的焦点与双曲线2221x y a-=的左焦点重合,则双曲线的两条渐近线的夹角为 .8、某校一天要上语文、数学、外语、历史、政治、体育六节课,在所有可能的安排中, 数学不排在最后一节,体育不排在第一节的概率..是 . 9、已知(12)n x -关于x 的展开式中,只有第4项的二项式系数最大,则展开式的系数之和为 .10、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ⎧⎫⎨⎬⎩⎭是递增数列;4α:数列{}2n a 是递增数列.其中真命题的是 . 11、椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(0a b >>,参数ϕ的范围是02ϕπ≤<)的两个焦点为1F 、2F ,以12F F 为边作正三角形,若椭圆恰好平分正三角形的另两条边,且124F F =,则a 等于 .12、设A B C D 、、、是半径为1的球面上的四个不同点,且满足0A B A C⋅=,0AC AD ⋅=,0AD AB ⋅=,用123S S S 、、分别表示△ABC 、△A C D 、△ABD 的面积,则123S S S ++的最大值是 .13、在ABC ∆中,14AM AB m AC =+⋅,向量AM 的终点M 在ABC ∆的内部(不含边界),则实数m 的取值范围是 .14、对于数列{}n a ,规定{}1n a ∆为数列{}n a 的一阶差分数列,其中11()n n n a a a n N *+∆=-∈.对于正整数k ,规定{}k n a ∆为{}n a 的k 阶差分数列,其中111k n k n k n a a a -+-∆=∆-∆.若数列{}n a 有11=a ,22a =,且满足2120()n n a a n N *∆+∆-=∈,则14a = .二、选择题(每小题5分,满分20分)15、已知:α“2=a ”;:β“直线0=-y x 与圆2)(22=-+a y x 相切”.则α是β的( ).A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件16、若函数()1f x ax =+在区间(1,1)-上存在一个零点,则实数a 的取值范围是( ).A 1a > .B 1a <- .C 1a <-或1a > .D 11a -<<17、已知数列{}n a 是首项为1a ,公差为(02)d d π<<的等差数列,若数列{cos }n a 是等比数列,则其公比为( ).A 1 .B 1- .C 1± .D 218、函数x x f sin )(=在区间)10,0(π上可找到n 个不同数1x ,2x ,……,n x ,使得nn x x f x x f x x f )()()(2211=== ,则n 的最大值等于( ) .A 8 .B 9 .C 10 .D 11三、解答题(满分74分)AB19、(本题满分12分)已知圆锥母线长为6,底面圆半径长为4,点M 是母线PA 的中点,AB 是底面圆的直径,底面半径OC 与母线PB (1)当60θ=︒时,求异面直线MC 与PO 所成的角; (2)当三棱锥M ACO -的体积最大时,求θ的值.20、(本题满分14分)已知函数()2()cos 2cos y f x x x x a x R ==++∈,其中a 为常数.(1)求函数()y f x =的周期;(2)如果()y f x =的最小值为0,求a 的值,并求此时)(x f 的最大值及图像的对称轴方程.21、(本题满分14分)某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车...的牌照的数量维持在这一年的水平不变. (1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{}n a ,每年发放的电动型汽车牌照数为构成数列{}n b ,完成下列表格,并写出这两个数列的通项公式; (2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?22、(本题满分16分)函数)(x f y =的定义域为R ,若存在常数0>M ,使得xM x f ≥)(x对一切实数x 均成立,则称)(x f 为“圆锥托底型”函数.(1)判断函数x x f 2)(=,3()g x x =是否为“圆锥托底型”函数?并说明理由. (2)若1)(2+=x x f 是“圆锥托底型” 函数,求出M 的最大值. (3)问实数k 、b 满足什么条件,b kx x f +=)(是“圆锥托底型” 函数.23、(本题满分18分)如图,直线:l y kx b =+与抛物线22x py =(常数0p >)相交于不同的两点11(,)A x y 、22(,)B x y ,且21x x h -=(h 为定值),线段AB 的中点为D ,与直线l y kx b =+:平行的切线的切点为C (不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点). (1)用k 、b 表示出C 点、D 点的坐标,并证明CD 垂直于x 轴; (2)求C AB ∆的面积,证明C AB ∆的面积与k 、b 无关,只与h 有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC 、BC ,再作与AC 、BC 平行的切线,切点分别为E 、F ,小张马上写出了CE A ∆、CF B ∆的面积,由此小张求出了直线l 与抛物线围成的面积,你认为小张能做到吗?请你说出理由.虹口区2013学年度第二学期高三年级数学学科期终教学质量监控测试卷(文科)(时间120分钟,满分150分)一、填空题(每小题4分,满分56分)1、已知集合{}12A x x =-<,{}2B 4x x =<,则A B ⋂= .2、223lim 2n n n n n→∞-+-=- . 3、函数2()41f x x x =-++([]1,1x ∈-)的最大值等于 .4、在ABC ∆中,已知sin :sin :sin 1:A B C =,则最大角等于 .5、已知函数()y f x =是函数xy a =(0a >且1a ≠)的反函数,其图像过点2(,)a a ,则()f x = .6、复数z 满足11z i i i=+,则复数z 的模等于__________.7、已知tan 2α=,tan()1αβ+=-,则tan β= . 8若正三棱柱的主视图如图所示,则此三棱柱的体积等于 .9、已知(12)n x -关于x 的展开式中,二项式系数和等于512,则展开式的系数之和为 .10、抛物线28y x =-的焦点与双曲线2221x y a-=的左焦点重合,则这条双曲线的两条渐近线的夹角为 .11、某校一天要上语文、数学、外语、历史、政治、体育六节课,在所有可能的安排中,数学不排在最后一节,体育不排在第一节的概率..是 . 12、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ⎧⎫⎨⎬⎩⎭是递增数列;4α:数列{}2n a 是递增数列.其中真命题的是 .13、对于数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中11()n n n a a a n N *+∆=-∈.对于正整数k ,规定{}k n a ∆为{}n a 的k 阶差分数列,其中111k n k n k n a a a -+-∆=∆-∆.若数列{}n a 的通项13n n a -=,则CBAAB2122232n a a a a ∆+∆+∆++∆= .14、如图ABC ∆是直角边等于4的等腰直角三角形,D 是斜边BC 的中点,14AM AB m AC=+⋅,向量AM 的终点M 在ACD ∆的内部(不含边界),则实数m 的取值范围是 .二、选择题(每小题5分,满分20分)15、已知:α“2=a ”;:β“直线0=-y x 与圆2)(22=-+a y x 相切”.则α是β的( ) .A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既非充分也非必要条件16、若函数()1f x ax =+在区间(1,1)-上存在一个零点,则实数a 的取值范围是( ).A 1a > .B 1a <- .C 1a <-或1a > .D 11a -<<17、设A B C D 、、、是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用123S S S 、、分别表示△ABC 、△ACD 、△ABD 的面积,则123S S S ++的最大值是( ). .A 12.B 2 .C 4 .D 818、已知数列{}n a 是首项为1a ,公差为(02)d d π<<的等差数列,若数列{cos }n a 是等比数列,则其公比为( ).A 1 .B 1- .C 1± .D 2三、解答题(满分74分)19、(本题满分12分)已知圆锥母线长为6,底面圆半径长为4PA 的中点,AB 是底面圆的直径,半径OC 与母线PB小等于60︒.(1)求圆的侧面积和体积.(2)求异面直线MC 与PO 所成的角;20、(本题满分14分)已知函数()2()cos 2cos y f x x x x a x R ==++∈,其中a 为常数.(1)求函数()y f x =的周期;(2)如果()y f x =的最小值为0,求a 的值,并求此时)(x f 的最大值及图像的对称轴方程.21、(本题满分14分)某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车...的牌照的数量维持在这一年的水平不变. (1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{}n a ,每年发放的电动型汽车牌照数为构成数列{}n b ,完成下列表格,并写出这两个数列的通项公式; (2)从2013年算起,求二十年发放的汽车牌照总量.22、(本题满分16分)我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:已知抛物线22x py =(0)p >上的点)3,(0x 到焦点的距离等于4,直线l y kx b =+:与抛物线相交于不同的两点11(,)A x y 、22(,)B x y ,且21x x h -=(h 为定值).设线段AB的中点为D ,与直线l y kx b =+:平行的抛物线的切点为C .. (1)求出抛物线方程,并写出焦点坐标、准线方程; (2)用k 、b 表示出C 点、D 点的坐标,并证明CD 垂直于x 轴;(3)求C AB ∆的面积,证明C AB ∆的面积与k 、b 无关,只与h 有关.23、(本题满分18分)函数)(x f y =的定义域为R ,若存在常数0>M ,使得x M x f ≥)(对一切实数x 均成立,则称)(x f 为“圆锥托底型”函数.(1)判断函数x x f 2)(=,3()g x x =是否为“圆锥托底型”函数?并说明理由. (2)若1)(2+=x x f 是“圆锥托底型” 函数,求出M 的最大值. (3)问实数k 、b 满足什么条件,b kx x f +=)(是“圆锥托底型” 函数.x。

2012上海市虹口区数学二模卷(理科)

2012上海市虹口区数学二模卷(理科)

欢虹口区2011学年度第二学期高三年级数学学科教学质量监控测试卷(理科)(时间120分钟,满分150分)一、填空题(每小题4分,满分56分)1、已知集合,,则 {}0)2)(5(<-+=x x x M {}51≤≤=x x N =⋂N M .2、设(为虚数单位),则.i z -=1i =+22z z3、若非零向量、,则与的夹角大小为 a b 0)2(=⋅+b b a a b .4、若等比数列满足,则公比.{}n a nn n a a 91=⋅+=q 5、一平面截一球得到直径为2的圆面,球心到这平面的距离为3,则该球的体积是 .6、如果展开式中,第4项与第6项的系数相等,则该展开式中,常数项的值是 nxx )1(+.7、已知椭圆的焦距为,则实数.15222=+t y tx 62=t 8、随机变量的分布如图所x 示则数学期望=Ex .9、圆的圆心的极坐标是.4cos(2πθρ-=10、执行如图所示的程序框图,若输入的值为2,则输出的值是.A Px 0123p1.03.0a 2a欢D 1C 1A 1D11、从{1,2,3,4,5,6}中随机选一个数,从{1,2,3}中随机选一个数,则a b ba >的概率等于.12、在中,边,,则角的取值范围是.ABC ∆2=BC 3=AB C 13、函数,则不等式的解集是.⎪⎩⎪⎨⎧<-≥+=0404)(22x xx x x x x f )()2(2x f x f >-14、,且,则的最小值等于.R b a ∈,b a >1=ab ba b a -+22二、选择题(每小题5分,满分20分)15、命题:若函数是幂函数,则函数的图像不经过第四象限.那么命A )(x f y =)(x f y =题的逆命题、否命题、逆否命题这三个命题中假命题的个数是()A 0 1 2 3.A .B .C .D 16、在同一平面直角坐标系中,函数的图像与的图像关于直线对称,)(x g y =xe y =x y =而函数的图像与的图像关于轴对称,若,则的值是( )(xf y =)(xg y =y 1)(-=a f a ).A e -.B e1-.C e .D e117、为双曲线上一点,、分别是左、右焦点,若,P 11222=-y x 1F 2F 2:3:21=PF PF 则的面积是( )21F PF ∆.A 36.B 312.C 12.D 2418、等差数列中,如果存在正整数和(),使得前项和,前项和{}n a k l l k ≠k lkS k =l ,则( )klS l =与4的大小关系不确定.A 4>+l k S .B 4=+l k S .C 4<+l k S .D l k S +三、解答题(满分74分)19、(本题满分12分)在长方体中,1111D C B A ABCD -欢,用过,,三点的平面截去长方体的一个角后,留下如图的几何体,6==BC AB 1A B 1C 且这几何体的体积为120.(1)求棱的长;1AA (2)求点到平面的距离.1D 11BC A 20、(本题满分12分)已知,其中,n m x f ⋅=)()1,cos 2(x m =)2sin 3,cos (x x n =.)(R x ∈(1)求的最小正周期及单调递增区间;)(x f (2)在中,、、分别是角、、的对边,若,,ABC ∆a b c A B C 2)(=A f 1=b 面积为,求:边的长及的外接圆半径.ABC ∆233a ABC ∆R 21、(本题满分14分)已知:曲线上任意一点到点的距离与到直线的距C )0,1(F 1-=x 离相等.(1)求曲线的方程;C (2)如果直线交曲线于、两点,是否存在实数,使得以为直径的)1(-=x k y C A B k AB 圆经过原点?若存在,求出的值;若不存在,说明理由.O k 22、(本题满分18分)已知:函数,在区间b ax ax x g ++-=12)(2)1,0(<≠b a 上有最大值4,最小值1,设函数.]3,2[xx g x f )()(=(1)求、的值及函数的解析式;a b )(x f欢x(2)若不等式在时恒成立,求实数的取值范围;02)2(≥⋅-xx k f ]1,1[-∈x k (3)如果关于的方程有三个相异的实数根,求实数的取x 0)3124()12(=--⋅+-xxt f t 值范围.23、(本题满分18分)如图,平面直角坐标系中,射线()和x y =0≥x ()上分别依次有点、,……,,……,和点,x y 2=0≥x 1A 2A n A 1B ,……,……,其中,,.且,2B n B )1,1(1A )2,1(1B )4,2(2B 21+=-n n OA OA ……).n n n n B B B B 1121-+=4,3,2(=n (1)用表示及点的坐标;n n OA n A (2)用表示及点的坐标;n 1+n n B B n B (3)写出四边形的面积关于的表达式,并求的最大值.n n n n B B A A 11++n )(n S )(n S欢y答案一、填空题(每小题4分,满分56分)1、; 2、; 3、; 4、3;5、; {}21<≤x x i -1︒12031040π6、70;7、2,3,6; 8、;9、;7.14,1(π10、4; 11、; 12、; 13、; 14、 323,0(π)1,2(-22二、选择题(每小题5分,满分20分)15、C ; 16、B ; 17、C ; 18、A ;三、解答题(满分74分)19、(12分)(1)设,h AA =162131622⋅⋅⋅-⋅=h h V …………4分∴41==h AA (2)如图建立空间直角坐标系,则,)4,0,6(1A ,, .)0,6,6(B )4,6,0(1C )4,0,0(1D 设平面的法向量为,11BC A ),,(z y x n =)4,,由得…………8分)0,6,6(11-=C A ⎩⎨⎧=+-=-066046y x z y )3,2,2(=n欢又,…………12分)4,6,6(1--=BD∴171712d 20、(12分)(1)…………2分162sin(22sin 3cos 2)(2++=+=πx x x x f ………………3分π=T 单调递增区间……………4分]6,3[ππππ+-k k )(Z k ∈(2),由,得…………6分21)62sin(2)(=++=πA A f 2162sin(=+πA 3π=A ,…………8分2333sin 121=⨯⨯⨯πc ∴6=c …………10分31216126122=⨯⨯⨯-+=a ,…………12分3sin31sin 2π==AaR ∴393=R 21、(14分)(1)…………4分x y 42=(2)将,代入,得…………8分)1(-=x k y x y 42=0)2(22222=++-k x k x k 记,,,…………10分),(11y x A ),(22y x B ∴121=x x 2221)2(2kk x x +=+ …………12分4]1)([)1)(1(2121221221-=++-=--=x x x x k x x k y y ,,以为直径的圆不经过原点,∴032121≠-=+y y x x 0≠⋅OB OA ∴AB O 不存在满足条件的.…………14分k 22、(18分)(1),由题意得:b ax ax x g ++-=12)(2得, 或 得(舍去)︒1⎪⎩⎪⎨⎧=++==+=>413)3(11)2(0b a g b g a ⎩⎨⎧==01b a ︒2⎪⎩⎪⎨⎧=++==+=<113)3(41)2(0b a g b g a ⎩⎨⎧>=-=131b a ,…………4分∴1=a 0=b欢,…………5分12)(2+-=x x x g 21)(-+=xx x f (2)不等式,即,……9分02)2(≥⋅-xx k f x x x k 22212⋅≥-+∴1)21(2)21(2+⋅-≤x x k 设,,,…………11分]2,21[21∈=x t ∴2)1(-≤t k 0)1(min 2=-t ∴0≤k (3),即.0)3124()12(=--⋅+-xxt f 02312412112=---+-+-t t xxx 令,则 …………13分012>-=xu 0)14()23(2=+++-t u t u )(*记方程的根为、,当时,原方程有三个相异实根,)(*1u 2u 2110u u ≤<<记,由题可知,)14()23()(2+++-=t u t u u ϕ或.…………16分⎩⎨⎧<=>+=0)1(014)0(t t ϕϕ⎪⎪⎩⎪⎪⎨⎧<+<==>+=122300)1(014)0(t t t ϕϕ时满足题设.…………18分∴041<<-t 23、(18分)(1) ……………2分n n OA OA n ⋅=-+=22)1(1…………4分∴),(n n A n (2)…………7分111)21(521--+⋅==n n n n n B B B B ]21(3[5]21(211[55221211----=++++=+++=n n n n n B B B B OB OB …………10分∴))21(6,21(3(32----n n n B (3),…………12分3121112tan 11=⨯+-=∠++n n OB A ∴1010sin 11=∠++n n OB A欢∴nn n n n n n n n n n n OB A OB OA OB OA n S )21)(1(23)])21(3(52))21(3(52)1[(2010sin ][21)(211111-+=-⋅⋅⋅--⋅⋅⋅+=∠⋅-⋅=--++++……………………15分,时,单调递减. nnn S n S 23)1()(-=--∴4≥n )(n S 又,.23)1(=S 1627)4()3(47)2(=>==S S S 或时,取得最大值…………18分∴2=n 3)(n S 47。

2012年上海高考理科数学试题及答案

2012年上海高考理科数学试题及答案

2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=x xx f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 . 6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范 围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g .10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则 =)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定. 17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πnn n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( ) (A )25. (B )50. (C )75.(D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)ABCDABCPE21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).[解析] i i i i i i i i 212413)1)(1()1)(3(13-=--=-+--=+-.2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-. 3.函数1sin cos 2)(-=x xx f 的值域是],[2325-- . [解析]x x x x f 2sin 2cos sin 2)(21--=--=∈],[2325--. 4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). [解析] 方向向量)2,1(=d ,所以2=l k ,倾斜角α=arctan2.5.在6)2(xx -的二项展开式中,常数项等于 -160 . [解析] 展开式通项rr r r r r r r r r xC x x C T 2666612)1(2)1(---+-=-=,令6-2r =0,得r =3, 故常数项为1602336-=⨯-C .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .[解析] 易知V 1,V 2,…,V n ,…是以1为首项,3为公比的等比数列,所以7812111)(lim ==+++-∞→Vn n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] . [解析]令||)(a x x g -=,则)()(x g ex f =,由于底数1>e ,故)(x f ↑ )(x g ↑,由)(x g 的图像知)(x f 在区间[1,+∞)上是增函数时,a ≤1. 8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .[解析] 如图,ππ221=l ⇒l =2,又2πr2=πl =2π⇒r =1, 所以h=3,故体积ππ321==h r V .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 . [解析] 2)(x x f y +=是奇函数,则4]1)1([)1()1(22-=+-=-+-f f ,所以3)1(-=-f , 1. 10.如图,在极坐标系中,过点)0,2(M 的直线l 6πα=.若将l 的极坐标方程写成)(θρf =的形式,则 =)(θf )sin(1θπ- .[解析] )0,2(M 的直角坐标也是(2,0),斜率31=k ,所以其直角坐标方程为23=-y x ,化为极坐标方程为:2sin 3cos =-θρθρ,1)sin cos (2321=-θθρ,1)sin(=-θρπ,)sin(16θπρ-=,即=)(θf )sin(16θπ-.(或=)(θf )cos(13πθ+)11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是32(结果用最简分数表示). [解析] 设概率p=nk ,则27232323=⋅⋅=C C C n ,求k ,分三步:①选二人,让他们选择的 项目相同,有23C 种;②确定上述二人所选择的相同的项目,有13C 种;③确定另一 人所选的项目,有12C 种. 所以18121323=⋅⋅=C C C k ,故p=322718=. 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD BC =,则AN AM ⋅的取值范围是 [2, 5] . [解析] 如图建系,则A (0,0),B (2,0),D (21,23),C (25,23).t CD BC ==||||∈[0,1],则t =||,t 2||=, 所以M (2+2t,3t ),N (25-2t ,3), 故AN AM ⋅=(2+2t)(25-2t )+3t⋅23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t )递减,(AN AM ⋅)max = f (0)=5,(AN AM ⋅)min = f (1)=2.[评注] 当然从抢分的战略上,可冒用两个特殊点:M 在B (N 在C )和M 在C (N 在D ),而本案恰是在这两点处取得最值,蒙对了,又省了时间!出题大虾太给蒙派一族面子了! 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. [解析]如图1,⎩⎨⎧≤<-≤≤=1,10100,10)(211x x x x x f , 所以⎩⎨⎧≤<+-≤≤==1,10100,10)(212212x x x x x x xf y , 易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MNO 与OMP 全等,面积相等,故所求面积即为矩形ODMP的面积S=551=⨯.[评注]对于曲边图形,上海现行教材中不出微积分,能用微积分求此面积的考生恐是极少的,而对于极大部分考生,等积变换是唯一的出路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虹口区2011学年度第二学期高三年级数学学科教学质量监控测试卷(理科)(时间120分钟,满分150分)一、填空题(每小题4分,满分56分)1、已知集合{}0)2)(5(<-+=x x x M ,{}51≤≤=x x N ,则=⋂N M .2、设i z -=1(i 为虚数单位),则=+22zz .3、若非零向量a 、b=,且0)2(=⋅+b b a ,则a 与b 的夹角大小为 . 4、若等比数列{}n a 满足n n n a a 91=⋅+,则公比=q .5、一平面截一球得到直径为2的圆面,球心到这平面的距离为3,则该球的体积是 .6、如果nxx )1(+展开式中,第4项与第6项的系数相等,则该展开式中,常数项的值是 .7、已知椭圆15222=+tytx 的焦距为62,则实数=t .则数学期望=Ex .8、随机变量x 的分布如图所示9、圆)4cos(2πθρ-=的圆心的极坐标是 .10、执行如图所示的程序框图,若输入A 的值为2,则输出的P 值是 .11、从{1,2,3,4,5,6}中随机选一个数a ,从{1,2,3}中随机选一个数b ,则b a >的概率等于 .12、在ABC ∆中,边2=BC ,3=AB ,则角C 的取值范围是 .D 1C 1A 1DC BA13、函数⎪⎩⎪⎨⎧<-≥+=0404)(22x xx x xx x f ,则不等式)()2(2x f x f >-的解集是 .14、R b a ∈,,b a >且1=ab ,则ba b a -+22的最小值等于 .二、选择题(每小题5分,满分20分)15、命题A :若函数)(x f y =是幂函数,则函数)(x f y =的图像不经过第四象限.那么命题A 的逆命题、否命题、逆否命题这三个命题中假命题的个数是( ).A 0 .B 1 .C 2 .D 316、在同一平面直角坐标系中,函数)(x g y =的图像与x e y =的图像关于直线x y =对称,而函数)(x f y =的图像与)(x g y =的图像关于y 轴对称,若1)(-=a f ,则a 的值是( ).A e - .B e1-.C e .De117、P 为双曲线11222=-yx 上一点,1F 、2F 分别是左、右焦点,若2:3:21=PF PF ,则21F PF ∆的面积是( ).A 36 .B 312 .C 12 .D 24 18、等差数列{}n a 中,如果存在正整数k 和l (l k ≠),使得前k 项和lk S k =,前l 项和kl S l =,则( ).A 4>+l k S .B 4=+l k S .C 4<+l k S .D l k S +与4的大小关系不确定 三、解答题(满分74分)19、(本题满分12分)在长方体1111D C B A ABCD -中,6==BC AB ,用过1A ,B ,1C 三点的平面截去长方体的一个角后,留下如图的几何体,且这几何体的体积为120. (1)求棱1AA 的长;(2)求点1D 到平面11BC A 的距离.20、(本题满分12分)已知n m x f ⋅=)(,其中)1,cos 2(x m =,)2sin 3,cos (x x n =)(R x ∈.(1)求)(x f 的最小正周期及单调递增区间;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若2)(=A f ,1=b ,ABC ∆面积为233,求:边a 的长及ABC ∆的外接圆半径R .21、(本题满分14分)已知:曲线C 上任意一点到点)0,1(F 的距离与到直线1-=x 的距离相等.(1)求曲线C 的方程;(2)如果直线)1(-=x k y 交曲线C 于A 、B 两点,是否存在实数k ,使得以AB 为直径的圆经过原点O ?若存在,求出k 的值;若不存在,说明理由.22、(本题满分18分)已知:函数b ax ax x g ++-=12)(2)1,0(<≠b a ,在区间]3,2[上有最大值4,最小值1,设函数xx g x f )()(=.(1)求a 、b 的值及函数)(x f 的解析式;(2)若不等式02)2(≥⋅-xxk f 在]1,1[-∈x 时恒成立,求实数k 的取值范围; (3)如果关于x 的方程0)3124()12(=--⋅+-xxt f 有三个相异的实数根,求实数t 的取值范围.x23、(本题满分18分)如图,平面直角坐标系中,射线x y =(0≥x )和x y 2=(0≥x )上分别依次有点1A 、2A ,……,n A ,……,和点1B ,2B ,……,n B ……,其中)1,1(1A ,)2,1(1B ,)4,2(2B .且21+=-n n OA OA , n n n n B B B B 1121-+=4,3,2(=n ……). (1)用n 表示n OA 及点n A 的坐标; (2)用n 表示1+n n B B 及点n B 的坐标;(3)写出四边形n n n n B B A A 11++的面积关于n 的表达式)(n S ,并求)(n S 的最大值.y虹口区2011学年度第二学期高三年级数学学科教学质量监控测试卷答案(理科)一、填空题(每小题4分,满分56分)1、{}21<≤x x ;2、i -1;3、︒120;4、3;5、31040π;6、70;7、2,3,6;8、7.1;9、)4,1(π;10、4; 11、32; 12、]3,0(π; 13、)1,2(-; 14、22二、选择题(每小题5分,满分20分)15、C ; 16、B ; 17、C ; 18、A ; 三、解答题(满分74分)19、(12分)(1)设h AA =1,62131622⋅⋅⋅-⋅=h h V ∴41==h AA …………4分(2)如图建立空间直角坐标系, 则)4,0,6(1A , )0,6,6(B ,)4,6,0(1C )4,0,0(1D .设平面11BC A 的法向量为),,(z y x n =,)4,6,0(1-=B A ,)0,6,6(11-=C A ,由⎩⎨⎧=+-=-066046y x z y 得)3,2,2(=n …………8分又)4,6,6(1--=BD ,∴171712==d …………12分20、(12分)(1)1)62sin(22sin 3cos 2)(2++=+=πx x x x f …………2分π=T ………………3分单调递增区间]6,3[ππππ+-k k )(Z k ∈……………4分 (2)21)62sin(2)(=++=πA A f ,由21)62sin(=+πA ,得3π=A …………6分2333sin121=⨯⨯⨯πc ,∴6=c …………8分31216126122=⨯⨯⨯-+=a …………10分3sin31sin 2π==Aa R ,∴393=R …………12分21、(14分)(1)x y 42=…………4分(2)将)1(-=x k y ,代入x y 42=,得0)2(22222=++-k x k x k …………8分记),(11y x A ,),(22y x B ∴121=x x ,2221)2(2kk x x +=+,…………10分4]1)([)1)(1(2121221221-=++-=--=x x x x k x x k y y …………12分∴032121≠-=+y y x x ,0≠⋅OB OA ,∴以AB 为直径的圆不经过原点O ,不存在满足条件的k .…………14分22、(18分)(1)b ax ax x g ++-=12)(2,由题意得: ︒1 ⎪⎩⎪⎨⎧=++==+=>413)3(11)2(0b a g b g a 得⎩⎨⎧==01b a , 或 ︒2⎪⎩⎪⎨⎧=++==+=<113)3(41)2(0b a g b g a 得⎩⎨⎧>=-=131b a (舍去) ∴1=a ,0=b …………4分 12)(2+-=x x x g ,21)(-+=xx x f …………5分 (2)不等式02)2(≥⋅-xx k f ,即xxxk 22212⋅≥-+,∴1)21(2)21(2+⋅-≤xxk ……9分设]2,21[21∈=xt ,∴2)1(-≤t k , 0)1(min2=-t ,∴0≤k …………11分(3)0)3124()12(=--⋅+-xxt f ,即02312412112=---+-+-t t xxx.令012>-=x u ,则 0)14()23(2=+++-t u t u )(* …………13分 记方程)(*的根为1u 、2u ,当2110u u ≤<<时,原方程有三个相异实根, 记)14()23()(2+++-=t u t u u ϕ,由题可知,⎩⎨⎧<=>+=0)1(014)0(t t ϕϕ或⎪⎪⎩⎪⎪⎨⎧<+<==>+=122300)1(014)0(t t t ϕϕ.…………16分 ∴041<<-t 时满足题设.…………18分23、(18分)(1) n n OA OA n ⋅=-+=22)1(1 ……………2分∴),(n n A n …………4分(2)111)21(521--+⋅==n n n n n B B B B …………7分])21(3[5])21(211[55221211----=++++=+++=n n n n n B B B B OB OB∴))21(6,)21(3(32----n n n B …………10分(3)3121112tan 11=⨯+-=∠++n n OB A ,∴1010sin 11=∠++n n OB A …………12分∴nn n n n n n n n n n n OB A OB OA OB OA n S )21)(1(23)])21(3(52))21(3(52)1[(2010sin ][21)(211111-+=-⋅⋅⋅--⋅⋅⋅+=∠⋅-⋅=--++++……………………15分nn n S n S 23)1()(-=--,∴4≥n 时,)(n S 单调递减.又23)1(=S ,1627)4()3(47)2(=>==S S S .∴2=n 或3时,)(n S 取得最大值47…………18分。

相关文档
最新文档