北师大七年级数学下册期中测试试卷

合集下载

北师大版数学七年级下册《期中考试卷》含答案

北师大版数学七年级下册《期中考试卷》含答案

北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x + B .32x xC .3x xD .72x x -2.计算()2019201821.53⎛⎫-⨯ ⎪⎝⎭的结果是( ) A .32-B .32C .23-D .233.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x -- B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+ C .22(1)(1)x x -+=+D .22(1)(1)x x +=-7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += .12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 .13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .14.若2249x kxy y ++是一个完全平方式,则k 的值为 .15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 .17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . 三.解答题(共3小题,每小题6分,满分18分)18011(2(2)()|3-+-+--19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?四.解答题(共3小题,每小题8分,满分24分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.22.已知24a =,26b =,212c = (1)求证:1a b c +-=; (2)求22a b c +-的值.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,每小题10分,满分18分) 24.观察下列关于自然数的等式: (1)223415-⨯= (1) (2)225429-⨯= (2) (3)2274313-⨯= (3) ⋯根据上述规律解决下列问题: (1)完成第五个等式:2114-⨯2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由. 解:过点E 作直线//EF CD 2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ ) 1(B ∴∠=∠ ) 12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度. 方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x +B .32x xC .3x xD .72x x -[解析]A .不是同类项不能合并,所以A 选项不符合题意; B .325x x x =.符合题意;C .34x x x =,不符合题意;D .不是同类项不能会并,不符合题意.故选:B .2.计算201820192( 1.5)()3-⨯的结果是( ) A .32-B .32C .23-D .23[解析]201820192( 1.5)()3-⨯2018201822(1.5)()33=⨯⨯2018322()233=⨯⨯ 2018213=⨯213=⨯23=. 故选:D .3.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a[解析]由同底数幂除法法则:底数不变,指数相减知,63633a a a a -÷==.故选:D . 4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -[解析]23(3)2x x -56x =-,故选:D .5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x --B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-[解析](23)(32)x y y x --不能利用平方差公式计算,故选:A . 6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+C .22(1)(1)x x -+=+D .22(1)(1)x x +=-[解析]A .22(1)(1)x x --=+,故本选项不合题意; B .22(1)(1)x x --=+,正确;C .22(1)(1)x x -+=-,故本选项不合题意;D .22(1)(1)x x +=+,故本选项不合题意.故选:B .7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+[解析]3(42)2x x x -+÷3(4)222x x x x =-÷+÷221x =-+故选:A .8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .[解析]A 、1∠与2∠不是对顶角,故A 选项不符合题意; B 、1∠与2∠不是对顶角,故B 选项不符合题意;C 、1∠与2∠是对顶角,故C 选项符合题意;D 、1∠与2∠不是对顶角,故D 选项不符合题意.故选:C .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角[解析]A 、1∠与2∠是同旁内角,正确,不合题意;B 、1∠与6∠是内错角,正确,不合题意; C 、2∠与5∠是内错角,错误,符合题意;D 、3∠与5∠是同位角,正确,不合题意;故选:C .10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒[解析]过C 作//CM AB ,延长CD 交EF 于N ,则CDE E CNE ∠=∠+∠,即CNE y z ∠=-//CM AB ,//AB EF ,////CM AB EF ∴,1ABC x ∴∠==∠,2CNE ∠=∠,90BCD ∠=︒,1290∴∠+∠=︒,90x y z ∴+-=︒.故选:B .二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += . [解析](1)(1)80m n m n +-++=,22()180m n +-=, 2()81m n +=,9m n +=±,故答案为:9±.12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 . [解析]当1x =时,代入关系式31y x =-中,得312y =-=;当5x =时,代入关系式31y x =-中,得15114y =-=. 故答案为:2,14.13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .[解析]常量是梯形的高,变量是梯形的上下底和面积, 故答案为:梯形的高,梯形的上下底和面积.14.若2249x kxy y ++是一个完全平方式,则k 的值为 . [解析]2249x kxy y ++是一个完全平方式,12k ∴=±,故答案为:12±15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.[解析]如图所示,A ∠与ACD ∠、ACE ∠是内错角;B ∠与DCE ∠、ACE ∠是同位角;ACB ∠与A ∠、B ∠是同旁内角.故答案是:ACD ∠、ACE ∠;DCE ∠、ACE ∠;A ∠、B ∠.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 . [解析]数字55000用科学记数法表示为45.510⨯. 故答案为:45.510⨯.17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . [解析]分两种情况:①当D 点在A 点左侧时,如图1所示,此时AE 交CB 延长线于E 点,//AD BC ,50DAB ABC ∴∠=∠=︒.AE 平分DAB ∠,1252EAB DAB ∴∠=∠=︒, 502525AEB ∴∠=︒-︒=︒;②当D 点在A 点右侧时,如图2所示,此时AE 交BC 于E 点,//AD BC ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒. AE 平分DAB ∠,1652EAB DAB ∴∠=∠=︒, 180506565AEB ∴∠=︒-︒-︒=︒.综上所述,25AEB ∠=︒或65︒. 故答案为25︒或65︒.三.解答题(共3小题,满分18分,每小题6分)18011(2(2)()|3-+-+--[解析]原式34513=+-+-19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-. [解析]原式2222224969x x y x xy y =+--+-225618x xy y =+-当2x =-,1y =-时,原式5462181=⨯+⨯-⨯ 14=.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?[解析](1)如图,CBE ∠即为所求;(2)CBE CAD ∠=∠,//BE AD ∴(同位角相等,两条直线平行).四.解答题(共3小题,满分28分,每小题8分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.[解析](1)AMD BMF ∠=∠,AMD BNC ∠=∠, BMF BNC ∴∠=∠,//AF CE ∴,180AFC ECD ∴∠+∠=︒, 110AFC ∠=︒, 70ECD ∴∠=︒;(2)ECD ∠与BAF ∠相等,理由是:ABD BDC ∠=∠,//AB CD ∴,180AFC BAF ∴∠+∠=︒,180AFC ECD ∠+∠=︒,ECD BAF ∴∠=∠.22.已知24a =,26b =,212c =(1)求证:1a b c +-=;(2)求22a b c +-的值.[解析](1)证明:24a =,26b =,212c =,222462122a b c ∴⨯÷=⨯÷==,1a b c ∴+-=,即1a b c +-=;(2)解:24a =,26b =,212c =,222(2)22a b c a b c +-∴=⨯÷16612=⨯÷8=.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下:如图,//PQ MN ,EAQ ACN ∴∠=∠.又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共3小题,满分27分,每小题9分)24.观察下列关于自然数的等式:(1)223415-⨯= (1)(2)225429-⨯= (2)(3)2274313-⨯= (3)⋯根据上述规律解决下列问题:(1)完成第五个等式:2114-⨯ 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.[解析](1)22114521-⨯=,故答案为:5;21;(2)第n 个等式为:22(21)441n n n +-=+,证明:2222(21)4441441n n n n n n +-=++-=+.25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点E 作直线//EF CD2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ )1(B ∴∠=∠ )12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠=度.[解析]感知与填空:过点E 作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G 作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于M ,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.。

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试题一、单选题1.下列计算正确的是A .326a a a ⋅=B .5510x x x +=C .78y y y ⋅=D .222(3)6pq p q -=- 2.(1)(23)x x -+的计算结果是A .223x x +-B .223x x --C .223x x -+D .223x x -- 3.某植物的花朵质量为0.00 000 0076 克,用科学记数法表示是A .7.6×108克B .7.6×10-7克C .7.6×10-8克D .7.6×10-9克4.如果()219x a x --+是一个完全平方式,则a 的值为A .7B .-4C .7或-5D .7或-4 5.如图,与∠B 是同旁内角的角有( )A .1个B .2个C .3个D .4个 6.下列能用平方差公式计算的是( )A .()()a b a b -+-B .()()22x x ++C .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ D .()()21x x -+ 7.给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 8.如图,在下列结论给出的条件中,不能判定AB DF ∥的是( )A .2180A ∠+∠=︒B .3A ∠=∠C .14∠=∠D .1A ∠=∠9.若n 满足关系式22(2020)(2021)3n n -+-=,则代数式()()20202021n n --=( ) A .-1 B .0 C .12 D .110.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 二、填空题11.计算:()2322xy z -=__________. 12.已知:a+b=1.5,ab=﹣1,则(a ﹣2)(b ﹣2)=_______.13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.ABC 中,若80A ∠=︒,O 为三条内角角平分线的交点,则BOC ∠=__________度. 15.已知2310x x --=,则多项式3275x x x --+的值为_____.16.已知227a ab b ++=,225a ab b -+=,则a b -=__________.17.已知1∠的两边分别平行于2∠的两边,250∠=︒,则1∠的度数为__________. 18.已知ABC 中,30cm AC =,中线AD 把ABC 分成两个三角形,这两个三角形的周长差是12cm ,则AB 的长是__________.三、解答题19.计算:(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ 20.阅读下列推理过程,在括号中填写理由:已知:如图,12∠=∠.求证:34180∠+∠=︒.证明:∠12∠=∠(已知)∠a b ∥(____________________)∠35180∠+∠=(____________________)又∠45∠=∠(____________________)∠34180∠+∠=︒(____________________)21.先化简,再求值: 已知26910x x y -+++=,求()2222(2)(2)(2)4(2)x y x y x y x y x y +---++的值.22.已知()()322x mx n x x +++-展开式中不含3x 和2x 项,求代数式()22()m n m mn n -++的值.23.如图,已知BC GE ∥,AF DE ∥,150∠=︒.(1)求AFG ∠的度数;(2)若AQ 平分FAC ∠,交BC 于点Q ,且15Q ∠=︒,求ACB ∠的度数.24.若我们规定三角“”表示为:abc ;方框“ ”表示为:()m n x y +.例如:()411193233=⨯⨯÷+=.请根据这个规定解答下列问题:(1)计算:=__________;(2)代数式为完全平方式,则k =__________;(3)当x 为何值时,代数式有最小值,最小值是多少?25.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)轿车出发多长时间追上货车;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.26.如图,已知直线//AB 射线CD ,0100CEB ∠=.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连结CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点,,P F G 都在点E 的右侧.∠求PCG ∠的度数;∠若040EGC ECG ∠-∠=,求CPQ ∠的度数.(2)在点P 的运动过程中,是否存在这样的情形,使32EGC EFC ∠=∠,若存在,求出CPQ ∠的度数;若不存在,请说明理由.参考答案1.C【详解】A. 325a a a ⋅=,故A 错B .5552x x x +=,故B 错C. 78y y y ⋅=,故C 对D. 222(3)6pq p q -=,故D 错故选C2.A【详解】原式22232323x x x x x =+--=+-故选A.3.C【详解】解:对于绝对值小于1的数,用科学记数法表示为a×10n 形式,其中1≤a <10,n 是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容得:0.00 000 0076克=7.6×10-8克,故选C .4.C【分析】完全平方公式:a 2±2ab+b 2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∠()219x a x --+=()2213x a x -+-,∠()123a x x -=±⨯,∠a -1=±6,∠a=7或-5.故选C .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a 2±2ab+b 2是解答本题的关键. 5.C【解析】【分析】根据同旁内角的定义求解即可得.【详解】解:与∠B 是同旁内角的角有∠C ,∠BAC ,∠BAE 共3个,故选C .【点睛】题目主要考查相交线中的同旁内角的定义,理解同旁内角的定义是解题关键.6.C【解析】【分析】根据平方差的结构特点()()a b a b -+判断即可.【详解】解:A 、()()()()a b a b a b a b -+-=---,不符合平方差结构特点,不符合题意;B 、(x +2)(2+x ),不符合平方差结构特点,不符合题意;C 、1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭,符合平方差结构特点,符合题意; D 、(x ﹣2)(x +1),不符合平方差结构特点,不符合题意;故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.A【解析】【分析】根据平行线的定义、平行公理、对顶角的概念以及点到直线的距离的概念进行判断即可.【详解】解:(1)过已知直线外一点有且只有一条直线与已知直线平行,说法(1)错误;(2)相等的两个角不一定是对顶角,对顶角是在两直线相交的前提条件下形成的,故说法(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)同一平面内,不相交的两条直线叫做平行线,故说法(4)错误;(5)同一平面内,垂直于同一条直线的两条直线平行,故说法(5)错误.故说法正确的有0个.故选:A .【点睛】本题主要考查了相交线与平行线的一些基本概念,解题时注意:对顶角是相对于两个角而言,是指两个角的一种位置关系;点到直线的距离只能量出或求出,而不能说画出;平行公理中要准确理解“有且只有”的含义.8.D【解析】【分析】利用平行线的判定定理,逐一判断.【详解】解:A、∠∠2+∠A=180°,∠AB∠DF(同旁内角互补,两直线平行);B、∠∠A=∠3,∠AB∠DF(同位角相等,两直线平行);C、∠∠1=∠4,∠AB∠DF(内错角相等,两直线平行).D、∠1A∠=∠,∠//AC ED(同位角相等,两直线平行);故选:D.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.A【解析】【分析】利用完全平方公式和整体代入,用多项式乘多项式法则求解即可.【详解】解:令n-2020=a,2021-n=b,根据题意得:a2+b2=3,a+b=1,∠原式=ab=()222 ()2a b a b +-+=13 2 -=-1.故选:A.这道题考查的是完全平方公式和多项式乘多项式,熟记完全平方公式和多项式乘多项式法则是解题的基础.10.D【解析】【详解】解:A .由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B .∠乙先出发,0.5小时,两车相距(100﹣70)km ,∠乙车的速度为:60km/h ,故乙行驶全程所用时间为:10060=213(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h ),故B 选项正确,不合题意; C .由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,40+60=100,故两车相遇,故C 选项正确,不合题意;D .由以上所求可得,乙到A 地比甲到B 地早:1.75﹣211312=,(小时),故此选项错误,符合题意.故选:D .11.6424x y z【解析】【分析】根据积的乘方的运算性质计算即可.【详解】解:()2322xy z -=223222264()()(2)4x y z x y z ⋅⋅⋅-=, 故答案为:6424x y z【点睛】此题考查了积的乘方的运算性质:积的乘方,就是把积中的每一个因式分别乘方,再把所得的积相乘.掌握此运算性质是解答此题的关键.12.0【解析】∠a+b=1.5,ab=﹣1,∠(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=-1-3+4=0.故答案为:013.125【解析】【分析】首先过点E作EM∠AB,过点F作FN∠AB,由AB∠CD,即可得EM∠AB∠CD∠FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF 平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∠AB,过点F作FN∠AB,∠AB∠CD,∠EM∠AB∠CD∠FN,∠∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∠∠ABE+∠BED+∠CDE=360°,∠∠BED=110°,∠∠ABE+∠CDE=250°,∠BF平分∠ABE,DF平分∠CDE,∠∠ABF=12∠ABE,∠CDF=12∠CDE,∠∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∠∠DFN=∠CDF ,∠BFN=∠ABF ,∠∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.14.130【解析】【分析】根据三角形的内角和是180︒,得:18080100ABC ACB ∠+∠=︒-︒=︒;又O 为三条角平分线的交点,得:11110050222∠+∠=∠+∠=⨯︒=︒OBC OCB ABC ACB ;再根据三角形的内角和定理,得:130BOC ∠=︒.【详解】解:如图:在ABC ∆中,80BAC ∠=︒,18080100ABC ACB ∴∠+∠=︒-︒=︒.又O 为三条角平分线的交点11110050222OBC OCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒. 在三角形OBC 中,180()130BOC OBC OCB ∠=︒-∠+∠=︒,故答案为:130.【点睛】 本题考查了角平分线的概念以及掌握三角形的内角和定理,解题的关键是注意公式的总结:1902BOC A ∠=+∠︒. 15.7【分析】首先将已知2310x x --=转化为x 2-3x=1,再将x 3-x 2-7x+5通过提取公因式转化为含有因式x 2-3x 的形式,将x 2-3x 做为一个整体逐步代入,即实现了降次,又得到了所求值.【详解】∠2310x x --=∠x 2-3x=1x 3-x 2-7x+5=x (x 2-3x )+2x 2-7x+5=2x 2-6x+5=2(x 2-3x )+5=2+5=7故答案为7.【点睛】本题考查因式分解的应用.解决本题的关键是将2310x x --=转化为x 2-3x=1,再将x 2-3x 做为一个整体逐步代入x 3-x 2-7x+5的变形.16.±2【解析】【分析】已知两等式相加减求出a 2+b 2与ab 的值,利用完全平方公式求解即可.【详解】解:∠a 2+ab+b 2=7∠,a 2-ab+b 2=5∠,∠∠+∠得:2(a 2+b 2)=12,即a 2+b 2=6,∠-∠得:2ab=2,即ab=1,∠()22224a b a ab b -=-+=,∠2a b -=±故答案为:±2【点睛】此题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解本题的关键. 17.50°或130°##130°或50°【解析】【分析】作出图形,根据两边互相平行的两个角相等或互补解答.解:如图1,∠∠1与∠2的两边分别平行,∠2=50°,∠∠1=∠2=∠3=50°,如图2,∠∠1与∠2的两边分别平行,∠2=50°,∠∠3=∠2=50°,∠1=180°−∠3=180°−50°=130°,综上所述,∠2的度数等于50°或130°.故答案为:50°或130°【点睛】本题考查的是平行线的性质,即两直线平行,同位角相等;同旁内角互补,掌握平行线的性质,分类讨论是解题的关键.18.42cm或18cm【解析】【分析】先根据三角形中线的定义可得BD=CD,再求出AD把∠ABC周长分为的两部分的差等于|AB -AC|,然后分AB >AC ,AB <AC 两种情况分别列式计算即可得解.【详解】∠AD 是∠ABC 中线,∠BD=CD .∠AD 是两个三角形的公共边,两个三角形的周长差是12cm ,∠如果AB >AC ,那么AB -AC=12cm ,即AB -30=12cm∠AB=42cm ;如果AB <AC ,那么AC -AB=12cm ,即30-AB=12cmAB=18cm .综上所述:AB 的长为42cm 或18cm .故答案为:42cm 或18cm .【点睛】考查了三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 19.(1)6b (2)3794-【解析】【分析】(1)根据单项式的乘除混合运算进行求解即可,(2)根据零次幂、负整数指数幂,有理数的乘方,有理数的混合运算进行计算即可.(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭3251331923a b +-+-=⨯⨯=6b(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ ()2019140.250.25339=+⨯⨯-⨯⨯11814=+- 3794=- 【点睛】本题考查了单项式的乘除,零次幂、负整数指数幂,有理数的乘方,有理数的混合运算,正确的计算是解题的关键.20.同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【解析】【分析】先判定a∠b ,即可得出∠3+∠5=180°,再根据对顶角相等,即可得到∠4=∠5,进而得出∠3+∠4=180°.【详解】证明:∠∠1=∠2(已知)∠a∠b (同位角相等,两直线平行)∠∠3+∠5=180° (两直线平行,同旁内角互补)又∠∠4=∠5(对顶角相等)∠∠3+∠4=180°(等量代换)故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.224832x y y -+,-36【解析】【分析】 先由26910x x y -+++=推出()2310x y -++=即可求出3x =,1y =-,然后利用分解因式的方法化简,最后代值计算即可.【详解】解:∠26910x x y -+++=,∠()2310x y -++=,∠()230x -≥,10y +≥,∠30x -=,10y +=,∠3x =,1y =-,()2222(2)(2)(2)4(2)x y x y x y x y x y +---++()()()()()2222224x y x y x y x y x y ⎡⎤=+-+--+⎣⎦ ()()222222444x y x y x y =----()22248x y y =--⋅224832x y y =-+, 当3x =,1y =-时,原式()()24283132136=-⨯⨯-+⨯-=-.【点睛】本题主要考查了非负数的性质,整式的混合计算和代数式求值,熟知整式的混合计算法则是解题的关键.22.16【解析】【分析】根据整式的运算法则进行化简,使得3x 项和2x 项的系数为0即可求出,m n 的值,进而代入的算式求解即可【详解】解:()()322x mx n x x +++- 543322222x x x mx mx mx nx nx n =+-+-+++-()()5432222x x m x m n x mx nx n ++=+-+-+-由于展开式中不含3x 项和2x 项,20,0m m n ∴-=+=解得2,2m n ==-∴()22()m n m mn n -++()()22222222⎡⎤=--⨯-⨯+-⎡⎤⎣⎦⎣⎦16=【点睛】本题考查了整式的乘法运算,代数式求值,掌握整式的运算法则是解题的关键. 23.(1)AFG ∠=50°(2)∠ACB =80°【解析】【分析】(1)先根据BC∠EG 得出∠E =∠1=50°,再由AF∠DE 可知∠AFG =∠E =50°; (2)作AM∠BC ,由平行线的传递性可知AM∠EG ,故∠FAM =∠AFG ,再根据AM∠BC 可知∠QAM =∠Q ,故∠FAQ =∠FAM +∠QAM ,再根据AQ 平分∠FAC 可知∠MAC =∠QAC +∠QAM =80°,根据AM∠BC 即可得出结论.(1)∠BC∠EG ,∠∠E =∠1=50°.∠AF∠DE ,∠∠AFG =∠E =50°;(2)作AM∠BC ,∠BC∠EG ,∠AM∠EG ,∠∠FAM =∠AFG =50°.∠AM∠BC ,∠∠QAM =∠Q =15°,∠∠FAQ =∠FAM +∠QAM =65°.∠AQ 平分∠FAC ,∠∠QAC =∠FAQ =65°,∠∠MAC =∠QAC +∠QAM =80°.∠AM∠BC ,∠∠ACB =∠MAC =80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.熟记平行线的各种性质是解题的关键.24.(1)32- (2)3±(3)当13x =时,题中代数式有最小值329- 【解析】【分析】(1)理解题意,根据题意的运算对式子进行求解即可;(2)理解题意,根据题意的运算对式子进行化简,再根据完全平方公式即可求解; (3)理解题意,根据题意的运算对式子进行化简,利用平方的非负性求解即可.(1)解:由题意得()()41323113642⎡⎤=⨯-⨯÷-+=-÷=-⎣⎦, 故答案为:32-; (2)解:由题意得()2232x y kxy =++, ∠()2232x y kxy ++是一个完全平方式,∠223kxy y x =±⨯⋅,∠3k =±,故答案为:3±;(3) 解:由题意得()()()()2323212323x x x x ⎡⎤=-+⋅-+-+⎣⎦ ()229436249x x x x =--+--+2294345x x x =----2649x x =--221269393x x ⎛⎫=-+-- ⎪⎝⎭ 2129633x ⎛⎫=-- ⎪⎝⎭, ∠2103x ⎛⎫-≥ ⎪⎝⎭, ∠2129296333x ⎛⎫--≥- ⎪⎝⎭, ∠当13x =时,代数式 的最小值为329-. 【点睛】本题主要考查了完全平方式,含乘方的有理数混合计算,整式的混合计算,熟知完全平方公式是解题的关键.25.(1)轿车到达乙地时,货车与甲地的距离为270千米(2)轿车出发2.4追上货车(3)在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米【解析】【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD和线段OA对应的函数表达式,根据相遇时路程相等列方程即可;(3)根据题意和函数图象中的数据,可以判断两车相距15千米时,在CD段,则|60x−(110x−195)|=15,解方程即可.(1)解:根据图象可知,货车的速度为:300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是:60×4.5=270(千米),答:轿车到达乙地时,货车与甲地的距离为270千米(2)设线段CD对应的函数表达式是y=kx+b,∠点C(2.5,80),点D(4.5,300),∠2.580 4.5300k bk b+=⎧⎨+=⎩,解得:110195kb=⎧⎨=-⎩,∠线段CD对应的函数表达式是y=110x−195,由图象可得:线段OA对应的函数表达式是y=60x,则60x=110x−195,解得:x=3.9.3.9−1.5=2.4,答:轿车出发2.4追上货车(3)当轿车行驶到点C 时,两车相距60×2.5−80=150−80=70(千米),∠两车相距15千米时,在CD 段,则|60x−(110x−195)|=15,解得x =3.6或x =4.2,∠轿车比货车晚出发1.5小时,∠3.6−1.5=2.1(小时),4.2−1.5=2.7(小时),答:在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)∠40°;∠60°;(2)60°或15°.【解析】【分析】(1)∠根据平行线的性质可知080ECQ ∠=,再结合角平分线的性质可求得1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠,进而求解即可. ∠根据平行线性质可得QCG EGC ∠=∠,结合已知条件040EGC ECG ∠-∠=且QCG ECG ECQ ∠+∠=∠可求得020EGC GCF FCP ∠=∠=∠=,根据平行线性质进而可求得060CPQ ECP EGC GCF FCP ∠=∠=∠+∠+∠=.(2)根据已知条件设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,分∠当点G F 、在点E 的右侧时∠当点G F 、在点E 的左侧时两种情况,结合已知条件进行求解即可.【详解】(1)∠∠0100CEB ∠=,//AB CD ,∠080ECQ ∠=,∠PCF PCQ ∠=∠,CG 平分ECF ∠, ∠1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠ 01402ECQ =∠=∠∠//AB CD∠QCG EGC ∠=∠,080QCG ECG ECQ ∠+∠=∠=,∠080EGC ECG ∠+∠=又∠040EGC ECG ∠-∠=,∠0060,20EGC ECG ∠=∠=∠020ECG GCF ∠=∠=()00018040202PCF PCQ ∠=∠=-=∠//PQ CE∠060CPQ ECP ∠=∠=(2)设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,∠当点G F 、在点E 的右侧时,则ECG PCF PCD x ∠=∠=∠=,∠080ECD ∠=,∠0480x =,解得020x =,∠0360CPQ x ∠==∠当点G F 、在点E 的左侧时,则ECG GCF x ∠=∠=,∠01803CGF x ∠=-,080GCQ x ∠=+,∠00180380x x -=+,解得025x =,∠0005080130FCQ ECF ECQ ∠=∠+∠=+= ∠01652PCQ FCQ ∠=∠= ∠000655015CPQ ECP ∠=∠=-=【点睛】此题主要考查平行线的性质和角平分线的性质,解题在于熟练掌握平行线和角平分线的性质运用以及分情况讨论问题.。

北师大版七年级下册数学《期中考试试题》及答案

北师大版七年级下册数学《期中考试试题》及答案
因为∠AED=∠C(已知)
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4+x x -有意义,+1x =___________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知∠1,∠2互为补角,且∠3=∠B ,(1)求证:∠AFE=∠ACB(2)若CE 平分∠ACB ,且∠1=80°,∠3=45°,求∠AFE 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、15°4、15、±26、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、-1≤x<23、(1)证明见解析;(2)75.4、(1)详略;(2)70°.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x += 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填”甲”或”乙” );②甲的行驶速度是 (公里/分);③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 .三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-;(2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x【解析】2222(2)24x x x =⨯=.故选:B .2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 【解析】A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意; 故选:A .3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=【解析】A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意;C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D . 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒【解析】α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .1【解析】当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =【解析】每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =【解析】232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-,结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒ 【解析】//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角,32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .【解析】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --【解析】原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a +=__________.【解析】5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.【解析】当3x 时,3y =3,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-. 13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.【解析】//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填”甲”或”乙” )②甲的行驶速度是__________(公里/分)③乙的行驶速度是__________(公里/分)【解析】(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4. 15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.【解析】设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.【解析】22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-,故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________.【解析】2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-(2)62543512()8(2)()2x x x x x --+÷-【解析】(1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.【解析】2(1)(2)x x x -+- 22212x x x x =-++-2241x x =-+,2210x x --=,221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.【解析】设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒,根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒,解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.【解析】证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.【解析】(1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?【解析】如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案. 【解析】(1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+- 解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴,在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200wm x=-+,02m ∴<<,(2)中调运方案总费用最小; 2m =时,在40240x 的前提下调运方案的总费用不变; 215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.【解析】(1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒,故答案为:90PFD AEM ∠+∠=︒; (2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠,90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。

北师大版七年级下册数学期中考试试题附答案

北师大版七年级下册数学期中考试试题附答案

北师大版七年级下册数学期中考试试卷一、单选题1.下列计算正确的是( )A .532a a a ÷=B .336a a a +=C .()235a a = D .5382a a a ⋅= 2.下列各式中,计算结果正确的是( )A .()()22x y x y x y +--=- B .()()232346x y x y x y -+=- C .()()22339x y x y x y ---+=-- D .()()2242222x y x y x y -+=-3.如图,描述同位角、内错角、同旁内角关系不正确...的是( )A .1∠与4∠是同位角B .2∠与3∠是内错角C .3∠与4∠是同旁内角D .2∠与4∠是同旁内角4.一蓄水池有水40m 3,按一定的速度放水,水池里的水量y (m 3)与放水时间t (分)有如下关系:下列结论中正确的是( ) A .y 随t 的增加而增大B .放水时间为15分钟时,水池中水量为8m 3C .每分钟的放水量是2m 3D .y 与t 之间的关系式为y =40t5.如图,小轩从A 处出发沿北偏东60︒方向行走至B 处,又沿北偏西20︒方向行走至C 处,则ABC ∠的度数是( )A .80︒B .90︒C .95︒D .100︒6.清明节假期的某天,小强骑车从家出发前往革命烈士陵园扫墓,匀速行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,以更快的速度匀速前行,到达烈士陵园扫完墓后匀速骑车回家.其中x 表示小强从家出发后的时间,y 表示小强离家的距离,下面能反映变量y 与x 之间关系的大致图象是( )A .B .C .D .7.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下的部分剪开后拼成一个平行四边形(如图),根据两个图形阴影部分面积的关系,可以得到一个关于a ,b 的恒等式为( )A .()()22a b a b a b -=+- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b +=+8.如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为O ,若射线OF 在AOE ∠的内部,EOF 25∠=︒,2AOF BOD 3∠∠=,则BOC ∠的度数为( )A .120︒B .135︒C .141︒D .145︒9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度二、多选题10.如图,点E 在BC 的延长线上,下列条件中能判定AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠B =∠DCED .∠D +∠DAB =180°三、填空题11.计算:(﹣12x 2y 3z+3xy 2)÷(﹣3xy 2)=________.12.一个角的余角是这个角的补角的三分之一,则这个角的度数是_____________ . 13.某游客爬山的高度h (单位:km )与所用时间t (单位:h )之间的关系如图所示,请根据图像提供的信息,描述游客爬山高度的变化情况:________.14.若3m a =,2n a =,则2m n a -的值为_______.15.某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y 米与时间x 小时(06x ≤≤)之间的关系式为________. 16.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.17.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C’,D’处,C’E 交AF 于点G .若∠CEF=70°,则∠GFD’=______°.18.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是______________.四、解答题 19.计算:(1)()20411********-⎛⎫---⨯+- ⎪⎝⎭;(2)(−2x 2y)3÷(−x 2y)•(xy 3).20.先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =. 21.如图//AB CD ,AE 平分BAD ∠,CD 与AE 相交于F ,CFE E ∠=∠,求证://AD BC .22.下表是橘子的销售额随橘子卖出质量的变化表:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5千克时,销售额是_______元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为______.(4)当橘子的销售额是100元时,共卖出多少千克橘子?23.作图题:如图,点C,E均在直线AB上,45∠=︒.BCD∠=∠(保留作图痕迹,不写作法).(1)在图中作FEB∠,使FEB DCB(2)请直接说出直线EF与直线CD的位置关系.24.小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明从早晨出发直到到达学校共用了多少分钟?(3)小明修车前、后的行驶速度分别是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?25.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.参考答案1.A【分析】根据同底数幂的乘除法、幂的乘方及合并同类项法则计算即可得答案.【详解】A.a5÷a3=a2,计算正确,故该选项符合题意,B.a3+a3=2a3,故该选项计算错误,不符合题意,C.(a3)2=a6,故该选项计算错误,不符合题意,D.a5 a3=a8,故该选项计算错误,不符合题意,故选A.【点睛】本题考查同底数幂的乘除法、幂的乘方及合并同类,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;合并同类项,系数相加,字母部分不变;熟练掌握运算法则是解题关键.2.B【分析】平方差公式的特征:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,可利用平方差公式计算.【详解】解:A、应为(x+y)(-x-y)=-(x+y)2=-(x2+2xy+y2)=-x2-2xy-y2,故本选项错误;B、(x2-y3)(x2+y3)=(x2)2-(y3)2=x4-y6,正确;C、应为(-x-3y)(-x+3y)=(-x)2-(3y)2=x2-9y2,故本选项错误;D、应为(2x2-y)(2x2+y)=(2x2)2-y2=4x4-y2,故本选项错误.故选B.【点睛】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3.D【详解】解:A.∠1与∠4是同位角,故A选项正确;B.∠2与∠3是内错角,故B选项正确;C.∠3与∠4是同旁内角,故C选项正确;D.∠2与∠4是同旁内角,故D选项错误.故选D.点睛:本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记同位角、内错角、同旁内角的特征.4.C【分析】根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由−2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=−2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.【详解】设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y =kt+b ,k b 382k b 36+=⎧⎨+=⎩,解得:240k b =-⎧⎨=⎩, ∴y 与t 之间的函数关系式为y =﹣2t+40,D 选项错误; ∵﹣2<0,∴y 随t 的增大而减小,A 选项错误; 当t =15时,y =﹣2×15+40=10, ∴放水时间为15分钟时,水池中水量为10m 3,B 选项错误; ∵k =﹣2,∴每分钟的放水量是2m 3,C 选项正确. 故选:C . 【点睛】本题考查了一次函数的应用,利用待定系数法求出函数关系式是解题的关键. 5.D 【分析】向北的方向是互相平行的,根据两直线平行,同旁内角互补求解. 【详解】解:因为向北的方向互相平行,所以∠ABC =180°-60°-20°=100°. 故选D . 【点睛】本题考查了平行线的性质,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直角平行,同旁内角互补. 6.D 【分析】一开始是匀速行进,随着时间的增多,离家的距离也将由0匀速增加,停下来修车,距离不发生变化,后来加快了车速,距离又匀速增加,扫墓时,时间增加,离家距离不变,扫完墓后匀速骑车回家,离家的距离逐渐减少,由此即可求出答案 【详解】∵开始正常速度匀速行驶---停下修车---加快速度匀速行驶---扫墓---匀速骑车回家, ∴离家的距离先增加,再不变,后增加,再不变,最后减少.【点睛】此题考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.A【解析】【分析】根据图形,用a、b出阴影部分的面积,即可得答案.【详解】图1中,阴影面积为a2-b2,图2中,阴影面积为(a+b)(a-b),∵图1中阴影面积=图2中阴影面积,∴a2-b2=(a+b)(a-b),故选A.【点睛】本题考查平方差公式,熟练掌握平方差公式a2-b2=(a+b)(a-b)的结构形式是解题关键.8.C【分析】由ED⊥CD可得∠EOC=∠EOD=90°,根据对顶角的定义可得∠AOC=∠BOD,根据∠AOC+∠AOF+∠EOF=∠EOC=90°,即可求出∠AOC的度数,利用邻补角的定义即可求出∠BOC的度数.【详解】∵ED⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,∠AOF=23∠BOD,∠EOF=25°,∴∠AOC+∠AOF+∠EOF=∠EOC=90°∴∠AOC+23∠AOC+25°=90°,∴∠AOC=39°,∴∠BOC=180°-∠AOC=180°-39°=141°,【点睛】本题考查了垂直的定义、对顶角的性质及角的和差运算,认真观察图形是解题关键.9.C【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.10.BCD【分析】根据平行线的判定定理同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】解:∵∠3=∠4,∴AD∥BC,故A不能判定;∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行)故B能判定AB∥CD;∵∠B=∠DCE,∴AB∥CD(同位角相等,两直线平行)故C能判定;∵∠D+∠DAB=180°,∴AB∥CD(同旁内角互补,两直线平行)故D能判定;故选:BCD.【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.xyz11.41【分析】用前者括号里的每一个单项式除以后者括号里的单项式,最后把所得的结果相加即可得出答案.【详解】原式=()()2322212333x y z xy xy xy -÷-+÷-=41xyz -,故答案为:41xyz -.【点睛】本题主要考查了多项式除以单项式,熟练掌握相关运算法则是解题关键.12.45°【分析】设这个角的度数为x°,分别表示出这个角的余角和补角,根据题意列出方程,即可求解.【详解】解:设这个角的度数为x°,则这个角的余角为(90-x )°、补角为(180-x )°, 根据题意可得:90-x=13(180-x ) 解得:x =45故答案为:45°【点睛】本题考查余角和补角,属于基础题,解题的关键是掌握互余的两角之和为90°,互补的两角之和为180°. 13.游客先用1h 爬了2km ,休息1h 后,再用1h 爬了1km【解析】【分析】根据图象可知x=1时y=2,x=2时,y=2,x=3时,y=3,据此分析解答即可.【详解】∵x=1时,y=2,∴游客1小时爬山的高度为2km ,∵x=2时,y=2,∴这1小时爬山高度不变,游客休息,∵x=3时,y=3,∴游客这1小时爬山高度为1km ,故答案为:游客先用1h 爬了2km ,休息1h 后,再用1h 爬了1km【点睛】此题考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.34【分析】根据同底数幂的除法法则和幂的乘方的运算法则求解即可.【详解】由题意得:()2223344m n m n m n a a a a a -=÷=÷=÷=, 故答案为:34. 【点睛】本题主要考查了同底数幂的除法以及幂的乘方的知识,熟练掌握相关运算法则是解题关键. 15.y=0.2x+8【分析】根据高度等于速度乘以时间列出关系式解答即可.【详解】解:根据题意可得:y =8+0.2x (0⩽x ⩽6),故答案为y =8+0.2x .【点睛】本题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式. 16.12.5【分析】由表格可知,开始油箱中的油为100L ,每行驶1小时,油量减少8L ,据此可得y 与t 的关系式.【详解】解:由题意可得:y=100-8t ,当y=0时,0=100-8t解得:t=12.5.故答案为:12.5.【点睛】本题考查函数关系式.注意贮满100L 汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t 的值.17.40.【详解】解:根据折叠的性质,得∠DFE=∠D’FE .∵ABCD 是矩形,∴AD ∥BC .∴∠GFE=∠CEF=70°,∠DFE=1800-∠CEF=110°. ∴∠GFD’=∠D’FE -∠GFE=110°-70°=40°.故答案为:40.【点睛】本题考查折叠问题矩形的性质,平行的性质.18.xy=z【详解】试题分析:观察数列可发现123235358222,222,222......⨯=⨯=⨯=所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x 、y 、z 表示这列数中的连续三个数,则x 、y 、z 满足的关系式是xy=z .考点:规律探究题.19.(1)9-;(2)558x y【分析】(1)直接利用负整数指数幂的性质和零指数幂的性质以及乘方运算法则分别计算出各值,然后进一步计算得出答案即可;(2)直接利用积的乘方与幂的乘方运算法则以及整式的混合运算法则计算即可.【详解】(1)()20411********-⎛⎫---⨯+- ⎪⎝⎭ =911--+=9-;(2)()()()32232x y x y xy -÷-⋅=()()63238x y x y xy -÷-⋅=()4238x y xy ⋅ =558x y .【点睛】本题主要考查了负整数指数幂与零指数幂的混合运算以及整式的混合运算,熟练掌握相关运算法则是解题关键.20.4【分析】根据整式的混合运算法则,先算括号内的乘方、乘法再合并同类项,然后算除法,最后代入求值即可.【详解】原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x -+÷=2x y -+当3x =-,12y =时,原式314=+=. 【点睛】本题考查了整式的混合运算和求值的应用,能正确根据整式的混合运算法则进行化简是解此题的关键.21.见解析【分析】由AB ∥CD ,可知∠1=∠CFE ;由AE 平分∠BAD ,得到∠1=∠2,再由已知可得∠2=∠E ,即可证明AD ∥BC .【详解】解:∵AB ∥CD ,∴∠1=∠CFE ,∵AE 平分∠BAD ,∴∠1=∠2,∵∠CFE=∠E ,∴∠2=∠E ,∴AD ∥BC .【点睛】本题考查角平分线的性质以及平行线的判定定理.关键是根据利用平行线的性质以及角平分线的性解答.22.(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量;(2)10;(3)2y x =;(4)共卖出50千克橘子.【分析】(1)根据表格第一列确定变量,再结合自变量和因变量的定义确定自变量与因变量;(2)根据表格解答即可;(3)根据表格可知单价,由单价×数量=总价即可得出y 与x 的关系式;(4)把y=100代入(3)中的关系式,即可求出销售橘子数量;【详解】解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量; (2)由表格可知:橘子卖出5千克时,销售额是10元;故答案为10(3)由表格可知橘子的销售单价为2元/千克,∴2y x =.故答案为y=2x(4)当100y =时,50x =.答:此时共卖出50千克橘子.【点睛】本题考查常量与变量,变量:在某一变化过程中,数值发生变化的量;常量:在某一变化过程中,数值始终不变的量;熟练掌握定义是解题关键.23.(1)画图见解析;(2)见解析.【分析】(1)根据射线EF 与射线CD 在直线AB 的同侧,另一个则在直线AB 的两侧得出两种情况;(2)分别利用若射线EF 与射线CD 在直线AB 的同侧,则直线EF 与直线CD 平行;若射线EF 与射线CD 在直线AB 的两侧,则直线EF 与直线CD 相交.【详解】解:(1)分两种情况.(2)当射线EF 与射线CD 在直线AB 的同侧时,直线EF 与直线CD 平行;当射线EF 与射线CD 在直线AB 的两侧时, EF ⊥ CD .【点睛】本题主要考查的就是作一个角等于已知的角,属于中等难度题型.在作图时千万不要忘记有两种情况的分类,很多时候同学们只会考虑到一种情况.24.(1)小明行了3千米时,5(分钟);(2)30分钟到学校;(3)0.3(千米/分钟),13(千米/分钟);(4)他比实际情况早到103分钟. 【分析】 (1)根据自行车出现故障后路程s 不变解答,修车的时间等于路程不变的时间;(2)路程等于8千米时的时间即为用的时间;(3)利用速度=路程÷时间分别列式计算即可得解; (4)求出未出故障需用的时间,然后用实际情况的时间减去未出故障需用的时间即可得答案.【详解】(1)由题图可知,小明行了3千米时,自行车出现故障,修车用了15105-=(分钟). (2)小明共用了30分钟到学校.(3)修车前速度:3100.3÷=(千米/分钟),修车后速度:15153÷=(千米/分钟). (4)3808103÷=(分钟),80103033-=(分钟), ∴他比实际情况早到103分钟. 【点睛】本题考查了函数图象,主要利用了路程、速度、时间三者之间的关系,解题的关键是准确识图,从图象获取必须的信息.25.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可. 【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.。

北师大版七年级下册数学期中考试试题含答案

北师大版七年级下册数学期中考试试题含答案

北师大版七年级下册数学期中考试试卷一、单选题1.计算a 4•a 2的结果是( )A .a 8B .a 6C .a 4D .a 22.下列运算正确的是( )A .2a 2﹣a 2=2B .a•a 3=a 4C .(a 3)2=a 5D .a 6÷a 3=a 2 3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8×10﹣8 B .8×10﹣7 C .80×10﹣9 D .0.8×10﹣7 4.下列各式中,不能够用平方差公式计算的是( )A .(y+2x)(2x ﹣y)B .(﹣x ﹣3y)(x+3y)C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a+b ﹣c)(4a ﹣b ﹣c)5.如果x 2+mx+4是一个完全平方公式,那么m 的值是( )A .4B .-4C .±4D .±8 6.若2x y +=-,2210x y +=,则xy =( )A .3-B .3C .4-D .47.若a =(23)﹣2,b =2﹣1,c =(﹣32)0,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >b D .b >c >a 8.若∠A 与∠B 互为余角,∠A=30°,则∠B 的补角是( )A .60°B .120°C .30°D .150°9.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 210.如图,直线a ,b 被直线c 所截,a∠b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°11.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m12.已知:222450x y x y +-++=,则x+y 的值( )A .1B .-1C .3D .-3二、填空题13.计算:﹣2x 2y 3 •3xy 2结果是____________14.已知:2a =3,2b =2,22a ﹣3b 的值为________________15.已知:化简()()2221x a x x --+的结果中不含x 2项,则常数a 的值是________16.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是_______17.如图,点E 在AD 的延长线上,下列四个条件:∠12∠=∠;∠180C ABC ∠+∠=︒;∠C CDE ∠=∠;∠34∠=∠,能判断//AB CD 的是________________(填序号)18.已知直线a∠b,一块直角三角板如图所示放置,若∠2=54°,则∠1=_____.19.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.则当卖出苹果数量为10千克时,售价y为_______元.20.杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)7的展开式中从左起第四项为_______________三、解答题)-2-(π-5)0-|-3|21.计算:-22+(-1222.化简:(4ab3﹣8a2b2)÷4ab+2a(b+2)23.化简:22+-+--÷[(2)()(3)5]2x y x y x y y x24.先化简,再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(3x﹣2y)]÷x,其中x=2,y=﹣1.625.如图,直线AB CD,MN CE⊥于M点,若60∠的度数.MNC︒∠=,求EMB26.已知:如图,AB∠CD,∠1=∠2.求证:BE∠CF.证明:∠AB∠CD,∠∠ABC=.()∠∠1=∠2,∠∠ABC﹣∠1=﹣,()即=.∠BE∠CF.()27.已知(am)n=a6,(am)2÷an=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.28.阅读下文,回答问题:已知:(1-x)(1+x)=1-x2.(1-x)(1+x+x2)=_______;(1-x)(1+x+x2+x3)=_______;(1)计算上式并填空;(2)猜想:(1-x)(1+x+x2+…+xn)=;(3)你能计算399+398+397…+32+3+1的结果吗?请写出计算过程(结果用含有3幂的式子表示).29.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)1l和2l中,__________描述小凡的运过程.(2)___________谁先出发,先出发了___________分钟.(3)___________先到达图书馆,先到了____________分钟.(4)当t _________分钟时,小凡与小光在去图书馆的路上相遇.(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案1.B【分析】根据同底数幂的乘法法则计算即可.【详解】解:a 4•a 2=a 4+2=a 6.故选:B2.B【分析】各项计算得到结果,即可作出判断.【详解】解:A 、原式=a 2,不符合题意;B 、原式=a 4,符合题意;C 、原式=a 6,不符合题意;D 、原式=a 3,不符合题意,故选:B .3.A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000008=8×10﹣8.故选:A .4.B【解析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.5.C【解析】【分析】利用完全平方公式,即可求解【详解】解:∠x 2+mx+4是一个完全平方公式,∠x 2+mx+4=(x±2)2,∠m=±4,故选:C【点睛】本题主要考查了完全平方式,熟练掌握完全平方式的特征是解题的关键.6.A【解析】【分析】根据完全平方公式的变形解答即可.【详解】∠2x y +=-,2210x y +=,∠()2222x y x y xy +=++即4=10+2xyxy=-3故选:A【点睛】本题考查的是完全平方公式,掌握完全平方公式的各种变形是关键.7.B【解析】【分析】根据负指数幂、零指数幂的性质进行化简,再比较,即可得出结论.【详解】∠22934a-⎛⎫==⎪⎝⎭),1122b-==,312c⎛⎫=-=⎪⎝⎭,∠94>1>12,∠a>c>b.故选:B.【点睛】此题主要考查了负指数幂、零指数幂的运算性质及有理数大小比较,熟知负指数幂、零指数幂的运算性质是解题的关键.8.B【解析】【分析】根据余角的定义即可求出∠B,然后根据补角的定义即可求出结论.【详解】解:∠∠A与∠B互为余角,∠A=30°,∠∠B=90°-∠A=60°,∠∠B的补角为180°-60°=120°.故选B.【点睛】此题考查的是求一个角的余角和补角,掌握余角的定义和补角的定义是解决此题的关键.9.C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∠大正方形的面积﹣小正方形的面积=4个矩形的面积,∠(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.10.C【解析】【分析】根据两直线平行,同位角相等可得∠3=∠2,再根据邻补角的定义解答.【详解】如图,∠a∠b,∠2=45°,∠∠3=∠2=45°,∠∠1=180°−∠3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.11.C【解析】【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离林茂家2.5km ,体育场离文具店的距离是:2.5 1.51km 1000m -==,所用时间是()453015-=min ,林茂从文具店回到家所用时间为90-65=25min ,文具店距家的距离为1.5km , ∠体育场出发到文具店的平均速度1000200m /min 153==, 林茂从文具店回家的平均速度是15002560m /min ÷=,所以选项A 、B 、D 不符合题意,选项C 符合题意,故选C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.12.B【解析】【分析】先把式子222450x y x y +-++=化成22(1)(2)0x y -++=的形式,再根据非负数的性质求出x 、y 的值,代入求解即可得到答案【详解】解:化简222450x y x y +-++=即:22(1)(2)0x y -++=∠10x -=,20y +=解得:x 1,y 2==-∠1(2)1x y +=+-=-故选:B .【点睛】本题主要考查非负数的性质,几个非负数的和为0时,则这几个非负数都为0,学会把原式化成22(1)(2)0x y -++=的形式是解题的关键.13.356x y -【解析】根据单项式乘以单项式的计算法则进行计算即可得到答案.【详解】﹣2x 2y 3 •3xy 2=356x y -.【点睛】本题考查单项式乘以单项式,解题的关键是掌握单项式乘以单项式的计算.14.98【解析】【分析】直接利用同底数幂的除法运算法则将原式变形得出答案.【详解】∠22a ﹣3b =()()2323932822a b ÷=÷=. 故答案为98.【点睛】本题考查同底数幂的除法运算,以及幂的乘方运算,解题关键是熟练掌握运算法则. 15.-1【解析】【分析】原式利用多项式乘以多项式法则计算,根据结果不含x 的二次项,求出m 的值即可.【详解】()2()221x a x x --+=()()3222222x x x ax ax a -+--+=3222222x x x ax a ax -+-+-=322(22)2x a x x ax a -+++-,由结果中不含x 的二次项,得到22a +=0,解得:a =−1,故答案为−1.【点睛】本题考查多项式与多项式相乘,要使其结果不含某一项,只需要令其系数为0即可.16.垂线段最短【解析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【详解】解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短,故答案为:垂线段最短.【点睛】本题主要考查了垂线的性质在实际生活中的运用,解决本题的关键是要熟练掌握垂线段的性质:垂线段最短.17.∠∠【解析】【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∠12∠=∠,∠//AB CD ,∠∠符合题意,∠180C ABC ∠+∠=︒,∠//AB CD ,∠∠符合题意,∠C CDE ∠=∠,∠//BC AD ,∠∠不符合题意,∠34∠=∠,∠//BC AD ,∠∠不符合题意,故答案是:∠∠.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理,是解题的关键.18.36°【分析】由平行线的性质得∠1=∠3,平行公理的推论证明直线b∠c,其性质得∠2=∠4,根据角的和差和等量代换求得∠1=36°.【详解】过点A作c∠a如图所示:∠c∠a,∠∠1=∠3,又∠a∠b,∠b∠c,∠∠2=∠4,又∠∠2=54°,∠∠4=54°,又∠∠3+∠4=90°,∠∠3=36°,∠∠1=36°故答案为36°.【点睛】本题考查平行线的性质、平行公理的推论,解题的关键是掌握平行线的性质.19.31【解析】【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【详解】由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.【点睛】本题考查函数关系式,能够得出正确的数据变化规律是解题关键.20.4335a b【解析】【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)7=a7+7a6b+21a5b2+35a4b3+35a4b3+21a5b2+7a6b+a7,即可得到答案.【详解】观察图形,可知:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a4b3+21a5b2+7a6b+a7故答案为:4335a b.【点睛】本题考查完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.21.-4【解析】【分析】根据负整数指数幂,零次幂、有理数的乘方以及绝对值的代数意义进行化简后,再进行回头运算即可.【详解】)-2-(π-5)0-|-3|-22+(-12=-4+4-1-3=-4.【点睛】此题主要考查了有理数的混合运算,熟练掌握各知识点的运算法则是解此题的关键. 22.24b a【解析】【分析】原式利用多项式除以单项式,以及单项式乘以多项式法则计算即可得到结果.【详解】原式2224b ab ab a =-++=24b a +【点睛】本题考查多项式除以单项式、单项式乘以多项式法则,熟练掌握运算法则是解本题的关键.23.-x+y【解析】【分析】根据整式的混合运算法则计算即可.【详解】解:原式()22222[44335]2x xy y x xy xy y y x =++--+--÷()22222443352x xy y x xy xy y y x +=++--+-÷()22=22x x x y +-÷x y =-+.【点睛】本题考查了整式的混合运算,熟练掌握运算法则及乘法公式是解题关键.24.6x-4y ,18.4【解析】【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:原式=[9x 2-4y 2-3x 2+2xy-6xy+4y 2]÷x=[6x 2-4xy]÷x=6x-4y ,当x=2,y=-1.6时,原式=12+6.4=18.4.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.25.30°【解析】【分析】根据平行线的性质,即可得到∠NMB 的度数,再根据垂线的定义,即可得出∠EMB 的度数.【详解】解:∠AB∠CD ,∠∠NMB=∠MNC=60°,又∠MN∠CE ,∠∠EMN=90°,∠∠EMB=90°-∠NMB=90°-60°=30°.故答案为:30°【点睛】本题主要考查了平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.26.见解析【解析】【分析】先利用两直线平行,内错角相等求得ABC BCD ∠=∠,再依据12∠=∠,可求得EBC BCF ∠=∠,然后根据平行线的判定即可证得.【详解】∠//AB CD ,(已知)∠ABC BCD ∠=∠,(两直线平行,内错角相等)∠12∠=∠,(已知)∠12ABC BCD ∠-∠=∠-∠ ,(等式性质)即EBC BCF ∠=∠∠//BE CF .(内错角相等,两直线平行)故答案为:(已知);BCD ∠;两直线平行,内错角相等;(已知);BCD ∠;2∠;等式性质;EBC ∠;FCB ∠;内错角相等,两直线平行.【点睛】本题考查了平行线的判定与性质等知识点,熟记判定与性质是解题关键.27.(1)mn =6、2m ﹣n =3;(2)33.【解析】【分析】(1)由已知等式利用幂的运算法则得出a mn =a 6、a 2m-n =a 3,据此可得答案; (2)将mn 、2m-n 的值代入4m 2+n 2=(2m-n )2+4mn 计算可得.【详解】解:(1)∠(a m )n =a 6,(a m )2÷a n =a 3,∠a mn =a 6、a 2m ﹣n =a 3,则mn =6、2m ﹣n =3;(2)当mn =6、2m ﹣n =3时,4m 2+n 2=(2m ﹣n )2+4mn =32+4×6=9+24=33.【点睛】本题主要考查幂的运算,解题的关键是掌握幂的乘方与同底数幂的除法的运算法则.28.(1)31x - 41x -(2)11n x +-(3)100312-【解析】【分析】(1)根据多项式乘以多项式的法则进行计算即可;(2)观察式子特点可得规律(1-x )(1+x+x 2+…+xn )=11n x +-;(3)根据(2)中的规律先计算(1-3)(399+398+397…+32+3+1)的值,即可求得结果.【详解】解:(1)(1-x )(1+x+x 2)=1+x+x 2- x-x 2- x 3=31x-;(1-x)(1+x+x2+x3)=41x-;(2)猜想:(1-x)(1+x+x2+…+xn)=11n x+-;(3)∠(1-3)(399+398+397…+32+3+1)= 10013-∠399+398+397…+32+3+1=100 31 2-【点睛】本题考查了有特定规律的整式乘法,按法则进行计算并观察得到规律是解题的关键.29.(1)1l;(2)小凡,10;(3)小光,10;(4)34;(5)小凡从学校到图书馆的平均速度是10千米/小时,小光从学校到图书馆的平均速度是7.5千米/小时.【解析】【分析】(1)根据小凡在中途停留一段时间,结合函数图象即可得出答案;(2)观察函数图象的时间轴,根据出发时间不同即可得出答案;(3)观察函数图象的时间轴,根据到达时间不同即可得出答案;(4)先求出小光的速度,再求路程为3千米时小光所用的时间,再加上小凡先出发的10分钟,即可得出答案;(5)根据公式“平均速度=总路程÷总时间”计算即可得出答案.【详解】解:(1)由图可得:l1和l2中,l1描述小凡的运动过程.故答案为:l1;(2)由图可得:小凡先出发,先出发了10分钟.故答案为:小凡,10;(3)由图可得:小光先到达图书馆,先到了60﹣50=10(分钟).故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)18=千米/分钟,小光所走的路程为3千米时,用的时间为:318÷=24(分钟),∠当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇.故答案为:34;(5)小凡的速度为:()520605060=+-10(千米/小时), 小光的速度为:5501060=-7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.【点睛】本题考查的是函数的图象问题,认真观察图象、找出数量关系是解决本题的关键.。

北师大版七年级数学下册期中测试题-带参考答案

北师大版七年级数学下册期中测试题-带参考答案

北师大版七年级数学下册期中测试题-带参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.下列运算正确的是()A.(a4)2=a6B.(a-b)2=a2-ab+b2C.6a2b÷2ab=3a D.a2+a4=a62.如图,在线段P A、PB、PC、PD中,长度最小的是()A.线段P A B.线段PB C.线段PC D.线段PD(第2题)3.肥皂泡的泡壁厚度大约是0.000 000 71米,数据0.000 000 71用科学记数法表示为()A.7.1×107B.0.71×10-6C.7.1×10-7D.71×10-8 4.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2=() A.50°B.100°C.130°D.150°(第4题)(第5题)5.如图,有下列说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角.其中正确的是()A.①②③B.①②③④C.①②③④⑤D.①②④⑤6.如图,阴影部分是在一个边长为a的大正方形中剪去一个边长为b的小正方形后得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列四种割拼方法,每种割拼方法都能够验证平方差公式,其中用到的数学思想是()(第6题)A.数形结合思想B.分类讨论思想C.统计思想D.方程思想7.为了建设社会主义新农村,某市积极推进“行政村通畅工程”,对甲村和乙村之间的道路进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程改造道路长度y(千米)与时间x(天)之间的关系的大致图象是()8.如图,直线EF分别与直线AB,CD相交于点G,H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M,则∠GMD=()A.120°B.115°C.130°D.110°(第8题)9.某地区用电量与应缴电费之间的关系如下表所示,则下列叙述错误的是() 用电量/(千瓦·时)1234…应缴电费/元0.55 1.10 1.65 2.20…A.用电量每增加1千瓦·时,电费增加0.55元B.若用电量为8千瓦·时,则应缴电费为4.40元C.若应缴电费为2.75元,则用电量为5千瓦·时D.若小明家的应缴电费比小红家的应缴电费多2元,则小明家的用电量比小红家的用电量多1.1千瓦·时10.如图,已知AB∥CD,若按图中规律,则∠1+∠2+…+∠n=()第 3 页 共 11 页(第10题)A .n ·180°B .2n ·180°C .(n -1)·180°D .(n -1)2·180°二、填空题(本大题共5个小题,每小题3分,共15分)11.“冰冻三尺非一日之寒”体现了冰的厚度随时间变化的过程,在该变化过程中因变量是____________.12.已知某地的地面气温是20 ℃,如果每升高1 000 m ,气温下降6 ℃,那么气温t (℃)与高度h (m)的关系式为____________________.13.小明在计算(x -m )(3x +5)时,把“-m ”抄成了“+m ”,此时得到的结果是3x 2+11x +10,则m 的值为________.14.如图,一块含30°角的直角三角尺,两个顶点分别在直尺的一对平行边上,若∠α=110°,则∠β=________°.(第14题)15.如图,C 是线段AB 上一点,以AC ,BC 为边向两侧作正方形,若AB =9,两正方形的面积和S 1+S 2=51,则图中阴影部分的面积为________.(第15题)三、解答题(本大题共8个小题,共75分.解答应写出文字说明或演算步骤) 16.(8分)计算:(1)-22+(2-π)0+⎝ ⎛⎭⎪⎫-13-2-|-8|; (2)a 4·a 2+(-2a 2)3-6a 7b 2÷ab 2;(3)(2x-y)2-(x-2y)(x+2y)-(6x2y+8xy2)÷(-2y);(4)101×99-99.52.17.(8分)请认真阅读小明同学的解题过程,并完成下面各项任务:先化简,再求值:(a-2)(a+3)-4a(a-1)+(2a+1)(2a-1),其中a=1.解:原式=(a2+3a-2a-6)-(4a2-4a)+(4a2-1)·····················第一步=(a2+a-6)-(4a2-4a)+(4a2-1) ········································第二步=a2+a-6-4a2-4a+4a2-1 ··············································第三步=a2-3a-7, ··································································第四步当a=1时,原式=12-3×1-7=-9. ·····································第五步(1)任务一:以上解题过程中,从第________步开始出现错误,错误的原因是________________________________;(2)任务二:请写出正确的解答过程;(3)任务三:以上解题过程中,除了(1)中提到的错误外,还有哪些易错之处值得注意?(写出一点即可)18.(10分)将下列解题过程补充完整:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F .(第18题)试说明:∠C=∠D.解:因为∠1=∠2(已知)∠1=∠ANC(____________________)所以______________ (等量代换).所以________∥________(同位角相等,两直线平行).所以∠ABD=∠C(____________________________).因为∠A=∠F(已知)所以________∥______(______________________________).所以______________(两直线平行,内错角相等).所以∠C=∠D(______________).19.(8分)如图,已知∠ACD=75°,点E在AB上.(1)尺规作图:以E为顶点,EB为一边作∠FEB=∠A,EF交CD于F;(保留作图痕迹,不必写作法)(2)在(1)的条件下,求∠CFE的度数.(第19题)第5 页共11 页20.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地行驶,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(小时)之间的关系,请根据图象解答下列问题:(第20题)(1)a=________;(2)轿车到达乙地时,求货车离甲地的距离;(3)轿车出发多长时间追上货车?21.(9分)将长为20 cm,宽为8 cm的长方形白纸,按如图所示的方式黏合起来,黏合部分的宽度为3 cm.白纸张数x(张)与纸条总长度y(cm)的部分对应值如下表:白纸张数x(张)12345…纸条总长度y(cm)205471…(1)根据题意,将表格补充完整;(2)写出y与x的关系式:____________;(3)要使黏合后的长方形纸条的总面积为1 656 cm2,则需要多少张这样的白纸?(第21题)22.(12分)如图①是长为a,宽为b的长方形,将这样四个形状和大小完全相同的长方形拼成如图②所示的大正方形,中间是一个小正方形(阴影部分).(1)请你用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S小正方形=__________________;方法二:S小正方形=__________________.(2)根据(1)中小正方形面积的两种不同的表示方法,下列等式中:①(a+b)(a-b)=a2-b2;②(a+b)2=(a-b)2+4ab,能够验证成立的是________(填序号).(3)应用(2)中验证成立的等式,解决问题:已知m+n=12,mn=11,求m-n的值.(第22题)第7 页共11 页23.(12分)【阅读理解】如图①,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)请将下面推理过程补充完整;解:如图①,过点A作ED∥BC则∠B=∠EAB,∠C=________.因为________________________=180°所以∠B+∠BAC+∠C=180°.(第23题)【解题反思】从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B∠C“凑”在一起,得出角之间的关系,使问题得以解决.【方法运用】(2)如图②,已知AB∥ED,试说明:∠D+∠BCD-∠B=180°.【深化拓展】(3)已知AB∥CD,点C在点D的右侧,∠ADC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE交于点E,点E在AB与CD两条平行线之间.①如图③,若点B在点A的左侧,∠ABC=50°,求∠BED的度数.②如图④,若点B在点A的右侧,∠ABC=100°,直接写出∠BED的度数.第 9 页 共 11 页答案一、1.C 2.B 3.C 4.A 5.D 6.A 7.B8.B 思路点睛:由∠1=50°,可求得∠BGH 的度数,再根据角平分线的定义求得∠BGM 的度数.由∠1=∠2可得AB ∥CD ,再根据两直线平行,同旁内角互补可求得∠GMD 的度数. 9.D 10.C二、11.冰的厚度 12.t =-0.006h +2013.2 点拨:由题意得(x +m )(3x +5)=3x 2+5x +3mx +5m =3x 2+(5+3m )x +5m =3x 2+11x +10 所以5m =10,解得m =2. 14.50 15.152三、16.解:(1)原式=-4+1+9-8=-2.(2)原式=a 6-8a 6-6a 6=-13a 6.(3)原式=4x 2-4xy +y 2-x 2+4y 2+3x 2+4xy =6x 2+5y 2. (4)原式=(100+1)×(100-1)-⎝ ⎛⎭⎪⎫100-122=1002-12-⎝ ⎛⎭⎪⎫1002-100+14 =1002-1-1002+100-14=9834.17.解:(1)三;去括号时,没有变号(2)(a -2)(a +3)-4a (a -1)+(2a +1)(2a -1) =a 2+3a -2a -6-4a 2+4a +4a 2-1=a 2+5a -7,当a =1时,原式=12+5×1-7=-1.(3)在进行整式化简求值时,需先化简,再代入求值(答案不唯一).18.对顶角相等;∠2=∠ANC ;DB ;EC ;两直线平行,同位角相等;DF ;AC ;内错角相等,两直线平行;∠D =∠ABD ;等量代换 19.解:(1)如图.(第19题)(2)因为∠FEB=∠A所以AC∥EF所以∠C+∠CFE=180°.因为∠C=75°所以∠CFE=180°-75°=105°.20.解:(1)1.5(2)根据图象可知,货车的速度是300÷5=60(千米/时)所以轿车到达乙地时,货车离甲地的距离是4.5×60=270(千米).(3)轿车在CD段的速度是(300-80)÷(4.5-2.5)=110(千米/时),设轿车出发m小时追上货车由图象得60(m+1.5)=80+110(m+1.5-2.5)解得m=2.4,所以轿车出发2.4小时追上货车.21.解:(1)37;88(2)y=17x+3(3)由题意得8×(17x+3)=1 656,解得x=12所以需要12张这样的白纸.22.解:(1)(a+b)2-4ab;(a-b)2(2)②(3)因为m+n=12,mn=11所以(m-n)2=(m+n)2-4mn=122-4×11=144-44=100.所以m-n=±10. 23.解:(1)∠DAC;∠EAB+∠BAC+∠DAC(2)如图①,过C作CF∥AB因为AB∥DE,所以CF∥DE,所以∠D+∠FCD=180°.因为CF∥AB,所以∠B=∠BCF.因为∠D+∠BCD=∠D+∠FCD+∠BCF=180°+∠BCF=180°+∠B,所以∠D+∠BCD-∠B=180°.(第23题) (3)①如图②,过点E作EG∥AB因为AB∥CD,所以AB∥CD∥EG所以∠ABE=∠BEG,∠CDE=∠DEG.因为BE平分∠ABC,DE平分∠ADC,∠ABC=50°∠ADC=60°所以∠ABE=12∠ABC=25°,∠CDE=12∠ADC=30°所以∠BED=∠BEG+∠DEG=∠ABE+∠CDE=25°+30°=55°.②160°.第11 页共11 页。

北师大版七年级下册数学期中测试测试卷及答案共6套

北师大版七年级下册数学期中测试测试卷及答案共6套

七年级数学期中考试试题一、精心选一选,请把唯一正确的答案填在下面表格内.(每小题3分,共30分)1、若∠1=30°,则∠1的余角等于()A、160°B、150°C、70°D、60°2、计算2x2·(-3x2)的结果是()A、-6x5B、6x5C、-2x5D、2x63、下列各式计算正确的是()A. (xy2)3=xy6B.(3ab)2=6a2b2C.(-2x2)2=-4x4D.(a2b3)m=a2m b3m4、当一个圆锥的底面半径变为原来的2倍,高变为原来的时,它的体积变为原来的()A.B.C.D.5、如图,不能推出a∥b的条件是()A、∠1=∠3B、∠2=∠4C、∠2=∠3D、∠2+∠3=180°第5题图第6题图6、如图,已知B、C、E在同一直线上,且CD‖AB,若∠A=105°,∠B=40°,则∠ACE=()A、145°B、105°C、40°D、35°7、下列说法错误的共有()个.①内错角相等,两直线平行.②两直线平行,同旁内角互补.③相等的角是对顶角.④两条直线被第三条直线所截,同位角相等.⑤等角的补角相等.A、0B、1C、2D、38、下列能用平方差公式计算的是()A、(a+1)(1+a )B、(a+b)(b-a)C、(-x+y)(x-y)D、(x2-y)(x+y2)9、小明家有一本200页的故事书,已知他每小时能看50页,星期天上午小明先看了故事书的一半后又做了一个小时的作业,然后他才继续看完这本书.下列能体现这本书剩下的页数y(页)与时间t(时)之间关系的是()A、B、C、D、10、对于任意正整数n,按下列程序计算下去,得到的结果是()A、随n的变化而变化B、不变,总是0C、不变,定值为1D、不变,定值为2二、细心填一填.(每小题3分,共15分)11、若4x2+axy+y2是一个完全平方式,则a=12、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,_____随______变化而变化,其中自变量是______,因变量是______.13、如图,已知直角形线a∥b,c∥d,∠1=115°,则∠2=,∠3=14、如图,DE∥BC,BE平分∠ABC,若∠ADE=80°,∠1=15、△ABC的底边BC长为l2cm,它的面积随BC边上的高度变化而变化,则面积S(cm2)与BC边上高度x(cm)的关系式是_________,当x=20时,S= _________.第13题图第14题图三、用心做一做.(每小题6分,共24分)16、|-3|+2-1-2008°17、(0.2x-0.3)(0.2x+0.3)18、(7ab+2)219、(x-2)(x+2)-(x+1)(x-3)四、沉着冷静、缜密思考.(每小题7分,共14分)20、先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.21、如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.五、满怀信心,再接再厉.(第22,23,24每小题9分,第25题10分共37分)22、已知a+b=5,ab=6,求下列各式的值.(1)a2+b2(2)a2-ab+b223、如图,∠1=∠ABC,∠2+∠D=180°,EF与CD平行吗?AB与CD平行吗?说明理由.24、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为_________km;(2)两车之间的最大距离是多少?是在什么时候?(3)从一开始两车相距900km到两车再次相距900km,共用了多长时间?(4)你能不能再找到一个实际情况,大致符合上图所刻画的关系?(去掉数字和单位)25、一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为xcm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5cm变到7cm时,y如何变化?(3)用表格表示当x从3cm变到10cm时(每次增加1cm),y的相应值.(4)当x每增加1cm时,y如何变化?说明理由.(5)这个梯形的面积能等于9cm2吗?能等于2cm2吗?为什么?七年级数学期中考试试题参考答案一、1-5: D A D C C 6-10: A B B B C二、11.±412.16或1713.115°65°14.40°15.BD=DB三、16. 2.517.0.04x2-0.0918. 49a2b2+14ab+4 19. 2x-1四、20. 4a2-2ab,1221. 略五、22.(1)13(2)723.解(1)EF∥CD,理由:∵∠2+∠D=180°∴EF‖CD(同旁内角互补,两直线平行)(2)AB∥CD,理由:∵∠1=∠ABC∴AB‖CD(同位角相等,两直线平行)24.解:(1)甲乙两地相距900km;(2)相遇后快车继续行驶,两车之间的距离越来越大,由D点坐标可确定两车之间的最大距离为1200km,时间是中午12点;(3)由于点A、点C对应的两车间的距离都是900km,从一开始两车相距900km到在此相距900km,共用了8小时;(4)比如一辆汽车刹车时逐渐停止,然后又开始行驶.25.解:(1)y=3x+3,x是自变量,y是因变量;(2)当x由5cm变到7cm时,y由18到24;(3)如图:(4)每增加1cm时,y增加3cm,理由3(x+1)+3﹣[3x+3]=3(5)面积能等于9cm2面积不能等于2cm2北师版七年级下学期期中模拟卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(2019秋•连江县期中)若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥12.(2019秋•覃塘区期中)下列式子中计算结果与(﹣m)2相同的是()A.(m﹣1)2B.m2×m﹣4C.m2÷m4D.m﹣2÷m﹣4 3.(2019春•西湖区校级期中)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠44.(2019春•思明区校级期中)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠FDC=∠CC.∠FDC=∠A D.∠C+∠ABC=180°5.(2019秋•卧龙区期中)小明做题一向比较粗心,下面四个题他只做对了一道,他做对的那道题是()A.x4+x4=x8B.a2•a4=a8C.﹣a7•a5=﹣a12D.(2x2y3)2=﹣2x5y66.(2019秋•忻城县期中)如图,直线AB∥CD,∠D=75°,∠B=30°,则∠E的度数是()A.30°B.45°C.55°D.70°7.(2019秋•历下区期中)下列选项中与所给的函数表格对应的函数图象是()x…﹣2﹣101…y…﹣3﹣2﹣10…A.B.C.D.8.(2019秋•卧龙区期中)一个长方体的长为(a+2)cm,宽为(a+l)cm,高为(a﹣1)cm,则它的表面积为()cm2.A.3a2+4a﹣1B.6a2+8a﹣2C.6a+4D.3a+29.(2019春•高新区校级期中)健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A.B.C.D.10.(2019春•太原期中)为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m2第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(2019春•黄石港区校级期中)如图,把小河里的水引到田地C处,作CD垂直于河岸,沿CD挖水沟,则水沟最短,其理论依据是12.(2019秋•新野县期中)计算的结果是.13.(2019秋•覃塘区期中)计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=.14.(2019秋•长宁区期中)如果二次三项式x2+mx+1是完全平方式,那么常数m=.15.(2019春•武汉期中)已知∠A的两边与∠B的两边分别平行,且∠A的度数比∠B度数的2倍少18°,则∠A的度数为.16.(2019春•武汉期中)如图,AB∥CD,∠B=48°,∠D=29°,则∠BED=°.17.(2019春•海淀区校级期中)某复印社的收费y元)与复印页数x(页)的关系如下表,则y 与x的关系式为.x1002004001000…y4080160400…18.(2019春•张掖期中)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行米.评卷人得分三.解答题(共5小题,满分46分)19.(12分)(2019秋•眉山期中)计算:(1)(9x2﹣12x3)÷(﹣3x)2(2)(3x+1)(2x﹣1)﹣2x(x﹣1)(3)(﹣a)2•a+a4÷(﹣a)(4)()1999×42010﹣(﹣0.125)2010×(22010)320.(8分)(2019秋•兰考县期中)先化简,再求值(1)(3x4﹣2x3)÷(﹣x)﹣(x﹣x2)•3x,其中x=﹣.(2)(x+y)(x﹣y)﹣(4x3y﹣8xy3)÷2xy,其中x=1,y=﹣3.21.(5分)(2019秋•庐江县期中)如图,已知AB∥CD,∠C=125°,A=45°,求∠E的度数,22.(9分)(2019春•武汉期中)如图已知AB∥CD,P为直线AB,CD外一点,BF平分∠ABP,DE平分∠CDP,BF的反向延长线交DE于点E.(1)∠ABP,∠P和∠PDC的数量关系为;(2)若∠BPD=80°,求∠BED的度数;(3)∠P与∠E的数量关系为.23.(12分)(2019春•永登县期中)张华上午8点骑自行车外出办事,如图表示他离家的距离S (千米)与所用时间(小时)之间的函数图象.根据这个图象回答下列问题:(1)在这个过程中自变量、因变量各指什么?(2)张华何时体息?休息了多少时间?这时离家多远?(3)他何时到达目的地?在那里逗留了多长时间?目的地离家多远?(4)他何时返回?何时到家?返回的平均速度是多少?七年级下学期数学期中试题第I卷一、选择题(每题3分,共36分)1. 下列运算正确的是()A.aaa=-23B.632aaa=⋅C.326()a a D.()3393aa= 2.已知,5,3==ba xx则=-bax23()A.2725B.910C.35D.153.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.14.已知9242++kxx是完全平方式,则k的值为()A.6 B.6±C.-6 D.9±5.下列说法中正确的有()①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角;④同位角相等;⑤直角三角形中两锐角互余.A.1个B.2个C.3个D.4个6.如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠B=∠DCE D.∠D+∠DAB=180°7. 如图,已知AB∥CD,∠A=70°,则∠1的度数是()A.70° B.100° C.110° D.130°8.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为()A.2×10-6B.2×10-7 C.2×10-8D.2×10-99.下列语句:错误的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相等的两三角形全等A.4个B.3个C.2个D.1个10.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且AP为∠BAC的角平分线,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA第10题图第11题图第12题图11.如图,△ABD≌△CDB,且AB和CD是对应边,下列结论不正确的是( ) A.△ABD和△CDB面积相等B.△ABD和△CDB周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC且AD=BC12.如图,已知AC=DB,AO=DO,CD=100m,则A,B两点的距离是()A.大于100m B.等于100m C.小于100m D.无法确定第II卷二、填空题(每题2,共20分)11.若16×32=2n,则n=________.12. 2012201253()(2)135-⨯-=_______.13.若622=-nm,且3=-nm,则=+nm.14.若如果一个三角形三条高的交点在三角形的一个顶点上,那么这个三角形是________三角形.15.等腰三角形两条边长为5cm和7cm,则周长为__________.16.已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是____________.第16题图第17题图EDCO BA17. 如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠__ =∠____ 或 ____∥_____ ,就可证明ΔABC ≌ΔDEF.18. 如图,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________.第 18图 第19图 第20题图19.如图,AC =BD ,要使△ABC ≌△DCB 还需知道的一个条件是______.(填一个) 20..如图,若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由_____________. 三、计算题(每题3分,共18分)(1)1201()(2)(2015)3π--+-+- (2)2201520142016-⨯(3)322(462)(2)x y x y xy xy -+÷- (4) 23243(2)(7)14a b ab a b ⋅-÷(5) 2(2)(1)(1)x x x +-+- (6) ()()x y z x y z +++-四、先化简后求值( 共4分)22(2)(2)24,xy xy x y xy ⎡⎤+--+÷⎣⎦ 其中10,25.x y ==-五、解答题(4分)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE. 证明:∵∠B+∠BCD=180°(已知),∴AB ∥CD ( ).∴∠B=∠DCE ( ). 又∵∠B=∠D (已知 ), ∴___________ ( 等量代换 ). ∴AD ∥BE(内错角相等,两直线平行) ∴∠E=∠DFE ( ).六、证明题(共3题18分)1.(6分)如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,∠3=80°.(10分)(1)试证明∠B=∠ADG(2)求∠BCA的度数.2.(6分)如图,AB=AD ,∠BAD=∠CAE,AC=AE ,求证:BC=DE3.(6分)如图,点E在AC上,∠1=∠2,∠3=∠4.BE与DE相等吗?为什么?期中考试答案一、选择题1-5 CAABB 6-10ACBBB 11-12 CB二、填空题11、9 12、1 13、2 14、直角15、17或1916、∠COD和∠EOB17、∠B ∠DEF AB DE 18、垂线段最短19、AB=CD 20、△ACB AAS三、计算题1、22、13、-2x2+3xy-14、4x+55、3x2 +5xy6、x2+y2+2xy-z2四、-xy 250五、同旁内角互补,两直线平行.两直线平行,同位角相等.∠DCE=∠D两直线平行,内错角相等.六、证明题1. (1)解:∵CD⊥AB,FE⊥AB∴∠CDE=∠DEF=90°∵∠CDE+∠DEF=180°∴DC∥EF∴∠2=∠BCD 又∵∠1=∠2∴∠1=∠BCD∴DG∥BC∴∠B=∠ADG(2) ∵DG∥BC∴∠BCA=∠3=80°2. 解:∵∠BAD=∠CAE, ∠BAC=∠BAD+∠CAD, ∠DAE=∠CAE+∠CAD ∴∠BAC=∠DAE在△ABC和△ADE中∠BAC=∠DAEAB=ADAC=AE∴△ABC≌△ADE(SAS) ∴BC=DE3. 解:在△ABC和△ADC中∠1=∠2∠3=∠4AC=AC∴△ABC≌△ADC(ASA) ∴AB=AD在△ABE和△ADE中AB=AD∠1=∠2AE=AE∴△ABE≌△ADE(SAS)∴BE=DE七年级下数学期中测试21F EDCBAG一、选择题(每小题3分,共30分) 1、下列计算正确的是( )A .B .C .D .2、下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A .5, 1, 3 B .2, 3, 4 C .3, 3, 7 D .2, 4, 23、如果两个不相等的角互为补角,那么这两个角( )A .都是锐角B .都是钝角C .一个锐角,一个钝角D .以上答案都不对4、用科学计数法表示0.0000907的结果正确的是( ) A . B . C .D .5、如图,已知:∠1=∠2,那么下列结论正确的是( ) A .∠C=∠D B .AD ∥BC C .AB ∥CD D .∠3=∠46、下列各式中不能用平方差公式计算的是( ) A .B .C .D .7、给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有( )A . 0个B . 1个C .2个D .3个 8、下列关系式中,正确的是( )A .B .C .D .9、一定在△ABC 内部的线段是( )A .任意三角形的一条中线、二条角平分线、三条高B .钝角三角形的三条高、三条中线、一条角平分线C .锐角三角形的三条高、三条角平分线、三条中线D .直角三角形的三条高、三条角平分线、三条中线10、等腰三角形的一边长为5cm ,另一边长为6cm ,那么它的周长为( ) A .16cm B .17cm C .16cm ,17cm , D .11cm 二、填空题(每小题3分,共30分)11、计算: .12、若4a +ka +9是一个完全平方式,则k = . 13、 .14、一个角与它的补角之差是20º,则这个角的大小是 . 15、如图,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件 . (填一个你认为正确的条件即可)5322a b a =+a a a =÷44632aa a =⋅()632aa -=-4101.9-⨯5101.9-⨯5100.9-⨯51007.9-⨯))((y x y x +--))((y x y x --+-))((y x y x ---))((y x y x +-+()222b a b a -=-()()22b a b a b a +=-+()222b a b a +=+()222b 2ab a b a ++=+=⨯99810022()=-425y x16、如图, AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,则∠2=________度.17、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是 ___________.18、五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.19、一个三角形的三个内角的度数的比是2:2:1,这个三角形是___三角形. 20、在三角形ABC 中,∠A=400,O 是∠ABC 和∠ACB 的角平分线的交点, 则∠BOC=__________. 三、解答题(共32分)21、计算(每小题4分,共12分) (1)(-1)+(-12 )-2 -(3.14-π)0(2)(3)(4)22、(6分)已知一个角的补角等于这个角的余角的4倍, 求这个角的度数.23、(8分)化简再求值:,其中,. 24、(6分)已知:∠.请你用直尺和圆规画一个∠BAC ,使∠BAC=∠. (要求:要保留作图痕迹.)四、推理说明题(共18分)25、(8分)已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由.26、(10分)如图,已知:AD ∥BC ,AD=CB ,AE=CF ,(1)请问∠B=∠D 吗?为什么? (2)不改变其他条件,提出一个你认为正确的结论,并说明理由?20042)3()32)(32(b a b a b a -+-+()()xy xy y x y x 2862432-÷-+-2003200720052⨯-()()x x y x x 2122++-+251=x 25-=y ααFECBA D BADFEDC B A五、探索题(大题10分)27、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形. (1)、你认为图b 中的阴影部分的正方形的边长等于________(2)、请用两种不同的方法 求图b 中阴影部分的面积.方法1:方法2:(3)、观察图b ,你能写出下列三个 代数式之间的等量关系吗?代数式:(4)、根据(3)题中的等量关系,解决如下问题:若,则= .()()., ,22mn n m n m -+5,7==+ab b a 2)(b a - mmn n图annnn mmmm图b参考答案一、选择题1、D;2、B;3、C;4、D;5、C;6、A;7、C;8、D;9、C;10、C;二、填空题11、999996;12、±12;13、x20y8;14、1000 15、∠B=∠EAD; 16、54;17、∠A=∠D;(或其他都行)18、3 ;19、锐角;20、110°;三、解答题21、(1)4;(2)5a 2 – 6ab;(3)、x – 3x2y3+ 4;(4)422、解:设这个角的度数为x,则180-x=4(90-x),解得x=6023、解:原式=2xy – 1 代人得-3.24、(略)四、推理说明题25、解:∵AB∥CD;∴∠B=∠DCE;又∵∠A=∠D; ∴∠ACB=∠E;∴AC∥DE26、(1)∠B=∠D, ∵AD∥BC,∴∠A=∠C, 又∵AE=CF,∴AE+EF=CF+EF ,∴AF=CE,又∵AD=BC ,∴△ADF≌△CBE(SAS) , ∴∠B=∠D.(2) 不唯一(略)五、探索题(1) m – n ;(2) (m- n)2 ; (m + n)2 – 4mn ;(3) (m - n)2 = (m + n)2 – 4mn ;(4) 29.七年级数学下册期中检测卷说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为a2的式子是()A. a6÷a3B.a • aC.(a--1)2D.a4-a2=a22.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是()A.13B.6C.5D.44.如果(x―5)(2x+m)的积中不含x的一次项,则m的值是()A.5B.-10C.-5D.105.若m+n =3,则2m2+4mn+2n2-6的值为()A.12B.6C.3D.06.如图,过∠AOB边OB上一点C作OA的平行线,以C为顶点的角与∠AOB的关系是()A.相等B.互补C.相等或互补D.不能确定二、填空题(本大题共8个小题,每小题3分,共24分)7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计算:=_______________;9.如果多项式x2+mx+9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=_______°;B●OAC1210题ABDCO12题2201321)3()1(-⎪⎭⎫⎝⎛--π⨯-11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:_______________,可得△AOD ≌△COB (AAS) ;13..AD 是△ABC 的边BC 上的中线, AB =12,AC =8, 那么中线AD 的取值范围___________.14.观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分)15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y 解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:20.如图,直线CD 与直线AB 相交于点C ,()()[]x xy x y y y x 28422÷-+-+AFCBED根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰) (1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分) 21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形.(1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a ,宽为2b 的长方形纸片,其长方形的面积显然为4ab ,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形. (1)图②中阴影正方形EFGH 的边长为: _________________;CDBA·P(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a -b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解: 24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分) 19.解:原式=[4x 2+4xy +y 2-y 2-4xy -8xy ]÷2x =[4x 2-8xy ]÷2x =2x -4y 当x =2,y =-2时,原式=4+8=12 20.解: (1)见图(2)∠QPR =300五、(本大题共2小题,每小题9分,共18分)21.解: (1) ∵AB =AE ,BC =ED ,∠B =∠E ∴△ABC ≌△AED ∴ AC =AD24.解: (1) ∠A +∠D =∠B +∠C(2) 由(1)可知,∠1+∠D =∠3+∠P , ∠2+∠P =∠4+∠B ∴∠1-∠3=∠P -∠D , ∠2-∠4=∠B -∠P 又∵AP 、CP 分别平分∠DAB 和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P -∠D =∠B -∠P 即2∠P =∠B +∠D ∴∠P =(40°+30°)÷2=35°.(3) 2∠P =∠B +∠D .期中测试卷一、选择题1.计算4-(-4)0的结果是( ) A.0 B.2 C.3 D.4 答案:C2.计算(-5a 3)2的结果是( )A.-10a 5B.10a 5C.-25a 6D.25a 6 答案:DC D B A ·PQ R3.PM2.5是指大气中直径小于等于0.000 0025 m的颗粒物,将0.000 0025用科学记数法表示为()A.2.5×10-7B.2.5×10-6C.25×10-7D.0.25×10-8答案:B4.下列计算正确的是()A.a3+a2=a5B.(3a-b)2=9a2-b2C.a6b÷a2=a3bD.(-ab3)2=a2b6答案:D5.如图,下列条件中能判定l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5答案:C6.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形后,剩余部分可剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边长为3,则与其相邻的另一边长为()A.m+3B.m+6C.2m+3D.2m+6答案:C7.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是()答案:B8.已知(x+m)(x+n)=x2-3x-4,则m+n的值为()A.1B.-1C.-2D.-3答案:D9.(山东济宁)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°答案:C10.在实验课上,小亮利用同一块木板测得小车从不同高度h下滑的时间t如下表:下列说法错误的是()A.当h=40时,t=2.66B.随高度的增加,下滑时间越来越短C.当h=80时,t一定小于2.56D.高度每增加10 cm,时间就会减少0.24 s 答案:D11.(辽宁营口)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°答案:C解析:因为AB∥OC,∠B=30°,所以∠BOC=∠B=30°,所以∠DEO=∠C+∠BOC=75°.12.已知a=2 005x+2 004,b=2 005x+2 005,c=2 005x+2 006,则多项式a2+b2+c2-ab-bc-ac 的值为()A.0B.1C.2D.3答案:D解析:由题意可知a-b=-1,b-c=-1,a-c=-2,所求式=12(2a2+2b2+2c2-2ab-2bc-2ac)=12[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=12[(a-b)2+(b-c)2+(a-c)2]=12[(-1)2+(-1)2+(-2)2]=3.二、填空题13.计算:(3x2y-xy2+12xy)÷(-12xy)= .答案:-6x+2y-114.当a+b=3,x-y=1时,代数式a2+2ab+b2-x+y= .答案:815.一个正方形的边长增加了3,面积相应增加了39,则这个正方形原来的边长为 .答案:516.如图反映的是一个壁球的运动路线,直击壁球到达地面,反弹后碰到壁球,图中∠1+∠2=90°,∠2=∠3,若∠3=55°,则∠1= .答案:35°17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .答案:120°解析:因为∠CDE=150°,所以∠CDB=30°.因为AB∥CD,所以∠CDB=∠DBA=30°.因为BE平分∠ABC,所以∠CBD=∠DBA=30°,所以∠C=120°.18.声音在空气中传播的速度y m/s与气温x ℃之间的关系如下表.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2 s后,听到了枪声,则由此可知这个人距发令枪的距离为 m.答案:68.6解析:由表可知当x=20时,y=343,所以这个人距发令枪的距离为343×0.2=68.6(m).三、解答题19.计算.(1)(-3ab2)3÷(12a3b3)(-2ab3c);(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).答案:解:(1)原式=108ab6c.(2)原式=-1+2ab-3a2b2.20.化简求值.(1)3(a+5)2-2(3-a)2+(9-a)(9+a),其中a=-3;(2)(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b),其中a=12,b=-2.答案:解:(1)原式=3a2+30a+75-18+12a-2a2+81-a2=42a+138. 当a=-3时,原式=12.(2)原式=4a2+4ab+b2-(2a2+ab-b2)-(2a2-8b2)=3ab+10b2.当a=12,b=-2时,原式=37.21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y L与时间x min之间的关系如图所示.根据图象解答下列问题:(1)如图反映的是哪两个变量之间的关系?(2)洗衣机的进水时间是多少?清洗时洗衣机中的水量是多少?(3)时间是10 min时,洗衣机处于哪个过程?答案:解:(1)图象反映的是水量y L与时间x min之间的关系.(2)洗衣机的进水时间是4 min,清洗时洗衣机中的水量是40 L.(3)时间是10 min时,洗衣机处于清洗过程.22.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC 于点E,求∠ADE的度数.答案:解:因为在△ABC中,∠B+∠C=110°,所以∠BAC=180°-∠B-∠C=70°.因为AD是△ABC的角平分线,所以∠BAD=12∠BAC=35°.因为DE∥AB,所以∠ADE=∠BAD=35°23.在某地,人们发现某种蟋蟀每分钟叫的次数C与温度T ℃之间有近似关系:T=7C +3.(1)若蟋蟀每分钟叫50次,求T的值;(2)若温度为25 ℃,求C 的值;(3)当温度升高时,蟋蟀每分钟叫的次数会 .(填“增加”或“减少”) 答案:解:(1)当C=50时,T=(507+3)℃. (2)当T=25 ℃时,即25=7C+3,解得C=154.(3)增加24.如图,已知∠ABD 和∠BDC 的平分线交于点E ,BE 交CD 于点F ,∠1+∠2=90°. (1)求证:AB ∥CD ;(2)试探究∠2与∠3的数量关系.答案:(1)证明:因为BE ,DE 平分∠ABD ,∠BDC ,所以∠1=12∠ABD ,∠2=12∠BDC.因为∠1+∠2=90°,所以∠ABD+∠BDC=180°, 所以AB ∥CD.(2)解:因为DE 平分∠BDC ,所以∠2=∠FDE. 因为∠1+∠2=90°,所以∠BED=∠DEF=90°, 所以∠3+∠FDE=90°,所以∠2+∠3=90° 25.(1)如图1,求阴影部分的面积;(2)若将阴影部分裁剪下来重新拼成一个梯形,如图2,求它的高及面积; (3)利用两个图形的面积写出可以得到的乘法公式; (4)利用得到的乘法公式计算(-2x+y )(2x+y ).答案:)解:(1)a 2-b 2. (2)高为a-b ,面积为12(2a+2b )(a-b )=(a+b )(a-b ).(3)(a+b )(a-b )=a 2-b 2. (4)原式=y 2-4x 2.。

北师大版数学七年级下册《期中考试试卷》附答案

北师大版数学七年级下册《期中考试试卷》附答案
二.填空(每小题5分,共20分)
16.如图,将一副三角板摆放到两条平行线间,两个三角板的直角边共线,含30º角的三角板的斜边与一条平行线共线,含45º角的三角板的一个顶点在另一条平行线上则,∠1=_____________.
17.若(x-m)²=x²+x+a,则m=____________a=__________.
A.30°B.45°C.60°D.70°
[答案]B
[解析]
[详解]解:设这个角的度数为x,依题意得:90°﹣x= (180°﹣x),解得x=45°.
故选B.
[点睛]本题考查余角和补角.
15.下列作图语句描述正确的是()
A. 作射线AB,使AB=aB. 作∠AOB=∠α
C. 以点O为圆心作弧D. 延长直线AB到C,使AC=BC
A. 20°B. 30°C. 35°D. 50°
[答案]C
[解析]
[分析]
由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.
详解]解:
由垂线的性质可得∠ABC=90°,
所以∠3=180°﹣90°﹣∠1=35°,
又∵a∥b,
所以∠2=∠3=35°.
11.若a<0,则下列运算错误的是()
A a0=1B.a-1= -aC.(-a)²=a²D.(-a)³=-a³
[答案]B
[解析]
[分析]
根据题意得出a为负数,从而分别化简各项可得.
[详解]解:∵a<0,
A、a0=1,故选项不符合;
B、a-1= ,故选项符合;
C、(-a)²=a²,故选项不符合;
D、(-a)³=-a³,故选项不符合;
B. a2⋅a3=a5,故B错误;

北师大版数学七年级下册《期中测试卷》及答案

北师大版数学七年级下册《期中测试卷》及答案
[详解]解:A.若 ,则 ,故此选项错误;
B.若 ,则 ,故此选项正确;
C.若 ,则 ,故此选项错误;
D.若 ,则 ,故此选项错误.
故选:B.
[点睛]本题考查平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角即可.
6. 弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:
A. B.
C. D.
[答案]D
[解析]
[分析]
由题意根据开车从学校出发行驶一段时间后,途中耽搁后进而加速前行最后匀速开车回到学校,进行分析即可得出答案.
[详解]解:A、出发行驶一段时间后距离学校更近,故不符合条件,排除;
B、最后距离学校没有越来越近,即并没有匀速开车回到学校,故不符合条件,排除;
C、途中耽搁后进而减速前行最后匀速开车回到学校,故不符合条件,排除;
[详解](1)∵AB∥CD,
∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF平行于AB,
故选:B.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.如图,下列判断中正确的是()
A. 若 ,则 B. 若 ,则
C. 若 ,则 D. 若 ,则
[答案]B
[解析]
[分析]
由题意直接根据平行线的性质与判定,对各选项进行逐一判定即可.
[详解]解:A. ,故此选项错误;
B. ,故此选项错误;
C. ,故此选项正确;
D. ,故此选项错误.
故选:C.

北师大版七年级下册数学《期中》试卷(完整版)

北师大版七年级下册数学《期中》试卷(完整版)

北师大版七年级下册数学《期中》试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.4.如图,∠1=∠ACB ,∠2=∠3,求证:∠BDC +∠DGF =180°.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、B6、D7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、40°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDEm≤-4、25、2或2.56、7三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、-3 .3、(1)见解析(2)成立(3)△DEF为等边三角形4、略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)8;(2)答案见解析:(3)200000立方厘米。

北师大版七年级下册数学《期中检测试卷》及答案

北师大版七年级下册数学《期中检测试卷》及答案
[详解]A.∵∠B=∠5,∴AB∥CD,故本选项不符合题意;
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。

北师大版七年级下册数学《期中检测卷》含答案

北师大版七年级下册数学《期中检测卷》含答案
15.若x2+2ax+16是一个完全平方式,则a=____________.
16.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=________.
17.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=________.
18.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是___(只填序号)
三.解答题(本大题共7个小题,共66分,)
19.计算下列各题:
(1)(﹣1)2018+3﹣2﹣(π﹣3 14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
8.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()
A. 线段PC的长是点C到直线PA的距离
B. 线段AC的长是点A到直线PC的距离
C.PA、PB、PC三条线段中,PB最短
D. 线段PB的长是点P到直线a的距离
[答案]B
[解析]
[分析]
利用点到直线的距离的定义、垂线段最短分析.
(4)(2x+y+1)(2x+y﹣1)
20.已知6x﹣5y=﹣10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.
21.在括号内填写理由.
已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC

北师大版数学七年级下册期中考试试卷含答案

北师大版数学七年级下册期中考试试卷含答案

北师大版数学七年级下册期中考试试卷含答案北师大版数学七年级下册期中考试试题一、单选题(每小题3分,共27分)1.下列运算正确的是()A。

x2+x3=x5B。

x2·x3=x6C。

(3x3)2=6x6D。

x6÷x3=x22.将0.xxxxxxxx用科学记数法表示为()A。

0.573×10^-5B。

5.73×10^-5C。

5.73×10^-6D。

0.573×10^-63.计算(a-b)2的结果是()A。

a2-b2B。

a2-2ab+b2C。

a2+2ab-b2D。

a2+2ab+b24.如果一个角的补角是150∘,那么这个角的余角的度数是()A。

30∘B。

60∘C。

90∘D。

120∘5.两直线被第三条直线所截,则()A。

内错角相等B。

同位角相等C。

同旁内角互补D。

以上结论都不对6.某天,XXX去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A。

XXX去时的速度大于回家的速度B。

XXX在朋友家停留了10分钟C。

XXX去时所花时间少于回家所花时间D。

XXX去时走上坡路,回家时走下坡路7.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A。

46°B。

23°C。

26°D。

24°8.设(5a+3b)2=(5a-3b)2+A,则A=A。

30abB。

60abC。

15abD。

12ab9.一辆汽车在广场上行驶,两次转弯后要想行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A。

第一次向右拐50°,第二次向左拐130°B。

第一次向左拐30°,第二次向右拐30°C。

第一次向右拐50°,第二次向右拐130°D。

第一次向左拐50°,第二次向左拐130°二、填空题10.若a=-√2,b=(-1)^-1,c=-2/π,则a、b、c从小到大的排列是_____<_____<_____。

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试题带答案北师大版七年级下册数学期中考试试卷一、单选题1.下面计算正确的是()A。

b3b2=b6B。

x3+x3=x6C。

a4+a2=a6D。

mm5=m62.计算:(m3n)2的结果是A。

m6nB。

m6n2C。

m5n2D。

m3n23.计算:x5÷x2等于()A。

x2B。

x3C。

2xD。

x34.计算:(5a2b)•(3a)等于()A。

15a3bB。

15a2bC。

8a3bD。

15a35.计算:(m+5)(m-5)等于()A。

m2-25B。

m-25C。

m2-5D。

m2-106.计算:(x-1)2等于()A。

x2-x+1B。

x2-2x+1C。

x2-1D。

x2-2x+1/47.计算:15a3b÷(-5a2b)等于()A。

-3abB。

-3a3bC。

-3aD。

-3ab28.下面四个图形中,∠1与∠2是对顶角的是()A。

B。

C。

D。

9.如图,下列四组角中是内错角的是()A。

∠1与∠7B。

∠3与∠5C。

∠4与∠5D。

∠2与∠510.如图,已知a∥b,∠1=50°,则∠2=()A。

130°B。

50°C。

40°D。

80°二、填空题11.化简(x+y)(x-y)=x2-y2.12.快餐每盒5元,买n盒需付5n元,则其中常量是5.13.若x2+kxy+y2是完全平方式,则k=2x。

14.如图,∠B的同位角是∠D。

15.光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为1.5×1011米。

16.两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为45°和75°。

三、解答题17.1) (-3) + (1/2) + |-2| = -3 + 1/2 + 2 = -4.52) 103×97 = (100+3)(100-3) = -9 = 999118.x-y)2y / ((x+y)-(x-y)2)] = [(x-y)2y / (3y-x+y)] = (x-y)2 = 2020-1 = 201919.如图,先延长AB至点F,连接CF,作CF的中垂线交AB于点E,以E为圆心,EF为半径画圆,交CF于点D,连接DE即可。

北师大版七年级下册数学《期中》考试卷(完整版)

北师大版七年级下册数学《期中》考试卷(完整版)

北师大版七年级下册数学《期中》考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.因式分解:34a a -=_____________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、C7、A8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、5或-72、()()2a b a b ++.3、0.4、a >﹣15、(2)(2)a a a +-6、7三、解答题(本大题共6小题,共72分)1、612x y =⎧⎪⎨=-⎪⎩2、x =1,y =-1,k =9.3、(1)(4,-2);(2)作图略,(3)6.4、(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B (2)155°(3)25°或155°5、(1)20%;(2)6006、(1)两人经过两个小时后相遇;(2)小张的车速为18千米每小时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级(下)数学试卷班级:姓名:成绩:
一、选择题:(每小题3分,共30分)
1、下列各式计算正确的是()
A.(a5)2=a7 B.2x﹣2 = C.3a2?2a3=6a6D.a8÷a2=a6
2、同一平面内的三条直线a,b,c,若a∥b,b∥c,则a与c()
A.平行B.垂直C.相交D.重合
3、若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()
A.5,6 B.1,﹣6 C.1,6 D.5,﹣6
4、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:
x 0 1 2 3 4 5
y 10 10.5 11 11.5 12 12.5
A.x与y都是变量,且x是自变量,y是因变量
B.弹簧不挂重物时的长度为0cm
C.物体质量每增加1kg,弹簧长度y增加0.5cm
D.所挂物体质量为7kg时,弹簧长度为13.5cm
5、如图,由AB∥DC,能推出正确的结论是()
A.∠ 3=∠ 4 B.∠ 1=∠ 2 C.∠ A=∠ C D.AD∥ BC 第5题图第6题第7题
6.如图,若∠ 1=50°,∠ C=50°,∠ 2=120°,则()
A.∠ B=40°B.∠ B=50°C.∠ B=60°D.∠ B=120°7.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函
数图象,根据图象信息,下列说法正确的是()
A.小王去时的速度大于回家的速度
B.小王在朋友家停留了10分钟
C.小王去时所花的时间少于回家所花的时间
D.小王去时走上坡路,回家时走下坡路
8.下列各式的计算中不正确的个数是()
①100÷10﹣1=10;
②(﹣2a=3)(2a﹣3)=4a2﹣9;
③(a﹣b)2=a2﹣b2;
④3a 2b ﹣3ab 2=﹣2a 2b .
A .4
B .3
C .2
D .1
9.如图,把矩形ABCD 沿EF 对折,若∠ 1=50°,则∠ AEF 等于
( )
A .50°
B .80°
C .65°
D .115°
10.已知a 2+b 2=2,a+b=1,则ab 的值为( )
A .﹣1
B .﹣
C .﹣
D .3
二、填空题(每小题4分,共20分)
11.一种病毒的长度为0.000000362mm ,用科学记数法表示为 mm 。

12.计算:(y ﹣x )2= 。

13.若(2x +a )(x ﹣1)的结果中不含x 的一次项,则
a = .
14.100m ?1 000n 的计算结果是 .
15.一慢车和一快车沿相同路线从A 地到B 地,所行的路程
与时间的图象如图所示,则慢车比快车早出发 小
时,快车追上慢车行驶了 千米,快车比慢车早
小时到达B 地.
三、解答题(共50分)
16.计算题(每题4分,共8分)
(1)(3a ﹣7)(3a +7)-2a (a ﹣1) (2)(3x 2y ﹣xy 2+xy )÷(-xy )
17.(8分)先化简,再求值:[(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2]÷2x ,其中,x = -1,y=2。

18.(6分)尺规作图:已知直线AB 和AB 外一点P ,利用尺规作一条经过点P 的直线CD ,使得CD 平行于AB (不写作法,保留清晰、完整的作图痕迹)。

19.(6分)如图,∠ 1=∠ 2,DE ⊥ BC ,AB ⊥ BC ,那么∠ A=∠ 3吗,说明理由?
20.(6分)如图,CD ∥ AB ,∠ DCB=70°,∠ CBF=20°,∠ EFB=130°,问直线EF 与AB 有怎样的位置关系?说明理由?
21.(8分)某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元.
(1)设学生数为x ,甲、乙旅行社收费分别为y 甲(元)和y 乙(元),分别写出两个旅
行社收费的关系式.
(2)选择哪家旅行社收费更优惠?说明理由。

22.(8分)一位农民带上若干千克自产的土豆进城出售。

为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:
(1)农民自带的零钱是多少?(2分)
(2)求出降价前每千克的土豆价格是多少?(3分)
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?(3分)。

相关文档
最新文档