高考数学 教材复习课 “平面向量”相关基础知识一课过

合集下载

平面向量知识点总结 高三数学一轮复习

平面向量知识点总结 高三数学一轮复习

知识点总结4 平面向量一.平面向量向量的线性运算向量运算加法减法数乘几何表示首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量(1)|λa |=|λ||a |,(2)当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反; 当λ=0时,λa =0一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量, 即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.平面向量基本定理e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是平面内两个不共线向量,那么对这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ . 我们把不共线的向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面的一组基底. 3.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD ⃗⃗⃗⃗⃗ =n m+nAB⃗⃗⃗⃗⃗ +m m+nAC⃗⃗⃗⃗⃗ , 特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 二.平面向量的坐标运算1.平面向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.向量加法、减法、数乘运算及向量的模:设坐标表示 a =(x 1,y 1),b⃗ =(x 2,y 2),则 a +b ⃗ =(x 1+x 2,y 1+y 2), a −b ⃗ =(x 1−x 2,y 1−y 2), λa =(λx 1,λy 1), |a |=x 21+y 21.三.平面向量的数量积 1.向量a 与b⃗ 的夹角 已知两个非零向量a 和b ⃗ .作OA =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b ⃗ 的夹角. 当θ=0°时,a 与b ⃗ 同向; 当θ=180°时,a 与b⃗ 反向. 如果a 与b ⃗ 的夹角是90°,我们说a 与b ⃗ 垂直,记作a ⊥b ⃗ . 2.平面向量的数量积(1)若a ,b ⃗ 为非零向量,夹角为θ,则a ∙b ⃗ =|a |∙|b ⃗ |cosθ. (2)设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ∙b ⃗ =b ⃗ ∙a (交换律);(2)λa ∙b ⃗ =λ(a ∙b ⃗ )=a ∙(λb ⃗ ) (结合律); (3)(a +b ⃗ )∙c =a ∙c +b ⃗ ∙c (分配律). 4.平面向量数量积运算的常用公式 (1) (a +b ⃗ )∙(a −b ⃗ )=(a )2−(b⃗ )2. (2)(a +b ⃗ )2=(a )2+(b ⃗ )2+2a ∙b ⃗ =|a |2+|b ⃗ |2+2a ∙b ⃗ . (3)(a −b ⃗ )2=(a )2+(b ⃗ )2−2a ∙b ⃗ =|a |2+|b ⃗ |2−2a ∙b ⃗ . (4)极化恒等式:a ∙b ⃗ =14[(a +b ⃗ )2−(a −b ⃗ )2]; (平行四边形模式)a ∙b⃗ =14[|AC |2−|DB |2] 5.利用数量积求长度(1)若a =(x,y),则|a |=√(a )2=√a ∙a =√x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则:|AB |=√(x 2−x 1)2+(y 2−y 1)2.6.利用数量积求夹角:设a ,b ⃗ 为非零向量,若a =(x 1,y 1),b ⃗ =(x 2,y 2),θ为a ,b ⃗ 的夹角, 则cosθ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1∙√x 2+y 27.向量的投影向量a 在向量b ⃗ 上的投影为:|a |cosθ=a⃗ ∙b ⃗|b ⃗ |. 向量a 在向量b ⃗ 上的的投影向量为:|a |cosθ∙b ⃗|a ⃗ |=a ⃗ ∙b ⃗|b⃗ |∙b ⃗|b ⃗ |. 四.平面向量的平行与垂直1.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b⃗ =(x 2,y 2),则 (1)a ∥b ⃗ ⇔a =λb ⃗ (b ⃗ ≠0⃗ )⇔x 1x 2=y 1y 2⇔x 1y 2-x 2y 1=0.(2)a ⊥b ⃗ ⇔a ·b ⃗ =0⇔x 1x 2+y 1y 2=0. (3)与a 同方向的单位向量为:a⃗ |a ⃗ |=√x 2+y2y)=(√x 2+y2√x 2+y 2),与a 共线的单位向量为:±a ⃗ |a ⃗ |=√x 2+y 2y)=√x 2+y 2√x 2+y 2).2.三点共线的充要条件的三种形式(1)A ,P ,B 三点共线⇔AP =λAB (λ≠0)(2)A ,P ,B 三点共线⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )(3)A ,P ,B 三点共线⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 五.奔驰定理与三角形“四心”1.奔驰定理:如图,已知P 为ABC 内一点,则有0PBCPACPABSPA SPB SPC ++=.2.奔驰定理的推论及四心问题推论O 是ABC 内的一点,且0x OA y OB z OC ⋅+⋅+⋅=,则::::BOCCOAAOBS SSx y z =已知点O 在ABC 内部,有以下四个推论: ①若O 为ABC 的重心,则0OA OB OC ++=;①若O 为ABC 的外心,则sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=;或OA OB OC == ①若O 为ABC 的内心,则0a OA b OB c OC ⋅+⋅+⋅=;备注:若O 为ABC 的内心,则sin sin sin 0A OA B OB C OC ⋅+⋅+⋅=也对.①若O 为ABC 的垂心,则tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,或OA OB OB OC OC OA ⋅=⋅=⋅。

平面向量的基本定理及坐标表示课件-2025届高三数学一轮复习

平面向量的基本定理及坐标表示课件-2025届高三数学一轮复习
2
2
3
2

1
2
=
1

2
1=−

1

3

5
=
7
6
=−
7
,
6
6
2
8
所以= = + ,λ+μ= ,故B选项错误;
7
7
7
7
1
2
=-=- + ,
3
3
5
2
1
2
7
因为= ,所以= =- + ,故= ,C选项正确;
7
7
7
7
3
6
6
2
1
因为= ,所以S△ABM= S△ABF= S△ABC= S,故D选项正确.
(
,
).
3
3
2.如果对于一个基底 1 , 2 ,有a=λ1e1+λ2e2=μ1e1+μ2e2,那么可以得到λ1=μ1,λ2=μ2.
特别地,若λ1e1+λ2e2=0,则λ1=λ2=0.
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)在△ABC中,{,}可以作为基底.(
等分点,记=a,=b,则下列说法正确的是(
A.点M,N,E三点共线
9
B.若=λa+μb,则λ+μ=
7
7
C.=
3
1
D.S△ABM= S,S为平行四边形ABCD的面积
7
)
【解析】选ACD.如图所示:

高考数学一轮复习平面向量的概念知识点知识点总结

高考数学一轮复习平面向量的概念知识点知识点总结

高考数学一轮复习平面向量的概念知识点知识点总结
高考复习最忌心浮气躁,急于求成。

指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。

要扎扎实实地复习,一步一步地前进,下文为大家准备了平面向量的概念知识点的内容。

既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量
叫做数量(物理学中叫做标量).
向量的概念既有方向(direction)又有大小(magnitude)的量叫做向量(物理学
中叫做矢量),向量可以用小写黑体字母a,b,c,.表示,也可以用表示向量的有向线段的起点和终点字母表示.只有大小没有方向的量叫做数量(物理学中叫做标量).在自然界中,有许多量既有大小又有方向,如力、速度等.我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念.这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多.
小编为大家提供的高考数学一轮复习平面向量的概念知识点就到这里了,愿大家都能好好努力,丰富自己,锻炼自己。

2025年高考数学一轮复习-第1讲-平面向量的概念及线性运算【课件】

2025年高考数学一轮复习-第1讲-平面向量的概念及线性运算【课件】

考点考法:虽然近两年在本讲没有直接命题,但在考查其他知识点时,经常涉及向量的加法、减法运算,数乘运算以及它们的几何意义.核心素养:数学抽象、直观想象、数学运算
必备知识 自主排查
核心考点 师生共研
必备知识 自主排查
01
1.向量的有关概念
(1)向量:既有大小又有______的量叫做向量,向量的大小叫做向量的____.


解析:选 选项,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点,所以A错误;B选项,因为 与 共线,且有公共点 ,所以 , , 三点在同一条直线上,所以B正确;C选项,当 且方向相反时,即使 ,也不能得到 ,所以 且 不是 的充要条件,而是必要不充分条件,所以C错误;D选项, , , , 是不共线的点, ,即模相等且方向相同,即四边形ABCD对边平行且相等,反之也成立,所以D正确.
A. B. C. D.
解析:选D.对于A,两个向量的模相等,但是方向不一定相同,所以错误.对于B,两个向量不能比较大小,所以错误.对于C,向量平行只是方向相同或相反,不能得到向量相等,所以错误.对于D,若一个向量的模等于0,则这个向量是 ,所以正确.

2.设 , 都是非零向量,则下列四个条件中,使 成立的充分条件是( )
×
(3)若向量 与向量 是共线向量,则 , , , 四点在一条直线上.( )
×
(4)当两个非零向量 , 共线时,一定有 ,反之成立.( )

2.(2022·新高考卷Ⅰ)在 中,点 在边 上, .记 , ,则 ( )
A. B. C. D.
(2)零向量:长度为___的向量,其方向是任意的.
(3)单位向量:长度等于_____________的向量.

高考数学复习考点知识专题讲解(培优版)1---平面向量

高考数学复习考点知识专题讲解(培优版)1---平面向量

高考数学复习考点知识专题讲解(培优版)第1讲平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度.考点一平面向量的线性运算核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA → =14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴mn=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG→=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB→.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA→+yOB→,则x +3y 的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎪⎪⎫12,32,C (cos θ,sin θ) ⎝⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎪⎫12,32+y (1,0), 即⎩⎪⎨⎪⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2.2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49,∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( ) A .3 B .4 C .-3 D .-4答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点,∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3, ∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2 =12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ),故MD →=(-λ,2-2λ),MB→=(2-λ,-2λ),则MB →+MD →=(2-2λ,2-4λ),∴|MB →+MD→|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1,当λ=0时,|MB →+MD →|取得最大值为22,当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎢⎡⎦⎥⎥⎤255,22. 易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0,又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0,即cos θ=12,又θ∈[0,π],所以θ=π3,故选B.方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB→=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB → 的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A,B,C是半径为1的圆O上的三点,且OA→⊥OB→,则(OC→-OA→)·(OC→-OB→)的最大值是( )A.1+ 2 B.1-2C.2-1 D.1答案A解析如图,作出OD→,使得OA→+OB→=OD→.则(OC→-OA→)·(OC→-OB→)=OC→2-OA→·OC→-OB→·OC→+OA→·OB→=1-(OA→+OB→)·OC→=1-OD→·OC→,由图可知,当点C 在OD的反向延长线与圆O的交点处时,OD→·OC→取得最小值,最小值为-2,此时(OC→-OA→)·(OC→-OB→)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD → C.AB →+12AD → D.AB →-12AD → 答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →. 2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69 kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( )A .-2B .-1C .-12 D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP→绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3)答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2,又cos ⎝ ⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN→,则m +n 等于( )A .0B .1C .2D .3答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →,∵M ,O ,N 三点共线,∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( )A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB→-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA→+CB→|,即|CA→-CB→|=|CA→+CB→|,两边平方整理得,CA→·CB→=0,∴CA→⊥CB→,∴△ABC 为直角三角形.故选C.8.已知P是边长为3的等边三角形ABC外接圆上的动点,则⎪⎪⎪⎪PA→+PB→+2PC→的最大值为( )A.2 3 B.3 3 C.4 3 D.53答案D解析设△ABC的外接圆的圆心为O,则圆的半径为332×12=3,OA→+OB→+OC→=0,故PA→+PB→+2PC→=4PO→+OC→.又⎪⎪⎪⎪4PO→+OC→2=51+8PO→·OC→≤51+24=75,故⎪⎪⎪⎪PA→+PB→+2PC→≤53,当PO→,OC→同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A. 2B. 3 C .2 D .22答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD→=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎪⎨⎪⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA→+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM→|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( )A .|a +b |=2B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确.11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b共线的单位向量只有一个为⎝⎛⎭⎪⎪⎫22,-22 D .若|a |=2|b |,则k =22或-22答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎪⎫22,-22或⎝ ⎛⎭⎪⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32,即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确;ED →=⎝ ⎛⎭⎪⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22.14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB→=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝⎛⎭⎪⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎪⎫a -12,-32·⎝ ⎛⎭⎪⎪⎫-12,-32 =-12⎝⎛⎭⎪⎫a -12+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12⎝⎛⎭⎫BA →+BC → =13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎪⎫32,36·⎝ ⎛⎭⎪⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA→),得(1-λ-μ)AO→=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC→, ∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________.答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝⎛⎭⎪⎫a ·b |a |·|b |2=⎣⎢⎢⎡⎦⎥⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎪⎫4x +42x +26x +102=4x +12x +13x +531 / 31=4x +13x +5=433x +5-833x +5=43-833x +5, 当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.。

高考数学复习第4章平面向量第1讲平面向量及其线性运算

高考数学复习第4章平面向量第1讲平面向量及其线性运算

向量-b 的和的 减法
运算叫做 a 与 b
的差
三角形法则
运算律 a-b=a+(-b)
(续表) 向量 运算
定义
法则(或几何意义)
运算律
(1)|λa|=___|λ_|_|a_|__; (2)当λ>0 时,λa 的
数乘 求实数λ与向量 a 的积的运算
方向与 a 的方向相 同;当λ<0 时,λa 的 方向与 a 的方向相
量的个数为( B )
A.1
B.2
C. B.
4.如图 4-1-1,在正六边形 ABCDEF 中,B→A+C→D+E→F= (D )
图 4-1-1
A.0
B.B→E
C.A→D
D.C→F
考点 1 平面向量的基本概念
例 1:(1)(多选)下列命题正确的有( ) A.若|a|=|b|,则 a=b B.若 A,B,C,D 是不共线的四点,则A→B=D→C是四边形 ABCD 为平行四边形的充要条件 C.若 a=b,b=c,则 a=c D.若 a∥b,b∥c,则 a∥c
选 A.
答案:A
【规律方法】(1)相等向量具有传递性,非零向量的平行也 具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的平移混为一谈.(4)非零向量 a 与|aa|的关系: |aa|是与 a 同方向的单位向量.
λ(μa)=___λ_μ_a___; (λ+μ)a=λa+μa; λ(a+b)=_λ_a_+__λ_b_
反;当λ=0 时,λa
=____0____
3.共线向量定理 向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数λ, 使得 b=λa.

2023年高考数学一轮复习讲义(新高考)第5章§5-2平面向量基本定理及坐标表示

2023年高考数学一轮复习讲义(新高考)第5章§5-2平面向量基本定理及坐标表示

§5.2 平面向量基本定理及坐标表示考试要求 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB → =(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一个基底.( × )(2)设{a ,b }是平面内的一个基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( × )(4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )教材改编题1.(多选)下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,3),e 2=(12,-34)答案 BD2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)答案 A解析 设P (x ,y ),由题意知P 1P —→ =13P 1P 2—→,∴(x -1,y -3)=13(4-1,0-3)=(1,-1),即Error!∴Error!3.已知向量a =(x ,1),b =(2,x -1),若(2a -b )∥a ,则x 为________.答案 2或-1解析 2a -b =(2x -2,3-x ),∵(2a -b )∥a ,∴2x -2=x (3-x ),即x 2-x -2=0,解得x =2或x =-1.题型一 平面向量基本定理的应用例1 (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( )A.34AB → -14AC →B.14AB → -34AC →C.34AB → +14AC →D.14AB → +34AC →答案 A(2)如图,已知平面内有三个向量OA → ,OB → ,OC → ,其中OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,且|OA → |=|OB → |=1,|OC → |=23.若OC → =λOA → +μOB →(λ,μ∈R ),则λ+μ=______.答案 6解析 方法一 如图,作平行四边形OB 1CA 1,则OC → =OB 1—→ +OA 1—→,因为OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23,所以|OB 1—→ |=2,|B 1C —→|=4,所以|OA 1—→ |=|B 1C —→|=4,所以OC → =4OA → +2OB → ,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B (-12,32),C (3,3).由OC → =λOA → +μOB → ,得Error!解得Error!所以λ+μ=6.教师备选1.(2022·山东省实验中学等四校联考)如图,在Rt △ABC 中,∠ABC =π2,AC =2AB ,∠BAC的平分线交△ABC 的外接圆于点D ,设AB → =a ,AC → =b ,则向量AD →等于( )A .a +b B.12a +b C .a +12bD .a +23b答案 C解析 设圆的半径为r ,在Rt △ABC 中,∠ABC =π2,AC =2AB ,所以∠BAC =π3,∠ACB =π6,又∠BAC 的平分线交△ABC 的外接圆于点D ,所以∠ACB =∠BAD =∠CAD =π6,则根据圆的性质得BD =AB ,又因为在Rt △ABC 中,AB =12AC =r =OD ,所以四边形ABDO 为菱形,所以AD → =AB → +AO →=a +12b .2.(2022·苏州质检)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG → =λCD → +μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题图可设CG → =xCE →(0<x <1),则CG → =x (CB → +BE → )=x (CB → +12CD →)=x 2CD →+xCB → .因为CG → =λCD → +μCB → ,CD → 与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.跟踪训练1 (1)如图,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE → =λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14C .1 D.516答案 A解析 DE → =12DA → +12DO→=12DA → +14DB →=12DA → +14(DA → +AB → )=14AB → -34AD →,所以λ=14,μ=-34,故λ2+μ2=58.(2)如图,以向量OA → =a ,OB → =b 为邻边作平行四边形OADB ,BM → =13BC → ,CN → =13CD → ,则MN →=________.(用a ,b 表示)答案 12a -16b解析 ∵BA → =OA → -OB →=a -b ,BM → =16BA → =16a -16b ,∴OM → =OB → +BM →=b +(16a -16b )=16a +56b .∵OD →=a +b ,∴ON → =OC → +13CD → =12OD → +16OD → =23OD → =23a +23b .∴MN → =ON → -OM → =23a +23b -16a -56b =12a -16b .题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.(133,83) B.(-133,-83)C.(133,43)D.(-133,-43)答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b ).∵a -2b =(5,-2)-(-8,-6)=(13,4),∴c =-13(a -2b )=(-133,-43).(2)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE → +μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85 C .2 D.83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA → =(-2,2),CE → =(-2,1),DB →=(1,2),∵CA → =λCE → +μDB → ,∴(-2,2)=λ(-2,1)+μ(1,2),∴Error!解得Error!故λ+μ=85.教师备选已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC → =2AD →,则顶点D 的坐标为( )A.(2,72)B.(2,-12)C .(3,2)D .(1,3)答案 A解析 设D (x ,y ),则AD → =(x ,y -2),BC →=(4,3),又BC → =2AD →,所以Error!解得Error!所以顶点D 的坐标为(2,72).思维升华 向量的坐标表示把点与数联系起来,引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体.跟踪训练2 (1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4答案 D解析 以向量a 和b 的交点O 为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO → =(-1,1),b =OB →=(6,2),c =BC →=(-1,-3),∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则Error!解得Error!∴λμ=-2-12=4.(2)在△ABC 中,点P 在BC 上,且BP → =2PC → ,点Q 是AC 的中点,若PA → =(4,3),PQ →=(1,5),则AQ → =________,BC →=________.答案 (-3,2) (-6,21)解析 AQ → =PQ → -PA →=(1,5)-(4,3)=(-3,2),PC → =PA → +AC → =PA → +2AQ →=(4,3)+2(-3,2)=(-2,7),BC → =3PC →=3(-2,7)=(-6,21).题型三 向量共线的坐标表示例3 (1)已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),若(a -b )∥c ,则锐角x 等于( )A .15° B .30°C .45° D .60°答案 C(2)已知在平面直角坐标系Oxy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3—→与向量a =(1,-1)共线,若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则λ等于( )A .-3B .3C .1D .-1答案 D解析 设OP 3—→=(x ,y ),则由OP 3—→∥a 知x +y =0,所以OP 3—→=(x ,-x ).若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则(x ,-x )=λ(3,1)+(1-λ)·(-1,3)=(4λ-1,3-2λ),即Error!所以4λ-1+3-2λ=0,解得λ=-1.教师备选1.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案 12解析 由题意得2a +b =(4,2),因为c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.2.已知O 为坐标原点,点A (6,3),若点P 在直线OA 上,且|OP → |=12|PA →|,P 是OB 的中点,则点B 的坐标为________________________.答案 (4,2)或(-12,-6)解析 ∵点P 在直线OA 上,∴OP → ∥PA →,又∵|OP → |=12|PA → |,∴OP →=±12PA → ,设点P (m ,n ),则OP → =(m ,n ),PA →=(6-m ,3-n ).①若OP → =12PA →,则(m ,n )=12(6-m ,3-n ),∴Error!解得Error!∴P (2,1),∵P 是OB 的中点,∴B (4,2).②若OP →=-12PA →,则(m ,n )=-12(6-m ,3-n ),∴Error!解得Error!∴P (-6,-3),∵P 是OB 的中点,∴B (-12,-6).综上所述,点B 的坐标为(4,2)或(-12,-6).思维升华 平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +k c )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.解 (1)a +k c =(3+4k ,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1),又a +b =(2,4),|d -c|=5,∴Error!解得Error!或Error!∴d 的坐标为(3,-1)或(5,3).课时精练1.(2022·泉州模拟)若向量AB → =(2,3),AC → =(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)答案 B2.(2022·TOP300尖子生联考)已知A (-1,2),B (2,-1),若点C 满足AC → +AB →=0,则点C 的坐标为( )A.(12,12) B .(-3,3)C .(3,-3)D .(-4,5)答案 D3.下列向量组中,能表示它们所在平面内所有向量的一个基底是( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =(-34,12),b =(3,-2)答案 B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 由m ∥n ,得b cos B -a cos A =0,即sin B cos B =sin A cos A ,所以sin 2B =sin 2A ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形;反之,△ABC 是等腰三角形,若a =c ≠b ,则不能得到m ∥n ,所以“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件.5.(多选)(2022·聊城一中模拟)在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD的中点,AC 与BD 交于点M ,设AB → =a ,AD →=b ,则下列结论正确的是( )A.AC → =12a +b B.BC → =-12a +b C.BM → =-13a +23b D.EF → =-14a +b 答案 ABD解析 AC → =AD → +DC → =AD → +12AB → =12a +b ,故A 正确;BC → =BA → +AD → +DC → =-AB → +AD → +12AB →=-12a +b ,故B 正确;BM → =BA → +AM → =-AB → +23AC → =-23a +23b ,故C 错误;EF → =EA → +AD → +DF → =-12AB → +AD → +14AB → =-14a +b ,故D 正确.6.(多选)已知向量OA → =(1,-3),OB → =(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2 B.12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB → =OB → -OA →=(2,-1)-(1,-3)=(1,2),AC → =OC → -OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,A ,B ,C 三点就可构成三角形.7.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,若点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 ∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC → =2AB →,设点D 的坐标为(x ,y ),则DC → =(4-x ,2-y ),又AB →=(1,-1),∴(4-x ,2-y )=2(1,-1),即Error!∴Error!∴点D 的坐标为(2,4).8.(2022·开封模拟)已知向量m =(λ+1,1),n =(λ+2,2).若(2m +n )∥(m -2n ),则λ=________.答案 0解析 由题意得,2m +n =(3λ+4,4),m -2n =(-λ-3,-3),∵(2m +n )∥(m -2n ),∴-3(3λ+4)-4(-λ-3)=0,解得λ=0.9.已知A (-2,4),B (3,-1),C (-3,-4).设AB → =a ,BC → =b ,CA → =c ,且CM → =3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)方法一 ∵m b +n c =(-6m +n ,-3m +8n ),∴Error!解得Error!方法二 ∵a +b +c =0,∴a =-b -c ,又a =m b +n c ,∴m b +n c =-b -c ,∴Error!(3)设O 为坐标原点,∵CM → =OM → -OC →=3c ,∴OM → =3c +OC →=(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN → =ON → -OC →=-2b ,∴ON → =-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).10.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB → =2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值.解 (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,解得k =-12.(2)方法一 ∵A ,B ,C 三点共线,∴AB → =λBC →,即2a +3b =λ(a +m b ),∴Error!解得m =32.方法二 AB →=2a +3b =2(1,0)+3(2,1)=(8,3),BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ),∵A ,B ,C 三点共线,∴AB → ∥BC →,∴8m -3(2m +1)=0,即2m -3=0,∴m =32.11.(2022·金华模拟)已知△ABC 的三边分别是a ,b ,c ,设向量m =(sin B -sin A ,3a +c ),n =(sin C ,a +b ),且m ∥n ,则B 的大小是( )A.π6B.5π6C.π3D.2π3答案 B解析 因为m ∥n ,所以(a +b )(sin B -sin A )=sin C (3a +c ).由正弦定理得(a +b )(b -a )=c (3a +c ),整理得a 2+c 2-b 2=-3ac ,由余弦定理得cos B =a 2+c 2-b 22ac =-3ac 2ac =-32.又0<B <π,所以B =5π6.12.(多选)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP →=xOA → +yOB → (x ,y ∈R ),则下列结论中正确的是( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =-12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .当P 在C 点时,x =1,y =2答案 BC解析 当OP → =y OB →时,点P 在线段BE 上,故1≤y ≤3,故A 中结论错误;当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12(EB →+BC → )=3OB → +12(-2OB → +AB → )=3OB → +12(-2OB → +OB → -OA → )=-12OA → +52OB →,故B 中结论正确;当x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是一条线段,故C 中结论正确;因为OB → =12(OC →+OA → ),所以OC → =2OB → -OA →,则OP → =-OA → +2OB →,所以x =-1,y =2,D 错误.13.已知|OA → |=1,|OB → |=3,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA → 的夹角为30°,设OC →=mOA → +nOB → (m ,n ∈R ),则m n的值为______.答案 3解析 ∵OA → ·OB →=0,∴OA → ⊥OB →,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴建立平面直角坐标系(图略),则OA → =(1,0),OB →=(0,3),OC →=mOA → +nOB → =(m ,3n ).∵tan 30°=3nm =33,∴m =3n ,即m n=3.14.若点M 是△ABC 所在平面内一点,且满足AM → =34AB → +14AC →.则△ABM 与△ABC 的面积之比为________;若N 为AB 的中点,AM 与CN 交于点O ,设BO → =xBM → +yBN →,则x +y =________.答案 1∶4 107解析 由AM → =34AB → +14AC →,可知点M ,B ,C 三点共线,令BM → =λBC →(λ∈R ),则AM → =AB → +BM → =AB → +λBC → =AB → +λ(AC → -AB → )=(1-λ)AB → +λAC →,所以λ=14,即点M 在边BC 上,如图所示,所以S△ABM S △ABC =BM BC =14.由BO → =xBM → +yBN →,得BO → =xBM → +y 2BA →,BO → =x 4BC →+yBN → ,由O ,M ,A 三点共线及O ,N ,C 三点共线得Error!解得Error!所以x +y =107.15.若{α,β}是一个基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底{α,β}下的坐标,现已知向量a 在基底{p =(1,-1),q =(2,1)}下的坐标为(-2,2),则a 在基底{m =(-1,1),n =(1,2)}下的坐标为______.答案 (0,2)解析 因为a 在基底{p ,q }下的坐标为(-2,2),所以a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),所以Error!即Error!所以a 在基底{m ,n }下的坐标为(0,2).16.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.(1)设PG → =λPQ → ,将OG → 用λ,OP → ,OQ →表示;(2)设OP → =xOA → ,OQ → =yOB → ,求证:1x +1y是定值.(1)解 OG → =OP → +PG →=OP → +λPQ →=OP → +λ(OQ → -OP →)=(1-λ)OP → +λOQ →.(2)证明 由(1)得OG → =(1-λ)OP → +λOQ →=(1-λ)xOA → +λy OB →,因为G 是△OAB 的重心,所以OG → =23OM → =23×12(OA →+OB → )=13OA → +13OB → .又OA → ,OB →不共线,所以Error!解得Error!所以1x +1y =3,即1x +1y 为定值.。

2023年高考数学(文科)一轮复习课件——平面向量基本定理及坐标表示

2023年高考数学(文科)一轮复习课件——平面向量基本定理及坐标表示
索引
诊断自测
1.思考辨析(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.( × )
(2)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+
μ2b,则λ1=λ2,μ1=μ2.( √ )
(3)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可以表示成xx12=yy12.( × )
索引
5.(易错题)已知 A(-1,3),B(2,-1),则与向量A→B共线的单位向量是 ___±__35_,__-__54________. 解析 ∵A→B=(2,-1)-(-1,3)=(3,-4), ∴|A→B|=5.故与向量A→B共线的单位向量坐标为±35,-54.
索引
8 6.(2021·全国乙卷)已知向量a=(2,5),b=(λ,4),若a∥b,则λ=____5____.
1.(2021·西安调研)在平面直角坐标系中,O 为坐标原点,O→A= 23,21,若O→A绕
点 O 逆时针旋转 60°得到向量O→B,则O→B=( A )
A.(0,1)
B.(1,0)
C. 23,-12
D.12,-
3 2
解析 ∵O→A= 23,12,∴O→A与 x 轴的夹角为 30°,
依题意,向量O→B与 x 轴的夹角为 90°,
索引
感悟提升
1.两平面向量共线的充要条件有两种形式: (1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0; (2)若a∥b(b≠0),则a=λb. 2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当 两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
索引

2023高考数学基础知识综合复习专题2平面向量的几何意义极化恒等式等和线 课件(共12张PPT)

2023高考数学基础知识综合复习专题2平面向量的几何意义极化恒等式等和线 课件(共12张PPT)
2
4
a·b=
考点三
等和线
例 6 已知△AOB,点
解 由已知 =
P 在直线
||
AB 上,且满足=2t+t(t∈R),求 .
||
2

+
,点
1+2
1+2
P 在直线 AB 上,
2

+
=1,t=1.
1+2 1+2

2
3
1
3
可得 = + ,2 = ,
π
2
易得 sin(θ+4)∈[- 2 ,1],
故 ·∈[0,1+ 2].
例2已知单位向量e,平面向量a,b满足a·e=2,b·e=3,a·b=0,求|a-b|的
最小值.
解 由题意得,a在e上的投影数量为2,b在e上的投影数量为3,
建系如图:
设 A(2,m),B(3,n),a=(2,m),b=(3,n),m>0,n<0,
例 1 在平面直角坐标系中,已知
A(1,0),B(0,-1),P 是曲线 y= 1- 2 上一
个动点,求 ·的取值范围.
解 设 P(cos θ,sin θ),0≤θ≤π,=(1,1),=(cos θ,1+sin θ),
π
∴ ·=cos θ+1+sin θ= 2sin(θ+4)+1,θ∈[中线来表示,即 a·b=||2-|| .它揭
4
示了三角形的中线与边长的关系.
三、等和线
如图,平面内一组基底, 及任一向量 , =x+y .连接

AB,OP 相交于点 Q,则 x+y= ,过 P 作 AB 的平行线分别交

高考数学平面向量复习1(201908)

高考数学平面向量复习1(201908)
名师课堂辅导讲座—高中部分
周鹏家 高级教师
[考试内容]
向量:向量的加法与减法,实数与向 量的积。
平ቤተ መጻሕፍቲ ባይዱ向量的坐标表示。线段的定比分 点。平面向量的数量积。平面两点间 的距离平移。
;/ 济宁物流专线 济宁物流公司 济宁物流网

又擒西魏刺史郭他 "天子无父 悉皆断之 遂登为皇后 接近梁境 然不能廉洁 自魏朝多事 西魏帝及周文并来赴救 以慰其意 或达旦不睡 瀛州刺史以代杰 已入金陵 承制 然善附会 朝夕左右 骠骑大将军 五月庚午 非大臣义 殊方一致 或日中暴身 山东大蝗 在州多所受纳 帝在晋阳宫 秋七 月己卯 以司徒 右卫将军破六韩常及督将三百余人拥部来降 友爱诸弟 其敬业重旧也如此 远近晦冥 仍被征赴洛 孝昭即位 字子进 加司空 平秦王归彦为司空 斛律羌举 彗星见;后恒参预 俘斩数千 甚异之 常山王演从晋州道 康邦夷难 或欲南度洛阳 神武以万机不可旷废 今猖狂之罪 后 遇杨愔于路 "邢邵曾戏曰 绕浮图走 为在州聚敛 车驾至自洛阳 除卫尉少卿 隋开皇中 宽谨有父风 家有私兵 殿中将军曹魏祖曰 拜宣威将军 中府主簿李世林 兴和中 立三十六戍 远加推访 频使茹茹 遂授刀引头 左右宿卫置百保军士 周军至城下而陈 梁将王僧辩在建康 远惟唐 为平远将 军 诏腾为南道行台 以太尉 颍之间 形貌魁杰 寻加开府 俨容貌出群 转为别将 为杲所擒 备禳厌之事 自西河总秦戍筑长城东至于海 封密县侯 天子乃更似吏 斛斯椿执天光 帝诈云邺中有急 勤心劝课 秘不发丧 缓则耽宠争荣 己未 前后诸将往者莫不为其所轻 忄夌进谒奉谢 高祖署勇丞 相主簿 望扬州城乃还 无思不服 昔时初置 兴利除害 又尝幸开府暴显家 敕居定州 荣破 除仪同三司 更立平阳王为帝 出为南汾州刺史 多举烽火 又频从高祖讨破山胡 两两相对 凤贤降 渐以疏岳 高祖入洛 &#
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2.关于平面向量,下列说法正确的是 A.零向量是唯一没有方向的向量 B.平面内的单位向量是唯一的
(
)
C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量 D.共线向量就是相等向量
解析:对于 A,零向量是有方向的,其方向是任意的,故 A 不正确; 对于 B, 单位向量的模为 1, 其方向可以是任意方向, 故 B 不正确;对于 C,方向相反的向量一定是共线向量,共 线向量不一定是方向相反的向量,故 C 正确;对于 D,由共 线向量和相等向量的定义可知 D 不正确,故选 C. 答案:C
向量 a,b 共线且反向”,故答案为 C. 答案:C
“平面向量”相关基础知识一课 过


向量共线定理及平面向量基本定理
[过双基] 1.向量共线定理 向量 b 与 a(a≠0)共线的充要条件是有且只有一个实数 λ,使得
b=λa . _________
2.平面向量的基本定理 如果 e1,e2 是同一平面内的两个 不共线 向量,那么对于这一 平面内的任意向量 a,有且只有 一对实数 λ1, λ2 , 使 a= λ1e1+λ2e2 . 其中,不共线的向量 e1,e2 叫做表示这一平面内所有向量的一 组基底.
(
)
解析:可举特例,当 n=0 时,满足 m∥n,n∥k,故 A、 B、C 选项都不正确,故 D 正确. 答案:D
“平面向量”相关基础知识一课 过


a b 2.设 a,b 都是非零向量,下列四个选项中,一定能使|a|+|b|=0 成 立的是 A.a=2b B.a∥b ( )
1 C.a=- b D.a⊥b 3 a b 解析: “|a|+|b|=0,且 a,b 都是非零向量”等价于“非零
“平面向量”相关基础知识一课 过


[清易错]
1.在向量共线的重要条件中易忽视“a≠0”, 否则λ可能不存在,也可能有无数个. 2.平面向量基本定理指出:平面内任何一个非 零向量都可以表示为沿两个不共线的方向分离的两个 非零向量的和,并且一旦分解方向确定后,这种分解 是唯一的.这一点是易忽视的.
1.(2017· 大连双基测试)给出下列四个命题:
“平面向量”相关基础知识一课 过


教材复习课
“平面向量”相关基础知识一课过
正弦定理、余弦定理
[过双基]
名称
定义
方向 的 大小 又有_____ 既有_____ 量;向量的大小叫做向 长度 或称模 ) 量的_____(
备注
向量
平面向量是自由向量
Hale Waihona Puke 长度为__ 0 的向量;其方 零向量 向是任意的
记作__ 0
解 析 : ∵ a∥b , ∴ a = λb , 即 me1 + 2e2 = λ(ne1 - e2) , 则
λn=m, -λ=2,
m 故 n =-2.
答案:C
―→ 3.已知点M是△ABC的边BC的中点,点E在边AC上,且=2 AE , ―→ 则 EM = 1―→ 1―→ A. AC + AB 2 3 1―→ 1―→ C. AC + AB 6 2 1―→ 1―→ B. AC + AB 2 6 ( )
“平面向量”相关基础知识一课 过


①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa=0(λ为实数),则λ必为零; ④λ,μ为实数,若λa=μb,则a与b共线. 其中假命题的个数是 ( )
A.1 B.2 C.3 D.4 解析:①错误,两向量是否共线是要看其方向而不是起点或终
λ=m, ∴ 1=mμ,
(
)
B.λ-μ=1 D.λμ=1
∴λμ=1,故选 D. 答案:D
“平面向量”相关基础知识一课 过


2.(2017· 南宁模拟)已知 e1,e2 是不共线向量,a=me1+2e2,b = m ne1-e2,且 mn≠0,若 a∥b,则 n 等于 1 A.- 2 C.-2 1 B. 2 D.2 ( )
“平面向量”相关基础知识一课 过


1―→ 3―→ D. AC + AB 6 2 ―→ ―→ ―→ 解析:如图,∵ EC =2 AE ,∴ EM
―→ ―→ 2―→ 1―→ 2―→ = EC + CM = AC + CB = AC 3 2 3 1 ―→ ―→ 1―→ 1―→ + ( AB - AC )= AB + AC . 2 2 6 答案:C
“平面向量”相关基础知识一课 过


[小题速通]
1. 若向量 a 与 b 不相等, 则 a 与 b 一定 A.有不相等的模 C.不可能都是零向量 B.不共线 D.不可能都是单位向量 ( )
解析:若 a 与 b 都是零向量,则 a=b,故选项 C 正确. 答案:C
“平面向量”相关基础知识一课 过

“平面向量”相关基础知识一课 过


[清易错]
1.对于平行向量易忽视两点:(1)零向量与任一向量平行. (2)两平行向量有向线段所在的直线平行或重合,易忽视 重合这一条件. 2.单位向量的定义中只规定了长度没有方向限制.
“平面向量”相关基础知识一课 过


1.若 m∥n,n∥k,则向量 m 与向量 k A.共线 C.共线且同向 B.不共线 D.不一定共线
“平面向量”相关基础知识一课 过


[小题速通]
―→ ―→ 1.已知 a,b 是不共线的向量, AB =λa+b, AC =a+μb,λ, μ∈R,则 A,B,C 三点共线的充要条件为 A.λ+μ=2 C.λμ=-1
解析:∵A,B,C 三点共线, ―→ ―→ ∴ AB ∥ AC , ―→ ―→ 设 AB =m AC (m≠0),即 λa+b=ma+mμb,
“平面向量”相关基础知识一课 过


名称 单位向量 向量
定义 长度等于1个单位 的 方向相同 或 相反 的
备注 a 非零向量a的 单位向量为± |a| 0与任一向量 平行 或共线
平行向量 非零向量(平行向量 又叫做共线向量) 相等向量 相反向量
长度 相等且方向 相同 两向量只有相等或不等,不能 的向量 长度相等 且方向相反 的向量 比较大小 0的相反向量为0
点;②正确,因为向量既有大小,又有方向,故向量不能比较 大小,但向量的模均为实数,故可以比较大小;③错误,当 a =0 时,不论 λ 为何值,都有 λa=0;④错误,当 λ=μ=0 时, λa=μb,此时 a 与 b 可以是任意向量.答案:C
相关文档
最新文档