挤压铸造原理及缺陷分析

合集下载

压铸件缺陷分析

压铸件缺陷分析

产生原因
防止方法
名称
沿开模具方向
1. 型腔表面有损伤。
1. 修理模具表面损伤处, 修正
铸件表面呈线条
2. 出模方向斜度太小或倒斜。
斜度,提高光洁度。
状的拉伤痕迹, 有 3. 顶出时偏斜。
2. 调整顶杆,使顶出力平衡。
一定深度, 严重时 4. 浇注温度过高或过低、模温
3. 更换脱模剂。
压铸机性能,所提供的能量能否满足所需要的压射条件:压射力、压射速度、锁模力是 否足够。压铸工艺参数选择及调控是否合适,包括压力、速度、时间、冲头行程等。 2) 压铸模引起
模具设计:模具结构、浇注系统尺寸及位置、顶杆及布局、冷却系统。 模具加工;模具表面粗糙度、加工精度、硬度。
模具使用:温度控制、表面清理、保养。 3) 压铸件设计引起
压铸件缺陷分析
一、 缺陷分类及影响因素 1.缺陷分类 1) 几何缺陷:压铸件形状、尺寸与技术要求有偏离;尺寸超差、挠曲、变形等。 2) 表面缺陷:压铸件外观不良,出现花纹、流痕、冷隔、斑点、缺肉、毛刺、飞边、缩痕、 拉伤等。 3) 内部缺陷:气孔、缩孔、缩松、裂纹、夹杂等,内部组织、机械性能不符合要求。 2.影响因素 1) 压铸机引起
1. 降低浇注温度,减少收缩量。
查,孔洞形状不 规则、不光滑、
收缩而得不到金属液补偿而 造成孔穴。
2. 提高压射比压及增压压力, 提高致密性。
表面呈灰色;大
2. 浇注温度过高,模温梯度分
3. 修改内浇口,使压力更好传
而集中为缩孔、
布不合理。
缩孔 小 而 分 散 为 缩 3. 压射比压低, 增压压力过低。
高熔点合金。
加而不断扩大和
4. 浇注温度过高。

压铸件的缺陷分析

压铸件的缺陷分析

压铸件的缺陷分析压铸是一种高效率的金属成型工艺,广泛应用于汽车、电子、航空、机器制造等领域。

然而,压铸件在生产过程中常常会出现各种缺陷,这些缺陷会影响产品的质量、性能和寿命。

本文将详细分析压铸件的几何缺陷、表面缺陷和内部缺陷。

1. 几何缺陷几何缺陷是压铸件中最常见的缺陷之一。

这类缺陷主要包括尺寸偏差、形状不规则、位置偏移等。

(1)尺寸偏差:压铸件的尺寸与设计要求存在偏差。

原因可能包括模具制造误差、压铸温度过高、压力不均匀等。

(2)形状不规则:压铸件的表面形状与设计要求不一致。

原因可能包括模具磨损、浇口设计不合理等。

(3)位置偏移:压铸件在模具中的位置出现偏差。

原因可能包括模具松动、压射头磨损等。

2. 表面缺陷表面缺陷主要包括气孔、夹杂、裂纹等。

(1)气孔:压铸件表面出现圆形或椭圆形孔洞,直径通常在0.5~1.0mm之间。

原因可能包括模具温度过低、金属原料不纯等。

(2)夹杂:压铸件表面出现黑色或褐色斑点,直径通常在0.1~0.3mm 之间。

原因可能包括原料不纯、模具温度过高、压铸速度过快等。

(3)裂纹:压铸件表面出现垂直于应力方向、宽度在0.1mm左右的微小凹槽或裂纹。

原因可能包括模具温度过高、金属材料脆性大等。

3. 内部缺陷内部缺陷主要包括晶粒间距、偏析、缩松等。

(1)晶粒间距:压铸件晶粒分布不均匀,晶粒大小不一,导致力学性能下降。

原因可能包括冷却速度过慢、浇口设计不合理等。

(2)偏析:压铸件中化学成分分布不均匀,出现局部富集或贫乏的现象。

原因可能包括冷却速度过快、压力不均匀等。

(3)缩松:压铸件内部出现直径在0.3~1.0mm之间的微小孔洞或缝隙。

原因可能包括浇口设计不合理、压力不足等。

针对以上缺陷,可以采取以下解决方案:1. 几何缺陷:通过提高模具制造精度、优化压铸工艺参数(如控制压铸温度和压力)、定期检查和维修模具等方式来减少尺寸偏差、形状不规则和位置偏移等问题。

2. 表面缺陷:通过提高模具温度、选用高质量原料、优化压铸工艺参数(如降低压铸速度)等方式来减少气孔、夹杂和裂纹等问题。

各类压铸缺陷及其原因解析

各类压铸缺陷及其原因解析
原因: 1.料温、模温偏低 2.压射速度偏低 3.合金流动性差 4.浇注系统不合理 5.涂料喷涂过多 6.模具型腔过深、模具过于
复杂 检验手段:目测
积碳:
特征:涂料经过高温形 成的氧化物粘附在模具 上,铸件表面发白且粗 糙的表面。
原因:
1.涂料喷涂过多 2.涂料过浓 3.模温偏低 4.未及时抛光去除 检验手段:喷漆、目测
粘模:
特征:铸件出现因模具上粘 附多余材料而形成的合金未 能填充现象
原因:
1.多余材料粘附在模具上 2.模具表面粗糙 3.模温太高 4.拔模斜度小 5.浇注速度快、填充模式不
正确
检验手段:目测、去毛刺观 察
拉伤:
特征:由于金属粘附在 模具表面出现的铸件表 面拉伤痕迹
原因:
1.拔模斜度小 2.铸件顶出偏斜 3.模具表面粗糙 4.涂料喷涂不到位 5.合金粘附模具表面 检验手段:目测、喷漆
培训目的
品质部门现阶段的培训都是为了使大家对压 铸件品质方面有一个基础的认知。
所有培训的有效性都体现在理解以及执行力 上,明确检验员的三大职能(预防、把关、 反馈),不然所有的培训都只是形式。
检验员的职业道德核心是责任心! 对自己负责,对品质负责,对公司负责。
(对自己的钱包负责、对自己的职业道德负责、对自己的良心负责)
4.模具温度较低 检验手段:抛光
麻面:
特征:表面细小麻点分布 区域
原因:
1.模温太低、料温太低 2.填充金属分散成密集
滴液,高速撞击型壁
3.内浇口厚度偏小 检验手段:目测、喷漆
冲刷:
特征:浇口附近出现的较大 面积凸起物
原因: 1.模具刚性不够 2.模具老化 3.浇注速度过高 4.料温过高、预热不够 5.未定期热处理 检验手段:目测、打磨后观察

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析上海大学 唐多光3 张金龙昆山易通汽配厂 徐张翼沈友良 程黔国摘 要 论述了以低速、大流量、平稳充填铸型并在瞬间及时增压是挤压铸造的基本原理。

分析了实际铸造比压偏小以及不能瞬间及时增压是造成摩托车车轮挤压铸件表面起泡和冷隔的主要原因。

为防止挤压铸造铸件缩裂、缩孔产生和提高铸造比压,推荐一种合理料缸(压室)设计。

关键词:挤压铸造 增压 表面气泡 冷隔 缩裂纹中图分类号:TG249.2 文献标识码:A 文章编号:1001-2449(2003)01-0043-031 前言随着轿车工业飞速发展,轿车轻量化是轿车制造厂商首选目标之一。

全世界轿车铝合金用量到2005年可望达到112kg/辆水平。

而决定这一指标的关键是铝合金零件品质。

铝合金压铸件占轿车铝合金零件60%以上[1,2]。

然而常规铝合金压铸由于射速太快(30~60m/s),铝合金压铸件内含有许多气泡,铸件不能承受热处理,力学性能不能提高,铸件也不能深度加工(加工量限1mm内),压铸件承受压力和气密性要求也十分困难。

因此常规压铸要承担制造高品质、高强度、高气密性轿车零件任务遇到极大困难。

近年来发展一种以低速、大流量平稳充型、瞬时增压的挤压铸造技术,弥补了压铸缺陷并迅速被推广应用。

但由于缺乏正确理论引导,许多厂家一哄而上,在遇到困难后又纷纷下马。

摩托车车轮行业,1992年后挤压铸造车轮一度占有市场40%以上,现在已萎缩到不足10%,而且都是低档产品。

笔者根据挤压铸造基本原理,分析了缺陷产生原因并提出了对策。

2 挤压铸造原理挤压铸造是将合金以较低速度和较大流量平稳地挤入铸型后,瞬时增压,使合金精确复制铸型并在高压下凝固的一种铸造技术[3]。

2.1 挤压铸造基本特点(1)挤压铸造设备必须能够提供低速(0.5~3m/s),大流量(1~5kg/s)填充铸型能力,以便使金属液较平稳地填充铸型和将型内气体驱出铸型,而且要求在铸型被充满后瞬间(50~150ms内)将铸型内铸造比压提升到60~100MPa,使合金在高压下成型和凝固。

挤压件常见缺陷

挤压件常见缺陷

第二章挤压基本原理第四节挤压件的常见缺陷冷挤压时往往由于变形工序设计不妥,会使坯料在挤压成形过程中产生各种缺陷。

因此,只有预先了解这些缺陷的成因,才能在设计变形工序时,采取有效的解决办法来确保生产出合格的挤压件。

一、表面折叠多余的表皮金属被压入坯料表层所形成的缺陷,称为表面折叠。

例如在正挤压中,挤压头部较粗大的杆形件,需要采用两道成形工序。

如果在第一道正挤压中工件的头部与杆部连接处圆弧太大或相应锥角太小,则在第二道成形工序中因凹模的圆角半径较小,便有可能使坯料过渡区部分的材料被压入端部的底平面上,而形成如图2-11a所示的折叠。

又如,反挤压时凹摸底部设有较大的圆角半径,而坯料底部为直角过渡,在挤压过程中就会产生折叠,它的形成过程见图2-11b、C。

如果挤压变形继续进行,这种折叠还会被移到工件的侧面。

二、二、表面折缝在变形过程中,多余的表皮金属受阻而在其边界处积聚,随着变形的继续进行深入到材料内部所形成的一种缺陷,正称为表面折缝。

当正挤压出现死角区时,如图2-12a所示的D区,坯料后半部分的表皮金属向凹模出口方向滑动受到死角区金属的阻碍,多余的表皮金属被积聚在死角区入口处。

随后,多余的表皮金属沿滑移面被拉入金属内部,并随金属的流动一起向前延伸,从而形成折缝。

有时,挤压件从凹模中取出后,死角区金属很快脱落,就是这种缺陷所致。

同理,反挤压与复合挤压时,也会因其变形的死角区金属阻止表皮金属滑动而产生折缝。

图2-12b为反挤时底部死角区的剥落,图c为复合挤压的横向折缝。

a) b) c)图2 -12挤压表面折缝a) 正挤压时的表面折缝b)反挤压时的死角区剥落c)复合挤压时的横向折缝三、缩孔缩孔是指变形过程中变形体一些部位上产生较大的空洞或凹坑的缺陷。

当正挤压进行到待变形区厚度较小、甚至只有变形区而无待变形区厚度时,会产生图2-13a所示的缩孔。

若变形程度较大,润滑条件、凹模入口又不利,则中心层的金属流动快,外层流动落后于中心层,产生浅缩孔;若外层金属根本不向下移动,反而向上移动,便产生很深的缩孔。

常见压铸件缺陷及解决方法

常见压铸件缺陷及解决方法

常见压铸件缺陷及解决方法常见的压铸件缺陷包括疏松、气孔、烧结、裂纹、砂眼等。

下面将对这些缺陷进行逐一解释,并提供相应的解决方法。

1.疏松:疏松是由于熔融金属凝固时形成的气体或未熔化的固体杂质在压铸件内部形成气孔而导致的。

疏松不仅会降低压铸件的强度和硬度,还会引起气门席位不密封、变形等问题。

解决方法包括合理选择冷料铸造工艺、提高铸型制备技术、优化压铸工艺参数等。

2.气孔:气孔是由于熔金属在充型过程中,未排出液态金属中的气体而形成的。

气孔通常呈现为孔洞状,会严重影响压铸件的表面质量和机械性能。

解决方法包括改善金属液的质量、提高模具排气性能、优化压铸工艺参数、采用真空压铸等。

3.烧结:烧结是指在压铸过程中,由于金属在高温高压条件下与模具接触过久而发生的表面热蚀伤。

烧结会引起表面孔洞、氧化和金属元素丢失等问题。

解决方法包括使用合适的模具材料、降低模具温度、缩短冷却时间等。

4.裂纹:压铸件中的裂纹可以是细小的微裂纹,也可以是较大的结构性裂纹。

裂纹会导致压铸件的破坏、漏气和泄漏等问题。

解决方法包括增加浇注系统的冷却时间、提高模具的强度和刚度、优化压铸工艺参数等。

5.砂眼:砂眼是因为铸件表面存在颗粒状材料,如砂粒等而形成的凹陷或凸起。

砂眼会影响压铸件的美观性和表面质量。

解决方法包括优化型腔冷却系统、提高浇注系统的冷却时间、改善铸型制备工艺等。

总的来说,要解决常见的压铸件缺陷,需要从改善熔融金属的质量、优化模具设计和制备工艺、调整压铸工艺参数等多个方面入手。

此外,还需要采用适当的检测手段,如金相分析、X射线检测、超声波检测等,对压铸件进行质量检验,及时排除可能存在的缺陷。

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析挤压铸造是一种将熔融金属挤压入模具中制造零件的方法。

其原理是通过一个称为挤压器的设备,在高温下应用高压将熔融金属挤压入永久性金属模具中,形成所需形状的零件。

这种工艺是高效率、高精度和高可靠性的制造方法之一。

挤压铸造的过程是将熔化的金属通过压力挤压入设计好的金属模具中。

在挤压过程中,金属将受到高度的压缩力,以使其具有所需的形状和结构。

这种挤压过程需要高度的技巧和专业知识,以确保零件的质量可靠。

挤压铸造的优点包括高精度、高品质、高效率、低成本、短周期、较少的加工量和高重复性。

另外,挤压铸造可用于制造一些常规铸造方法无法制造的零件。

挤压铸造过程中存在的缺陷包括:1. 内部气孔:在挤压过程中,熔化的金属流动性良好,但可能会导致在制造过程中产生气泡。

这些气泡会影响零件的质量和强度,甚至可能导致零件崩溃。

2. 金属受力不均:在挤压过程中,金属受到的压力和力量可能不均匀分布,这可能导致零件的某些区域强度低下。

3. 熔化的金属会受到冷却:在挤压过程中,金属会受到自然冷却。

这可能会降低材料的可加工性,并影响零件的准确度和质量。

4. 模具磨损:在整个挤压过程中,模具接触熔化的金属多次,并经受高压挤压力作用。

这可能导致模具表面磨损、裂纹或其它缺陷,进而影响零件质量。

5. 长时间的实验和制造周期:挤压铸造通常需要花费较长的时间来制造。

这可能导致生产周期较长,并且对公司的成本和效率产生不利影响。

总之,虽然挤压铸造具有创新性、可靠性和高效性等优点,但同时也存在一些缺陷,需要在制造过程中得到控制和解决。

压铸件缺陷产生原因及对应措施

压铸件缺陷产生原因及对应措施

1.降低浇注温度,减少收缩量 2.提高压射比压及增压压力,提高致密 性 3.修改内浇口,使压力更好传递,有利 于液态金属补缩作用 4.改变铸件结构,消除金属积聚部位, 壁厚尽可能均匀 5.加快厚大部位冷却 6.加厚料柄,增加补缩的效果
3
夹杂
1.炉料不洁净,回炉料太多 混入压铸件内的金属或非金属 2.合金液未精炼 杂质,加工后可看到形状不规 3.用勺取液浇注时带入熔渣 则,大小、颜色、亮度不同的 4.石墨坩埚或涂料中含有石墨脱落混 点或孔洞 入金属液中 5.保温温度高,持续时间长 1.铝合金中杂质锌、铁超过规定范围 铸件基体金属晶粒过于粗大或 2.合金液过热或保温时间过长,导致 极小,使铸件易断裂或磁碎 晶粒粗大 3.激烈过冷,使晶粒过细 1.压力不足,基体组织致密度差 2. 内部缺陷引起,如气孔、缩孔、渣 压铸件经耐压试验,产生漏气 孔、裂纹、缩松、冷隔、花纹 、渗水 3.浇注和排气系统设计不良 4.压铸冲头磨损,压射不稳定 机械加工过程或加工后外观检 查或金相检查:铸件上有硬度 高于金属基体的细小质点或块 状物使刀具磨损严重,加工后 常常显示出不同的亮度 一、非金属硬点: 1.混入了合金液表面的氧化物 2.合金与炉衬的反应物 3.金属料混入异物 4.夹杂物
铸件缺陷产生原因及应对措施
一、表面缺陷
序号 缺陷名称 特征
沿开模方向铸件表面呈现条状 的拉伤痕迹,有一定深度,严 重时为一面状伤痕;另一种是 金属液与模具产生焊合、粘附 而拉伤,以致铸件表面多肉或 缺肉
产生原因
1.型腔表面有损伤 2.出模方向斜度太小或倒斜 3. 顶出时偏斜 4.浇注温度过高或过低、模温过高 导 致合金液产生粘附 5.脱模剂使用效果不好 6. 铝合金成分铁含量低于 7.冷却时间过长或过短 1.合金液在压室充满度过低,易产生 卷气,压射速度过高 2. 模具排气不良 3. 熔液未除气,熔炼温度过高 4.模温过高,金属凝固时间不够,强 度不够,而过早开模顶出铸件,受压 气体膨胀起来 5.脱模剂太多 6.内浇口开设不良,充填方向不顺

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。

挤压铸造原理及特点1.1.基本原理挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。

由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。

1.2.挤压铸造的特点挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。

首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。

由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。

由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于200mm)。

与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高于其他铸造方法约2~3倍。

挤压铸造的生产工艺流程以直径190系列的铝活塞为例,介绍挤压铸造的工艺流程,挤压铸造借鉴于压力铸造和模锻工艺,其大体工艺流程为把液态金属直接浇入金属模内。

挤压缺陷及其消除方法

挤压缺陷及其消除方法
1.精心设计、制造和管理模具 2.加强模具尺寸和制品尺寸检查 3.严格控制挤压速度 4.认真进行定尺型材铸锭长度的计算, 并且要考虑制品正偏差系数
1.提高设计和制造水平 2.安装合适的导路,牵引挤压 3.对流速慢的部位进行润滑或修模
1.不要随便停车或突然改变挤压速度 2.不要用手突然搬动型材,可用工具慢 慢导正
2.挤压筒和挤压垫片太脏,沾有油污、水分 、石墨等
3.更换合金时,筒内未清理干净
气泡或起皮 4.铸锭表面铲槽太多,过深;或铸锭表面有 气孔、砂眼、组织疏松、有油污等
5.挤压筒温度和铸锭温度太高
6.铸锭尺寸超过允许负偏差
7.填充太快,铸锭温度不均,引起非鼓形充 填,因而筒内排气不完全
8.切压余时空气进入
表面腐蚀
3.挤压机工作台面不平 挤压时工作台漏水,制品表面的水未及时清 除 1.模具设计不合理
焊缝不合格பைடு நூலகம்
2.挤压系数太小 3.挤压温度太低 4.挤压速度太快 焊缝不合格 5.挤压垫片有油 6.压余太短,以至于产生缩尾 7.铸锭表面太脏 8.合金不合适
消除方法
1.严格执行各项加热和挤压规范 2.修改模具设计、精心加工
4.尺寸检查错误或漏检
尺寸不合格 5.挤压时铸锭温度升得太高,挤压速度变化 太快
6.对定尺产品,因铸锭长度计算错误或毛料 切得太短,或因制品尺寸正偏差而引起不够 定尺长度
扭拧 弯曲 波浪
1.模孔设计不合理 2.导路不合适或为安装导路 3.模具润滑不适当 4.挤压速度不合适
1.挤压速度突变或中间停车
硬弓 2.挤压过程中,操作人员用手突然搬动型材
及时修理漏水位置,制品上有水要及 时擦干净或干燥处理 1.合理设计模具
2.适当增大挤压系数 3.适当提高挤压温度 4.适当降低挤压速度 5.垫片不涂油或少涂油 6.适当增加压余长度 7.采用表面清洁的铸锭挤压 8.选用适当的合金

压铸不良原因与措施

压铸不良原因与措施

压铸不良原因与措施压铸是一种常见的金属加工方法,用于制造各种各样的金属零件。

然而,在压铸过程中常常会出现一些不良情况,导致产品质量下降或无法使用。

以下是一些常见的压铸不良原因及相应的措施。

1.缩孔(针眼)原因:高温熔融金属凝固时,金属液缩小所形成的孔洞。

措施:-控制材料的熔点和凝固温度,避免温度过高。

-提高注入压力和速度,确保金属充实完全。

-控制铸造工艺参数,如浇注温度、压力和速度,减少气体夹杂物。

2.气孔原因:熔融金属中混入空气或水分,冷凝成孔洞。

措施:-净化材料,确保金属液没有杂质。

-增加浇注温度,减少金属和气体冷凝。

-提高注入速度,使气体远离金属液。

3.热裂纹原因:金属在凝固过程中,由于残余应力、金属浓缩和组织缺陷等原因引起的开裂。

措施:-优化铸造工艺,减少或消除金属残余应力。

-控制金属的凝固速度,避免快速凝固造成应力集中。

-添加合适的合金元素,改善金属组织结构。

4.狭长缺陷原因:熔融金属填充模腔的过程中,金属液流动不均匀,形成局部过渡缩小的缺陷。

措施:-设计合理的铸造模具,确保金属液能够均匀填充模腔。

-调整铸造工艺参数,如入口和出口位置、浇注温度和速度,改善金属液流动状态。

-使用合适的流道和浇口设计,使金属流动更加均匀。

5.长气孔原因:金属液注入模腔的过程中,气体无法顺利排出,形成长而突出的孔。

措施:-增大出口尺寸,提高气体排出的通道。

-调整浇注顺序,避免气泡在金属液中积聚。

-使用适当的排气装置,确保顺畅排出气体。

6.表面不良原因:压铸件表面出现裂纹、气孔、疤痕等缺陷。

措施:-增加模具的冷却系统,提高金属液凝固速度。

-优化模具表面处理,减少摩擦和热传导。

-控制铸造工艺参数,如浇注温度和速度,减少金属液与模具的接触时间。

总之,压铸不良的原因和措施是多种多样的,需要根据不同情况采取相应的措施。

通过优化材料、设计模具、调整工艺参数等方法,可以有效地减少压铸不良,提高产品质量。

压铸常见缺陷、原因及改进措施

压铸常见缺陷、原因及改进措施

渗漏
水、
合金选择不当
提高比压 改进浇注系统 选用良好合金
排气不良
改进排气系统
二十四、 化学成分 不符合要

经化学分析,铸件合 金不符要求或杂质太

配料不正确 原材料及回炉料未加分析即行投入使用
炉料应经化学分析后才能配用
炉料应严格管理,新旧料要按一定比例 配用 严格遵守熔炼工艺,熔炼工具应刷涂料
编制:
涂料不纯或用量过多 涂料中石墨含量过多
充型过程中由于模具 填充时金属分散成密集液滴,高速撞击
十四、麻 面
温度或合金液温度过 低,在近似于欠压条 件下铸件表面形成的
型壁
细小麻点状分布区域 内浇口厚度偏小
涂料使用应薄而均匀,不能堆积,要用 压缩空气吹散
减少涂料中的石墨含量或选用无石墨水 基涂料
正确设计浇注系统,避免金属液产生喷 溅,改善排气条件,避免液流卷入过多 气体,降低内浇口速度并提高模具温度
合金收缩率大 内浇口截面积太小
比压偏低
模具温度过高
合理设计浇注系统,避免合金液直接冲 击型芯、型壁,适当降低填充速度
修正模具
打光表面,保证粗糙度符合要求 涂料使用薄而均匀,不能漏喷涂料
适当增加含铁量至0.8-1%
改善铸件结构,使壁厚稍为均匀,厚薄 相差较大的连接处应逐步缓和过渡,消 队热节
选择收缩率较小的合金
合金液过热或保温时间过长
合金不宜过热,避免合金长时间保温
二十二、 碎性
铸件基本金属粒过于 粗大或细小,使铸件
易断裂或碰碎
激烈过冷,结晶过细 铝合金中杂质锌、铁等含量太多
铝合金中含铜量超出规定范围
提高模具温度,降低浇注温度
严格控制合金化学成分

挤压变形的主要缺陷

挤压变形的主要缺陷

挤压变形的主要缺陷1、模具的影响在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。

模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。

在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了吸附颗粒。

随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。

若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。

我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。

有的被型材拉脱,形成了吸附颗粒。

因此,模具是造成吸附颗粒的关键因素。

2、挤压工艺的影响挤压工艺参数的选择正确与否也是影响吸附颗粒的重要因素。

经过现场观察,挤压温度、挤压速度过高,吸附颗粒就越多,原因是由于温度高、速度快,型材流动速度增加,模具变形的程度增加,金属的流动加快,金属的变形抗力相对减弱,更易形成粘铝现象;对大的挤压系数来说,金属的变形抗力相对增加了,死区相对增大,提高了形成粘铝的条件,形成吸附颗粒的概率增加;铸棒加热温度与模具温度之差过大,也易造成粘铝问题,甚至堵模;工模具表面的粗糙度、工作带表面的硬度等,也是造成粘铝,形成吸附颗粒的原因之一。

3、铸棒质量的影响铸棒质量是影响铝型材表面及挤压成型的重要因素。

吸附颗粒的成因与铸棒质量有很大关系。

铸棒的组织缺陷常见的有夹渣、疏松、晶粒粗大、偏析、光亮晶粒等。

夹渣是混入铸棒的熔渣、氧化皮或其他杂质,也叫夹杂。

低倍试片上一般呈现形状不规则的黑洞,凹陷于基体,是一些不同颜色的、无定形的松软组织,破坏了铸棒的连续性。

在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,形成吸附颗粒;疏松是在晶界及枝晶网络出现的宏观和微观的分散性缩孔。

挤压缺陷鉴别与原因分析及改善措施培训教材

挤压缺陷鉴别与原因分析及改善措施培训教材

挤压缺陷鉴别与原因分析及改善措施培训教材汇报人:文小库2023-11-16•挤压缺陷鉴别•挤压缺陷原因分析•挤压缺陷改善措施•挤压缺陷案例分析挤压缺陷鉴别01挤压件表面存在不平整、凹凸不光滑现象。

挤压件表面存在圆形或不规则的气泡。

挤压件表面出现黑色氧化现象。

挤压件表面或内部存在连续或断续的裂纹。

$item1_title表面粗糙$item2_title裂纹表面粗糙裂纹挤压件的实际尺寸与设计尺寸存在较大差异。

挤压件存在扭曲变形现象,导致尺寸不直。

挤压件存在弯曲变形现象,导致尺寸不准确。

尺寸超差扭曲弯曲组织结构缺陷鉴别挤压件组织结构中晶粒尺寸过大,影响材料性能。

挤压件组织结构中存在化学成分不均匀现象。

热处理工艺不当导致组织结构不均匀或异常。

晶粒粗大偏析热处理不当挤压缺陷原因分析02铝、镁等合金元素含量不均,导致材料热处理时组织不均匀,影响挤压性能。

材料中存在过多的杂质,如铁、硅等,影响材料的挤压性能。

挤压前材料粒度不均匀,影响挤压过程中的填充性和成型性。

原材料原因成分含量不均匀杂质含量超标粒度不均匀挤压温度过高或过低,导致材料塑性变形不均匀,产生缺陷。

挤压温度不当挤压速度不当挤压压力不当挤压速度过快或过慢,影响材料的填充性和成型性。

挤压压力过高或过低,导致材料塑性变形不足或过度,产生缺陷。

03挤压工艺原因0201模具原因模具材料选择不当模具材料硬度、韧性等性能不符合要求,导致挤压过程中模具受损或材料填充不良。

模具加工精度不足模具加工精度不足,导致材料填充不良或成型不良。

模具结构设计不合理模具结构设计不当,导致材料填充不良或成型不良。

热处理工艺不当,导致材料组织不均匀或性能下降。

热处理不当表面处理工艺不当,导致产品表面质量差或防护性能下降。

表面处理不当存储运输过程中受外界环境影响,导致产品受损或变形。

存储运输不当产品加工后续处理原因挤压缺陷改善措施03总结词通过调整原材料的化学成分和物理性能,可以改善挤压过程的稳定性和产品质量。

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析

挤压铸造原理及缺陷分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-挤压铸造原理及缺陷分析挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。

挤压铸造原理及特点1.1.基本原理挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。

由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。

1.2.挤压铸造的特点挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。

首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。

由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。

由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于200mm)。

与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高于其他铸造方法约2~3倍。

压铸件的缺陷及产生的原因

压铸件的缺陷及产生的原因

压铸件的缺陷及产生的原因压铸件是指通过将金属液体注入金属型腔中,经过固化后制成的零件。

但是,在压铸过程中,常常会出现一些缺陷,影响零件的质量和性能。

下面将介绍压铸件的一些常见缺陷及其产生的原因。

1.翘曲缺陷:也称为翘边、翘曲、变形等。

翘曲缺陷是指零件的表面或边缘呈现出翘曲,失去了平整的状态。

主要原因有:a)模具设计不合理或施工差,导致模具收缩不均匀。

b)注射压力过大或注射时间过长,导致零件超出模具限度。

c)压铸过程中的温度控制不当,导致局部过热和不均匀。

2.气孔缺陷:是指零件表面或内部存在气体囊泡。

主要原因有:a)金属液体中含有过多的气体,例如铁水中的氢气或氧气。

b)浇注速度过快,金属液体在注射过程中未能顺利排出气体。

c)压铸设备不符合要求,导致金属液体中气体无法排除。

3.砂眼缺陷:是指零件表面或内部存在砂眼。

主要原因有:a)压铸过程中模具受到振动或冲击,导致砂芯松动或破裂。

b)铸造材料中含有过多的细小颗粒,容易形成砂眼。

c)压铸设备的压力控制不当,导致铸件内部砂芯松动。

4.缩松缺陷:是指零件表面或内部存在空洞或空隙。

主要原因有:a)金属液流动速度不均匀,导致金属液中气体无法排出,形成缩松。

b)金属液温度过低或过高,凝固速度过快或过慢,容易形成缩松。

c)压铸设备的注射压力和速度不匹配,导致金属液无法充分填充模腔。

5.热裂缺陷:是指零件在冷却过程中出现裂纹。

主要原因有:a)压铸件的凝固收缩不均匀,产生内部应力,导致零件热裂。

b)零件的壁厚不均匀,导致凝固速度不同,产生应力集中。

c)零件冷却速度过快,导致表面和内部温度差异大,产生应力热裂。

除了以上列举的缺陷外,还有一些其他常见的缺陷,如砂眼、金属氧化、皮肤等。

这些缺陷的产生原因也是多种多样的,包括模具的设计、注射过程的控制、金属材料的选择等等。

因此,为了减少和避免压铸件的缺陷,需要从以下几个方面进行改进和控制:1)模具设计和制造的精准度和稳定性。

2)铸件的金属液配方和处理技术。

压铸件不良及原因分析

压铸件不良及原因分析

压铸件不良及原因分析压铸件是指通过压力将熔化的金属注入热锻模具中进行成型的一种金属制造方法。

由于制造过程的复杂性和品质要求的严格性,压铸件不良问题时常出现。

本文将通过分析压铸件的不良问题及其原因,以帮助更好地理解和解决这些问题。

1.表面缺陷:表面缺陷包括气孔、夹杂物、氧化皮等。

其主要原因有:-铸造温度过高:过高的铸造温度会导致铸体内部氧化反应加剧,产生气孔等缺陷。

-模具表面粘附物:压铸过程中,模具表面可能存在铁屑、氧化皮等物质,导致铸件表面产生缺陷。

-熔化金属的气体含量过高:熔化金属中的气体含量过高,会在铸件凝固过程中析出气泡,形成气孔等缺陷。

2.尺寸偏差:尺寸偏差包括尺寸过大、过小、不均匀等情况。

其主要原因有:-铸造温度过高或过低:过高或过低的铸造温度都会导致铸件收缩率发生变化,从而产生尺寸偏差。

-模具设计不合理:模具设计中未考虑到金属的收缩和变形特性,导致铸件尺寸不准确。

-注射速度和压力控制不当:控制注射速度和压力不当,会导致金属流动不均匀,引起尺寸偏差。

3.冲击性能不佳:冲击性能不佳是指铸件在受到冲击载荷时易产生破坏或断裂。

其主要原因有:-金属组织不均匀:熔化金属在快速冷却过程中,易产生晶粒过大、晶界异常等问题,导致冲击性能下降。

-含气量过高:熔化金属中的气体含量过高,会在铸件凝固过程中析出气泡,降低冲击性能。

-金属材料的不合理选择:选择不合适的金属材料,其化学成分和机械性能可能不满足冲击性能要求。

4.裂纹:裂纹是指铸件表面或内部出现的细小或明显的裂缝。

其主要原因有:-材料内部应力过大:熔化金属在凝固过程中,由于收缩等原因会产生内部应力,过大的应力会导致铸件出现裂纹。

-注射速度和压力控制不当:控制注射速度和压力不当,使得金属充实不充分或过量,都会导致铸件的裂纹。

-模具温度不均匀:模具温度不均匀会导致铸件冷却速率不均匀,产生应力过大而发生裂纹。

5.金属疲劳:金属疲劳是指铸件在循环载荷下产生的微裂纹最终引起断裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

挤压铸造原理及缺陷分析
作者:曹博
来源:《中国机械》2013年第24期
摘要:挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。

关键词:挤压铸造铝液铸造比压保压时间
1.挤压铸造原理及特点
1.1.基本原理
挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。

由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。

1.2.挤压铸造的特点
挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。

首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。

由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。

由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于
200mm)。

与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高于其他铸造方法约2~3倍。

2.挤压铸造的生产工艺流程
以直径190系列的铝活塞为例,介绍挤压铸造的工艺流程,挤压铸造借鉴于压力铸造和模锻工艺,其大体工艺流程为把液态金属直接浇入金属模内。

然后在一定时间内以一定的压力作
用于熔融的金属液体使之成形。

并在此压力下结晶和塑性流动。

从而获得铸件。

在315t的液压机上生产铝活塞的具体流程是:首先将铝加热到700~720摄氏度,形成铝液,倒入凹模中,进行扒渣得到相对纯净的铝液,液压机上缸下行,上压头对铝液加压,主缸的峰值加压压力达到280t,上压力加压至最大表压力22MPa起,到上压头起模止,维持保压时间在350秒,保压结束后开模,用底缸将铸件顶出即可。

整体上可分为四个步骤,模具准备,浇注,合模加压,开模出件。

具体的铸造过程,注意的参数如下:
顶缸上升速度和金属流速;对铸造机而言,顶缸上升速度应该是丰富可调的,而金属流速须由铸件壁厚和尺寸决定,以不产生湍流,平稳填充铸型为原则,铸件的壁厚越大,尺寸越小,则流速较小,壁厚越小,尺寸越大,则流速较大。

挤压机顶缸上升顶力和瞬间及时增压速度;当前我国普遍装备的油顶机顶缸顶力足够满足挤压铸造的需求。

瞬间及时增压速度是较为重要的参数,在合金液刚刚充满铸型之初,铸造比压极小,在50ms~150ms内,下顶缸顶力上升到额定顶力,以保证高比压下合金液凝固成型。

3.挤压铸造缺陷分析
以铝活塞为例,介绍常见的挤压铸造的缺陷分析和解决措施。

3.1.气孔
气孔的出现一般是由于最初的铝液中气体含量较高,或者浇注过程中侵入了气体,因此气孔可分为析出性气孔和侵入性气孔。

具体的应对措施由其形成原因入手。

析出性气孔的减少,主要需要对铝液的精炼处理进行强化,得到含气量低的铝液。

侵入性气孔则涉及更多的流程,首先熔融态合金注入模具的速度要平稳,不超过0.08m/s,避免产生涡流卷入气体,并且充分排出铸模中的气体,速度太低也可能造成金属凝固而没有充满铸模,这需要由上压头加压速度来控制,一般厚壁铸件需控制住0.03~0.06m/s,而壁薄的铸件则速度稍高,控制在0.05~0.08m/s。

3.2.缩松和缩孔
缩松和缩孔会伴随着气孔产生,通常会出现在活塞最后凝固的区域,上压头下行至型腔封闭时,铝液存在向上的反向流动,而挤压铸造不能设置冒口补缩,故只能将未凝固的铝液挤入活塞销座和头部热节处,实现补缩,这有赖于上压头的压力对铸件进行压缩,而压力不足会导致补缩效果不明显,活塞稍座和头部可能出现缩孔和缩松。

对于该问题,首先是对上压头的压力进行合理选取,依据合金类型和铸件外形因素设置压力。

上压头的最低压力值需在80MPa以上,而最高不宜超过120MPa,在该范围内逐步提高压
力值以减少缩松和缩孔,其次,一定的保压时间也是消除缩松和缩孔所需条件,持续的保压中,确保金属能够全部冷却凝固,不发生卸压后仍有液态金属继续凝固产生缩孔缩松,同时,过长的保压时间会导致模具温度升高,且脱模困难,不利于模具的寿命,经过验证,保压时间在150s~350s内,铸件质量较好,该时间由铸件最大壁厚来大致估计。

3.3.氧化夹杂
挤压铸造中,不设置浇冒口,也很少设置集渣包,排渣系统不足,但铝液在熔炼和浇注中,不断产生氧化夹杂,在形成铸件后,氧化夹杂融入其中,导致外圆氧化夹杂的缺陷。

对于氧化夹杂问题,首先铝合金的融化过程,温度精确控制在700~720摄氏度,使渣浮起,除尽铝液内氧化渣,并且坩埚和浇勺也清理干净,浇注之时,避免直接通过漏斗直浇道,可使用孔眼直径在1mm左右的过滤网以便滤去氧化渣和溶剂渣。

加压之前,进行一个快速的扒渣,由模壁向中心,从中心剔除残渣,而在压制之前,不得有冷隔金属参与挤压铸造过程。

4.总结
挤压铸造是一项优质高效的生产工艺,如果各工艺环节控制得当,可以产生质量较好的铸件,然而在实际生产中,却因为种种原因产生缺陷,给厂家和使用者带来损失,本文对缺陷原因从技术上进行了分析,从生产流程上提出了应对措施,结合实际情况,使挤压铸造技术更好地用于生产。

参考文献
[1]唐多光,铝合金挤压铸造若干技术问题的讨论[ J] . 《特种铸造及有色合金》 2002,( 6): 28- 29.
[2]张屹林,闫汝辉,王秀金.铝活塞液态模锻常见缺陷分析.《铸造技术》2006.12
作者简介姓名:曹博学校:大连交通大学生日:(1990-01-03)性别:男民族:汉族籍贯:辽宁省抚顺市学历:本科研究方向:铸造/金属材料/机械邮编:116041。

相关文档
最新文档