八年级函数图像练习题.docx
人教版数学八年级下册 19.1.2 函数的图像 练习(含答案)
19.1.2 函数的图像练习一、选择题1.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A. B.C. D.2.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米3.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里,他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示,现有如下信息:(1)小李到达离家最远的地方是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有:()A. 1个B. 2个C. 3个D. 4个4.如图,一只蚂蚁以均匀的速度沿台阶爬行,那么蚂蚁爬行的高度随时间变化的图象大致是()A. B.C. D.5.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A. 清晨5时体温最低B. 下午5时体温最高C. 从5时至24时,小明体温一直是升高的D. 从0时至5时,小明体温一直是下降的6.在1−7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A. 3月份B. 4月份C. 5月份D. 6月份7.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气()A. 惊蛰B. 小满C. 立秋D. 大寒8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A. 小明吃早餐用时5分钟B. 小华到学校的平均速度是240米/分C. 小明跑步的平均速度是100米/分D. 小华到学校的时间是7:559.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A. B. C.D.10.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A. B.C. D.二、填空题11.某公路沿线有A,B,C三个站点,甲、乙两车同时分别从A、B站点出发,匀速驶向C站,最终到达C站.设甲、乙两车行驶x(ℎ)后,与B站的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示,则经过______小时后两车相遇.12.某图书出租店,有一种图书的租金y(元)与出租天数x(天)之间的函数关系如图,两天后,每过一天,租金增加__________元.13.图所示的是一根蜡烛燃烧时剩余的长度ℎ(cm)与燃烧时间t(ℎ)之间的关系图象,则蜡烛点燃后每小时燃烧__________cm.14.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为______小时.15.放学后,小明骑车回家,他经过的路程s(km)与所用时间t(min)之间的函数关系如图,则小明的骑车速度是______km/min.16.如图表示“龟兔赛跑”中路程与时间的关系,已知龟、兔同时从同一地点出发,由图中给出的信息,可知乌龟经过_________h追上兔子.三、解答题17.某星期天早晨,小华从家出发步行前往体育馆锻炼,途中在报亭看了一会儿报,如图所示是小华从家到体育馆这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)体育馆离小华家_______米,从出发到体育馆,小华共用了______分钟;(2)小华在报亭看报用了多少分钟?(3)小华看完报后到体育馆的平均速度是多少?18.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如图所示.根据图象解答下列问题:(1)在这个变化过程中,自变量和因变量各是什么?(2)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(3)当时间为10min时,洗衣机处于哪个过程?19.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)学校离他家_____米,从出发到学校,王老师共用了______分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】B5.【答案】C6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】A11.【答案】4312.【答案】0.513.【答案】514.【答案】12315.【答案】0.216.【答案】1017.【答案】解:(1)1000;25(2)由图像可知:小华在报亭看报时间=20−10=10分钟(3)由图像得:小华看完报后到体育馆所用的时间=25−20=5分钟,小华看完报后到体育馆的路程=1000−500=500米,=100米/分钟.则小华看完报后到体育馆的平均速度=500518.【答案】解:(1)自变量是时间x,因变量是水量y;(2)洗衣机的进水时间是4分钟,清洗时洗衣机中的水量40升;(3)由图,可知0~4min是进水时间,4~15min是清洗时间,15min之后是排水时间.所以时间为10min时,洗衣机处于清洗过程.19.【答案】(1)1000,25;(2)解:王老师吃早餐用了20−10=10(分钟).答:王老师吃早餐用了10分钟.(3)解:吃完早餐以后速度快,(1000−500)÷(25−20)=100(米/分).答:吃完早餐后的平均速度是100米/分.。
八年级数学-函数的图象练习题(含解析)
八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。
八年级函数图像的练习题
八年级函数图像的练习题一、选择题1. 一次函数y=2x+3的图像是一条()。
A. 水平线B. 垂直线C. 斜线D. 抛物线2. 二次函数y=x^24x+3的图像是一个()。
A. 椭圆B. 双曲线C. 抛物线D. 直线3. 反比例函数y=k/x(k≠0)的图像是()。
A. 一条直线B. 一条射线C. 双曲线D. 抛物线4. 一次函数y=x+1的图像经过()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第一、四象限二、填空题1. 一次函数y=3x2的图像与y轴的交点坐标是______。
2. 二次函数y=x^25x+6的图像的对称轴是______。
3. 反比例函数y=2/x的图像位于______象限。
4. 一次函数y=4x+3与y=4x+3的图像关于______轴对称。
三、判断题1. 一次函数的图像是一条直线,且必定经过原点。
()2. 二次函数的图像是一个抛物线,且开口方向由二次项系数决定。
()3. 反比例函数的图像是一条经过原点的直线。
()4. 一次函数y=kx+b(k≠0)的图像与y轴的交点坐标为(0,b)。
()四、作图题1. 在同一坐标系中,作出一次函数y=2x+1和y=2x+1的图像。
2. 在同一坐标系中,作出二次函数y=x^24x+3和y=x^2+4x3的图像。
3. 在同一坐标系中,作出反比例函数y=2/x和y=2/x的图像。
4. 在同一坐标系中,作出一次函数y=3x和二次函数y=x^2的图像,并观察它们的交点。
五、解答题1. 已知一次函数y=2x+3,求该函数图像与x轴、y轴的交点坐标。
2. 已知二次函数y=x^24x+4,求该函数图像的顶点坐标。
3. 已知反比例函数y=3/x,求该函数图像在第一象限的一个点坐标。
4. 在同一坐标系中,作出一次函数y=4x1和二次函数y=x^22x3的图像,并求出它们的交点坐标。
六、应用题1. 某商品的价格与销售数量之间的关系可以表示为一次函数y=3x+120,其中x为销售数量,y为商品价格。
八年级数学-函数的图象练习题(含解析)
八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。
初二关于函数图像练习题
初二关于函数图像练习题函数图像是初中数学中的一个重要内容。
通过练习题,我们可以进一步巩固对函数图像的理解。
下面是一些初二关于函数图像的练习题。
请你认真思考每个问题,并给出详细的解答。
习题一:已知函数y=f(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数f(x)的定义域是什么?2. 根据图像分析,函数f(x)的值域是什么?3. 根据图像分析,函数f(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数f(x)在哪些区间上是增函数?在哪些区间上是减函数?习题二:已知函数y=g(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数g(x)的定义域是什么?2. 根据图像分析,函数g(x)的值域是什么?3. 根据图像分析,函数g(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数g(x)在哪些区间上是增函数?在哪些区间上是减函数?习题三:已知函数y=h(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数h(x)的定义域是什么?2. 根据图像分析,函数h(x)的值域是什么?3. 根据图像分析,函数h(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数h(x)在哪些区间上是增函数?在哪些区间上是减函数?通过以上练习题,我们能够进一步加深对函数图像的理解。
希望你通过认真思考和分析,能够正确回答以上问题,并在解答过程中巩固对函数图像的知识掌握。
同时,也希望你能够掌握函数图像的绘制方法,通过练习更多的题目,进一步提高自己的能力。
祝你在数学学习中取得更好的成绩!。
八下函数的图象习题(含答案和解析)
函数的图象习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式.(3)当所挂重物为3 kg 时,弹簧有多长?不挂重物呢?(4)若弹簧的长度为30 cm 时,所挂重物的质量是多少?(在弹簧的允许范围内).【答案】解:(1)上述表格反映了弹簧的长度y cm 与所挂物体的质量x kg 这两个变量之间的关系.其中所挂物体的质量x kg 是自变量,弹簧的长度y cm 是因变量.(2)设弹簧长度y(cm)与所挂物体质量x(kg)的关系式为y = kx + b,将x = 0,y = 18;x = 1,y = 20代入得:k = 2,b = 18,∴y = 2x + 18.(3)当x = 3时,y = 24;当x = 0时,y = 18.所以,当所挂重物为3 kg 时,弹簧有24 cm 长;不挂重物时,弹簧有18 cm 长.(4)把y = 30代入y = 2x + 18,得出:x = 6,所以,弹簧的长度为30 cm 时,所挂重物的质量是 6 kg.【解析】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.(1)上述表格反映了弹簧的长度y cm 与所挂物体的质量x kg 这两个变量之间的关系.其中所挂物体的质量x kg 是自变量,弹簧的长度y cm 是因变量;(2)设y = kx + b,然后将表中的数据代入求解即可;(3)从图表中直接得出当所挂重物为3 kg 时,弹簧的长度和不挂重物时弹簧的长度;(4)把y = 30代入(2)中求得的函数关系式,求出x 的值即可.2. 等腰三角形中,周长为18 cm,设底边为x,腰长为y,(1)求y 与x 之间的函数关系式;(2)求自变量x 的取值范围;(3)在平面直角坐标系中画出函数的图象.【答案】解:(1) ∵等腰三角形周长为18 cm,底边为x cm,腰长为y cm,∴y= 9 − 12 x;(2) ∵两边之和大于第三边,两边之差小于第三边,∴{18 − x > x x > 0 ,解得:0 < x < 9;(3)y= 9 − 12 x(0 < x < 9).∵x = 9,y = 4.5,x = 0,y = 9,∴如图所示:【解析】此题考查了等腰三角形的性质以及画函数的图象,画图象时要注意自变量的取值范围.(1)根据等腰三角形的性质可得y= 9 − 12 x;(2)根据两边之和大于第三边两边之差小于第三边,得0 < x < 9;(3)画函数图象注意取值范围.3. 图1 中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图 2 所示,根据图中的信息,回答问题:(1)根据图2 补全表格:(2)如表反映的两个变量中,自变量是______,因变量是______;(3)根据图象,摩天轮的直径为______m,它旋转一周需要的时间为___min 【答案】(1)70 54 (2)旋转时间x 高度y (3)65 6【解析】解:(1)由图象可知,当x = 3时,y = 70,当x = 8时,y = 54,故答案为:70;54;(2)表反映的两个变量中,自变量是旋转时间x,因变量是高度y;故答案为:旋转时间x;高度y;(3)由图象可知,摩天轮的直径为:70 − 5 = 65 m,旋转一周需要的时间为6 min.故答案为:65;6.【分析】(1)根据图象得到x = 3和x = 8时,y 的值;(2)根据常量和变量的概念解答即可;(3)结合图象计算即可.本题考查的是函数的概念与图象,正确理解常量和变量的概念、读懂函数图象是解题的关键.。
八年级数学下册《函数的图像》练习题及答案(人教版)
八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。
人教版八年级数学下册《函数的图像》同步练习(含答案)
函数的图像一、单选题1.下列是函数图象的是( )A .B .C .D .2.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .3.如图,矩形ABCD 中,1AB =,2BC =,点P 从点B 出发,沿B C D →→向终点D 匀速运动.设点P 走过的路程为x ,ABP ∆的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A.B.C.D.4.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时5.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.小明在画函数6yx(x>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A.(1,6)B.(2,3)C.(3,2)D.(4,1)7.如图,各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.(3)(4)B.(2)(3)C.(1)(2)D.(2)(4)8.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h(cm)10 20 30 40 50 60 70 80小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是()A.当h=50cm时,t=1.89sB.随着h逐渐升高,t逐渐变小C.h每增加10cm,t减小1.23sD.随着h逐渐升高,小车的速度逐渐加快9.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A 点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A .B .C .D .10.已知某四边形的两条对角线相交于点O .动点P 从点A 出发,沿四边形的边按A→B→C 的路径匀速运动到点C .设点P 运动的时间为x ,线段OP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该四边形可能是( )A .B .C .D .二、填空题11.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.12.如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽,水槽内水面的高度()y cm 与注水时间()x s 之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.13.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).14.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.三、解答题15.如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?16.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.17.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?18.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2答案1.B 2.B 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.D 11.﹣1<x<1或x>2. 12.4 13.①②④ 14.1.5或5或9 15.(1)体育场离小明家2.5千米,小明从家到体育场用了15分钟.(2)体育场离文具店2.5﹣1.5=1(千米).(3)小明在文具店逗留的时间为65﹣45=20(分钟).(4)小明从文具店回家的平均速度是1.5010065--=370(千米/分钟).16.解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min. (2)2.5-1.5=1(km),所以体育场离文具店1km.(3)65-45=20(min),所以张强在文具店逗留了20min.(4)1.5÷(100-65)= (km/min),张强从文具店回家的平均速度为km/min.17.(1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.∵横轴的最大值为20,∴小明到达学校时共用时间20分钟(2)15-10=5(分钟),小明修车用了5分钟.(3)修车前的骑行平均速度为1000÷10=100(米/分钟),修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)18.解:(1)根据图象得:点P在BC上运动的时间范围为6≤t≤12;(2)点P在AB上时,△APD的面积S=12×6×t=3t;点P在BC时,△APD的面积=12×6×6=18;点P在CD上时,PD=6-2(t-12)=30-2t,△APD的面积S=12AD•PD=12×6×(30-2t)=90-6t;∴当0≤t≤6时,S=3t,△APD的面积为10cm2,即S=10时,3t=10,t=103,当12≤t≤15时,90-6t=10,t=403,∴当t为103s或403s时,△APD的面积为10cm2。
函数图像练习题初二
函数图像练习题初二1. 已知函数 f(x) 的图像如下图所示,请根据图像回答问题。
[插入图像]问题一:在什么情况下,函数值为正数?问题二:在什么情况下,函数值为负数?问题三:在什么情况下,函数值为零?问题四:函数 f(x) 有没有最大值或最小值?如有,请指出其对应的x 值和 y 值。
2. 请根据题目给出的函数式,绘制函数的图像,并回答问题。
问题一:函数 f(x) = 2x + 1 的图像是什么样的?问题二:函数 g(x) = -3x + 4 的图像是什么样的?问题三:函数 h(x) = x^2 的图像是什么样的?3. 请根据函数图像,写出函数的函数式。
问题一:已知函数的图像如下图所示,请写出函数的函数式。
[插入图像]问题二:已知函数的图像如下图所示,请写出函数的函数式。
[插入图像]问题三:已知函数的图像如下图所示,请写出函数的函数式。
[插入图像]4. 请综合运用函数的平移、伸缩等性质,回答以下问题。
问题一:将函数 f(x) = 2x 平移 3 个单位向左得到的函数是什么?问题二:将函数 g(x) = 3x 垂直方向伸缩倍数为2得到的函数是什么?问题三:将函数 h(x) = x^2 沿 y 轴向右平移 2 个单位得到的函数是什么?注意:以上问题的回答请结合具体函数图像进行说明,并写出相应的函数式。
本文将通过练习题的形式,帮助初二学生加深对函数图像的理解。
通过分析已知函数的图像、绘制给定函数的图像、识别函数的函数式以及运用平移、伸缩等性质,来提升学生对函数图像的掌握程度。
1. 问题一:根据图像,当 x 大于-1时,函数值为正数。
2. 问题二:根据图像,当 x 小于-1时,函数值为负数。
3. 问题三:根据图像,当 x 等于-1时,函数值为零。
4. 问题四:根据图像,函数 f(x) 没有最大值或最小值。
2. 问题一:函数 f(x) = 2x + 1 的图像是一条斜率为正数的直线,斜率为2,与 y 轴交于点 (0, 1)。
(完整word版)八年级函数图像练习题
函数图像1.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点2.(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个3.(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.4.(2008•菏泽)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.205.(2003•武汉)小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了()A.32元B.36元C.38元D.44元6 .(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮7.已知某一函数的全部图象如图所示,根据图象回答下列问题:(1)确定自变量x的取值范围,;(2)当x=﹣4时,y的值是;(3)当y=0时,x的值是;(4)当x=时,y的值最大,当x= 时,y的值最小;(5)当x的值在什么范围内时y随x的增大而增大?答:;(6)当x的值在什么范围内时,y<0,答.8.(2014秋•海曙区期末)一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米10.(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.9、(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点10、(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个11、(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h 随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.12.(2015秋•威海期中)如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC 以每秒1个单位长的速度作匀速运动,到点C后停止运动;点Q由点C开始沿C﹣A﹣B以每秒2个单位长的速度作匀速运动,到点B后停止运动.若点P,Q同时开始运动,运动的时间为t(秒)(t>0).求当点P、Q运动时,△PCQ的面积S与t的函数关系式,并指出自变量t的取值范围.13、已知某一函数的图象所示,根据图象回答下列问题:(1)确定自变量的取值范围;(2)求当x=﹣4,﹣2,4时y的值是多少?(3)求当y=0,4时x的值是多少?(4)当x取何值时y的值最大?当x取何值时y的值最小?(5)当x的值在什么范围内是y随x的增大而增大?当x的值在什么范围内时y随x的增大而减小?14、已知某一函数的全部图象如图所示,根据图象回答下列问题:(1)确定自变量x的取值范围,;(2)当x=﹣4时,y的值是;(3)当y=0时,x的值是;(4)当x=时,y的值最大,当x=时,y的值最小;(5)当x的值在什么范围内时y随x的增大而增大?答:;(6)当x的值在什么范围内时,y<0,答.。
(完整版)北师大版本八年级数学上一次函数的图像练习题.doc
北师大版本八年级数学上一次函数的图像练习题一、选择题 :( 每小题 3 分 , 共 24 分 )1. 下列函数中 ,y 是 x 的一次函数的是 ( )A.y=2x 2+1;B.y=x-1+1 C.y=-2(x+1)D.y=2(x+1)22. 下列关于函数的说法中 , 正确的是 ( )A. 一次函数是正比例函数B.正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数22 B.m=1 2 1A.m= ; ; C.m>; D.m<32324. 下列函数 : ①y= - 8x; ②y=8; ③y=8x 2; ④y=8x+1; ⑤y= . 其中是一次函数的有 ( )xA.1 个B.2 个C.3 个D.4 个5. 若函数 y=(m-3) x m 1+x+3 是一次函数 (x ≠0), 则 m 的值为 ( )A.3B.1C.2D.3或 1 6. 过点 A(0,-2), 且与直线 y=5x 平行的直线是 ( ) A.y=5x+2B.y=5x-2C.y=-5x+2D.y=-5x-27. 将直线 y=3x-2 平移后 , 得到直线 y=3x+6, 则原直线 ( )A. 沿 y 轴向上平移了 8 个单位B. 沿 y 轴向下平移了 8 个单位C. 沿 x 轴向左平移了 8 个单位D. 沿 x 轴向右平移了 8 个单位8. 汽车由天津开往相距120km 的北京 , 若它的平均速度是 60km/h, 则汽车距北京的路程 s(km) 与行驶时间 t(h) 之间的函数关系式是 ( )A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t二、填空题 : ( 每小题 3 分, 共 27 分 )1. 若 y=(n-2) x n 2 n 1是正比例函数 , 则 n 的值是 ________.2. 函数 y=x+4 中 , 若自变量 x 的取值范围是 -3<x< - 1, 则函数值 y 的取值范围是 _____.3. 当 a=_____时 , 函数 y=(a-1)x 2+ax-2 是一次函数 .4. 长方形的长为 3cm,宽为 2cm,若长增加 xcm, 则它的面积 S(cm 2) 与 x(cm) 之间的函数关系式是_____, 它是 ______函数 , 它的图象是 _______.5. 已知函数 y= mx m 2m 1m 2 1, 当 m=______时 , 它是正比例函数 , 这个正比例函数的关 系式为 _______; 当 m=________时 , 它是一次函数 , 这个一次函数的关系式为 _______. 6. 把函数 y=2x 的图象沿着 y 轴向下平移 3 个单位 , 得到的直线的解析式为_____.a1 3 7. 两条直线 l 1 : yx b,l 2 : yx425中 , 当 a________,b______ 时 ,L 1∥L 2.8. 直线 y=-3x+2 和 y=3x+2 是否平行 ?_________.9. 一棵树现在高50cm,若每月长高2cm,x 月后这棵树的高度为ycm,则 y 与 x 之间的函数关系式是 ________.三、基础训练: ( 共 10 分)求小球速度v( 米 / 秒 ) 与时间 t( 秒 ) 之间的函数关系式:(1) 小球由静止开始从斜坡上向下滚动, 速度每秒增加 2 米 ;(2)小球以 3 米 / 秒的初速度向下滚动 , 速度每秒增加 2 米;(3) 小球以 10 米 / 秒的初速度从斜坡下向上滚动, 若速度每秒减小 2 米 , 则 2 秒后速度变为多少 ?何时速度为零 ?四、提高训练:( 每小题 9 分 , 共 27 分 )1.m 为何值时 , 函数 y=(m+3) x2 m 1 +4x- 5(x ≠0) 是一次函数?2. 已知一次函数 y=(k-2)x+1- k2 : (1)k 为何值时 , 函数图象经过原点 ? (2)k 为何值时 , 函4数图象过点 A(0,3)? (3)k 为何值时 , 函数图象平行于直线 y=2x?3.甲每小时走 3 千米 , 走了 1.5 小时后 , 乙以每小时4.5 千米的速度追甲 , 设乙行走的时间为t( 时 ), 写出甲、乙两人所走的路程 s( 千米 ) 与时间 t( 时 ) 之间的关系式 , 并在同一坐标系内画出函数的图象 .五、中考题与竞赛题:( 共 12 分 )某机动车出发前油箱内有油42 升 , 行驶若干小时后, 途中在加油站加油若干升,油箱中余油量Q(升 ) 与行驶时间t( 时 ) 之间的函数关系如图所示, 回答下列问题.(1)机动车行驶几小时后加油 ?(2)求加油前油箱余油量 Q与行驶时间 t 的函数关系 , 并求自变量 t 的取值范围 ;(3)中途加油多少升 ?(4)如果加油站距目的地还有 230 千米 , 车速为 40 千米 / 时 , 要到达目的地 , 油箱中的油是否够用 ?请说明理由 .Q(升)42363024181260 1 2 3 4 5 6 7 8 9 10 11 12t( 时 )答案 :一、 1.C 2.B 3.A 4.C 5.D 6.B 7.A 五、提示 :(1)t=5.8.B (2)Q=42- 6t(0 ≤t ≤5).二、 1.-1 2.1<y<3 3.1 4.S=2x+6 (3)Q=24一次一条直线(4) ∵加油后油箱里的油可供行驶5.-1 y=-x 2 或 - 1 y=2x+3 或 y=-x 11-5=6( 小时 ),6.y=2x- 37.=2 ≠ - 3∴剩下的油可行驶 6×40=240(千米 ), 8. 不平行5 ∵240>230,9.y=50+2x ∴油箱中的油够用 .三、 (1)v=2t (2)v=3+2t.(3) 解 :v=10-2t,当 t=2 时 ,v=10-2t=6(米/秒),∴2秒后速度为 6 米/ 秒 ;当 v=0 时 ,10-2t=0,∴t=5, ∴5秒后速度为零.四、 1. 解 : 当 m+3=0,即 m=-3 时,y=4x-5一次函数 ;当 m+3≠0时 , 由 2m+1=1,得 m= 0,∴当 m=0时 ,y=7x-5是一次函数;是由 2m+1=0,得m=- 1.2∴当m=- 1时 ,y=4x-5 是一次函数,2 21综上所述 ,m=-3 或 0 或 -.2.解:(1) ∵原点 (0,0) 的坐标满足函数解析式 , 即 1- k2 =0, 4∴k=±2,又∵k- 2≠0, ∴k= -2(2) 把 A(0,-3)k2 代入解析式 , 得 -3=1-,4∴k=±4.(3)∵该直线与 y=2x 平行 ,∴k-2=2,∴k=4.3. 解 :S 甲 =3t+4.5(t>0),S乙=4.5t(t>0),。
八年级数学下册《函数的图象》练习题及答案(人教版)
八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。
初二数学图像试题及答案
初二数学图像试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图像?A. 直线B. 曲线C. 抛物线D. 双曲线答案:A2. 抛物线的顶点坐标为(2,3),那么抛物线的解析式可能是:A. y = (x-2)^2 + 3B. y = (x+2)^2 + 3C. y = (x-2)^2 - 3D. y = (x+2)^2 - 3答案:A3. 如果一个函数的图像是一条直线,且斜率为2,那么该函数的解析式可能是:A. y = 2x + 1B. y = x/2 + 1C. y = 2x^2 + 1D. y = 1/(2x)答案:A4. 一次函数y = 3x + 2的图像经过点:A. (0, 2)B. (1, 5)C. (2, 8)D. (3, 11)答案:B5. 函数y = 2x + 1与y = -x + 2的交点坐标是:A. (-1, 3)B. (1, 1)C. (1, 3)D. (-1, 1)答案:B6. 函数y = 3x - 4的图像与x轴的交点坐标是:A. (0, -4)B. (4/3, 0)C. (-4/3, 0)D. (0, 4)答案:C7. 函数y = -2x + 5的图像与y轴的交点坐标是:A. (0, -5)B. (0, 5)C. (5/2, 0)D. (-5/2, 0)答案:B8. 函数y = 4x - 6的图像经过的象限是:A. 第一象限和第三象限B. 第一象限和第四象限C. 第二象限和第四象限D. 第二象限和第三象限答案:B9. 函数y = 3x^2 + 2x - 5的图像开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A10. 函数y = -x^2 + 3x + 4的图像顶点坐标是:A. (-1, 5)B. (3, -1)C. (3, 5)D. (-1, -5)答案:C二、填空题(每题3分,共30分)1. 函数y = 2x + 3的图像与x轴交点的横坐标是______。
八年级数学上册函数函数的图象同步练习1(含解析)
函数的图象·一、选择题;;1.图中,表示y是x的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()A.39.0℃B.38.2℃;C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是 ( );;二、填空题;;5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(mi n)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?________8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。
八年级数学函数及图象测试题.doc
图17.12第17章创新能力测试题(时间:120分钟满分120分)一、填空题(每小题3分,共30分)1.一次函数y=ax+b图象如图所示,则其a、b的符号为_______.2.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是.3.图17.13所示的是某城市冬季某一天的气温随时间变化图,这一天的温差为____℃;当t________范围内,气温逐渐升高.4.以点p(0,-1)为圆心,3为半径画圆,分别交y轴的正半轴、负半轴于点A、B,则A点坐标为______,B点坐标为_______.5.如果水的流速是a米/分(a为定量),D(米)之间的函数关系是,其中自变量是,常量是.6.已知点M(3,-2)与点N(x,y)在同一条平行于y轴的直线上,且N到x轴的距离等于4,那么点N的坐标是.7.点P是反比例函数2yx=-第二象限上的一点,PD⊥x轴于点D,则△POD的面积为-___________.8.点P(2a-1,3+a),若p点在x轴的上方、y轴的左侧,则a的取值范围是____.9.当x≥3时,函数y=2x+5的最小值为____.10.已知一次函数y1=–2x–3和y2=x,当x_________时,y1>y2.二、选择题(每小题3分,共24分)11.平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是()A.(2,﹣3) B.(﹣2,3) C(﹣2,﹣3) D.(3,2)12.已知正比例函数y=(3k—1)x,若y随x的增大而增大,则kA .k<0 B.k> 0 C.k <31D.k>3113.某人骑车外出,所行的路程S(km)与时间t(h)的函数关系如图17.14所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②、③ B.①、③ C.①、④ D.②、④14.已知函数y=–xk的图象过点(-2,3),那么下列各点在函数y=kx-2的图象上的是时)图17.11(A ) (B ) (C ) (D )图17.16 ( )A .(4,1)B .(21,-1) C .(-23,-11) D .(-3,-21) 15.已知一次函数y =k 1x +b ,y 随x 的增大而减小,且b >0;反比例函数y =xk 2中的k 2与k 1值相等,则它们在同一坐标系中的图象只可能是( )16.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就利用体温计收集到的数据如下:请你根据上述数据分析判断,水银柱的长度(mm )与体温计的读数t (℃)()之间存在的函数关系是( ) A. l t =-110662B. l t =11370C. l t =-63072D. l t=39552 17.函数y =x x x --+-123的自变量x 的取值范围是 ( )A .–2<x ≤1B .x >–2C .–2≤x≤1D .x >–2且x ≠3 18.(重庆市)某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱, 若每小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,那么这个函数图象只能是( )三、解答题(第19、20、21每题12分,第22、23每题15分,共66分) 19.已知一次函数y=(4m+1)x -(m+1).(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,直线与y 轴的交点在x 轴下方? (3)m 为何值时,直线位于第二、三、四象限?20.已知y +m 与x +n (m, n 为常数)成正比例,判断y 与x 成什么函数关系; 若x=3时,y=5;x=5时,y=11,求出y 与x 之间的函数关系式.21.如图17.17表示一艘轮船与一艘快艇沿相同路线从甲港到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象(A) (B) (C) (D) 图17.15和一次函数图象).根据图象解答下列问题: (1)请分别求出表示轮船和快艇行驶过程的 函数解析式(不需写出自变量取值范围); (2)轮船和快艇在途中(不包括起点和终 点)行驶的速度分别是多少? (3)问快艇出发多长时间赶上轮船?22.(潍坊市,2004)(本小题满分10分)系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?23.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A 县10辆,调往B 县8辆.已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式; (2)若要让总运费不超过900元,问共有几种调运方案; (3)求出总运费最低的调运方案,最低运费是多少?第17章 综合能力测试答案1.a <0,b <0(点拨:其图象分布在二、三、四象限,从而a <0,b <0.) 2.C (点拨:蓄水池的横断面是由“上大下小”的两个长方形构成.)3.12,–2≤t ≤14(点拨:4时气温最低(-2℃);14时的气温最高(10℃).) 4.A 点坐标为(0,2),B 点坐标为(0,-4). 5.Q=41a πD 2,自变量是D ,常量是41a π. 6.(3,4)或(3,–4)(点拨:MN ∥y 轴,则这两点的横坐标相等,N 到x 轴的距离为4,N 的纵坐标为±4.)7.1(点拨:设点P 为(x 1, y 1),则S △POD =DP OD 21=1121y x =1.) 8.–3<a <21(点拨:点P 在第四象限,则由3+a >0,且2a -1<0.) 9.11(点拨:函数y=2x+5的y 随x 的增大而增大,当x ≥3时,y 最小值=11.) 10.x<–1(点拨:因为y 1>y 2,则–2x –3>x .或直接利用函数的图象求解.) 11.A (关于x 轴对称的两个点的的横坐标相等,纵坐标相反.)12.D (点拨:正比例函数y=(3k —1)x 的y 随x 的增大而增大,则3k —1>0.)13.A(点拨:1到5小时每小时所行的路程大小关系是:S 1>S 2>S 3>S 4=S 5=…=0,所以它们的速度关系是υ1>υ2>υ3>υ4=υ5=…=0.所以②、③正确.)14.C(点拨:先求出k=6,再确定只有点(-23,-11)满足解析式y =6x -2.) 15.C (点拨:图C 中,k 1= k 2<0,函数y =k 1x +b 中y 随x 的增大而减小,函数y =xk 2的图象分布在二、四象限.)16.C (点拨:设其函数关系式为l=6t-2307,当t 为35、36,l 分别为56.5、62.5.) 17.A (点拨:函数y =x x x --+-123中x+2≥0, 2+x ≠0, 且1–x ≥0.)18.A (点拨:当时间0≤t ≤3时,只生产不装箱,故未装箱的产品数量随时间的增加而增多,当t >3时,生产量小于销售量,故未装箱的数量随时间的增加而逐步减少,故可同时排除B 、C 、D ). 19.(1) m <-41 (2) m >-1时;(3)-1<m <-41. 20.y+m 与x + n 成正比例,则y+m=k (x +n) (k ≠0),整理得y=kx +kn -m . 因为k ≠0, m, n 为常数,所以y 是x 的一次函数.⎩⎨⎧=-+=-+)2(115)1(53 m kn k m kn k ,(2)-(1)得2k=6, k=3,把k=3代入 (1)得kn -m=-4,即y=3x -4.21.(1)轮船行驶过程的函数解析式y=20x ,快艇行驶过程的函数解析式为y=40x -80;(2)轮船速度是208160=(千米/时),快艇速度404160=(千米/时);(3)设快艇出发x 小时赶上轮船,则20(x+2)=40x -80,解得:x=2.22.(1)设y 与x 之间的函数关系式为y=kx+b,当x=0时y=22;当x=100时y=21.5,所以y=﹣0.005x+22,经检验,表中余下的三组数值均满足关系式y=﹣0.005x+22;(2) 解不等式组18≤﹣0.005x+22≤20,得400≤x ≤800.故该植物适宜种植在海拔为400~800米的山区 .23.(1)设从乙仓库调往A 县农用车x 辆,则y=30x+50(6-x )+40(10-x )+80(2+x ).即y=20x+860.(2)因为总运费不能超过900,令20x+860≤900,得x ≤2,由于x 为非负整数,x 的取值可为0,1,2,则共有三种调运方案.(3)当x=0时,y 最小值=860(元),即能得出总运费最低的调运方案与最低运费.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像
1.(2015*海南)甲、乙两人在操场上赛跑,他们赛跑的
s (m ) 路程S (米)与时间I (分钟)Z 间的函数关系如图所示,1000$••••• 则下列说法错谋的是( )
甲、乙两人进行1000米赛跑 甲先慢后快,乙先快后慢
比赛到2分钟时,卬、乙两人跑过的路程相等 甲先到达终点
(2()15・南通)在2()km 越野赛屮,甲乙两选手的行程y
(单位:km )随时间x (单位:h )变化的图象如图所示,根据 图中提供的信息,有下列说法:①两人和遇前,甲的速度小于 乙的速度;②出发后1小时,两人行程均为10km ;③岀发后1.5 小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确 的有(
)
A. 1个
B. 2个
C. 3个
D. 4个
3. (2015*济宁)匀速地向一个容器内注水,最后把容器注满, 在注水过程中,水血高度h 随时间t 的变化规律如图所示(图中 OABC 为一折线),这个容器的形状是下图中的( )
的面积为y,如果y 关于x 的函数图象如D 图所示,K'JAABC 的面积是(
)
A. 10
B. 16
C. 18
D. 20
A
5. (2()()3・武汉)小李以每T •克(W 元的价格从批发市场购进若干 千克西瓜到市场去销售,在销售了部分西瓜Z 后,余下的每T 克 降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如 图所示,那么小李赚了( ) A. 32 元B. 36 元C. 3X 元D. 44 元
700
一乙
2 2.5 3.25 4
• • ^3
4. (2008•荊泽)如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点 A 停止,设点P 运动的路程为x, AABP
6 . (2015*聊城)小亮家与姥姥家相距24km,小亮8: 00从家出
发,骑自行车去姥姥家.妈妈8: 30从家出发,乘车沿相同24 路线
去姥姥家.在同一直角朋标系中,小亮和妈妈的行进路程S20
(km)与北京时间t (时)的函数图彖如图所示.根据图象得到小
亮结论,其屮错谋的是()
A.小亮骑占行车的平均速度是12km/h 10
B.妈妈比小亮提前0.5小吋到达姥姥家
C.妈妈在距家12km处追上小亮
D.9: 30妈妈追上小亮
7.已知某一函数的全部图象如图所示,根据图象冋答下列问题:
(1) _____________________________ 确定自变量x的取值范围,;
(2) _____________________ 当x=-4时,y的值是;
(3) ______________________ 当y=0时,x的值是;
(4) ________ 当x= ____________________ 时,y的值最大,当x= 时,y的值最小;
(5) ____________________________________________________ 当x的值在什么范围内吋y随x的增大而增大?答:___________________________________
小刚在此后所跑的路程y (米)与时间t (秒)Z间的两数关系如图,则这次长跑的全程为()米.A. 2000 米B. 2100 米C. 2200 米D. 2400 米
10.(2014・南通)如图①,底而积为30cn?的空圆柱形容器内水平放置着山两个实心圆柱组成的“儿何休〃,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.
请根据图中提供的信息,解答下列问
题:
(1)圆柱形容器的高为cm,匀
速注水的水流速度为cm3/s ;
(2)若“几何体〃的下方圆柱的底
血•积>为15cn?,求“几何体〃上方圆
柱的高和放底面积.
图①图②
9、(2015*海南)甲、乙两人在操场
上赛跑,他们赛跑的路程S (米)与时间t (分钟)之间的函数关系如图所示,则下列说法错误的是()
B.甲先慢后快,乙先快后慢
C.比赛到2分钟时,甲、乙两人跑过的路程相等
D.甲先到达终点
10、(2015*南通)在20km越野赛中,甲乙两选手的行程y (单位:km)随时间x (单位:h)变化的图彖如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②岀发示1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多
3km;④甲比乙先到达终点.其屮正确的有(
11、(2015・济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h 随时间t的变化规律如图所示(图中OABC为一浙线),这个容器的形状是下图中的(
)
12.(2015秋•威海期中)如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC 以每秒1个单位长的速度作匀速运动,到点C后停止运动;点Q由点C开始沿C-A-B 以每秒2个单位长的速度作匀速运动,到点B示停止运动.若点P, Q同时开始运动,运动的时间为t
(秒)(t>0)・求当点P、Q运动时,APCQ的面积S与t的函数关系式,并指出自变量t的取值范围.
Ell 备用图备用图
13、已知某一函数的图象所示,根据图象回答下列问题:
(1)确定自变量的取值范围;
(2)求当x=-4,・2, 4时y的值是多少?
(3)求当y=0, 4时x的值是多少?
(4)当x収何值时y的值最大?当x収何值时y的值最小?
(5)当x的值在什么范围内是y随x的增大|何增大?当x的值在什么范围内时y随x的增人而减小?
14、已知某一函数的全部图象如图所示,根据图象回答下列问题:
(1)______________________________ 确定自变量x的取值范围,;
(2)_______________________ 当x=-4时,y的值是;
(3)_______________________ 当y=0时,x的值是:
(4)________ 当x= ______________________ 时,y的值最大,当x= 时,y的值戢小;(5)____________________________________________________ 当x的值在什么范围内时y随x的增大而增大?答:___________________________________。