高中数学人教A版【精品习题】必修1单元测试:第二章 基本初等函数(Ⅰ)(二)B卷 Word含解析

合集下载

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

为幂函数,得 m2-m-
A
1=1,解得 m=2 或 m=-1.当 m=2 时,m2-2m-3=-3,y=x-3 在
(0,+∞)上为减函数;当 m=-1 时,m2-2m-3=0,y=x0=1(x≠0)
在(0,+∞)上为常数函数(舍去),所以 m=2,故选 A. 7.D 解析:当 x≤1 时,由 21-x≤2 知,x≥0,即 0≤x≤1;
18.(本小题满分 12 分)
1 2
已知函数 f(x)=-2x . (1)求 f(x)的定义域; (2)证明:f(x)在定义域内是减函数.
19.(本小题满分 12 分)
3
xx
已知-3≤log0.5x≤-2,求函数 f(x)=log22·log24的最大值和最小
值.
20.(本小题满分 12 分)
2-x,x∈(-∞,1], 设 f(x)= x x
16.设函数 f(x)是定义在 R 上的奇函数,若当 x∈(0,+∞)时,f(x)
=lg x,则满足 f(x)>0 的 x 的取值范围是________. 三、解答题(本大题共 6 个小题,共 70 分,解答时应写出必要的文
字说明、证明过程或演算步骤) 17.(本小题满分 10 分) 计算下列各题:
1 13. 2,4] 解析:由题意知,2≤log2x≤2,即 log2 2≤log2x≤log24, ∴ 2≤x≤4.
1 14.24 解析:∵log23<4, ∴f(log23)=f(log23+1)=f(log23+3)=f(log224), ∵log224>4,∴f(log224)=12log224=214. 15. 3 3 解析:由图象过点(-2,0),(0,2),知
1 当 x>1 时,由 1-log2x≤2 知 x≥2,即 x>1.

高中数学必修1第二章基本初等函数单元测试题含参考答案

高中数学必修1第二章基本初等函数单元测试题含参考答案

高一数学单元测试题 必修1第二章《根本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a+= B .11mma a=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是( )A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是( )A .(3,4)B .(2,5)C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年进步10%,后两年每年降低10%,则四年后的价格及原来价格比拟,改变的状况是 ( )A .削减1.99%B .增加1.99%C .削减4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:17.求下列各式中的x 的值(共15分,每题5分) 18.(共12分)(Ⅰ)解不等式2121()x x aa--> (01)a a >≠且. (Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求ST ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值及最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对随意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 22.已知函数)1a (log )x (f xa -= )1a 0a (≠>且, (1)求f(x)的定义域;(2)探讨函数f(x)的增减性。

高中数学人教新课标A版必修一基本初等函数对数函数及其性质

高中数学人教新课标A版必修一基本初等函数对数函数及其性质

高中数学人教新课标A版必修1 第二章基本初等函数(I) 2.2.2 对数函数及其性质一、选择题1.已知,则()A. B. C. 3 D.【答案】A2.函数的定义域为()A. (,)B. (,)C. (,)D. [ ,)【答案】C3.设则f[f(2)]的值为()A. 0B.C. 2D.【答案】C4.设则()A. B. C. D.【答案】 D5.已知函数f(x)=,若f(a)=b,则f(−a)等于()A. bB. −bC.D.【答案】B6.已知函数的值域为[−1,1],则函数f(x)的定义域是()A. [ ,]B. [−1,1]C. [ ,2]D. (−∞,]∪[ ,+∞)【答案】A7.若<1,则实数a的取值范围是()A. (0,)B. (,+∞)C. (,1)D. (0,)∪(1,+∞)【答案】 D8.下图是对数函数y=log a x的图象,已知a值取,,,,则图象C1,C2,C3,C4对应的a值依次是()A. ,,,B. ,,,C. ,,,D. ,,,【答案】 D9.下列函数在其定义域内为偶函数的是()A. y=2xB. y=2xC. y=log2xD. y=x2【答案】 D10.函数的定义域是()A. B. C. D.【答案】D11.在同一直角坐标系中,当时,函数与的图象是()A. B.C. D.【答案】C12.已知f(x)=log3x,则的大小是()A. B.C. D.【答案】B13.设a=log3π,b=log2,c=log3,则()A. a>b>cB. a>c>bC. b>a>cD. b>c>a【答案】A14.函数f(x)=log2(3x+3−x)是()A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数【答案】B15.已知是(−∞,+∞)上的减函数,那么a的取值范围是()A. (0,1)B.C.D.【答案】C16.已知函数f(x)=log a(x2+2x−3),若f(2)>0,则此函数的单调递增区间是()A. (−∞,−3)B. (−∞,−3)∪(1,+∞)C. (−∞,−1)D. (1,+∞)【答案】 D17.已知函数在[−1,+∞)上是减函数,则实数a的取值范围是()A. −8≤a≤−6B. −8<a<−6C. −8<a≤−6D. a≤−6【答案】C18.已知函数是定义在上的偶函数, 且在区间上单调递增. 若实数a满足, 则a的最小值是()A. B. 1 C. D. 2【答案】C19.函数f(x)=a x−2+log a(x−1)+1(a>0,a≠1)的图象必经过定点________.【答案】(2,2)20.函数y=2+log2x(x≥1)的值域为________.【答案】[2,+∞)21.已知函数f(x)满足当x≥4时;当x<4时f(x)=f(x+1),则f(2+log23)=________.【答案】二、填空题22.函数y=log a(x−1)+1(a>0且a≠1)的图象恒过定点________.【答案】(2,1)23.已知,则实数x的取值范围是________.【答案】24.若函数y=f(x)是函数(a>0,且a≠1)的反函数,且f(x)的图象经过点,则a=________. 【答案】三、解答题25.已知log a(2a+1)<log a(3a−1),求实数a的取值范围.【答案】解:当a>1时,原不等式等价于解得a>2.当0<a<1时,原不等式等价于解得<a<1.综上所述,a的取值范围是<a<1或a>2.26.已知f(x)=(a>0,a≠1).(1)求f(x)的定义域;(2)求使f(x)>0成立的x的取值范围.【答案】(1)解:由>0,得−2<x<2,故f(x)的定义域为(−2,2)(2)解:①当a>1时,由>0=log a1得>1,∴0<x<2.②当0<a<1时,由>0=log a1得0< <1,∴−2<x<0.故当a>1时,所求的取值范围为;当0<a<1时,所求的取值范围为27.若不等式2x−log a x<0在x∈上恒成立,求实数a的取值范围.【答案】解:要使不等式2x<log a x在x∈上恒成立,则函数y=log a x的图象在内恒在函数y =2x图象的上方,而y=2x的图象过点.由图可知,,显然这里0<a<1,∴函数y=log a x 递减.又,∴,即,∴所求的实数a的取值范围为.28.已知函数f(x)=x2−x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?求出该最小值.【答案】(1)解:因为,所以,又a>0,且a≠1,所以(2)解:f(log a x)=f(log2x)=(log2x)2−log2x+2=(log2x− )2+.所以当log2x= ,即时,f(log a x)有最小值29.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过点(9,2).(1)求函数f(x)的解析式;(2)若f(3x−1)>f(−x+5)成立,求x的取值范围.【答案】(1)解:∵log a9=2,解得a=3,∴g(x)=log3x.∵函数y=f(x)的图象与g(x)=log3x的图象关于x轴对称,∴(2)解:∵f(3x−1)>f(−x+5),∴,则,解得,所以x的取值范围为。

人教版高中数学必修1数学第二章课后习题(共10页)Word版

人教版高中数学必修1数学第二章课后习题(共10页)Word版

新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。

人教版高中数学A版必修1课后习题及答案(全)

人教版高中数学A版必修1课后习题及答案(全)

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。

高中数学第二章基本初等函数(Ⅰ)1.1指数与指数幂的运算基础训练(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)1.1指数与指数幂的运算基础训练(含解析)新人教A版必修1

指数函数2.1.1 指数与指数幂的运算基础过关练题组一 根式的概念及其性质1.(2020福建三明第一中学高一月考)下列各式正确的是 ( )A.√(-3)2=3B.√a 44=a C.(√-23)3=2D.√(-2)33=22.若2<a <3,则√(2-a )2+√(3-a )44的化简结果是( )a a 53.已知xy ≠0且√4a 2a 2=2xy ,则有 ( )A .xy <0B .xy >0C .x >0,y >0D .x <0,y >04.若√a 2+2a +1+√a 2+6a +9=0,则(x2019)y= .5.已知a <b <0,n >1,n ∈N *,化简√(a -a )aa+√(a +a )aa.题组二 分数指数幂及其运算6.(2020广东佛山一中高一月考)下列运算结果中,一定正确的是 ( )A.a 3·a 4=a 7B.(-a 2)3=a 6C.√a 88=aD.√(-π)55=π7.(2020广东佛山一中高一上第一次段考)√a ·√a 3的分数指数幂表示为 ( )A.a 12B.a 32C.a 34D.都不对8.(2020浙江高一月考)计算:π0+22×(94)12= ;化简:(√√a 963)4(√√a 936)4= .9.化简下列各式.(1)√23√56√34;(2)(a 23·a 14·z 1)·(x 1·a 34·z 3)-13; (3)(14)2+(6√6)-13+√3+√2√3-√2(1.03)0×(-√62). 题组三 条件求值问题10.已知x =1+2b ,y =1+2b,若用x 表示y ,则y = ( )A.a +1a -1B.a +1aC.a -1a +1D.a a -111.(2020山东师范大学附属中学高一月考)已知a ,b ∈R,若8a=223b,则a +b = . 12.已知x =27,y =64,化简并计算:5a -23a 12(-14a -1a 12)·(-56a 13a 16).13.(2020浙江塘栖中学高一期末)若a 12+a -12=3,求下列代数式的值. (1)x 2x 2; (2)a 32a -32.能力提升练一、选择题1.(2020安徽屯溪一中高一上期中,)若a <14,则化简√(4a -1)24的结果是( )A.√4a -1B.√1-4a√4a -1 √1-4a2.(2020河北衡水安平中学高一月考,)设α,β是方程2x 2+3x +1=0的两根,则(14)a +a的值为 ( )B.18183.(2020河南鹤壁高中高三月考,)已知a +a 1=3,则下列各式中正确的个数是 ( )①a 2+a 2=7;②a 3+a 3=18; ③a 12+a -12=±√5;④a √a +a√a=2√5.4.(2020广东深圳中学高一月考,)若a +b =a 13,ab =16a 23(m >0),则a 3+b 3=( )B.a2a2D.3a 2二、填空题5.(2020湖南邵阳第十一中学高一期中,)设2x =8y +1,9y =3x 9,则x +y = .6.()已知a =3,则11+a 14+11-a 14+21+a 12+41+a 的值为 .7.()(√3+√2)2020×(√3√2)2021= .三、解答题8.(2020山西晋中平遥二中高一月考,)(1)(√8)-23×(√1023)92÷√105;(2)2×(√23×√3)6+(√2√2)434×(1649)-12√24×80.25+(2019)0.9.(2020甘肃兰州一中高一月考,)(1)计算:(0.0081)-143×7801×810.25+278-13-12;(2)已知a 12+a -12=3,求a 2+a 2的值.10.()已知x =12,y =23,求√a +√a √a -√a √a -√a√a +√a的值.11.(2020云南丽江高一月考,)已知方程x 28x +4=0的两根分别为x 1,x 2(x 1<x 2).(1)求a 1-2a 2-2的值;(2)求x 1-12x 2-12的值.答案全解全析 第二章 基本初等函数(Ⅰ)2.1 指数函数 2.1.1 指数与指数幂的运算基础过关练1.C 对于A 选项,√(-3)2=3,故A 选项错误;对于B 选项,√a 44=|a |,故B 选项错误;对于C 选项,(√-23)3=2,故C 选项正确;对于D 选项,√(-2)33=2,故D 选项错误.故选C .2.C 原式=|2a |+|3a |, ∵2<a <3,∴原式=a 2+3a =1.3.A 因为xy ≠0且√4a 2a 2=2xy ,所以xy <0.4.答案 1解析 因为√a 2+2a +1+√a 2+6a +9=0,所以√(a +1)2+√(a +3)2=|x +1|+|y +3|=0,所以x =1,y =3.所以(x2019)y=[(1)2019]3=(1)3=1.5.解析 当n 是奇数时,原式=(ab )+(a +b )=2a ; 当n 是偶数时,因为a <b <0,所以ab <0,a +b <0, 所以原式=|ab |+|a +b | =(ba )+(ab )=2a.所以√(a -a )aa+√(a +a )aa={2a ,a 为奇数,-2a ,a 为偶数(n >1,n ∈N *). 6.A a 3a 4=a 3+4=a 7,故A 正确;(a 2)3=a 6,故B 不正确;√a 88=|a |,故C 不正确;√(-π)55=π,故D 不正确.故选A .7.A 原式=√a ·a 123=√a 323=(a 32)13=a 12,故选A . 8.答案118;a 4解析 根据指数幂的运算,化简可得 π0+22×(94)12=1+14×32=118. 由根式与指数幂的转化,可得(√√a 9634(√√a 9364=(√a 963)4(√a 36)4=(a96×3)4(a 36)4=a9×46×3·a3×46=a 2·a 2=a 4. 方法点拨 根指数分数指数的分母,被开方数(式)的指数分数指数的分子.9.解析 (1)原式=a 13a 23a 56a 34=a 13-56a 23-34=a -12a -112.(2)原式=(a 23a 14z 1)·(a 13a -14z 1)=a23+13a 14-14z 11=xz 2.(3)原式=116+√6+(√3+√2)21×(-√62)=116+√6+5+2√6+√62=81+56√616. 10.D 由x =1+2b,得2b=x 1, ∴y =1+2b=1+12a =1+1a -1=aa -1.11.答案 23解析 8a=223b⇒23a=223b⇒3a =23b ⇒a +b =23.12.解析 原式=5a -23a 12524a -23a 23=24a -16.将y =64代入,得原式=24×64-16=24×(26)-16=24×21=12.13.解析 (1)因为a 12+a -12=3,所以(a 12+a -12)2=9,整理得x +x 1=7,令t =a 12a -12,则t 2=(a 12-a -12)2=x +x 12=5,所以a 12a -12=±√5, 所以x 2x 2=(x +x 1)·(xx 1)=(x +x 1)·(a 12+a -12)(a 12a -12) =7×3×(±√5)=±21√5.(2)a 32a -32=(a 12a -12)·(x +x 1+1)=±8√5.能力提升练一、选择题1.B ∵a <14,∴4a 1<0, ∴√(4a -1)24=√1-4a .故选B . 2.A 由题意可知α+β=32,则(14)a +a=(14)-32=432=√43=8,故选A .3.C ①a 2+a 2=(a +a -1)22=92=7,正确; ②a 3+a 3=(a +a 1)(a 21+a 2)=3×(71)=18,正确;③因为a +a 1=3,所以a >0,所以a 12+a -12>0,又(a 12+a -12)2=a +2+a 1=5,所以a 12+a -12=√5,故错误; ④a √a +a √a=a 32+a -32=(a 12+a -12)(a 1+a 1)=√5×(31)=2√5,正确.故选C .4.B a 3+b 3=(a +b )(a 2ab +b 2) =(a +b )[(a +b )23ab ] =a 13·(a 23-12a 23)=a2.故选B .二、填空题 5.答案 27解析 由2x =8y +1得2x =23y +3,所以x =3y +3①. 由9y=3x 9得32y=3x 9, 所以2y =x 9②. 由①②,得x =21,y =6, 所以x +y =27.6.答案 1 解析11+a 14+11-a 14+21+a 12+41+a=2(1+a 14)(1-a 14)+21+a 12+41+a=21-a 12+21+a 12+41+a=4(1-a 12)(1+a 12)+41+a =41-a +41+a =8(1-a )(1+a )=81-a 2.因为a =3,所以原式=1. 7.答案 √3√2 解析 (√3+√2)2020×(√3√2)2021=[(√3+√2)(√3√2)]2020×(√3√2)=12020×(√3√2)=√3√2.三、解答题8.解析 (1)原式=(232)-23×(1023)92÷1052=21×103×10-52=21×1012=√102. (2)原式=2×(213×312)6+(212×214)434×74214×234+1=2×22×33+272+1=210. 9.解析 (1)原式=(34×104)-1431×[(34)-14+23]-12=31×1013×(13+23)-12=3.(2)由a 12+a -12=3,得(a 12+a -12)2=9,即a +a 1+2=9,∴a +a 1=7,∴(a +a 1)2=49,即a 2+a 2+2=49,∴a 2+a 2=47. 10.解析√a +√a √a -√a √a -√a √a +√a=(√a +√a )2a -a (√a -√a )2a -a =4√aaa -a.将x =12,y =23代入上式,则原式=4√12×2312-23=4√13-16=24√13=8√3.11.解析 ∵x 1,x 2是方程x 28x +4=0的 两根,∴x 1+x 2=8,x 1·x 2=4.(1)a 1-2a 2-2=(a 1+a 2)(a 2-a 1)(a 1a 2)2=a 2-a 12=√(a 1+a 2)2-4a 1a 22=√64-4×42=2√3. (2)x 1 -12x 2-12=√a +a -2√a a √a a=√8-2×22=1.。

高中数学人教新课标A版必修1 —第2章 基本初等函数—第2章 基本初等函数

高中数学人教新课标A版必修1 —第2章 基本初等函数—第2章 基本初等函数

新课标高一(上)数学章节素质测试题——第2章 基本初等函数(考试时间120分钟,满分150分)姓名________评价_______一、选择题(本大题共12小题,每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(12安徽)(2log 9)·(3log 4)=( )A.14 B.12C.2D.4 2.(12安徽)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )A.(1,2)B.[1,2]C.[)21,D.(]21, 3. (10山东) 函数)13(log )(2+=xx f 的值域为( ) A.(0,)+∞ B.[)0,+∞ C.(1,)+∞ D.[)1,+∞4.(11重庆)设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是( ) A .a b c << B .c b a <<C .b a c <<D .b c a <<5.(11天津)已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>6.(08湖南)函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD7.(09福建)下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x的是( ) A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+8.(10安徽)设525352)52()52()53(===c b a ,,,则a ,b ,c 的大小关系是( )A.a >c >bB.a >b >cC.c >a >bD.b >c >a9. (09全国Ⅰ)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( )A. 0B. 1C. 2D. 4 10. (10北京)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④ 11. (07辽宁)函数212log (56)y x x =-+的单调增区间为( )A .52⎛⎫+∞ ⎪⎝⎭,B .(3)+∞,C .52⎛⎫-∞ ⎪⎝⎭,D .(2)-∞,12.(07江苏)设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)13.(12上海)方程14230x x +--=的解是 . 14.(08重庆)已知2349a =(a>0) ,则23log a = ___________. 15.(12陕西)设函数⎪⎩⎪⎨⎧<≥=0x )21(0)(,,xx x x f ,则=-))4((f f ___________.16.(10江苏)设函数))(()(R x ae e x x f xx∈+=-是偶函数,则实数=a ____________. 三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)计算下列各题:(Ⅰ)043131121673827)()()(---+--; (Ⅱ)2lg 5lg 5lg 2lg 2++.18.(本题满分12分)已知函数11lg)(-+=x x x f . (Ⅰ)求)(x f 的值域; (Ⅱ)讨论)(x f 的奇偶性.19.(本题满分12分)已知函数11)(-+=x x e e x f .(Ⅰ)求)(x f 的反函数)(1x f -; (Ⅱ)讨论)(x f 的奇偶性.20.(本题满分12分)已知函数4102)3()(+-=m xm x f 是幂函数,且图象关于y 轴对称.(Ⅰ)求函数)(x f 的解析式; (Ⅱ)当[)∞+∈,0x 时,求)(1x f -并讨论其单调性.21.(本题满分12分,07江西17)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩ ≤满足29()8f c =.(Ⅰ)求常数c 的值;(Ⅱ)解不等式()18f x >+.22.(本题满分12分)函数)1lg(2--=x y .(Ⅰ)求函数的定义域; (Ⅱ)求函数的单调区间.新课标高一(上)数学章节素质测试题——第2章 基本初等函数 (参考答案)一、选择题答题卡:二、填空题13. 3log 2=x ;14. 3 ; 15. 4;16. 1-.三、解答题17. 解:(Ⅰ)123723434313--+⎥⎦⎤⎢⎣⎡=-)()(原式 .618373212372331-=--+=--+=-)( (Ⅱ)5lg 5lg 2lg 2lg ++=)(原式.110lg 5lg 2lg 5lg 10lg 2lg ==+=+=18.解:(Ⅰ))1-x 2(1lg 1-21-lg 1-1lg(x )+=+=+=x x x x f , 0.f(x )lg1(x ),01-2≠≠∴≠,即f x(x )f 函数∴的值域为).(0,,0)(-+∞∞(Ⅱ)由01-1>+x x 得1x -1x ><,或. (x )f 函数∴的定义域为1}.-1|{><x x x ,或它关于原点对称.11-lg 1--1-lg(-x )+=+=x x x x f , 0lg1)1x 1-x 1-x 1x (lg 11-lg 1-1lg(-x )(x )==+⋅+=+++=+x x x x f f 又, (x ).-(-x )f f =∴ (x )f 故函数是奇函数.19.解:(Ⅰ)由1-1x x e e y +=得1+=-xx e y ye ,从而1+=-y e ye xx ,1)1(+=-y e y x ,.1-1y y e x+=∴ 由01-1>+=y y e x得1-<y .1>y ,或 由1-1y y e x+=得1)y -1(y 1-1ln><+=,或y y x , 1).x -1(x 1-1ln)(1--><+=∴,或x x x f(Ⅱ)11)(-+=x x e e x f 中, 01≠-xe ,.0≠∴x(x )f 函数∴的定义域为}.0|{≠x x 它关于原点对称.11)(-+=---xx e e x f ),(1111)1()1(x f e e e e e e e e x x xxx x x x -=-+-=-+=⋅-⋅+=-- (x )f 函数∴是奇函数.20.解:(Ⅰ)4102)3()(+-=m xm x f ,由132=-m 解得 2.±=m当2=m 时,3)(x x f =;当2-=m 时,2)(x x f =. 因为)(x f 的图象关于y 轴对称, 所以所求的函数解析式为2)(x x f =. (Ⅱ)当[)+∞∈0,x 时,2x y =,.0≥y由2x y =得y x =,).0()(1≥=∴-x x x f在[)+∞0,任取两个实数21x x 、,且21x x <,则212111)()(x x x fx f-=---,))((2121212121x x x x x x x x x x +-=++-=.0,0-,0212121>+<∴<≤x x x x x x.0)()(2111<-∴--x fx f即).()(2111x f x f --<故x x f=-)(1在[)+∞0,上时增函数.21. 解:(Ⅰ)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,所以12c =. (Ⅱ)由(Ⅰ)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤,由()18f x >+得,①当102x <<时,121+x >182+,解得x >42,所以142x <<; ②当112x <≤时,124+-x >182+, 即x42->25321222-=,x 4->25-,解得x <85,所以1528x <≤.综上所述,不等式()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.22.解:(Ⅰ)由0)1lg(2≥--x 得2)1lg(≤-x , 即100lg )1lg(≤-x ,.10010≤-<∴x 解得.1011≤<x故函数的定义域为}.1011|{≤<x x(Ⅱ)设)1lg(2--=x u ,则1011≤<x ,.u y =当(]101,1∈x 时,0≥u ,y 是u 的增函数;而x u lg =中,u 是x 的增函数;将其图象向右平移1个单位得)1lg(-=x u 的图象,这时,u 还是x 的增函数;再将图象沿x 轴翻折得)1lg(--=x u 的图象,这时,u 是x 的减函数;最后将图象向上平移2个单位得)1lg(2--=x u 的图象,这时,u 还是x 的减函数;故函数的单调递减区间为(].101,1。

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.3 幂函数 习题2.3》_6

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.3 幂函数 习题2.3》_6

课题:§ 2.3.1幂函数教学目标:(一)知识目标1、通过实例了解幂函数的定义。

2、通过作图观察他们的特性并归纳幂函数的相关性质(单调性、奇偶性)。

(二)能力目标通过探索,要求学生掌握幂函数的定义及其性质,会做一些与幂函数相关的变式试题,培养学生的发散思维,实践能力和创新能力。

(三)情感目标通过观察、比较、归纳获取数学知识,培养学生学习数学的乐趣及勇于钻研、探索、团结协作的精神。

教学重点:幂函数定义,图像与性质。

教学难点:函数图像了解它们的变化情况,会做相关的变式试题。

教学方法:启发引导法,自主探究和共同探究相结合。

教学准备(教具):彩色粉笔,小黑板。

课型:新授课。

教学过程(一)课题引入试写出下列问题所反映的函数关系式:问题1写出下列y关于x的函数解析式:1.如果张红购买了每千克1元的苹果w千克,那么她需要付的钱数P= ;2.如果正方形的边长为a,那么正方形的面积是S= ;3.如果立方体的边长为a,那么立方体的体积是V= ;4.如果正方形场地的面积为S,那么正方形的边长a= ;5.如果某人t s内骑车行进了1km,那么他骑车的平均速度v= .分析:若将它们的自变量全部用x来表示,函数值用y来表示,则它们的函数关系式将是。

(1)y=x (2)y=x2(3)y=x3(4)y=x1/2(4)y=x-1(二)探索新知问题2是否为指数函数?上述函数解析式有什么共同特征?x,(0<a<1)的函数,其中指数答;都不是指数函数,指数函数是形如y=ax是自变量,底数a是常数,而这五个函数的自变量都不是指数。

共同特点是:1、都是函数。

2、均是以自变量为底的幂。

3、指数为常数。

4、自变量前的系数为1.(三)讲授新课1、概念: 我们把形如:y=xª的函数称为幂函数,其中a是常数练习1下列函数是幂函数的是()(1) y=x4(2) y=2x2(3)y=-x2(4)y=2x(5)y=x-2(6)y=x3+2注意:1、要确定一个函数是幂函数,只要确定 a就可以了。

高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

课时21 对数对数的意义①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①与② B .②与④ C .② D .①②③④ 答案 C解析 对于①,当M =N ≤0时,log a M 与log a N 无意义,因此①不正确;对于②,对数值相等,底数相同,因此,真数相等,所以②正确;对于③,有M 2=N 2,即|M |=|N |,但不一定有M =N ,③错误;对于④,当M =N =0时,log a M 2与log a N 2无意义,所以④错误,由以上可知,只有②正确.2.求下列各式中x 的取值范围: (1)lg (x -10); (2)log (x -1)(x +2); (3)log (x +1)(x -1)2.解 (1)由题意有x -10>0,即x >10,即为所求; (2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2;(3)由题意有⎩⎪⎨⎪⎧x -2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.3答案507解析 因为m =log 37,所以3m =7,则3m +3-m =7+7-1=507.4.将下列指数式化成对数式,对数式化成指数式: (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)13-4=81;(4)27=128.对数性质的应用(1)log 8x =-23;(2)log x 27=34;(3)log 3(2x +2)=1.解 (1)由log 8x =-23,得x =8-23=(23)-23=23×⎝ ⎛⎭⎪⎫-23=2-2=14;(2)由log x 27=34,得x 34=27.∴x =2743=(33)43=34=81;(3)由log 3(2x +2)=1,得2x +2=3, 所以x =12.对数恒等式的应用(2)计算23+log23+35-log39.解(1)令t=10x,则x=lg t,∴f(t)=lg t,即f(x)=lg x,∴f(3)=lg 3;(2)23+log23+35-log39=23·2log23+353log39=23×3+359=24+27=51.一、选择题1.下列四个命题,其中正确的是( )①对数的真数是非负数;②若a>0且a≠1,则log a1=0;③若a>0且a≠1,则log a a=1;④若a>0且a≠1,则a log a2=2.A.①②③ B.②③④C.①③ D.①②③④答案 B解析①对数的真数为正数,①错误;②∵a0=1,∴log a1=0,②正确;③∵a1=a,∴log a a=1,③正确;④由对数恒等式a log a N=N,得a log a2=2,④正确.2.2x=3化为对数式是( )A.x=log32 B.x=log23C.2=log3x D.2=log x3答案 B解析由2x=3得x=log23,选B.3.化简:0.7log 0.78等于( ) A .2 2 B .8 C.18 D .2答案 B解析 由对数恒等式a log aN =N ,得0.7log 0.78=8.∴选B. 4.若log 2(log x 9)=1,则x =( ) A .3 B .±3 C.9 D .2 答案 A解析 ∵log 2(log x 9)=1,∴log x 9=2,即x 2=9, 又∵x >0,∴x =3.5.若log a 3=m ,log a 2=n ,则a m +2n的值是( )A .15B .75C .12D .18 答案 C解析 由log a 3=m ,得a m=3,由log a 2=n ,得a n=2, ∴am +2n=a m ·(a n )2=3×22=12.二、填空题6.已知log 2x =2,则x -12=________.答案 12解析 ∵log 2x =2,∴x =22=4, 4-12=⎝ ⎛⎭⎪⎫1412=12.7.若lg (ln x )=0,则x =________. 答案 e解析 ∵lg (ln x )=0,∴ln x =1,∴x =e.8.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)=________. 答案 13解析 ∵x ≠0,y ≠0,∴lg xy =0,∴xy =1, 则{x,1,0}={0,|x |,y },∴x =y =-1, log 8 (x 2+y 2)=log 82=log 8813=13.三、解答题9.(1)已知log 189=a ,log 1854=b ,求182a -b的值;(2)已知log x 27=31+log 32,求x 的值.解 (1)18a =9,18b=54,182a -b=a218b=9254=8154=32; (2)∵log x 27=31×3log 32=31×2=6, ∴x 6=27,∴x =2716=(33)16= 3.10.求下列各式中x 的值:(1)log 4(log 3x )=0;(2)lg (log 2x )=1; (3)log 2[log 12(log 2x )]=0.解 (1)∵log 4(log 3x )=0,∴log 3x =40=1, ∴x =31=3;(2)∵lg (log 2x )=1,∴log 2x =10,∴x =210=1024;(3)由log 2[log 12(log 2x )]=0,得log 12(log 2x )=1,log 2x =12,x = 2.。

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.1 指数函数 习题2.1》_24

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.1 指数函数 习题2.1》_24

函数的应用1.题型为选择题或填空题,主要考查零点个数的判断及零点所在区间.2.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.[典题示例] 函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -2+ln x ,x >0的零点个数为________.[解析] 令f (x )=0,得到⎩⎪⎨⎪⎧x 2-1=0,x ≤0,解得x =-1;或⎩⎪⎨⎪⎧x -2+ln x =0,x >0,在同一个直角坐标系中画出y =2-x 和y =ln x 的图象,观察交点个数,如图所示.函数y =2-x 和y =ln x ,x >0,在同一个直角坐标系中交点个数是1,所以函数f (x )在x <0时的零点有一个,在x >0时零点有一个,所以f (x )的零点个数为2.[答案] 2 [类题通法]确定函数零点个数的方法(1)解方程f (x )=0有几个根.(2)利用图象找y =f (x )的图象与x 轴的交点或转化成两个函数图象的交点个数. (3)利用f (a )·f (b )与0的关系进行判断.[题组训练]1.函数f (x )=lg x -9x 的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9)D .(9,10)解析:选D ∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0,f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0, ∴f (9) · f (10)<0.函数的零点问题∴f (x )=lg x -9x的零点的大致区间为(9,10).2.已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0, f (3)=ln 3-⎝⎛⎭⎫121>0, ∴x 0∈(2,3).3.函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________. 解析:在同一直角坐标系内,画出y 1=⎝⎛⎭⎫12|x |和y 2=m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)1.通过对近几年高考试题的分析可以看出,对函数的实际应用问题的考查,更多地以实际生活为背景,设问新颖、灵活;题型以解答题为主,难度中等偏上;主要考查建模能力,同时考查分析问题、解决问题的能力.2.函数实际应用的示意图[典题示例] 某网店经营的某消费品的进价为每件12元,周销售量p (件)与销售价格x (元)的关系,如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p (件)与销售价格x (元)的函数关系式; (2)写出利润周利润y (元)与销售价格x (元)的函数关系式;函数的应用(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润. [解] (1)由题设知,当12≤x ≤20时,设p =ax +b ,则⎩⎪⎨⎪⎧12a +b =26,20a +b =10,∴a =-2,b =50. ∴p =-2x +50,同理得,当20<x ≤28时,p =-x +30,所以p =⎩⎪⎨⎪⎧-2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620; 当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧-2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28. (3)当12≤x ≤20时,y =-2x 2+74x -620, ∴x =372时,y 取得最大值1292. 当20<x ≤28时,y =-x 2+42x -380, ∴x =21时,y 取得最大值61. ∵1292>61,∴该消费品销售价格为372时,周利润最大,最大周利润为1292. [类题通法]建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示. (2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域. (3)求解函数模型,并还原为实际问题的解.[题组训练]1.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速率越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的是序号是________.解析:由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.答案:②③2.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .若5分钟后甲桶和乙桶的水量相等,又过了m 分钟后甲桶中的水只有a8升,则m的值为( )A .7B .8C .9D .10解析:选D 令18a =a e nt ,即18=e nt ,由已知得12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.3.某企业决定从甲、乙两种产品中选择一种投资生产,打入国际市场,已知投资生产这两种产品的有关数据如表:时需上交0.05x 2万美元的特别关税.(1)写出该厂分别投资生产甲、乙两种产品的年利润y 1,y 2与生产相应产品的件数x (x ∈N)之间的函数关系式;(2)分别求出投资生产这两种产品的最大年利润.解:(1)由题知y 1=10x -(20+ax )=(10-a )x -20,0≤x ≤200且x ∈N ;y 2=18x -(40+8x )-0.05x 2=-0.05x 2+10x -40=-0.05(x-100)2+460,0≤x ≤120且x ∈N.(2)∵3≤a ≤8,∴10-a >0, ∴y 1=(10-a )x -20为增函数. 又0≤x ≤200,x ∈N ,∴x =200时y 1取最大值,即生产甲产品的最大年利润为(10-a )×200-20=1 980-200a (万美元).又y 2=-0.05(x -100)2+460,0≤x ≤120,x ∈N ,∴x =100时y 2取最大值,即生产乙产品的最大年利润为460万美元.1.已知函数f (x )=⎩⎪⎨⎪⎧x (x +4),x <0,x (x -4),x ≥0,则该函数的零点的个数为( )A .1B .2C .3D .4解析:选C 当x <0时,令x (x +4)=0,解得x =-4;当x ≥0时,令x (x -4)=0,解得x =0或4.综上,该函数的零点有3个.2.函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)解析:选A f (1)=ln 2-2=ln 2e 2<ln 1=0,f (2)=ln 3-1=ln 3e>ln 1=0,所以函数f (x )=ln(x +1)-2x的零点所在的大致区间是(1,2).3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设该家具的进货价是x 元,由题意得132(1-10%)-x =x ·10%,解得x =108元.4.下列函数:①y =lg x ;②y =2x ;③y =x 2;④y =|x |-1,其中有2个零点的函数是( ) A .①② B .③④ C .②③D .④解析:选D 分别作出这四个函数的图象,其中④y =|x |-1的图象与x 轴有两个交点,即有2个零点,选D.5.已知函数f (x )在区间[a ,b ]上是单调函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根解析:选B 由于f (a )f (b )<0,则f (a )<0<f (b )或f (b )<0<f (a ),又函数f (x )在区间[a ,b ]上是单调函数,则至多有一个实数x 0∈[a ,b ],使f (x 0)=0,即方程f (x )=0在区间[a ,b ]内至多有一实根.6.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A .2 B .3C .4D .与a 的值有关解析:选A 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.7.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.解析:由题意,S =(4+x )⎝⎛⎭⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:18.某学校要装备一个实验室,需要购置实验设备若干套,与厂家协商,同意按出厂价结算,若超过50套就可以每套比出厂价低30元给予优惠.如果按出厂价购买应付a 元,但再多买11套就可以按优惠价结算,恰好也付a 元(价格为整数),则a 的值为________.解析:设按出厂价y 元购买x (x ≤50)套应付a 元, 则a =xy .再多买11套就可以按优惠价结算恰好也付a 元,则a =(x +11)(y -30),其中x +11>50.∴xy =(x +11)(y -30)(39<x ≤50).∴3011x =y -30.又x ∈N ,y ∈N(因价格为整数),39<x ≤50, ∴x =44,y =150,a =44×150=6 600. 答案:6 6009.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________. 解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.答案:(1,+∞)10.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在规定的时间内,产量减少3件.如果在规定的时间内,最低档次的产品可生产60件.(1)请写出规定时间内产品的总利润y 与档次x 之间的函数关系式,并写出x 的定义域; (2)在规定的时间内,生产哪一档次产品的总利润最大?并求出最大利润.解:(1)由题意知,生产第x 个档次的产品每件的利润为8+2(x -1)元,该档次的产量为60-3(x -1)件.则规定时间内第x 档次的总利润y =(2x +6)(63-3x )=-6x 2+108x +378,其中x ∈{x ∈N *|1≤x ≤10}.(2)y =-6x 2+108x +378=-6(x -9)2+864,则当x =9时,y 有最大值为864.故在规定的时间内,生产第9档次的产品的总利润最大,最大利润为864元.11.A 、B 两城相距100 km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月.(1)求x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小. 解:(1)x 的取值范围为[10,90].(2)y =0.25×20x 2+0.25×10(100-x )2=5x 2+52(100-x )2(10≤x ≤90).(3)由y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003. 则当x =1003km 时,y 最小. 故当核电站建在距A 城1003km 时,才能使供电费用最小.12.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:设该单位每月获利为S 元, 则S =100x -y=100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元才能不亏损.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆B B .A ∩B ={2} C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}解析:选D A 显然错误;A ∩B ={2,3},B 错;A ∪B ={1,2,3,4},C 错,故选D. 2.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}.3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3解析:选C ∵f (2)=log 3(22-1)=1. ∴f (f (2))=f (1)=2e 1-1=2.4.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x解析:选A ∵y =x-1是奇函数,y =log 12x 不具有奇偶性,故排除B 、D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,只有选项A 符合题意.5.函数y =log 2|1-x |的图象是( )解析:选D 函数y =log 2|1-x |可由下列变换得到: y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.6.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 2f (2)的值为( )A.12 B .-12C .2D .-2解析:选A 设f (x )=x α,则22=⎝⎛⎭⎫12α,∴α=12,f (2)=212,所以log 2f (2)=log 2212=12. 7.函数f (x )=lg x -1x 的零点所在的区间是( ) A .(0,1) B .(1,10) C .(10,100)D .(100,+∞)解析:选B ∵f (1)=-1<0,f (10)=1-110=910>0,f (100)=2-1100>0, ∴f (1)·f (10)<0,由函数零点存在性定理知,函数f (x )=lg x -1x 的零点所在的区间为(1,10).8.设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选B ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 9.如右图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中整体水面上升高度h 与注水时间t 之间的函数关系大致是下列图象中的( )解析:选B 开始一段时间,水槽底部没有水,烧杯满了之后,水槽中水面上升先快后慢.故选B.10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝⎛⎭⎫1x =-f (x ) B .f (x )是奇函数,且f ⎝⎛⎭⎫1x =f (x ) C .f (x )是偶函数,且f ⎝⎛⎭⎫1x =-f (x ) D .f (x )是偶函数,且f ⎝⎛⎭⎫1x =f (x ) 解析:选C ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A 、B.又f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=1+x 2x 2-1=-f (x ),故选C. 11.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .[2,+∞)D .(2,+∞)解析:选A 因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2.12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:选C 作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6.于是lg a +lg b =0. 故ab =1.因而abc =c .由图知10<c <12,故abc ∈(10,12).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.设U =R ,已知集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R ,则实数a 的取值范围是________.解析:∵A ={x |x >1}, ∴∁U A ={x |x ≤1}.由B ={x |x >a },(∁U A )∪B =R 可知a ≤1. 答案:(-∞,1]14.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg/mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL ,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过________小时他才可以驾驶机动车.(精确到小时)解析:设n 小时后他才可以驾驶机动车,由题意得3(1-0.5)n ≤0.2,即2n ≥15,解得n ≥log 215,故至少经过4小时他才可以驾驶机动车.答案:415.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于________. 解析:∵0<1,∴f (0)=20+1=2.∵2>1,∴f (2)=4+2a ,∴f (f (0))=f (2)=4+2a =4a ,∴a =2.答案:216.已知函数f (x )=lg(2x -b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.解析:∵要使f (x )=lg(2x -b )在x ∈[1,+∞)上,恒有f (x )≥0,∴有2x -b ≥1在x ∈[1,+∞)上恒成立,即2x ≥b +1恒成立.又∵指数函数g (x )=2x 在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1.答案:(-∞,1]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |2<2x <8},B ={x |a ≤x ≤a +3}.(1)当a =2时,求A ∩B ;(2)若B ⊆∁R A ,求实数a 的取值范围.解:(1)当a =2时,A ={x |2<2x <8}=(1,3),B ={x |a ≤x ≤a +3}=[2,5],故A ∩B =[2,3).(2)∁R A =(-∞,1]∪[3,+∞).故由B ⊆∁R A 知,a +3≤1或a ≥3,故实数a 的取值范围为(-∞,-2]∪[3,+∞).18.(本小题满分12分)已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2).(1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域;(3)在(2)的条件下,求g (x )的单调减区间.解:(1)由已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2),则2=log a 4,即a 2=4,又a >0且a ≠1,所以a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x ).由⎩⎪⎨⎪⎧1-x >0,1+x >0,得-1<x <1,定义域为(-1,1).(3)g (x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2),其单调减区间为[0,1).19.(本小题满分12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ⎝⎛⎭⎫x y =f (x )-f (y ).(1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f ⎝⎛⎭⎫13<2.解:(1)在f ⎝⎛⎭⎫x y =f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0.(2)∵f (6)=1,∴f (x +3)-f ⎝⎛⎭⎫13<2=f (6)+f (6).∴f (3x +9)-f (6)<f (6),即f ⎝⎛⎭⎫x +32<f (6).∵f (x )是定义在(0,+∞)上的增函数,∴⎩⎪⎨⎪⎧ x +3>0,x +32<6.解得-3<x <9, 即不等式的解集为(-3,9).20.(本小题满分12分)随着新能源的发展,电动汽车在全社会逐渐普及开来,据某报记者了解,某市电动汽车国际示范区运营服务公司逐步建立了全市乃至全国的分时租赁服务体系,为新能源汽车分时租赁在全国的推广提供了可复制的市场化运营模式.现假设该公司有750辆电动汽车供租赁使用,管理这些电动汽车的费用是每日1 725元.调查发现,若每辆电动汽车的日租金不超过90元,则电动汽车可以全部租出;若超过90元,则每超过1元,租不出的电动汽车就增加3辆.设每辆电动汽车的日租金为x (元)(60≤x ≤300,x ∈N *),用y (元)表示出租电动汽车的日净收入(日净收入等于日出租电动汽车的总收入减去日管理费用).(1)求函数y =f (x )的解析式;(2)试问当每辆电动汽车的日租金为多少元时,才能使日净收入最多?解:(1)当60≤x ≤90,x ∈N *时,y =750x -1 725;当90<x ≤300,x ∈N *时,y =[750-3(x -90)]x -1 725,故f (x )=⎩⎪⎨⎪⎧750x -1 725,60≤x ≤90,x ∈N *,-3x 2+1 020x -1 725,90<x ≤300,x ∈N *. (2)对于y =750x -1 725,60≤x ≤90,x ∈N *,∵y 在[60,90](x ∈N *)上单调递增,∴当x =90时,y max =65 775.对于y =-3x 2+1 020x -1 725=-3(x -170)2+84 975,90<x ≤300,x ∈N *,当x =170时,y max =84 975.∵84 975>65 775,∴当每辆电动汽车的日租金为170元时,日净收入最多.21.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式;(3)若x ∈A ,f (x )∈[-7,3],求区间A .解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6.(2)设x <0,则-x >0,∴f (-x )=2-x -1, ∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1, ∴f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,-2-x +1,x <0.(3)作出函数f (x )的图象,如图所示.根据函数图象可得f (x )在R 上单调递增,当x <0时,-7≤-2-x +1<0, 解得-3≤x <0;当x ≥0时,0≤2x -1≤3,解得0≤x ≤2;∴区间A 为[-3,2].22.(本小题满分12分)对于函数f (x )=a -2b x+1(a ∈R ,b >0,且b ≠1). (1)探索函数y =f (x )的单调性;(2)求实数a 的值,使函数y =f (x )为奇函数;(3)在(2)的条件下,令b =2,求使f (x )=m (x ∈[0,1])有解的实数m 的取值范围.解:(1)函数f (x )的定义域为R ,设x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a -2bx 1+1-⎝⎛⎭⎫a -2bx 2+1=2(bx 1-bx 2)(bx 1+1)(bx 2+1).当b >1时,由x 1<x 2,得bx 1<bx 2,从而bx 1-bx 2<0,于是f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),此时函数f (x )在R 上是单调增函数; 当0<b <1时,由x 1<x 2,得bx 1>bx 2,从而bx 1-bx 2>0,于是f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2), 此时函数f (x )在R 上是单调减函数.(2)函数f (x )的定义域为R ,由f (0)=0得a =1. 当a =1时,f (x )=1-2b x +1=b x -1b x +1, f (-x )=1-2b -x +1=b -x -1b -x +1=1-b x 1+b x . 满足条件f (-x )=-f (x ),故a =1时,函数f (x )为奇函数.(3)f (x )=1-22x+1, ∵x ∈[0,1],∴2x ∈[1,2],2x +1∈[2,3],22x+1∈⎣⎡⎦⎤23,1, ∴f (x )∈⎣⎡⎦⎤0,13, 要使f (x )=m (x ∈[0,1])有解,则0≤m ≤13,即实数m 的取值范围为⎣⎡⎦⎤0,13.。

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

栏目导引
3.设23-2x>0.53x-4,则x的取值范围是 ________. 解析: 23-2x>0.53x-4 ⇒23-2x>24-3x ⇒3-2x>4-3x ⇒x>1. 答案: {x|x>1}
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
4.函数 f(x)=ax(a>0,且 a≠1)在区间[1,2]上的 最大值比最小值大a2,求 a 的值. 解析: 当 a>1 时,f(x)=ax 为增函数,在 x∈ [1,2]上, f(x)最大=f(2)=a2,f(x)最小=f(1)=a, ∴a2-a=a2,即 a(2a-3)=0, ∴a=0(舍)或 a=32>1,∴a=32.
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[题后感悟] 如何判断形如y=af(x)(a>0且a≠1) 的函数的单调性?
方法一:利用单调性定义比较y1=af(x1)与y2= af(x2)时,多用作商后与1比较. 方法二:利用复合函数单调性:当a>1时,函 数y=af(x)与函数y=f(x)的单调性相同;当 0<a<1时,函数y=af(x)与函数y=f(x)的单调性 相反.
必修1 第二章 基精品本PPT初等函数(I)
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[解题过程] (1)∵x-1≠0,∴x≠1, ∴函数 y=3x-1 1的定义域为{x|x≠1}, 又∵x-1 1≠0,∴y≠30=1. ∴函数的值域为{y|y>0 且 y≠1}, (2)函数的定义域为 R ∵x2-4x=(x-2)2-4≥-4, y=12x 在 R 上是减函数 ∴0<12x2-4x≤12-4=16. ∴函数的值域为(0,16].

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

第二章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln(x -1)的定义域是( )A .(1,2)B .[1,+∞)C .(1,+∞)D .(1,2)∪(2,+∞)2.若x log 23=1,则3x +9x 的值为( )A .3 B.52 C .6 D.123.已知a >0且a ≠1,下列四组函数中表示相等函数的是( )A .y =log a x 与y =(log x a )-1B .y =a log a x 与y =xC .y =2x 与y =log a a 2xD .y =log a x 2与y =2log a x4.若函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <15.已知函数f (log 4x )=x ,则f ⎝⎛⎭⎫12等于( )A.14B.12 C .1 D .26.已知函数y =log a (3a -1)的值恒为正数,则a 的取值范围是( )A .a >13 B.13<a ≤23C .a >1 D.13<a <23或a >17.已知函数f (x )={ log 3x (x >0)x (x ≤0),则f [f (19)]的值是( )A .9 B.19C .-9D .-198.已知f (x )={ (3a -1)x +4a (x <1)a x (x ≥1)是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,19.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则() A .x >y >z B .z >y >xC .y >x >zD .z >x >y10.关于x 的方程a x =log 1a x (a >0,且a ≠1)( )A .无解B .必有唯一解C .仅当a >1时有唯一解D .仅当0<a <1时有唯一解11.函数y =lg(21-x-1)的图象关于( ) A .x 轴对称 B .y 轴对称C .原点对称D .y =x 对称12.设函数f (x )=⎩⎨⎧ 2-x -1 (x ≤0)x 12 (x >0), 若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.函数y =log (2x -1)3x -2的定义域是__________________.14.函数f (x )=log 12(x 2-3x +2)的递增区间是__________. 15.已知函数f (x )=a -12x +1,若f (x )是奇函数,则a =________. 16.给出函数f (x )=⎩⎨⎧⎝⎛⎭⎫12x (x ≥4)f (x +1) (x <4), 则f (log 23)=________.三、解答题(本大题共6小题,共74分)17.(12分)计算:(1)⎝⎛⎭⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)2lg 5+23lg 8+lg 5·lg 20+lg 22.18.(12分)若函数f (x )=log a (x +1)(a >0且a ≠1)的定义域和值域均为[0,1],求a 的值.19.(12分)已知函数f (x )=-2x 12,求f (x )的定义域,并证明在f (x )的定义域内,当x 1<x 2时,f (x 1)>f (x 2).20.(12分)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),令F (x )=f (x )-g (x ).(1)求函数y =F (x )的定义域;(2)判断函数y =F (x )的奇偶性.21.(12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x .(1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.22.(14分)设f (x )=log 12(1-ax x -1)为奇函数,a 为常数. (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.第二章 章末检测 答案1.C2.C [x log 23=1⇒log 23x =1,∴3x =2,9x =(3x )2=22=4,∴3x +9x =6.]3.C [对A ,解析式不同,定义域不同;对B ,定义域不同;对D ,定义域不同;对C ,是相等函数.]4.B [由函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三象限知a >1.又过第四象限内,∴a 0+m -1<0,则有m <0.]5.D [令log 4x =12,则x =412=2.] 6.D [由y >0得:⎩⎪⎨⎪⎧ a >13a -1>1 或⎩⎪⎨⎪⎧0<a <10<3a -1<1, 解得a >1或13<a <23.] 7.B8.C [当x =1时,log a x =0,若为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立. 令g (x )=(3a -1)x +4a ,则g (x )>0在x <1上恒成立,故3a -1<0且g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0.⇒17≤a <13,故选C.] 9.C [x =log a 2+log a 3=log a 6,y =12log a 5=log a 5,z log a 21-log a 3=log a 213=log a 7, ∵0<a <1,∴y =log a x 在定义域上是减函数.∴y >x >z .]10.B [在同一平面直角坐标系中分别画出函数y =a x ,y =log 1ax 的图象. 由图象可知方程a x =log 1ax 必有唯一解.] 11.C [f (x )=lg(21-x -1)=lg 1+x 1-x, f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)的图象关于原点对称,故选C.] 12.D [当x ≤0时,由2-x -1>1得x <-1;当x >0时,由x 12>1得x >1.] 13.(23,1)∪(1,+∞) 解析 由题意得0<2x -1<1或2x -1>1,且必须满足3x -2>0,∴x 的取值范围是(23,1)∪(1,+∞). 14.(-∞,1)15.12解析 方法一 函数f (x )=a -12x +1的定义域为R ,且为奇函数, ∴f (0)=0,即a -120+1=0,∴a =12. 方法二 f (-x )=a -12-x +1=a -2x1+2x, ∵f (x )为奇函数,∴f (x )=-f (-x ),∴a -12x +1=-a +2x1+2x. ∴2a =2x +12x +1=1,∴a =12. 16.124解析 ∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝⎛⎭⎫12log 224=124. 17.解 (1)原式=(-1)-23⎝⎛⎭⎫338-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+50012-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=2lg 5+23lg 23+lg 5·lg(4×5)+lg 22 =2lg 5+2lg 2+2lg 5·lg 2+lg 25+lg 22=2(lg 5+lg 2)+2lg 5·lg 2+lg 25+lg 22=2+(lg 5+lg 2)2=2+1=3.18.解 当a >1时,函数f (x )在区间[0,1]上为增函数, ∴⎩⎪⎨⎪⎧ f (0)=0f (1)=1,解得a =2. 当0<a <1时,函数f (x )在区间[0,1]上为减函数,∴⎩⎪⎨⎪⎧ f (0)=1f (1)=0,方程组无解. 综上可知a =2.19.解 ∵f (x )=-2x 12=-2x , ∴函数f (x )的定义域为[0,+∞),当0≤x 1<x 2时,f (x 1)-f (x 2)=-2x 121+2x 122 =2(x 2-x 1)=2x 2-x 1x 2+x 1, ∵0≤x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).20.解 (1)由⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1, 故函数F (x )的定义域是(-1,1).(2)因为函数F (x )的定义域关于原点对称,且F (-x )=log a (-x +1)-log a (1+x )=log a 1-x 1+x =-log a 1+x 1-x=-[log a (x +1)-log a (1-x )]=-F (x ),所以F (x )是奇函数.21.解 (1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x=2x -4x =-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1],∴14≤t ≤2. g (t )=-t 2+t =-(t -12)2+14,由g (t )在t ∈[14,2]上的图象可得, 当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2.故g (x )的值域是[-2,14]. 22.(1)解 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴log 12(1+ax -x -1)=-log 12(1-ax x -1) ⇔1+ax -x -1=x -11-ax>0 ⇒1-a 2x 2=1-x 2⇒a =±1.检验a =1(舍),∴a =-1.(2)证明 任取x 1>x 2>1,∴x 1-1>x 2-1>0,∴0<2x 1-1<2x 2-1⇒ 0<1+2x 1-1<1+2x 2-1⇒0<x 1+1x 1-1<x 2+1x 2-1⇒log 12x 1+1x 1-1>log 12x 2+1x 2-1, 即f (x 1)>f (x 2),∴f (x )在(1,+∞)内单调递增.(3)解 f (x )-(12)x >m 恒成立. 令g (x )=f (x )-(12)x ,只需g (x )min >m , 用定义可以证明g (x )在[3,4]上是增函数,∴g (x )min =g (3)=-98, ∴m <-98时原式恒成立. 即m 的取值范围为(-∞,-98).。

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.2 对数函数 习题2.2》_14

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 2.2 对数函数 习题2.2》_14

第6节对数与对数函数考试要求 1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;2.通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).知识梳理1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log a m M n=nm log a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. [微点提醒]1.换底公式的两个重要结论 (1)log a b =1log b a ;(2)log a m b n =nmlog a b . 其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R .2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( ) (3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)当x >1时,若log a x >log b x ,则a <b .( ) 解析 (1)log 2x 2=2log 2|x |,故(1)错.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错. (4)当x >1时,log a x >log b x ,但a 与b 的大小不确定,故(4)错. 答案 (1)× (2)× (3)√ (4)×2.(必修1P73T3改编)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1.∴c >a >b . 答案 D3.(必修1P74A7改编)函数y =log 23(2x -1)的定义域是________.解析 由log 23(2x -1)≥0,得0<2x -1≤1.∴12<x ≤1.∴函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案 ⎝ ⎛⎦⎥⎤12,14.(2019·杭州检测)计算log 29×log 34+2log 510+log 50.25=( ) A.0B.2C.4D.6解析 原式=2log 23×(2log 32)+log 5(102×0.25) =4+log 525=4+2=6. 答案 D5.(2019·上海静安区检测)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D6.(2018·全国Ⅰ卷)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 解析 由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7. 答案 -7考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(2)计算:(1-log 63)2+log 62·log 618log 64=________.解析 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 6 63·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.答案 (1)-20 (2)1规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于( ) A.1B.0或18C.18D.log 23(2)(2019·成都七中检测)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.解析 (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52, 所以t =2,则a =b 2. 又a b =b a ,所以b 2b =bb 2,即2b =b 2,又a >b >1,解得b =2,a =4. 答案 (1)D (2)4 2考点二 对数函数的图象及应用【例2】 (1)(2019·潍坊一模)若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2) C.(1,2]D.⎝ ⎛⎭⎪⎫0,12 解析 (1)由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 向右平移一个单位得到.因此选项D 正确.(2)由题意,易知a >1.在同一坐标系内作出y =(x -1)2,x ∈(1,2)及y =log a x 的图象.若y =log a x 过点(2,1),得log a 2=1,所以a =2.根据题意,函数y =log a x ,x ∈(1,2)的图象恒在y =(x -1)2,x ∈(1,2)的上方. 结合图象,a 的取值范围是(1,2].答案 (1)D (2)C规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)(2018·湛江模拟)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a -1<b <1B.0<b <a -1<1C.0<b -1<a <1D.0<a -1<b -1<1(2)(2019·日照一中调研)已知函数f (x )=⎩⎨⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.解析 (1)由函数图象可知,f (x )在R 上单调递增,又y =2x +b -1在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,即log a a -1<log a b <log a 1,所以,a -1<b <1. 综上有0<a -1<b <1.(2)作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点,故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 答案 (1)A (2){0}∪[2,+∞) 考点三 对数函数的性质及应用多维探究角度1 对数函数的性质【例3-1】 已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增 B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C角度2 比较大小或解简单的不等式【例3-2】 (1)(一题多解)(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( ) A.a >b >c B.b >a >c C.c >b >aD.c >a >b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)解析 (1)法一 因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e =a >1,所以c >a >b .法二 log 1213=log 23,如图,在同一坐标系中作出函数y =log 2x ,y =ln x 的图象,由图知c >a >b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.答案 (1)D (2)C角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎨⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)若a >b >0,0<c <1,则( ) A.log a c <log b c B.log c a <log c b C.a c <b cD.c a >c b(2)若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析 (1)由y =x c 与y =c x 的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a <log c b ,B 正确; log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定.(2)令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32, 所以函数f (x )的单调递增区间为(0,+∞). 答案 (1)B (2)(0,+∞)[思维升华]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决. 3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [易错防范]1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.2.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.基础巩固题组 (建议用时:40分钟)一、选择题1.已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 A2.(2018·天津卷)已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( ) A.a >b >c B.b >a >c C.c >b >aD.c >a >b解析 log 1315=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 3 72>log 33=1,因为函数y =⎝ ⎛⎭⎪⎫14x 在(-∞,+∞)上为减函数,所以⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,故c >a >b . 答案 D 3.(2019·张家界三模)在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为()解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a >2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数,C ,D 均不满足;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a >0,又g (x )=log a (x +2)在(-2,+∞)上是增函数,排除B ,综上只有A 满足.答案 A4.(2019·宁波二模)已知f (x )=lg(10+x )+lg(10-x ),则( )A.f (x )是奇函数,且在(0,10)上是增函数B.f (x )是偶函数,且在(0,10)上是增函数C.f (x )是奇函数,且在(0,10)上是减函数D.f (x )是偶函数,且在(0,10)上是减函数解析 由⎩⎨⎧10+x >0,10-x >0,得x ∈(-10,10), 且f (x )=lg(100-x 2).∴f (x )是偶函数,又t =100-x 2在(0,10)上单调递减,y =lg t 在(0,+∞)上单调递增,故函数f (x )在(0,10)上单调递减.答案 D5.(2019·临汾三模)已知函数f (x )=|ln x |,若f (m )=f (n )(m >n >0),则2m +1+2n +1=( )A.12B.1C.2D.4 解析 由f (m )=f (n ),m >n >0,可知m >1>n >0,∴ln m =-ln n ,则mn =1.所以2m +1+2n +1=2(m +n )+4mn +m +n +1=2(m +n +2)m +n +2=2. 答案 C二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 解析 lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 52+lg 22-2 =lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1. 答案 -17.(2019·昆明诊断)设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x <1,∴-1<x <0. 答案 (-1,0)8.(2019·潍坊调研)已知函数f (x )=⎩⎨⎧-log 2(3-x ),x <2,2x -2-1,x ≥2,若f (2-a )=1,则f (a )=________.解析 当2-a <2,即a >0时,f (2-a )=-log 2(1+a )=1.解得a =-12,不合题意.当2-a ≥2,即a ≤0时,f (2-a )=2-a -1=1,即2-a =2,解得a =-1,所以f (a )=f (-1)=-log 24=-2.答案 -2三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ), 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).又因为函数f(x)在(0,+∞)上是减函数,所以|x2-1|<4,解得-5<x<5,即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2019·天津和平区二模)已知a>0且a≠1,函数f(x)=log a(x+x2+b)在区间(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a||x|-b|的图象是()解析∵函数f(x)=log a(x+x2+b)在区间(-∞,+∞)上是奇函数,∴f(0)=0,∴b=1,又函数f(x)=log a(x+x2+b)在区间(-∞,+∞)上是增函数,所以a>1. 所以g(x)=log a||x|-1|,当x>1时,g(x)=log a(x-1)为增函数,排除B,D;当0<x<1时,g(x)=log a(1-x)为减函数,排除C;故选A.答案 A12.设x,y,z为正数,且2x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z解析令t=2x=3y=5z,∵x,y,z为正数,∴t>1.则x=log2t=lg tlg 2,同理,y=lg tlg 3,z=lg tlg 5.∴2x-3y=2lg tlg 2-3lg tlg 3=lg t(2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0, ∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0, ∴2x <5z ,∴3y <2x <5z .答案 D13.(2019·衡水中学检测)已知函数f (x )=lg(mx 2+2mx +1),若f (x )的值域为R ,则实数m 的取值范围是________.解析 令g (x )=mx 2+2mx +1值域为A ,∵函数f (x )=lg(mx 2+2mx +1)的值域为R ,∴(0,+∞)⊆A ,当m =0时,g (x )=1,f (x )的值域不是R ,不满足条件;当m ≠0时,⎩⎨⎧m >0,4m 2-4m ≥0,解得m ≥1. 答案 [1,+∞)14.已知函数f (x )=ln x +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性;(2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立,求实数m 的取值范围.解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln -x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ).∴f(x)=ln x+1x-1是奇函数.(2)由于x∈[2,6]时,f(x)=ln x+1x-1>lnm(x-1)(7-x)恒成立,∴x+1x-1>m(x-1)(7-x)>0,∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,∴0<m<7.故实数m的取值范围为(0,7).。

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

阶段质量检测(二)基本初等函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(lg 9-1)2等于()A.lg 9-1 B.1-lg 9C.8 D.2 2解析:因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.答案:B解析:方法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除由于y=x a递增较慢,所以选D.=x a的图象不过(0,1)点,故A的图象知0<a<1,而此时幂函数f(x)=xB错,D对;C项中由对数函数x)=x a的图象应是增长越来越快的变化趋势,2⎝⎭4a =±3,又a >0,∴a = 3.答案:A12.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫a -14x ,x ≥1,a x ,x <1,在R 上为减函数,则实数的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎭⎪⎫14,1∴f(x)的减区间为(-∞,1].答案:(-∞,1]16.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=log a(x-m)(其中a>0≠1)的图象过定点A的坐标为________.解析:若函数f(x)=(m-1)xα是幂函数,则m=2,则函数g(x)=log a(x-m)=log a(x-2)(其中a>0,a≠1),令x-2=1,则x=3,g(x)=0,其图象过定点A的坐标为(3,0).答案:(3,0)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)43所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2323,所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2334.19.(12分)已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明;(3)求f ⎝ ⎛⎭⎪⎫22的值.解析:(1)由⎩⎪⎨⎪⎧ 1+x >0,1-x >0,得⎩⎪⎨⎪⎧x >-1x <1,即-1<x <1.⎩⎪g (x ),f (x )>g (x ),解析:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以2β=12,解得=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,可得函数h (x )的图象如图所示.的解析式及图象可知,函数h (。

高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.1 Word版含解析

高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.1.1 Word版含解析

第二章基本初等函数(Ⅰ)§2.1指数函数2.1.1指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x叫做a的n次方根.2.式子na叫做________,这里n叫做__________,a叫做____________.3.(1)n∈N*时,(na)n=____.(2)n为正奇数时,na n=____;n为正偶数时,na n=______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:mna=__________(a>0,m、n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:mna =_______________(a>0,m、n∈N*,且n>1);(3)0的正分数指数幂等于____,0的负分数指数幂________________.5.有理数指数幂的运算性质:(1)a r a s=______(a>0,r、s∈Q);(2)(a r)s=______(a>0,r、s∈Q);(3)(ab)r=______(a>0,b>0,r∈Q).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是() A.①③④B.②③④C.②③D.③④2.若2<a<3,化简(2-a)2+4(3-a)4的结果是()A.5-2a B.2a-5 C.1D.-13.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是()A.(-12)-1B.122-C.1212-⎛⎫⎪⎝⎭D.2-14.化简3a a的结果是()A.a B.1 2 aC.a2D.1 3 a5.下列各式成立的是()A.3m2+n2=()23m n+B.(ba)2=12a12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是() ①当a<0时,()322a=a3;②na n=|a|(n>0);③函数y=()122x--(3x-7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. A .0B .1 C .2D .3二、填空题 7.614-3338+30.125的值为________.8.若a >0,且a x =3,a y =5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________. 三、解答题 10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0);(2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:4133223384a a b b a-+÷(1-23b a )×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy 的值.1.n a n 与(na )n 的区别(1)na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R ,但这个式子的值受n 的奇偶性限制:当n 为大于1的奇数时,na n =a ;当n 为大于1的偶数时,na n =|a |.(2)(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定:当n 为大于1的奇数时,(n a )n =a ,a ∈R ;当n 为大于1的偶数时,(n a )n =a ,a ≥0,由此看只要(n a )n 有意义,其值恒等于a ,即(na )n =a . 2.有理指数幂运算的一般思路化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程. 3.有关指数幂的几个结论 (1)a >0时,a b >0; (2)a ≠0时,a 0=1; (3)若a r =a s ,则r =s ;(4)a ±212a 12b +b =(12a ±12b )2(a >0,b >0); (5)(12a +12b )(12a -12b )=a -b (a >0,b >0).第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1a m n (3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r 作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2,122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2,∴1212-⎛⎫⎪⎝⎭>122->2-1>(-12)-1.] 4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确; ③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10.∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3=52-32+12=32. 8.9 5 解析 22y x a+=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎨⎧1, x >0-1,x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=(x-1)-(x+3)=-4.∴原式=⎩⎨⎧-2x-2(-3<x<1)-4(1≤x<3).12.解原式=()111333212133338242a ab a bb a a a--÷++×13a13.解∵x-xy-2y=0,x>0,y>0,∴(x)2-xy-2(y)2=0,∴(x+y)(x-2y)=0,由x>0,y>0得x+y>0,∴x-2y=0,∴x=4y,∴2x-xyy+2xy=8y-2yy+4y=65.。

#【数学】第二章《基本初等函数》测试(2)(新人教A版必修1)

#【数学】第二章《基本初等函数》测试(2)(新人教A版必修1)

新课标高一数学同步测试第二章测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.已知p >q >1,0<a <1,则下列各式中正确的是 ( )A .q pa a >B .a a qp >C .q pa a--> D .a a q p -->2.已知c x b ax x f ++=)((a ,b ,c 是常数)的反函数352)(1-+=-x x x f ,则 ( )A .a =3,b =5,c =-2B .a =3,b =-2,c =5C .a =2,b =3,c =5D .a =2,b =-5,c =33.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或 C .21≤<a D .2101≤<≥a a 或4.函数f(x )的图象与函数g (x )=(21)x的图象关于直线y =x 对称,则f (2x -x 2)的单调减区间为( ) A .(-∞,1)B .[1,+∞]C .(0,1)D .[1,2] 5.函数y =11+-x x ,x ∈(0,1)的值域是( )A .[ -1,0)B .(-1,0]C .(-1,0)D .[-1,0]6. 设g (x )为R 上不恒等于0的奇函数,)(111)(x g b a x f x⎪⎭⎫⎝⎛+-=(a >0且a ≠1)为偶函数,则常数b 的值为( )A .2B .1C .21 D .与a 有关的值7.设f (x )=a x ,g (x )=x 31,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有( )A .h (x )<g (x )<f (x )B .h (x )<f (x )<g (x )C .f(x )<g (x )<h (x )D .f (x )<h (x )<g (x ) 8.函数xx x a y --=22(a >0)的定义域是( )A .[-a ,a ]B .[-a ,0]∪(0,a )C .(0,a )D .[-a ,0]9.lgx +lgy =2lg (x -2y ),则yx2log 的值的集合是( )A .{1}B .{2}C .{1,0}D .{2,0}10.函数x xx y +=的图象是( )二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.按以下法则建立函数f (x ):对于任何实数x ,函数f (x )的值都是3-x 与x 2-4x +3中的最大者,则函数f (x )的最小值等于 . 12.设函数c bx x x x f ++=)(,给出四个命题: ①0=c 时,有)()(x f x f -=-成立;②c b ,0=﹥0时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点(0,c )对称; ④方程0)(=x f ,至多有两个实数根.上述四个命题中所有正确的命题序号是 。

2022版数学人教A版必修1基础训练:第二章基本初等函数(Ⅰ)本章复习提升含解析

2022版数学人教A版必修1基础训练:第二章基本初等函数(Ⅰ)本章复习提升含解析

第二章 基本初等函数(Ⅰ)本章复习提升易混易错练易错点1 利用指数、对数运算性质进行运算时忽视公式中的限定条件导致错误 1.()下列结论中正确的个数为( )①当a <0时,(a2)32=a3;②√a n n=|a |(n >0);③函数y =(x-2)12-(3x -7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. A.0 B.1 C.2 D.3 2.()计算:(1)5log 25(1-√3)2+3log 9(1+√3)2;(2)√(-8)33+√(√3-2)44-√(2-√3)33.易错点2 研究指数、对数函数时忽视对底数分0<a <1和a >1两种情况讨论导致错误 3.(2019湖北武昌实验中学高一上期中,)若log a 12<2,则a 的取值范围是( )A.(√22,+∞)B.(0,√22) C.(√22,1) D.(0,√22)∪(1,+∞)4.()若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为 . 5.()已知log a (2a +1)<log a (3a -1),其中a >0且a ≠1,求实数a 的取值范围.6.()已知函数f (x )=log a (8-ax )(a >0,且a ≠1).(1)若f (x )<2,求实数x 的取值范围;(2)若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.易错点3 研究指数、对数函数时忽视定义域与值域导致错误 7.()已知f (x )是定义在R 上的奇函数,若f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (lo g 18x )<0的解集为 ( ) A.(0,12)B.(12,+∞) C.(12,1)∪(2,+∞) D.(0,12)∪(2,+∞) 8.()若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( )A.(0,1)B.(1,3)C.(1,+∞)D.[3,+∞) 9.()若函数f (x )=lo g 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A.(-∞,4]B.(-4,4]C.[-4,4)D.[-4,4]10.(2020山东枣庄高一上期末,)已知f (x )={3x -4,x >1,3x ,x ≤1,若a <b ,f (a )=f (b ),则a +3b 的取值范围是 .思想方法练一、函数与方程思想在解决函数问题中的应用1.(2019湖北黄冈高一上期末,)已知函数f(x)的定义域为D,若函数f(x)满足:①f(x)在D内是单调函数;②存在区间[a,b],使f(x)在区间[a,b]上的值域为[a2,b 2 ],那么就称函数f(x)为“减半函数”.若函数f(x)=log c(2c x+t)(c>0,且c≠1)是“减半函数”,则t的取值范围为()A.(0,1)B.(0,1]C.(-∞,18) D.(0,18)2.(2020江苏镇江高一期中,)已知函数y=f(x)是二次函数,且满足f(0)=3,f(1)=f(3)=0.(1)求y=f(x)的解析式;(2)求函数y=f(log2x),x∈[2,8]的最小值;(3)若x∈[1,t](t>1),试将y=f(x)的最小值表示成关于t的函数g(t).二、数形结合思想在解决函数问题中的应用3.()如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}4.()若实数a,b满足a+lg a=8,b+10b=8,则a+b=.5.()已知函数f (x )={|log 2x |,0<x ≤8,x 2-20x +99,x >8,若a ,b ,c ,d 互不相同,且a <b <c <d ,f (a )=f (b )=f (c )=f (d ),则abcd 的取值范围是 .三、分类与整合思想在解决函数问题中的应用 6.()已知函数f (x )={(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为 ( ) A.(1,2) B.(2,3) C.(2,3]D.(2,+∞)7.(2019浙江嘉兴一中高一上期中,)设函数f (x )=e |ln x |(e 为自然对数的底数),若x 1≠x 2且f (x 1)=f (x 2),则下列结论一定不成立的是 ( ) A.x 2 f (x 1)>1 B.x 2 f (x 1)<1C.x 2 f (x 1)=1D.x 2 f (x 1)<x 1 f (x 2)8.()设函数f (x )={21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是 .四、转化与化归思想在解决函数问题中的应用 9.(2019吉林省实验中学高一上期中,)定义域为R 的函数f (x ),对任意实数x 均有f (-x )=-f (x ),f (2-x )=f (2+x )成立,若当2<x <4时,f (x )=2x -3+log 2(x -1),则f (-1)= .10.(2020山东菏泽高一上期末联考,)设函数f (x )=1ex +a e x (a 为常数),若对任意x ∈R ,f (x )≥3恒成立,则实数a 的取值范围是 . 11.()若3x =4y =36,则2x +1y= .五、特殊与一般思想在解决函数问题中的应用 12.()设f (x )为定义在R 上的奇函数.当x ≥0时, f (x )=2x +2x +b (b 为常数),则f (-1)= ( ) A.1 B.-1 C.-3 D.313. ()已知定义域为R 的函数f (x )=-2x +b2x+1+a是奇函数,求a ,b 的值.答案全解全析第二章 基本初等函数(Ⅰ)本章复习提升易混易错练1.B 3.D 7.C 8.B9.D1.B ①中,当a <0时,(a 2)32=[(a 2)12]3=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则√(-2)33=-2≠|-2|,∴②不正确;③中,由{x -2≥0,3x -7≠0,得x ≥2且x ≠73,故其定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a=5,即102a =5,10b =2,∴102a ×10b =102a +b =10,∴2a +b =1,∴④正确. 2.解析 (1)原式=25log 25(√3-1)+9log 9(1+√3)=√3-1+1+√3=2√3. (2)原式=-8+|√3-2|-(2-√3)=-8+2-√3-2+√3=-8.3.D 当a >1时,由log a 12<2,得log a 12<log a a 2,因此a 2>12,解得a >√22或a <-√22,又a >1,所以a >1;当0<a <1时,由log a 12<2,得log a 12<log a a 2,因此0<a 2<12,解得-√22<a <√22,且a ≠0,又0<a <1,所以0<a <√22.综上,a 的取值范围是0,√22∪(1,+∞).故选D . 易错警示由于对数函数的图象、单调性等受底数a 的影响,所以在底数未知的情况下应先讨论底数与1的大小关系,一般分0<a <1,a >1两种情况. 4.答案12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上都是增函数,因此f (x )=a x +log a (x +1)在[0,1]上是增函数,∴f (x )max =f (1)=a +log a 2,f (x )min =f (0)=a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1=log a 1a ,解得a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上都是减函数,因此f (x )=a x +log a (x +1)在[0,1]上是减函数,∴f (x )max =f (0)=a 0+log a (0+1)=1, f (x )min =f (1)=a +log a 2,∴a +log a 2+1=a ,∴log a 2=-1=log a 1a ,解得a =12. 综上所述,a =12. 易错警示解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数自身(如真数、底数的取值)要满足的条件,特别是在研究复合函数的单调性时,除了按照“同增异减”的规律讨论之外,还要特别注意真数大于零. 5.解析 当a >1时,原不等式等价于{2a +1<3a -1,2a +1>0,3a -1>0,所以a >2;当0<a <1时,原不等式等价于{2a +1>3a -1,3a -1>0,2a +1>0,所以13<a <1. 综上所述,a 的取值范围是13,1∪(2,+∞). 6.解析 (1)当a >1时,由f (x )<2,即log a (8-ax )<log a a 2,得0<8-ax <a 2,所以8a -a <x <8a; 当0<a <1时,由f (x )<2=log a a 2,得8-ax >a 2,所以x <8a-a. 因此当a >1时,x 的取值范围是{x|8a -a <x <8a}; 当0<a <1时,x 的取值范围是{x|x <8a-a}. (2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,且在x ∈[1,2]上8-ax >0,即log a (8-2a )>log a a ,且8-2a >0,解得1<a <83. 当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,且在x ∈[1,2]上8-ax >0,即log a (8-a )>log a a ,且8-2a >0,所以a >4,且a <4,故a 不存在. 综上可知,实数a 的取值范围是1,83.7.C ∵f (x )是定义在R 上的奇函数,且在(0,+∞)上是增函数,f (13)=0,∴f (x )在(-∞,0)上也为增函数,f (-13)=0.画出f (x )的大致图象如图所示.结合图象,由f (lo g 18x )<0,可得0<lo g 18x <13或lo g 18x <-13,解得12<x <1或x >2,即不等式f (lo g 18x )<0的解集为(12,1)∪(2,+∞).8.B 设u =6-ax ,则函数f (x )由y =log a u ,u =6-ax 复合而成.因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1.因为[0,2]为定义域的子集,且u =6-ax 是减函数,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3. 综上,得1<a <3,故选B . 9.D 设u =x 2-ax +3a ,则函数f (x )由y =lo g 12u ,u =x 2-ax +3a 复合而成.因为y =lo g 12u 是减函数,所以u =x 2-ax +3a 在(2,+∞)上单调递增, 从而a 2≤2,解得a ≤4. 又当x ∈(2,+∞)时,u =x 2-ax +3a >0, 所以当x =2时,u =4-2a +3a ≥0, 解得a ≥-4.所以-4≤a ≤4.故选D . 易错警示f (x )在(2,+∞)上为减函数,既要考虑单调性,又要考虑f (x )在(2,+∞)上有意义,解题时注意对数的真数大于0. 10.答案 (-∞,8]解析 依题意,得a ≤1<b ,由f (a )=f (b ),得3a =3b -4,即3b =3a +4. 设S =a +3b =a +3a +4.∵函数S =a +3a +4在(-∞,1]上单调递增, ∴S ≤1+31+4=8,∴S 的取值范围是(-∞,8].思想方法练1.D 3.C 6.C 7.B 12.C1.D 显然f (x )是定义域上的单调递增函数,因此,若f (x )是“减半函数”,则{f (a )=a2,f (b )=b 2,即f (x )=x2有两个不等实根.故根据函数的性质构建关于a ,b 的方程组. log c (2c x+t )=x2,即2c x+t =c x2.令c x2=u ,则u >0,且2u 2-u +t =0.依题意知方程有两个不等正根,换元后构造关于u 的一元二次方程,根据方程根的情况,应用“三个二次”的关系求解. ∴{Δ=1-4×2×t >0,t 2>0,解得0<t <18,故选D . 2.解析 (1)设函数f (x )的解析式为f (x )=ax 2+bx +c (a ≠0),设出函数f (x )=ax 2+bx +c (a ≠0),根据题意,用待定系数法求出函数的解析式. 因为f (0)=c =3,所以f (x )=ax 2+bx +3, 又f (1)=f (3)=0,所以{a +b +3=0,9a +3b +3=0,解得{a =1,b =-4.所以f (x )=x 2-4x +3.(2)令t =log 2x ,∵x ∈[2,8],∴t ∈[1,3]. 则y =t 2-4t +3=(t -2)2-1,t ∈[1,3],用换元法,令t =log 2x ,构造二次函数求最值. 所以当t =2,即x =4时,y min =-1.所以函数y =f (log 2x ),x ∈[2,8]的最小值为-1. (3)f (x )=x 2-4x +3,x ∈[1,t ](t >1),定轴动区间问题,讨论区间端点t 与对称轴的相对位置. ①当1<t ≤2时,f (x )在[1,t ]上单调递减, 所以当x =t 时,f (x )有最小值t 2-4t +3;②当t >2时,f (x )在[1,2]上单调递减,在[2,t ]上单调递增, 所以当x =2时,f (x )有最小值-1,即此时g (t )=-1.综上,g (t )={t 2-4t +3,1<t ≤2,-1,t >2.3.C 作出函数y =log 2(x +1)的图象,如图所示.借助函数的图象求解不等式.在已有折线图中画出函数y =log 2(x +1)的图象,求出交点,以交点为分界点分析不等式的解集.结合图象得,BC 所在直线的解析式为y =-x +2,由{y =-x +2,y =log2(x +1),得{x =1,y =1, ∴不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.4.答案 8解析 依题意得lg a =8-a ,10b =8-b ,在同一平面直角坐标系内作出函数y =lg x ,y =10x ,y =8-x ,y =x 的图象,如图所示.由图可知,A ,B 的横坐标即为a ,b.由y =lg x 与y =10x 互为反函数知,交点A ,B 关于直线y =x 对称,故a +b =8.作出函数图象,把满足等式的a ,b 转化为函数图象交点的横坐标,结合互为反函数的图象的对称性分析坐标之间的关系. 5.答案 (96,99)解析 画出函数y =f (x )和y =t 的图象,如图所示.设a ,b ,c ,d 分别为y =f (x )的图象与直线y =t 交点的横坐标.画出函数y =f (x )与y =t 的图象,问题转化为有四个交点时,横坐标乘积的范围,结合图象利用函数的性质解决该问题.由图可知,|log 2a |=-log 2a =log 2b ,即a ·b =1,c+d 2=10,且8<c <9,所以abcd =cd =c (20-c ).令g (c )=c (20-c ),8<c <9,因为函数g (c )的图象开口向下,对称轴方程为c =10,所以g (c )在(8,9)上单调递增,g (8)<g (c )<g (9),所以g (c )∈(96,99),即abcd 的取值范围是(96,99). 6.C 因为f (x )在(-∞,+∞)上单调递增,所以{a -2>0,a >1,a -2-1≤0,故2<a ≤3.所以a 的取值范围为(2,3].根据参数a 的不同,分析各段函数的单调性,根据整个函数的单调性,分析各段函数端点处函数值之间的关系. 7.B 由题知, f (x )=e |ln x |={x ,x ≥1,1x,0<x <1.按照自变量x 的不同取值范围把f (x )化为分段函数.由x ≥1时, f (x )=x 是增函数,0<x <1时,f (x )=1x 是减函数知,0<x 1<1≤x 2或0<x 2<1≤x 1. 分析分段函数的单调性,从而确定x 1,x 2分别在两个区间内. 当0<x 1<1≤x 2时, f (x 1)=1x 1, f (x 2)=x 2, ∴x 1x 2=1,∴x 2·f (x 1)=x 2x 1>1,x 1·f (x 2)=x 1·x 2=1,从而x 2 f (x 1)>x 1 f (x 2).此时A 成立. 当0<x 2<1≤x 1时, f (x 2)=1x 2, f (x 1)=x 1, ∴x 1x 2=1,∴x 2 f (x 1)=x 2·x 1=1,x 1·f (x 2)=x 1x 2>1, 从而x 2 f (x 1)<x 1 f (x 2).此时C 、D 成立. 因此无论何种情况,B 一定不成立,故选B . 8.答案 [0,+∞)解析 当x ≤1时,令f (x )≤2,即21-x ≤2,解得x ≥0,所以0≤x ≤1; 当x >1时,令f (x )≤2,即1-log 2x ≤2,解得x ≥12,所以x >1. 综上,x 的取值范围是[0,+∞). 9.答案 -2解析 由题意得,f (-1)=-f (1)=-f (2-1)=-f (2+1)=-f (3)=-[23-3+log 2(3-1)]=-(20+log 22)=-2.要想利用已知式求值,必须把自变量转化为区间(2,4)内的数. 10.答案94,+∞解析 f (x )≥3⇔1e x +a e x ≥3⇔a ≥3e x -1(e x )2.将含参的恒成立问题通过变形转化为有关参数的不等式问题.令t =1e x ,则t >0,则a ≥3t -t 2,①设g (t )=-t 2+3t =-t -322+94,t >0, 则当t =32时,g (t )max =94. 又不等式①恒成立,∴a ≥94, 把参数满足的不等式转化为函数最值问题.故a 的取值范围是94,+∞. 11.答案 1解析 已知3x =4y =36,取以6为底的对数,将指数式化为对数式,得x log 63=y log 64=2, 应用指数与对数关系将指数式转化为对数式.∴2x =log 63,2y=log 64, 即1y =log 62,故2x +1y=log 63+log 62=1. 12.C 由f (x )是定义在R 上的奇函数知, f (0)=20+0+b =0,解得b =-1, 应用定义在R 上的奇函数的性质:f (0)=0,求b. ∴f (-1)=-f (1)=-(21+2-1)=-3,故选C .13.解析 因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,所以f (x )=-2x +12x+1+a .由-f (x )=f (-x ),知--2x +12x+1+a =-2-x+12-x+1+a ,化简,得2x +1+a =2+a ·2x ,即(a -2)(2x -1)=0.由(a -2)(2x -1)=0对任意x ∈R 都成立,得a =2.故a =2,b =1.思维升华在处理函数奇偶性问题时,遇到定义域为R 的奇函数,应用性质f (0)=0,可以快速找到解决问题的突破口,使复杂的问题简单化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
高中同步创优单元测评
B 卷 数 学
班级:________ 姓名:________ 得分:________
第二章 基本初等函数(Ⅰ)(二) (对数与对数函数、幂函数)
名校好题·能力卷]
(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1)
D .(-1,1)
2.若2lg(x -2y )=lg x +lg y (x >0,y >0)则y x
的值为( )
A .4
B .1或14
C .1或4 D.1
4
3.下列函数中与函数y =x 相等的函数是( ) A .y =(x )2
B .y =
x 2
- 1 -
C .y =2log 2x
D .y =log 22x
4.函数y =lg ⎝
⎛⎭
⎪⎫
21+
x -1的图象关于( )
A .原点对称
B .y 轴对称
C .x 轴对称
D .直线y =x 对称
5.下列关系中正确的是( ) A .log 76<ln 1
2<log 3π
B .log 3π<ln 1
2<log 76
C .ln 1
2
<log 76<log 3π
D .ln 1
2
<log 3π<log 76
6.已知函数f (x )=⎩⎨

log 3x ,x >0,
2x ,x ≤0.
则f ⎝ ⎛⎭
⎪⎫
f ⎝ ⎛⎭⎪⎫127的值为(
)
A.18 B .4 C .2 D.14 7.函数y =ax
2+
bx 与y =log b
a
x (ab ≠0,|a |≠|b |)在同一直角坐标
系中的图象可能是( )
- 1 -
8.若函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,则m 的值为( )
A .1
B .-3
C .-1
D .3
9.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )
A .log 2x
B .log 12
x C.1
2x D .x 2
10.函数f (x )=log 1
2(x 2-3x +2)的递减区间为( )
A.⎝

⎭⎪⎫-∞,32
B .(1,2) C.⎝ ⎛⎭
⎪⎫
32,+∞ D .(2,+∞)
11.函数f (x )=lg(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( )
A.⎝ ⎛⎭⎪⎫0,34
B.⎣⎢⎡⎭
⎪⎫0,34 C.⎣⎢⎡⎦
⎥⎤0,34 D .(-∞,0]∪⎝ ⎛⎭
⎪⎫
34,+∞
12.设a >0且a ≠1,函数f (x )=log a |ax 2-x |在3,4]上是增函数,。

相关文档
最新文档